eTheses Repository

Electro-mechanical behaviour of indium tin oxide coated polymer substrates for flexible electronics

Potoczny, Grzegorz A. (2012)
Ph.D. thesis, University of Birmingham.

Loading
PDF (9Mb)

Abstract

Highly conductive (3.0 - 5.0 x 10 \(^{-4}\) \( \Omega\) cm) and transparent (80 – 85% ) ITO films were successfully fabricated on glass and polymer substrates (PET, PEN and PC) by pulsed laser deposition at low temperatures (24 – 150 °C). The influence of deposition conditions on the structural and physical properties of ITO-coated glass substrates was studied. The samples were investigated using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD), the fourpoint probe and a spectrophotometer. Sol-gel derived ITO films dip-coated on glass substrates were also studied. The optimum film obtained at a firing temperature of 600 °C had a resistivity of 1.8 x 10 \(^{-2}\) \( \Omega\) cm, and optical transmittance of 80%. The electro-mechanical behaviour of ITO/polymer systems was investigated under uniaxial tension and controlled buckling in tension and compression. The resistance changes were monitored in situ. Cracking and buckling delamination failure modes were observed for all samples investigated at critical strains raging from 2.8 to 3.4%, and from 7.0 to 8.0%, respectively. The results showed that the dominant critical failure mode depends on the applied stress conditions. The ITO/PEN samples showed high flexibility; the samples were buckled in tension down to a 2.6 mm radius of curvature before cracks start to occur.

Type of Work:Ph.D. thesis.
Supervisor(s):Kukureka, Stephen N. and Abell, Stuart
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Metallurgy and Materials
Subjects:TN Mining engineering. Metallurgy
TP Chemical technology
TS Manufactures
Institution:University of Birmingham
ID Code:3475
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page