Spray, combustion and emission characteristics of dieseline fuel

Zhang, Fan (2013). Spray, combustion and emission characteristics of dieseline fuel. University of Birmingham. Ph.D.

PDF - Accepted Version

Download (4MB)


The spray, combustion and emissions characteristics of diesel and gasoline blends (dieseline) were studied. Experimental results showed that the dieseline fuel spray had tip penetration length similar as diesel. With an increase of the gasoline/diesel blending ratio, the fuel droplets size decreased. When operating with dieseline, the engine's PM emissions were much lower than diesel. With advanced injection timing and large amounts of EGR, both the NOx and PM emissions of dieseline combustion were reduced significantly at part loads. Using split injection strategies gave even more flexibility for the control of mixing strength and combustion phasing. However, the power density of dieseline fuelled PPCI operation was limited. A novel concept, Stoichiometric Dual-fuel Compression Ignition (SDCI) was investigated. The diesel and gasoline were blended internally through direct injection and port fuel injection respectively. Stoichiometric condition was maintained through adjusting the EGR ratio, which thus allows for a three-way-catalyst to handle gaseous emissions. Experimental results showed that the SDCI combustion can achieve better thermal efficiency and lower PM emissions than conventional diesel combustion. Overall, the SDCI concept was proved to be a promising technique for optimising a CI engine's efficiency, emissions and noise without compromise of cost and power density.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering
Funders: None/not applicable
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
URI: http://etheses.bham.ac.uk/id/eprint/4699


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year