eTheses Repository

Cleaning of toothpaste from process equipment by fluid flow at laboratory and pilot scales

Cole, Pamela Anne (2013)
Eng.D. thesis, University of Birmingham.

PDF (5Mb)Redacted Version


Cleaning studies were performed to remove toothpaste by fluid flow at different temperatures and velocities to mimic CIP (Cleaning-In-Place) processes on toothpaste coated coupons at laboratory scale and fully filled pipeline at pilot scale (different lengths and diameters). The cleaning time was reduced by increasing the velocity and temperature of the water, however no further time benefit was seen above 40°C.

The adhesive force for different pastes calculated from micromanipulation data followed the same trend as cleaning times on the laboratory cleaning rig. This cleaning data for the different paste formulations had a logarithmic relationship with the viscosity term from the Herschel-Bulkley rheological model.

Removal of toothpaste from pipes occurred by the core of the paste being removed from the centre of the pipe to leave a thin coating on the pipe wall, which was then eroded by flow. Pipes of lengths between 0.3 m and 2 m (47.7 mm diameter pipe) showed no difference in cleaning time. The rate limiting process was removal of the thin wall coating and therefore not a function of length. An inverse wall shear stress relationship with cleaning time was found to represent all the data, at all scales and under all conditions.

Type of Work:Eng.D. thesis.
Supervisor(s):Fryer, Peter and Robbins, Phil and Armitage, Nigel and Salmon, Natalie and Owen, Eddie
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Chemical Engineering
Subjects:TP Chemical technology
Institution:University of Birmingham
ID Code:4128
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page