The effect of carbon and silicon-based additives on the hydrogen storage properties of Lithium Borohydride

Vines, Joshua Edwin (2017). The effect of carbon and silicon-based additives on the hydrogen storage properties of Lithium Borohydride. University of Birmingham. Ph.D.

[img]
Preview
Vines17PhD.pdf
PDF - Accepted Version

Download (7MB)

Abstract

LiBH\(_4\) was added to a number of different non-reactive additives in order to investigate their influence on the hydrogen storage properties of LiBH\(_4\).
Graphite is a cheap and abundant material that has been used to destabilize hydrogen storage materials such as LiH. Ball milling graphite under Ar was shown to induce a higher amorphous content compared to milling under H\(_2\). The addition of LiBH\(_4\) to graphite milled under Ar resulted in a reduction of 102°C in the decomposition temperature of
LiBh\(_4\).
The effect of porous additives was investigated through the incorporation of LiBH\(_4\) into zeolite templated carbon (ZTC) and porous silicon. Confinement in these scaffolds resulted in a decrease in the decomposition temperature of LiBH\(_4\) by 125°C. The smaller pore size of ZTC was found to have the greatest effect on the H\(_2\) onset and cyclic stability of LiBh\(_4\).
The pre-melting of LiBh\(_4\) into porous scaffolds was shown to eliminate B\(_2\)H\(_6\) release during decomposition. No correlation between the surface area of the additives and decomposition temperature of LiBH\(_4\) was observed. Although none of the materials studied in this work meet the United States DoE targets, confinement of LiBH\(_4\) in porous structures offers a promising approach to unlocking its potential.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Book, DavidUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Metallurgy and Materials
Funders: None/not applicable
Subjects: T Technology > TN Mining engineering. Metallurgy
URI: http://etheses.bham.ac.uk/id/eprint/7542

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year