Transmission expansion planning and unit commitment with large-scale integration of wind power

Wu, Zhi (2016). Transmission expansion planning and unit commitment with large-scale integration of wind power. University of Birmingham. Ph.D.

[img]
Preview
Wu16PhD.pdf
PDF - Accepted Version

Download (2MB)

Abstract

The large-scale integration of wind generation into the power system brings great challenges to transmission expansion planning (TEP) and unit commitment (UC). The intermittence nature of wind generation needs to be fully considered in these two problems, which stimulates the research of this thesis.
The selection of candidate lines is the prerequisite for the TEP problem. Considering the limitations of manual selection approach, a method to select candidate lines automatically is proposed, which consists of five stages to reinforce existing corridors and new corridors. Results of the two test systems illustrate that the locational marginal price difference is neither sufficient nor necessary condition for candidate lines. The uncertainty of load demand and wind power is studied both in the TEP and UC problems. In the term of TEP, a two-stage stochastic formulation of TEP is proposed. The stochastic dual dynamic programming (SDDP) approach is applied to consider the uncertainty, and the whole model is solved by Benders decomposition (BD) technique. In the term of UC, the chance-constrained two-stage programming formulation is proposed for the day-ahead UC problem. The chance-constrained stochastic programming formulation is converted into an equivalent deterministic formulation by a sequence of approximation and verification.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Zhang, Xiao-PingUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Electronic, Electrical and Systems Engineering
Funders: Other
Other Funders: China Electric Power Research Institute, The University of Birmingham
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
URI: http://etheses.bham.ac.uk/id/eprint/6738

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year