Flexible robotic control via co-operation between an operator and an ai-based control system

Chiou, Emmanouil (2017). Flexible robotic control via co-operation between an operator and an ai-based control system. University of Birmingham. Ph.D.

[img]
Preview
Chiou17PhD.pdf
PDF - Accepted Version

Download (18MB)

Abstract

This thesis addresses the problem of variable autonomy in teleoperated mobile robots. Variable autonomy refers to the approach of incorporating several different levels of autonomous capabilities (Level(s) of Autonomy (LOA)) ranging from pure teleoperation (human has complete control of the robot) to full autonomy (robot has control of every capability), within a single robot. Most robots used for demanding and safety critical tasks (e.g. search and rescue, hazardous environments inspection), are currently teleoperated in simple ways, but could soon start to benefit from variable autonomy. The use of variable autonomy would allow Artificial Intelligence (AI) control algorithms to autonomously take control of certain functions when the human operator is suffering a high workload, high cognitive load, anxiety, or other distractions and stresses. In contrast, some circumstances may still necessitate direct human control of the robot. More specifically, this thesis is focused on investigating the issues of dynamically changing LOA (i.e. during task execution) using either Human-Initiative (HI) orMixed-Initiative (MI) control. MI refers to the peer-to-peer relationship between the robot and the operator in terms of the authority to initiate actions and LOA switches. HI refers to the human operators switching LOA based on their judgment, with the robot having no capacity to initiate LOA switches. A HI and a novel expert-guided MI controller are presented in this thesis. These controllers were evaluated using a multidisciplinary systematic experimental framework, that combines quantifiable and repeatable performance degradation factors for both the robot and the operator. The thesis presents statistically validated evidence that variable autonomy, in the form of HI and MI, provides advantages compared to only using teleoperation or only using autonomy, in various scenarios. Lastly, analyses of the interactions between the operators and the variable autonomy systems are reported. These analyses highlight the importance of personality traits and preferences, trust in the system, and the understanding of the system by the human operator, in the context of HRI with the proposed controllers.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Stolkin, RustamUNSPECIFIEDUNSPECIFIED
Hawes, NickUNSPECIFIEDUNSPECIFIED
Shapiro, KimronUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Computer Science
Funders: Other
Other Funders: Defence Science and Technology Laboratory, UK
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
URI: http://etheses.bham.ac.uk/id/eprint/7388

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year