eTheses Repository

Flexible robotic control via co-operation between an operator and an ai-based control system

Chiou, Emmanouil (2017)
Ph.D. thesis, University of Birmingham.

PDF (17Mb)Accepted Version


This thesis addresses the problem of variable autonomy in teleoperated mobile robots. Variable autonomy refers to the approach of incorporating several different levels of autonomous capabilities (Level(s) of Autonomy (LOA)) ranging from pure teleoperation (human has complete control of the robot) to full autonomy (robot has control of every capability), within a single robot. Most robots used for demanding and safety critical tasks (e.g. search and rescue, hazardous environments inspection), are currently teleoperated in simple ways, but could soon start to benefit from variable autonomy. The use of variable autonomy would allow Artificial Intelligence (AI) control algorithms to autonomously take control of certain functions when the human operator is suffering a high workload, high cognitive load, anxiety, or other distractions and stresses. In contrast, some circumstances may still necessitate direct human control of the robot. More specifically, this thesis is focused on investigating the issues of dynamically changing LOA (i.e. during task execution) using either Human-Initiative (HI) orMixed-Initiative (MI) control. MI refers to the peer-to-peer relationship between the robot and the operator in terms of the authority to initiate actions and LOA switches. HI refers to the human operators switching LOA based on their judgment, with the robot having no capacity to initiate LOA switches. A HI and a novel expert-guided MI controller are presented in this thesis. These controllers were evaluated using a multidisciplinary systematic experimental framework, that combines quantifiable and repeatable performance degradation factors for both the robot and the operator. The thesis presents statistically validated evidence that variable autonomy, in the form of HI and MI, provides advantages compared to only using teleoperation or only using autonomy, in various scenarios. Lastly, analyses of the interactions between the operators and the variable autonomy systems are reported. These analyses highlight the importance of personality traits and preferences, trust in the system, and the understanding of the system by the human operator, in the context of HRI with the proposed controllers.

Type of Work:Ph.D. thesis.
Supervisor(s):Stolkin, Rustam and Hawes, Nick and Shapiro, Kimron
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Computer Science
Subjects:QA75 Electronic computers. Computer science
Institution:University of Birmingham
ID Code:7388
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page