Adsorption system for cooling and power generation using advanced adsorbent materials

Downloads

Downloads per month over past year

Al-Mousawi, Fadhel (2018). Adsorption system for cooling and power generation using advanced adsorbent materials. University of Birmingham. Ph.D.

[img]
Preview
Al-Mousawi18PhD.pdf
PDF

Download (11MB)

Abstract

This thesis investigates the feasibility of producing electricity and cooling simultaneously utilising low-grade heat sources by incorporating an expander within the adsorption cooling system or by integrating an Organic Rankine Cycle with water adsorption cooling system. Advanced physical adsorbent materials have been investigated for the first time to generate cooling and electricity simultaneously utilising CPO-27(Ni), MIL101(Cr), and AQSOA-Z02 and compared to commonly used Silica-gel. Two innovative configurations of water adsorption systems for cooling and electricity were investigated. In the first configuration, the two-bed basic adsorption cooling system (BACS) is improved by including an expander within the system. In the second configuration, the BACS and ORC cycle are integrated. Four different scenarios of systems integration based on the way of powering the ORC and the adsorption system were investigated. Also, detailed CFD simulations of small-scale radial inflow turbines are developed for both configurations. Also, a novel experimental facility is developed to integrate ORC with two-bed adsorption cooling system to validate the numerical models and proof the concept of producing power as well as cooling, where maximum specific cooling power of 252 W/kgads and specific power and of 162 W/kgads can be achieved with maximum deviation of less than 17%.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Al-Dadah, RayaUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Mechanical Engineering
Funders: None/not applicable
Subjects: T Technology > TJ Mechanical engineering and machinery
URI: http://etheses.bham.ac.uk/id/eprint/8641

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year