Laser and electron beam treatments for corrosion protection of friction stir welds in aerospace alloys

Siggs, Eirian Bethany (2010). Laser and electron beam treatments for corrosion protection of friction stir welds in aerospace alloys. University of Birmingham. Eng.D.

[img]
Preview
Siggs09EngD.pdf
PDF

Download (10MB)

Abstract

Friction Stir Welding (FSW) is a suitable technology for aerospace structure development and is a possible replacement for mechanical fastening. To achieve the application of FSW, pre and post-weld treatments are required. A pre-weld treatment of surface preparation was required to ensure a weld with good mechanical properties. The surface preparation necessary is the removal of paint and anodising layers from aerospace alloys. Laser paint removal was assessed and designed to remove these layers with only an oxide remaining, which welded to produce high quality welds. The post-weld treatment was essential to increase the corrosion resistance of the welded area. The improvement in corrosion resistance was achieved with High Power Beam Surface Modification (HPBSM), which created a homogeneous surface through rapid surface melting and solidification. The rapid thermal processing dissolved and dispersed the precipitate solute atoms which were retained in solid solution through planar solidification. Electron beams and various lasers were used in the HPBSM processing. Excimer Laser Surface Melting (LSM) improved corrosion resistance but the layer depth was restricted by processing parameters. HPBSM processing studies using an electron beam, USP-CO\(_2\) laser and Nd:YAG laser provided understanding on how processing parameters controlled the modified layer characteristics.

Type of Work: Thesis (Doctorates > Eng.D.)
Award Type: Doctorates > Eng.D.
Supervisor(s):
Supervisor(s)EmailORCID
Davenport, AlisonUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Metallurgy and Materials
Funders: Engineering and Physical Sciences Research Council
Subjects: T Technology > TS Manufactures
T Technology > TN Mining engineering. Metallurgy
URI: http://etheses.bham.ac.uk/id/eprint/479

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year