Solidification behaviour and hipping induced surface modification in Ti4522XD castings

Yang, Chao (2012). Solidification behaviour and hipping induced surface modification in Ti4522XD castings. University of Birmingham. Ph.D.

[img]
Preview
Yang12PhD.pdf
PDF - Accepted Version

Download (12MB)

Abstract

The solidification behaviour of Ti45Al2Mn2Nb1B (at.%) has been studied together with its response to HIPing (Hot Isostatic Pressing) in order to understand the mechanism of grain refinement in castings and to understand the influence of surface changes occurring during HIPping on the properties of HIPped net shape cast turbine blades. Samples which had been rapidly cooled from near the melting point from a Bridgman furnace, where a thermal gradient was imposed, have been used to understand the grain refinement mechanism and the details of the solidification sequence. In addition the structure of powder samples, which have been gas-atomised and hence very rapidly cooled have also been used to further the understanding of solidification and of the role of borides. It has been shown that borides themselves play an important role in grain refinement. It has been shown that HIPping results in the formation of a surface which is caused by oxidation from the oxygen present in the argon used in the HIP. The details of the chemistry and microstructure of the surface layers have been shown to be influenced by oxygen partial pressure, by HIPping time and HIPping temperature. Conventional HIPping conditions lead to a surface which contains a γ-layer which does not appear to downgrade either the tensile properties or fatigue properties of the samples and may slightly improve the corrosion resistance. Further work is required to produce net shape castings, which have properties comparable with conventionally cast Ti4522XD, but the present work shows that these could then be HIPped without the γ-layer contained surface causing any downgrading in properties.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Hu, DaweiUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Metallurgy and Materials
Funders: Other
Other Funders: Overseas Research Students Awards Scheme, The University of Birmingham
Subjects: T Technology > TN Mining engineering. Metallurgy
URI: http://etheses.bham.ac.uk/id/eprint/7614

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year