Development of advanced plasma surface technologies for high performance carbon paper gas diffusion layer and 316 stainless steel bipolar plates

Lin, Kaijie (2015). Development of advanced plasma surface technologies for high performance carbon paper gas diffusion layer and 316 stainless steel bipolar plates. University of Birmingham. Ph.D.

[img] Lin15PhD.pdf
PDF - Accepted Version
Restricted to Repository staff only until 1 September 2020.

Download (9MB) | Request a copy

Abstract

In this work, a portfolio of novel active screen plasma surface engineering technologies have been developed including active screen plasma surface modification of carbon paper for gas diffusion layer (GDL) and active screen plasma surface co-alloying of 316 austenitic stainless steel with both interstitial alloying element of nitrogen and such substitutional alloying elements as silver (Ag), niobium (Nb) and platinum (Pt).

The active screen plasma surface modification of GDL carbon paper at a low temperature for a short period of time can effective activate the carbon paper surface mainly due to the removal of the hydrophobic PTFE coating and introduction of many functional groups, thus contributing to the improved growth of Pt nano-wires. Accordingly, the electrochemical and catalysis performance can be effective improved.

The novel ASP surface alloying technique developed from this research has been applied to modify the 316 stainless steel surface using nitrogen for active screen plasma nitriding (ASPN); nitrogen and silver (N&Ag); nitrogen and niobium (N&Nb); and nitrogen and platinum (N&Pt). The experimental results have demonstrated that the layer structure of the ASP treated 316 SS surfaces can be tailored by using different alloying elements and/or adjusting treatment parameters. The surface electrical conductivity of 316 can be reduced significantly. The ASPN, ASPA(N&Ag) and ASPA(N&Nb) increase the corrosion potential, lower the corrosion current density, but raise the passive current density of 316 SS. Among all the surface alloying treatments, the ASPA(N&Pt) treatment has delivered the best performance and fulfilled the technique target set by the Department of Energy (DoE), USA.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Dong, HanshanUNSPECIFIEDUNSPECIFIED
Li, XiaoyingUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Metallurgy and Materials
Funders: None/not applicable
Subjects: T Technology > TN Mining engineering. Metallurgy
URI: http://etheses.bham.ac.uk/id/eprint/6351

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year