eTheses Repository

Nonlinear mixed integer based optimization technique for space applications

Schlueter, Martin (2012)
Ph.D. thesis, University of Birmingham.

Loading
PDF (1206Kb)

Abstract

In this thesis a new algorithm for mixed integer nonlinear programming (MINLP) is developed and applied to several real world applications with special focus on space applications. The algorithm is based on two main components, which are an extension of the Ant Colony Optimization metaheuristic and the Oracle Penalty Method for constraint handling. A sophisticated implementation (named MIDACO) of the algorithm is used to numerically demonstrate the usefulness and performance capabilities of the here developed novel approach on MINLP. An extensive amount of numerical results on both, comprehensive sets of benchmark problems (with up to 100 test instances) and several real world applications, are presented and compared to results obtained by concurrent methods. It can be shown, that the here developed approach is not only fully competitive with established MINLP algorithms, but is even able to outperform those regarding global optimization capabilities and cpu runtime performance. Furthermore, the algorithm is able to solve challenging space applications, that are considered here as mixed integer problems for the very first time.

Type of Work:Ph.D. thesis.
Supervisor(s):Ruckmann, Jan-J.
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Mathematics
Subjects:QA Mathematics
TL Motor vehicles. Aeronautics. Astronautics
Institution:University of Birmingham
ID Code:3101
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page