Development of an upgrade selection process for railway renewal projects

Chen, Xindi (2017). Development of an upgrade selection process for railway renewal projects. University of Birmingham. Ph.D.

[img]
Preview
ChenX17PhD.pdf
PDF - Accepted Version

Download (4MB)

Abstract

Currently, many railway systems need to be upgraded to meet the demand for rapidly increasing railway capability, environmental concerns and customer satisfaction, while there is a lack of the right models and tools required to support the early decision making stage of railway renewal projects.

In this thesis, a new railway selection upgrade process is proposed, which aims to support early stage decision-making in railway renewal projects by finding the most appropriate solutions to take forward for more detailed consideration. The railway selection upgrade process consists of modelling, simulation, split into macros-assessment and micro-simulation, and evaluation. A high-level feasibility analysis model is developed for the macro-assessment, to help engineers efficiently select the most promising upgrade options for further detailed consideration using microscopic simulation. This process provides a quick and efficient way to quantify evaluation functions, based on the 4Cs (capacity, carbon, customer satisfaction and cost) framework, to give a final suggestion on the most appropriate upgrade options.

Two case studies, based on the East Coast Main Lines and the Northern Ireland railway network, are presented in order to demonstrate the application and verify the feasibility of the high-level feasibility analysis model and the railway upgrade selection process.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Roberts, CliveUNSPECIFIEDUNSPECIFIED
Nicholson, GemmaUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Electronic, Electrical and Systems Engineering
Funders: None/not applicable
Subjects: T Technology > TF Railroad engineering and operation
T Technology > TK Electrical engineering. Electronics Nuclear engineering
URI: http://etheses.bham.ac.uk/id/eprint/7500

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year