eTheses Repository

Tissue engineering a ligamentous construct

Mehrban, Nazia (2011)
Ph.D. thesis, University of Birmingham.

PDF (7Mb)


Tendon and ligament damage causes extreme pain and decreased joint functionality. Current repair methods cannot restore original joint biomechanics nor promote regeneration of native tissue. Recent advances in tendon and ligament repair have involved engineering tissue using cell-seeded scaffolds. Self-aligned cellular structures, similar to those in ligaments and tendons, have been successfully formed, albeit with weak attachment between construct and bone. Calcium phosphates form an intimate bond with both soft and hard tissues and have successfully been used in tissue engineering bone, whilst hydrogels have often been used as cellular scaffolds. This thesis explores agarose, gelatin, carrageenan and fibrin hydrogels as potential soft tissue scaffolds. Fibrin gel exhibited high cellular compatibility with highest metabolic activity on day 14. Although the cellular gel contracted significantly, it was found that the dry weight remained stable in both the acellular and cellular forms. 3D powder printed calcium phosphate scaffolds remained structurally stable after immersion in cell culture media with immersion in protein-rich sera promoting tenocyte attachment. Bracket designs were developed to enhance grip of the cell-seeded fibrin. Ligament constructs were selfsupporting and exhibited structural characteristics similar to native connective tissue. Tenocyte density peaked on day 14, with added L-proline and ascorbic acid inducing a constant level of glycosaminoglycans and 7.4 ± 1.5 % w/w collagen. This research may significantly enhance the clinical application of tissue engineered ligaments and tendons.

Type of Work:Ph.D. thesis.
Supervisor(s):Grover, Liam
School/Faculty:Colleges (2008 onwards) > College of Life & Environmental Sciences
Department:Bioengineering, School of Chemical Engineering
Subjects:QM Human anatomy
QP Physiology
RC1200 Sports Medicine
TP Chemical technology
Institution:University of Birmingham
ID Code:2989
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page