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ABSTRACT 

The large-scale integration of wind generation into the power system brings great 

challenges to transmission expansion planning (TEP) and unit commitment (UC). The 

intermittence nature of wind generation needs to be fully considered in these two 

problems, which stimulates the research of this thesis.  

The selection of candidate lines is the prerequisite for the TEP problem. Considering 

the limitations of manual selection approach, a method to select candidate lines 

automatically is proposed, which consists of five stages to reinforce existing corridors 

and new corridors. Results of the two test systems illustrate that the locational 

marginal price difference is neither sufficient nor necessary condition for candidate 

lines. The uncertainty of load demand and wind power is studied both in the TEP and 

UC problems. In the term of TEP, a two-stage stochastic formulation of TEP is 

proposed. The stochastic dual dynamic programming (SDDP) approach is applied to 

consider the uncertainty, and the whole model is solved by Benders decomposition (BD) 

technique. In the term of UC, the chance-constrained two-stage programming 

formulation is proposed for the day-ahead UC problem. The chance-constrained 

stochastic programming formulation is converted into an equivalent deterministic 

formulation by a sequence of approximation and verification.  
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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivation 

1.1.1 Large-Scale Integration of Renewable Energy Sources 

The development of industry and improvement of life quality requires increasing 

energy consumption. From 1971 to 2012, the global total primary energy supply 

increased from 6106 to 13371 Mtoe by fuel[1]. According to the report from 

International Energy Agency, energy demand will increase another 37% by 2040, 

with an annual average growth rate of 1.1%[2]. To meet increasing power demands, 

the generation capacity also needs to be expanded. In the past, power generation was 

mainly from fossil energy, including coal, oil and gas. However, the problem with 

fossil energy is that it will be exhausted in the next several decades, which is bringing 

energy crisis to the human society. To lessen dependency on fossil energy, many 

other power generation techniques have being explored and developed, such as 

nuclear generation, hydro generation, ocean power generation, renewable generation, 

and so on. Compared with fossil energy, these new generation techniques are 

environmental friendly, which can reduce greenhouse gas emissions. The power 

generation from low-carbon fuels will cover three quarters of the total energy demand 

by 2040.  
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Among new generation techniques, renewable energy sources (RES) have been 

considered as the most favourite choice to replace fossil energy [3, 4]. RES generation 

generally refers to energy that comes from naturally resources, such as wind, solar, 

waves and geothermal heat. Figure 1-1 demonstrates the development of RES 

generation during the last fifteen years. It can be seen that wind generation and solar 

generation have been rapidly developed, and taken up over two thirds of the overall 

RES generation.  

 

Figure 1-1 Global installed renewable power capacity  

Stimulated by policies to enhance energy reliability and sustainability, newly installed 

capacity of RES in 2014 was 130GW, which contributed more than 45% of net 
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addition to global generation capacity in the power sector. Costs of renewable 

generation keep declining in many areas of world. It is expected that renewable 

energy will account for the largest part of net addition to generation capacity over the 

medium term. RES will take up almost two thirds of the new generation capacity by 

2020. The share of RES in 2013 was 22%, which will increase to over 26% in 

2020[5].  

According to the report announced in 2012 by National Renewable Energy 

Laboratory (USA), 80% of total U.S. electricity generation in 2050 can be provided 

by renewable energy generation from current available technologies. Among 80% of 

renewable energy, nearly 50% can be from variable wind generation and solar 

generation[6]. 

In June 2009, EC/2009/28 was published by the European Commission. It is also 

known as Renewable Energy Directive. The purpose of the Directive is to establish 

the framework for supporting wind integration, so that European Union (EU) can 

achieve a 20% share of EU’s energy from RES by 2020. In 2014, the projected share 

of renewable energy in the gross final energy consumption was 15.3%. Therefore, EU 

countries are well on the way to meeting the EU’s target for 20% renewable energy in 

the overall energy supply by 2020 [7].  
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Each member was set to achieve a target. EU is expected to achieve 24% and 29% 

share of RES in the gross final energy consumption, in 2030 and 2050 respectively. In 

power generation particularly, the share of RES will reach 43% and 50% by 2030 and 

2050 respectively[8].  

China has established its renewable energy law to support the development of 

renewable energy, by the combination of mandatory targets, market incentives and 

direct subsidy. By 2015, renewable energy accounted for about 11.4% of total energy 

consumption, and the target by 2020 is expected to be 15%[9].  

Among renewable generation, wind generation, solar generation and hydro generation 

account for the most of the part. From 1996 to 2014, the global wind power 

cumulative capacity increased from 6.1GW to 365.4GW, which was rapidly expanded 

during the past two decades. More advanced wind turbine designs continue to evolve 

to support the development of onshore and offshore wind generation, which enables a 

wide range of installation locations and operation conditions. Currently, cost for wind 

energy is the least, so new installations of wind farms continue to emerge in Asia, 

Africa and South America. Asia keeps the largest market led by China, which exceeds 

the total capacity in Europe. In several countries, the penetration level of wind 

generation has over 20% of total load demands, including Denmark, Nicaragua, 

Portugal and Spain.  
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Behind wind generation, solar generation takes up the second-largest source of new 

capacity in the adding renewable generation in 2014, driven by cost reductions. Figure 

1-2 shows the U.S. solar installation capacity and solar price from 2005 to 2015. It 

can be seen that the solar installation capacity increases rapidly in recent years, while 

cost decreases from about 8 $/watt to less than 3 $/watt[10]. In 2014, another 40GW 

of solar generation was installed, with the global total cumulative capacity about 

177GW. Solar installation hit 59GW in 2015 and 64GW to come in 2016 [11]. In 

some countries, solar generation has been taking up a considerable percentage in the 

overall generation. German has the largest solar capacity and contribution to the 

energy supply. China, Japan and U.S. account for the vast majority of the new solar 

installation[5].  

 

Figure 1-2 Solar installation capacity and solar price 



6 

 

1.1.2 Transmission Expansion Planning and Unit Commitment Considering 

Uncertainties 

A typical electric power system includes generation, transmission, sub-transmission 

and distribution, which can be seen in Figure 1-3. The transmission system 

interconnects the generation stations to large substations near to the load centres. 

 

Figure 1-3 A typical electric power system[12] 

Transmission expansion planning (TEP) is to determine when and where to build new 

lines to provide sufficient transmission capability, so that it can meet increasing load 

demands and generation capacity over a given time horizon. Unit commitment (UC) 

is to determine the optimal schedule and generation level of each generation unit over 

a given period of time period, while meeting various constraints (physical constraints, 

system-wide constraints, reliability constraints, etc.). There are two main uncertain 

sources both in TEP and UC problems: load demand and generation availability.  

 



7 

 

Generally, load demands increase annually with a certain rate, which might be 

affected by many factors, such as development of industry, improvement of human 

life, and so on. So load demands during the planning horizon can only be forecasted 

according to the historical data. Also, in the time scale of one day, load demands 

during the day time are quite different from those in the night; in the time scale of 

seasons, the average of load demands in each season also might vary in a quite large 

scope, which can be seen in Figure 1-4. So the forecast of load demands cannot be 

very accurate, which brings great uncertainties to problems of UC and TEP. 

 

Figure 1-4 Typical demand patterns over the year[13] 
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Another uncertain source is the generation availability. Generation availability refers 

to the power that various generation can provide during a certain period. In a network, 

generation techniques might include conventional generation, renewable generation, 

nuclear generation, and so on. The power of conventional generation and nuclear 

generation are dispatchable. That is to say, these two generation techniques can adjust 

power generation from very low generation to the maximum install capacity. 

However, the power from renewable generation is not dispatchable. For example, 

wind generation is determined by the wind speed; solar generation is determined by 

the intensity of the sunlight. The generation availability of conventional generation 

techniques and nuclear generation is certain and dispatchable. The generation 

availability of renewable generation is uncertain and undispatchable. The uncertain 

generation availability affects both UC and TEP. To illustrate the importance of 

generation availability, two simple scenarios are taken as the example, and load 

demands in two scenarios are the same. In the first scenario, renewable generation is 

in a low level; while in the second scenario, renewable generation is in a high level. In 

many countries, renewable generation has the priority over conventional 

generation[14]. So in the second scenario, enough transmission capacity should be 

provided to support renewable generation. It is a great operation challenge for the grid 

operator when the penetration of undispatchable renewable generation is in a high 

level, but the remaining conventional generation and nuclear generation only has a 
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limited flexibility. Different scenarios of renewable generation might happen during 

the practical operation, so the transmission network should be able to accommodate 

various scenarios and to perform in a robust way. Also, the schedule of generation 

units should has a sufficient flexibility to accommodate the fluctuation of wind 

generation. 

Besides uncertainties, another important issue brought by renewable generation is the 

trend of multi-regional interconnection. This is because areas rich of renewable 

energy are always far away from load centres. Take the situation in China as an 

example, the left part of Figure 1-5 shows the wind resource distribution in China, and 

it can be seen that wind-rich areas are mostly located at the northwest, north and 

northeast of China. However, load centres are located at the middle east of China. The 

right part of Figure 1-5 demonstrates China power grid expansion plan for 2020. 

Many transmission lines are going to be built to deliver huge wind generation to load 

centres. To enable the large-scale integration of renewable generation, multi-regional 

interconnection is an essential approach to secure system operations. So during the 

planning stage, a close cooperation between different regions is required. For example, 

in Texas, U.S., much effort has been undertaken to explore areas rich of wind 

resources and regions where new wind installation can take place (called Competitive 

Renewable Energy Zones). Corresponding transmission lines are going to be built to 

access those areas, so that wind generation can be connected to the grid shortly after 
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construction[6]. The multi-regional wind transmission also increases the complexity 

of UC. The limited flexibility of conventional generation should be optimal 

dispatched, so that the utilisation level of wind generation can be maximised. 

In some cases, the facility might run on its own generation sources rather than the 

main grid. This situation refers to the term, islanding. It can either happen as the result 

of a power black-out or be set up intentionally. For example, a distinct island in the 

sea, away from the main grid. The power supply can be from wind generation or solar 

generation. Under such circumstance, the energy storage system becomes very 

important to ensure the stable power supply. The UC problem for an islanding system 

is quite different from the traditional UC problem. 

Another important trend of power system is the development of interconnection 

between national electricity markets. Take the interconnection in EU for example, the 

target is that at least 10% of the electricity produced by each member state’s power 

plants can be sent across its borders to neighbours[15]. The interconnection can bring 

a variety of benefits. Firstly, it can improve the reliability of supply and enable greater 

penetration of wind generation. The interconnection is an important tool to manage 

the fluctuation of wind generation, allowing countries such as UK to import electricity 

from hydropower in Norway, nuclear in France and so on. Secondly, the cost of 

electricity to consumers can be reduced by increasing use of the cheapest generation 

sources in the connected markets. Thirdly, the interconnection can also support 
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diversification of the energy mix and integration of low-carbon technologies. The 

trend of interconnection makes the work of TEP to be more complicated and more 

coordination is required to carry out TEP over a large power network, including many 

countries. 

  

Figure 1-5 (left) Distribution of wind resource in China; (right) China power grid plan for 2020. 

1.1.3 Motivation 

The problems of TEP and UC are complicated and have been widely studied during 

the last several decades. Considering the great impact of uncertainties to the problems 

of TEP and UC, it is worthwhile to study TEP and UC with the consideration of 

uncertain load demand and wind generation. In the term of TEP problem, it is one of 

the most important tasks for the power system, because the transmission network 

provides connections between the generation and the load demand. With the 

large-scale integration of wind generation, the transmission network should have the 

capability to accommodate the intermittent wind generation. How to design such 
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transmission network in an optimal and robust way is quite challenging. In the term of 

UC problem, it is also very critical since it determines the profile for each generation 

unit to provide sufficient generation capacity to meet load demand. Due to the 

fluctuation of wind generation, it is also a challenging work to make the arrangement 

for generation units to ensure the load demand can be met in a stable and economic 

way. 

Although lots of work has been done to address the problems of TEP and UC, the 

research work with the consideration of uncertainties still needs to be enhanced. For 

example, how to select the candidate lines for the TEP is still in its preliminary stage. 

Therefore, it is worthwhile to carry out studies about TEP and UC, from the aspects of: 

1) the selection method of candidate lines for TEP; 2) the stochastic TEP problem 

with the certainties of load demand and wind generation; and 3) the 

chance-constrained day-ahead UC problem with the uncertainties of load demand and 

wind generation.  

1.2 Research Focus, Objective and Contributions 

1.2.1 Research Focus 

Under the ongoing trend of large-scale integration of wind generation, more and more 

challenges are coming up, in terms of TEP, UC and so on. In this thesis, how to carry 
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out TEP and UC under uncertainties brought by the integration of wind generation is 

investigated from three main aspects. 

Firstly, TEP is to determine when and where to build new lines, and it can be 

expressed as a mixed-integer programming (MIP) or mixed-integer linear 

programming (MILP). It is well known that the MIP or MILP problem is hard to solve, 

so that the problem should be controlled to be within a reasonable size. MIP and 

MILP are NP-hard problems. It is really difficult to measure the computational 

difficulty of the MIP or MILP. Currently, there are no practical complexity 

measurements for MILP formulations and instances. All lines connecting any two 

buses can be considered as candidate lines, and TEP selects some of those candidate 

lines to build. However, if all those possible lines are taken as candidate lines, then 

the size of the TEP might be beyond the computation capability. So the common way 

is that planners provide a set of candidate lines in advance, and TEP just needs to 

determine the expansion plan from the provided set of candidate lines. The 

completeness of the candidate set has a great influence on the performance of the 

expansion plan obtained by TEP. If some optimal lines are not included in the 

candidate set, then it cannot be selected by TEP. So the selection of candidate set is an 

essential work for TEP. However, up to now, only little research work has focused on 

this issue [16, 17]. Traditionally, the candidate set is manually selected by planners, 
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which is facing great challenges. So the first research focus is to propose an approach 

to select the candidate set automatically.  

Secondly, when determining the expansion plan, it needs to consider both investment 

cost for building new lines and operation cost for generation. The best expansion plan 

should make a trade-off between investment cost and operation cost. Operation cost 

depends on the availability of various generation (dispatchable generation and 

undispatchable generation). However, wind generation has the characteristic of 

uncertainty, so operation cost is also uncertain. So how to determine the expansion 

plan under great uncertainties of wind generation and load demands is another 

research focus of this thesis.  

Thirdly, under the vast fluctuation of wind generation, the limited flexibility provided 

by conventional generation might be not sufficient to provide up/down spinning 

reserve capacity. In some extreme scenarios, three constraints might be violated: (1) 

load shedding, because there is no sufficient up spinning reserve capacity; (2) the 

utilisation level of wind generation might be violated under some realisations of wind 

generation; (3) the power flow of transmission lines might exceed corresponding 

transmission capacity under some circumstance. However, it is not economic to 

provide excessive up/down spinning reserve amount to prevent the happening of some 

extreme cases, which only have a very small probability. A reasonable way is to 

permit the violation of some constraints under some extreme scenarios. So this 
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problem can be modelled by chance-constrained programming (CCP). How to 

establish and solve chance-constrained stochastic programming for UC is the third 

research focus of this thesis.  

1.2.2 Objectives 

According to the three research focuses mentioned above, the research objectives of 

this thesis can be summarised as follows: 

Firstly, to deal with the shortcomings of the manual selection of candidate lines, this 

thesis is going to propose an approach to select candidate lines automatically. The set 

of candidate lines selected by the proposed approach should make a trade-off between 

the size of the set and the completeness of the set. The proposed approach should be 

applicable to facilitate the expert planners to carry out TEP. 

Secondly, to deal with the increasing wind generation in the TEP, this thesis will 

propose an approach to determine the optimal TEP with the consideration of 

uncertainty of load demand and wind generation. The N-k reliability criteria need to 

be considered in the problem. Both the investment cost of new lines and operation 

cost of generation should be considered together.  

Thirdly, because of the integration of wind generation, it is more realistic to allow 

some constraints can be violated in some extreme scenarios but with a very small 

probability. In this thesis, the method of CCP will be applied to model the UC 
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problem with chance constraints. A new approach to solve the CCP-based problem is 

also going to be proposed. 

1.2.3 Contributions 

According to the above three research focuses, main contributions of this thesis can be 

divided into three parts according to three research focuses, and summarised as 

follows: 

Firstly, to deal with the shortcomings of manual selection of candidate lines, an 

automatic selection method of candidate lines for TEP is proposed. This method has 

the following contributions: 

 The proposed selection method for candidate lines includes five stages, which 

are the combination of enforcing existing transmission corridors in the first two 

stages and exploring new corridors in the latter three stages. 

 A method to determine candidate buses is proposed. Through the identification 

of candidate buses, the complexity to select new corridors is greatly reduced.  

 N-k reliability criteria are well-considered during the process of selecting 

candidate lines.   

 Linear relaxation is applied to improve the completeness of candidate lines, as 

well as to reduce the required computation time. 

 The case study shows that the LMP difference is neither sufficient nor necessary 
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condition for the selection of candidate lines.  

Secondly, a two-stage stochastic dual dynamic programming (SDDP) for the TEP 

problem is proposed, and the contributions of this method can be summarised as 

follows:  

 A two-stage stochastic model for the TEP problem is established, with the 

overall objective to minimise the sum of investment cost and the expectation of 

operation cost, considering uncertainties of load demand and wind generation. 

 Benders decomposition (BD) approach is applied to reduce the computation 

complexity, while to enable the capability to consider N-k reliability criteria into 

the TEP problem. 

 SDDP algorithm is implemented to get the optimal expansion plan under 

uncertainties. This algorithm  

Thirdly, to deal with the UC problem under uncertainties, the chance-constrained 

two-stage stochastic program for UC problem is proposed, including chance constraints 

for loss of load probability (LOLP), loss of wind probability (LOWP) and transmission 

line overloading probability (TLOP). A new approach is proposed to convert chance 

constraints into equivalent deterministic constraints. The main contributions of this 

method are summarised as follows: 

 A chance-constrained two-stage stochastic program for UC problem is 



18 

 

formulated, subject to chance constraints for LOLP, LOWP and TLOP.  

 A new approach to convert the proposed chance-constrained formulation into 

the equivalent deterministic formulation is proposed by a sequence of 

approximation and verification.  

 Correlations between load demand and wind generation can be fully considered 

by the proposed method. 

1.3 Thesis Outlines 

Based on the above three research focuses, the content of each chapter is summarised 

as follows: 

Chapter 2: A literature review about existing research about TEP and UC is carried out. 

According to the three research focuses, the corresponding review about each research 

focus is presented in detail.  

Chapter 3: An automatic selection method for candidate lines is presented in this 

chapter, which explain the five stages of the selection method in detail. The concept of 

Locational marginal price (LMP) is brief introduced, and how to use LMP to select 

candidate lines is presented. To verify the performance of the proposed method, case 

studies are carried out on two test systems.  
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Chapter 4: This chapter presents a two-stage SDDP for TEP with large-scale 

integration of wind generation. A detail two-stage formulation of TEP is firstly 

presented, followed by the basic introduction of SDDP for a two-stage problem and the 

overall procedure of SDDP algorithm. The whole problem is solved by the application 

of BD. The proposed method is evaluated on two test systems. Expansion plans under 

the SDDP approach and the deterministic approach are compared.  

Chapter 5: A new solving algorithm to the chance-constrained two-stage stochastic 

programme for UC with large-scale integration of wind is presented in this chapter. 

Firstly, the mathematical formulation of the chance-constrained two-stage stochastic 

UC problem is presented, with a detail introduction of first stage and second stage 

problem. Secondly, how to convert chance constraints into equivalent deterministic 

constraints is explained. Thirdly, a new solving algorithm for the proposed formulation 

is presented, followed by case studies on two test systems.   

Chapter 6: The research work of this thesis is concluded in this chapter, together with 

the further research topics.  

The main research work is presented in Chapter 3, 4 and 5, which deal with the three 

research focuses, respectively. Chapter 3 aims to select the set of candidate lines for 

the TEP problem. Uncertainties of load demand and wind generation are both 
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considered in the TEP problem and UC problem, which are the focus of Chapter 4 and 

Chapter 5, respectively. 
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CHAPTER 2  LITERATURE REVIEW 

2.1 Introduction 

This chapter aims to give a comprehensive review related to the three research topics 

of this thesis. Firstly, the existing studies about the selection method of candidate 

lines in TEP are reviewed. Secondly, the review about the TEP, in terms of modelling, 

solving approaches, reliability and uncertainties, is carried out. Thirdly, the existing 

studies about UC, in terms of stochastic programming, robust optimisation and 

chance-constrained programming, are summarised.  

2.2 Overview of Selecting Candidate lines 

The TEP problem is generally modelled as a MIP or MILP problem, which poses 

challenges in solving, especially when the size of integer variables is large. In the TEP 

problem, integer variables represent decisions whether one transmission line should 

be built or not. For the sake of tractability of the problem, it is better not to consider 

all transmission corridors as candidate lines. Otherwise, the size of the problem would 

be too large to solve. For example, if there are 100 buses in one network, and the line 

between any two buses is considered as a candidate line, then the total candidate lines 

would be as many as 100*99/2=4950. If the TEP problem is formulated as a five-year 

dynamic planning, then the number of total integer variables would become 

4950*5=24750. Although most possible lines can be eliminated for the reasons of 
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geographical condition, length of transmission line, and so on, many possible lines 

remain to be identified. So in practice, expert planners manually select a set of certain 

promising candidate lines and then TEP determines which lines should be built, by 

selecting from the given candidate set. The performance of the final expansion plan 

relies on the provided candidate set. However, the current common practice is that 

candidate lines are selected according to experts’ experience or some reliability 

requirements. However, it is quite possible that some better candidate lines are not 

included into the candidate set, which leads to the suboptimality of the final expansion 

plan.  

Currently, researches about how to select candidate lines are very limited. Only few 

papers focused on this problem. In [16], a candidate selection algorithm was proposed 

to select candidate lines automatically, without the intervention of expert planners. 

The potential candidate lines were selected according two aspects: the investment cost 

of one line and the potential benefit obtained if the line would be built. The potential 

benefit is approximated according to the LMP difference and the capacity of the line. 

If the potential benefit of one line is larger than the corresponding investment cost, 

then the line is selected as candidate lines. Considering the number of candidate lines 

selected according to the established approach can still result in an unmanageable size, 

a method was proposed in [16] to control the size of the candidate set by 

implementing the linear relaxation approach to remove unnecessary candidate lines.  
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In [17], candidate lines were also selected according to the LMP difference between 

any two buses. It states that the LMP difference is a necessary but not sufficient 

condition to select candidate lines. Both [16, 17] assume that the candidate lines can 

be fully explored according to the LMP difference. However, the potential benefit 

evaluated by the LMP difference might deviate from the real benefit, which leads to 

the failure of this assumption. For example, even the LMP difference between two 

buses is very large; the potential benefit might be small by building a new line 

between these two buses. Or, even though the LMP difference is small, the potential 

benefit might be greater than the investment cost.  

The assumption in [16, 17] stated that the candidate lines can be selected according to 

the LMP difference. However, according to the case studies on two test systems, this 

assumption is not always feasible. In this thesis, an approach to select candidate lines 

is proposed, to overcome the disadvantage of the assumption mentioned above. The 

detail of this approach is presented in Chapter 3. 

2.3 Overview of Transmission Expansion Planning  

The power system expansion is one of the most important issues in the power system 

studies. Power system expansion can be divided into three categories: generation 

expansion planning (GEP), TEP and distribution expansion planning. Regarding TEP, 

it has been widely investigated in terms of different research focuses.  

TEP is to determine the optimal expansion plan to meet the increasing transmission 
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capacity requirement. Different objective functions have been considered in the TEP, 

including investment cost, operation cost, congestion cost, reliability cost and so on. 

Constraints can be divided into two categories: mandatory constraints and optional 

constraints. Mandatory constraints include generation limits, transmission line power 

flow limits, no load shedding in normal operation and so on. Optional constraints vary 

from different research focuses, which include investment cost limits, reliability limits, 

wind utilisation level limits and so on. In the following part, a comprehensive review 

about the previous TEP studies will be carried out. 

2.3.1 Static Planning and Dynamic Planning 

From the perspective of planning horizon, TEP problem can be classified as static 

planning and dynamic planning. In the static planning, the factor of time is not 

included in the TEP model, and the expansion plan is determined for a single year. 

For example, TEP can determine the optimal transmission configuration for the fifth 

years from now on. In the static planning, it does not consider when to build those 

new lines over the five years. That is to say, the sequence to build new lines is not 

taken into account. The static TEP planning can provide an outlook of the further 

power grid, but further work needs to be done to determine which lines need to be 

built in each year. 

In the dynamic planning, it determines the sequence of new lines to be built in each 

year over the planning horizon. Different sequences lead to different transmission 
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configurations in each year, which further affect the system operation. The expansion 

plan for each year is mutually coupled with each other, that is, the expansion plan for 

the current year affects the expansion plan for the following years. So the dynamic 

planning is more complex and time-consuming than the static planning. More 

researches about dynamic planning have been carried out to provide a clear view of 

the transmission network in each year over the planning horizon. However, 

considering the complexity of dynamic programming, advanced solving methods need 

to be applied, such as the decomposition technique to decompose the dynamic 

programing into several single stage problems [18, 19].  

2.3.2 AC Model and DC Model 

There are two general modelling methods for TEP problem, AC (alternating current) 

model [20] or DC (direct current) model [21]. As we all know, AC power flow is 

more complicated and accurate than the DC power flow. Both of these two models 

have been widely studied in TEP problem.  

For the DC model, it is easy to compute the DC power flow, and it does not have the 

problem of convergence. However, there are some disadvantages for the DC model, 

which can be summarised as follows:  

1) In the DC model, the reactive power is neglected, as well as the amplitude of 

the voltage. As the result, only the approximated active power in each line and 
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the voltage angle at each bus are derived, rather than the exact system 

information in terms of active power, reactive power, voltage amplitude and 

voltage angle.  

2) In most cases, the power loss in DC model is neglected, based on the 

assumption that the line loss is limited and can be ignored. However, this 

assumption might bring problems for the long term transmission expansion, 

where line losses might play a very important role over a long planning 

horizon, such as 20 years.  

In [22, 23], a pricewise linearisation method was proposed to approximately 

represent the active power loss in the DC model.  

3) The expansion plan obtained through DC model cannot be implemented 

directly into the practical construction. The obtained plan needs to be further 

verified and reinforced by the system simulation using AC model.  

For the AC model, it is more accurate than the DC model. Advantages to use AC 

model can be summarised into the following aspects: 

1) In the AC model, the reactive power can be considered. That is to say, the 

reactive planning can be carried out together with the TEP.  

2) The power loss can be fully considered in the AC model. So the problem 

brought by neglecting power loss can be eliminated.  

3) Other components such as FACTS (Flexible AC Transmission System) devices 
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can be considered in the AC model. FACTS devices have been widely applied 

in the current power grid, and will play an important role in the future 

network.  

4) More studies can be carried out in the AC model, such as voltage stability 

analysis, reliability analysis and so on. 

Although the AC model has many advantages over the DC model, it also has the 

following disadvantages, which are related to the computation complexity.  

1) the AC model is a large and complex non-linear problem, which needs great 

efforts to solve it.  

2) The AC model is time-consuming and has the problem of convergence. 

Efficient solving techniques are required.  

3) AC model fails to deal with the disconnected systems. At the beginning of TEP, 

some buses have not been connected with other buses. For example, when a 

new generation or a new transformer station is established and considered as a 

new bus, then this bus has not been connected with other buses. In this 

situation, the AC model confronts the problem of disconnection[24].  

2.3.3 Transmission Expansion Planning and Generation Expansion Planning 

GEP, which is to determine the investment on new generation facilities to meet the 

increasing load demands, is another important expansion plan in the power system. 
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Different aspects need to be considered in the GEP problem, such as sizing, timing, 

and available technologies of new generation units. Also, investors consider the 

expected profits, risks and investment reversibility.  

As the process of market liberalisation and restructuring, generation companies 

(GenCos) have the freedom to build new generation units, and their decisions are not 

directly affected by the transmission planners. That is to say, TEP and GEP are 

dependent on each other. However, in reality, both expansion plans need to be 

verified and confirmed by the independent system operator (ISO). ISO can provide 

collaboration between TEP and GEP. The main objective of TEP is to determine the 

optimal expansion plan, which can improve the competition level among all the 

power market participants. During the TEP process, it needs to incorporate with 

GenCos’ decisions, so that the expansion plan for the transmission network can match 

with the expansion plan for the new generation units. TEP and GEP are strongly 

coupled with each other. Moreover, as the GEP and TEP can both be formulated as 

the MILP problem, it is possible to form a single objective function to consider both 

GEP and TEP simultaneously in a competitive market.  

Many studies have been carried out based on the assumption that the GEP and TEP 

collaborate with each other [25-29]. In [25], a tri-level optimisation algorithm was 

presented with multi-objectives: maximising the social welfare, maximising the profit 

of generation companies  and maximising the congestion cost in TEP. In [26], a 
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bi-level optimisation for coordination between TEP and GEP based on game 

approaches in a competitive market was proposed. The upper level is the TEP 

problem under different market incentives, while the lower level is to calculate the 

expected outcome of the market where generation firms compete with each other to 

determine their investment on new generation units. The whole problem was 

formulated as a mixed-integer nonlinear programming (MINLP) solved by the duality 

theory and Karush-Kuhn-Tucker (KKT) optimality conditions. In [27], an integrated 

GEP and TEP model was proposed, considering bus voltage limits, through the 

reactive power simplification. In [28], a multi-objective planning method for GEP and 

TEP was proposed to simultaneously minimise total costs of planning (including 

operation cost and investment cost), total emission (including NOx and SO2) and 

ELNS (Expected Load Not Served). In [29], a tri-level equilibrium model for the 

combined TEP and GEP was established. The lower level is the pool-based market 

operation, representing the equilibrium of ISO and GenCos; the intermediate level 

represents the generation investment to maximise GenCos profits; the high level is the 

transmission investment problem to minimise operation and investment cost. In the 

lower level, the KKT condition is applied, while Nash equilibrium[30] is applied at 

the second level. The whole problem is converted into a MILP problem.  
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2.3.4 Transmission Expansion Planning Solving Methods 

The TEP problem is complex and there are many different planning objectives, which 

might even be in conflict with each other. To solve different TEP problems, many 

solving methods have been investigated, which can be classified into three groups: 

mathematical optimisation methods, heuristic methods and meta-heuristic methods. 

1) Mathematical optimisation methods 

Most of the popular mathematical optimisation methods have been studied in the TEP, 

which can be summarised as follows. 

In [31], linear programming (LP) was utilised to transform the nonlinear problem into 

the linear problem. In [32], the penalty for load curtailment was calculated through LP. 

The most popular approach in the TEP studies is MIP, for the reason that the TEP 

problem itself is a binary problem. For example, in [22, 23, 31, 33], the TEP problem 

was modelled as a MIP problem. When considering the operation cost or penalty of 

load curtailment, the TEP is commonly modelled as a MILP problem, which is a 

combination of the LP and MIP problem.  

Another widely applied approach is BD, which can decouple the original complicated 

MILP problem, into a master problem (MIP problem) and sub-problems (LP problem). 

BD has been successfully implemented in many literatures [34-37]. In [34], BD 

approach was used to create initial cuts for the DC model, and the cuts were passed 
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onto the second stage problem with the AC model. In [35], the Gomory cuts were 

considered in BD to improve the convergence performance. In [36], uncertainties of 

wind generation and loads demands were considered to establish a probabilistic TEP 

problem. The BD algorithm and Monte Carlo simulation were both applied to solve 

the problem. In [37], a two-stage stochastic program for TEP was proposed, 

considering the joint distribution of load demands and wind generation by using a 

Gaussian copula. The decomposition approach was applied to get the upper bound 

and lower bound of the problem with the help of a sample average approximation 

(SAA) algorithm.  

Besides the BD approach, the branch-bound method is also widely applied in the TEP 

problem [38-41]. In [38], a branch-bound algorithm was applied to solve the TEP 

problem using the DC model, while considering transmission line losses. The overall 

problem was formulated as a MINLP problem and the nonlinear programming 

problem was solved by an interior-point method at each node of the branch-bound 

tree. In [39], the TEP problem was solved by a constructive heuristic algorithm 

embedded in a branch-bound structure.  

Normally, the optimal solution obtained through mathematical optimisation methods 

needs many simplifications, which reduces the feasibility of results.  

2) Heuristic methods 
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The constructive heuristic algorithm (CHA) is the most widely investigated heuristic 

methods in the TEP problem. In [39], the TEP problem was solved by CHA 

embedded in a branch-bound structure. In [42], CHA was used to identify the most 

promising lines from a given set of candidate lines to reduce the search space. 

In [43], another heuristic algorithm, called greedy randomised adaptive search 

procedure (GRASP), was applied to reduce the search space of the multistage TEP 

problem, together with the concept of a binary numeral system to reduce the number 

of binary and continuous variables related to the candidate lines and other network 

constraints.  

The heuristic methods are quite easy to understand and implement. However, the 

disadvantages with such methods are that they lack robustness to solve different 

problems and lack reliability for the complex problems.  

3) meta-heuristic methods 

The TEP problem is rather complicated, especially when the size of the problem is 

large. In some cases, it is hard to use mathematical methods and heuristic methods to 

get results, which is the motivation to explore the meta-heuristic methods. Various 

meta-heuristic methods have been investigated in the TEP problem.  

Among so many meta-heuristic methods, genetic algorithm (GA) is the most widely 

studied one in the TEP problem. In [44], a controlled non-dominated sorting genetic 
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algorithm II (NSGA II) was applied to solve TEP, with two objectives: minimising 

investment cost for new lines and minimising expected energy not supplied (EENS). 

In [45], NSGA II was also utilised to solve a stochastic multi-stage multi-objective 

market-based TEP problem, considering investment cost, absorption of private 

investment and system reliability. The Pareto optimal solutions were obtained, which 

were then further selected by a compromise-solution method based on decision-maker 

preferences. In [46], GA was applied to solve the TEP problem, and the fitness 

function was calculated by using a linearised AC power flow model.   

In [47], a meta-heuristic algorithm by the means of differential evaluation algorithm 

was proposed to solve the TEP problem, using accurate AC power flow models.  

In [42], the particle swarm optimisation (PSO) method was applied to find the 

minimum investment cost for new lines, by using the heuristic information obtained 

from CHA method. In [48], a modified PSO method was applied to solve TEP 

problem, by using a new initialisation.  

In [49-51], another meta-heuristic algorithm, called tabu search, was applied to solve 

the TEP problem. In [49, 51], the tabu search and GA algorithm was combined 

together to overcome the shortcomings of each individual method.  
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In [52, 53], a recently developed optimisation algorithm, called harmony search 

algorithm, which imitates the music improvisation process, was applied in the TEP 

problem.  

In [54], a meta-heuristics optimisation algorithm based on Gas Brownian Motion and 

Turbulent Rotational Motion was developed to solve the TEP problem, where each 

molecule position represents a possible expansion plan, and all molecules travel in the 

feasible region of the problem, with the help of two motions.  

Meta-heuristics can find optimal or suboptimal solutions even for large-scale 

problems, at the costs of high computation efforts. Despite computation effort, 

meta-heuristics approaches especially many hybrid approaches have been widely used 

in literature.  

2.3.5 Consideration of Reliability in Transmission Expansion Planning 

TEP projects can be categorised into three types according to the main task: 1) to 

enhance the reliability of the system; 2) to bring economic benefits to the whole 

system; 3) to improve regional interconnection. There are other tasks, such as public 

policy for the purpose of meeting renewable generation integration needs[55]. Any 

transmission project can improve the transmission capacity, as well as serves all these 

tasks to some extent. The overall benefits obtained from all these tasks should be fully 

considered to obtain the final expansion plan.  
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Among all these categories, the most common task is to enhance the reliability of the 

whole system and to meet relative reliability criteria. Considering the fact that the 

penetration level of wind generation is increasing so fast, to ensure the reliability of 

the system is becoming more and more complicated. Since the reliability is the 

priority of the system operation, so many TEP projects serve the task of the reliability. 

The other tasks can also be achieved, after ensuring the reliability criteria. For 

example, the transmission congestion can be reduced by upgrading the transmission 

grid.  

Figure 2-1 shows the overall procedure for a typical power system planning [56]. The 

procedure can be summarised into two stages: macro stage and micro stage. In the 

macro stage, adequacy (the capability to meet the load demand) or other reliability 

standards are applied to select feasible plans from the various given draft plans 

determined based on the strategic policy. In the micro stage, the selected plans are 

examined in detail, in terms of N-k contingency analysis, fault analysis and stability 

analysis, to ensure the final expansion plan can accommodate the practical operation. 
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Figure 2-1 General procedure to carry out power system planning 

Many different reliability indices have been considered in the TEP problem. In [57], 

two probabilistic reliability criteria were considered: the loss of load expectation 

(LOLE) for the whole system and the LOLE for each bus. In [44, 58, 59], EENS was 

considered as the reliability index for the transmission plans.  

Also the reliability criteria can also be included in the TEP to ensure the network can 

operate in secure under contingencies. According to the transmission planning 

standards defined by the North American Electric Reliability Corporation (NERC), 

the system should be able to stabilise without any loss-of-load under the condition 

that only one element failure occurs (N-1 contingency). In the case of k contingencies 

(N-k contingency), the system should also restore stability, with the loss-of-load under 
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a given percentage [21]. In [21, 56, 60, 61], N-k contingency was considered as a 

constraint for the TEP problem. In [56], the N-k contingency was eliminated if the 

probability of the contingency is less than the specified probability limit. In [21], an 

approach was proposed to identify the worst-case loss-of-load for each contingency 

size by solving bi-level separation problems. In [61], the risk of blackouts was 

considered in the TEP, to achieve a set of best plans to avoid serious cascading 

blackouts. In [62], a filtering technique to select relevant contingencies (beyond N-1 

criteria), was proposed to get the set of umbrella outages by undertaking a risk 

assessment of the expected post-fault costs.  

2.3.6 Consideration of Uncertainty in Transmission Expansion Planning 

Historically, the uncertainty within the TEP has not been widely considered, 

regarding future generation development and load demand growth. However, the 

rapid growth of renewable generation entails great uncertainty to the TEP, rendering it 

is unable to make fully-informed planning, such as unit commitment for the long-term 

projects. To investigate the impact of uncertainty for the TEP, many literatures have 

considered the uncertainty of renewable generation, load demands and regulatory 

policies in different aspects.  

In [63], the value of flexible network technologies, including phase-shifting 

transformers, energy storage and demand side management to accommodate new 
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sources of renewable generation, was evaluated within a long-term planning strategy, 

considering the generation uncertainty.  

In [64], a risk-control model was developed to avoid overload risks in the presence of 

large-scale integration of wind generation. The probabilistic power flow was 

calculated by using cumulants and Gram-Charlier series. Three risk-control strategies 

were proposed to specify the non-overload margin for all branches and the whole 

system.  

In [65], a two-stage stochastic programming-based tool to support adaptive TEP under 

market and regulatory uncertainties (three scenarios with distinct renewable electricity 

mandates, emission policies, and fossil fuel prices) were proposed, and the case study 

for western electricity coordinating council was carried out.  

In [66], the optimal expansion of the transmission network was studied with the 

consideration of active switching of transmission elements, to improve the capability 

of integration of large-scale wind generation. A two-stage stochastic model with 

transmission switching for the TEP problem was established, and solved with the 

Dantzig-Wolfe reformulation.  

In [67], a two-stage stochastic model for the TEP problem was established, 

considering the uncertainties of wind generation and loads. The solving technique, 
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SAA, was applied to solve the problem, with the case of the Electric Reliability 

Council of Texas.  

In [68], a multi-objective multi-stage TEP problem considering the life cycle cost was 

studied, to minimise the life cycle cost and conditional value-at risk of social welfare. 

Four uncertain factors including the conventional generation, load, transmission line 

and wind generation were considered.  

In [69], two sources of uncertainties, including growth of load demand, the 

availability of generation capacity, were considered by the approach of an adaptive 

robust optimisation model, to get an optimal expansion plan by anticipating the worst 

case realisation of the uncertain parameters within an uncertainty set. The proposed 

model was formulated as a mixed-integer three-level optimisation problem. The 

approach of robust optimisation has been widely studied in many other literatures, 

such as [50, 60, 70-74]. 

Although the uncertainty has been widely studied in the TEP problem, however the 

consideration of N-k reliability criteria has not been comprehensively considered. So 

in this thesis, the problem of TEP under uncertainty considering N-k reliability criteria 

will be studied.  
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2.4 Overview of Unit Commitment  

UC is one of the most important problems in the power system operations, and it 

refers to the problem to get an optimal schedule and the production level for each 

generation unit over a given period of time while meeting operation constraints for 

generation units (capacity limits and ramping limits), system-wide constraints (load 

balance, voltage limits, etc.), reliability constraints (N-k reliability) and so on[75]. In a 

deregulated electricity market, UC is often carried out by ISOs for the day-ahead 

market clearing, reliability assessment and intra-day operations[76]. The UC problem 

is a MILP problem, because variables that represent commitment (ON/OFF) of 

generation units are binary. It has been proved that UC problem is NP-hard, which is 

very difficult to solve, especially when the size of the problem is relatively large.  

UC problem has been widely studied over the past half century[77]. Many different 

formulations and approaches have been applied to model and solve UC problem. The 

solution methodologies have evolved over the years. At the beginning, the popular 

methods were based on priority lists and dynamic programming. Recently, the most 

commonly ones are based on MILP. Although, UC problem has been well studied in 

various literatures, the large-scale integration of wind is bringing a great amount of 

interest to UC modelling and solution methodologies, with the consideration of 

uncertainties of wind and load demands. Because of the significant intermittence of 

wind, the system requires more flexibility to deal with the fast and large fluctuations 
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from load demands and wind generation. Considering the fact that the flexibilities 

provided by conventional generation units are limited due to physical constraints, so 

novel UC methods or new devices (e.g. energy storage systems) are required to 

arrange various generation units and storage devices more efficiently to ensure the 

secure operation of the system under large variations of wind generation. 

Due to the large number of papers related to UC, only the literature addressing 

day-ahead UC problems considering uncertainties of load demands and wind 

generation is reviewed in this section. 

2.4.1 Stochastic Programming for Unit Commitment 

1) Two-stage formulation for stochastic unit commitment  

Stochastic unit commitment (SUC) is one of the most popular approach to tackle UC 

problems involving uncertainties, such as [75, 77-81]. The idea of SUC is to represent 

uncertainties based on Monte Carlo simulations. A two-stage SUC model is 

commonly applied to capture uncertainties, and its general form is shown below[76]:  

 Tmin ( , )E F 



u

c u u       (2-1) 

where u represents the first stage decisions, which are commitment decisions of the 

generation units. The commitment decisions u need to be decided in the day-ahead 

schedule, because of the physical limits. represents the feasible region of the first 

stage decisions, which needs to satisfy constraints, such as the minimum ON/OFF 
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requirement[82]. The cost parameters (e.g. startup cost) are represented by c . The 

second term of (2-1) is the expected cost of second stage real-time operations. 

represents the uncertain vector with a known joint probability distribution. 

For a given realisation s of the random vector  , the second stage problem can be 

represented as follows: 

,
( , ) min ( )

s s
sF s f

p f
u p        (2-2) 

. . s s s s s ss t   A u B p H f d       (2-3) 

where sp represents the vector of second stage decisions, including both production 

and reserve levels of each unit over multiple time periods. sf  represents the vector of 

other second stage decisions (e.g. power flows, bus voltages, bus angles). The function 

( )f  represents the generation cost for each unit. According to different sources of 

uncertainties (e.g. equipment outage, wind generation, load demands), the expression 

of (2-3) can be modelled from different perspectives. For example, the left-hand-side 

matrices ( , ,s s sA B H ) can be applied to model different contingencies (equipment 

outage [81]). The right-hand-side matrices ( sd ) can be used to modelled the uncertain 

load demands and wind generation [83, 84].  

To calculate the expected cost of the second stage real-time operation, a large number 

of scenarios are required to simulate different realisations of uncertainties, which lead 
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to a problem with a quite large size. However, second stage problems under different 

realisations are not related to each other. Once the first stage decision u is made, the 

second stage problem can be solved independently, resulting in many small size 

individual problems. Because of this characteristic, the technique of decomposition 

has been widely applied to solve SUC problems. BD algorithm is generally applied 

when the problem ((2-2) and (2-3)) is a linear one [85, 86]. However, in practice, the 

objective function ( , )F su might not be convex or continuous when it includes integer 

variables. To deal with this dilemma, many other advanced methods have been 

proposed, such as integer L-shaped method[87], disjunctive cuts[88], convexification 

of second stage problem[89]. Another method, Langrangian relaxation, is widely 

applied to divide the original problem into small ones, by dualizing the coupling 

constraints between different scenarios [90, 91].  

2) Stochastic unit commitment considering risk  

In most of the literature related to the SUC, the objective is to obtain a minimisation 

of the expected costs under all realisations of uncertainties. However, under some 

realizations, they might improve the cost of the objective greatly. To control the risk, 

a risk-averse UC problem is considered, the objective of which includes both 

expected costs and risk costs. To control the relevant risk within a given level, some 

additional constraints are included into the SUC model. Or, another term, representing 

the cost of risk, is added into the objective function (2-2). Several different risk 
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measures have been considered, including ELNS [92, 93], variance of the total 

profit[94], Conditional Value at Risk (CVaR)[95].  

ELNS also refers to the Expected Loss of Load, or Load Shedding. It can be 

calculated by adding up the product of net load unserved under each scenario and its 

corresponding probability. There are two methods to include ELNS into UC problems. 

One method is to include ELNS into the objective function as a penalty term, and 

another method is to consider it as a constraint. Considering ELNS is an expectation 

value, it cannot know the risk level of a certain schedule might be. So it comes up an 

idea to deal with this shortcoming, by considering ELNS and variance of profit 

relating to a set of UC solutions.  

Another widely applied risk measure in UC problems is the CVaR, which is derived 

from Value at Risk (VaR). The meaning of VaR is shown by the following 

expression: 

  VaR ( ) inf Prob 1l l l l 

          (2-4) 

where l represents the amount of load shedding required to meet the power balance. 

 is the small upper tail probability. VaR ( )l is the maximum load shedding with the 

confidence level 1  , which also means the probability that loss-of-load exceed 

VaR ( )l is less than  . However, VaR has several limitations. For instance, it fails to 

provide information about the extent of potential loss-of-load exceeding VaR ( )l . 
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Moreover, VaR is intractable when the problem is calculated based on scenarios. To 

overcome these disadvantages, CVaR, which is also called mean excess loss, provides a 

more consistent measure of risk than VaR. The expression of CVaR is shown as 

follows: 

CVaR ( ) VaR ( )l l l l   

 
  
 

    (2-5) 

It can be seen that CVaR ( )l is the expectation of load shedding which is larger than 

the given VaR ( )l . According to (2-5), CVaR ( )l is always greater than or equal to 

VaR ( )l . UC solutions with low CVaR ( )l  must also have the low VaR ( )l [96]. 

CVaR-based models are computationally tractable even when a large number of 

scenarios are considered [97, 98].  

2.4.2 Robust Optimisation for Unit Commitment 

In contrast to SUC models, robust unit commitment (RUC) tries to get an optimal 

solution without knowing the exact probability distributions of random variables, but 

the range of the uncertainty. In the SUC problem, it minimises the total expected costs 

under all possible scenarios. However, in the RUC problem, it minimises the 

worst-case cost regarding all possible realisations of the uncertainty within the given 

range. Compared with SUC models, solutions generated by RUC are more 

conservative, but can be obtained without a large number of scenarios.  
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The existing literature related to RUC problems mostly uses the two-stage RUC 

models, which can be summarised as follows: 

   Tmin max ( , )F
 


u v

c u u v      (2-6) 

where u and keep the same meaning as defined in the (2-1). v represents the 

vector of uncertain variables, such as uncertain load demands, and uncertain wind 

generation. represents the vector of uncertainty set. ( , )F u v is the real-time dispatch 

cost function under the given first stage decision u and the given realisation of v . In 

the objective of SUC models, as defined by (2-1), the second term is the expected cost 

under a large number of scenarios. In RUC models, the second term of the objective is 

to maximise the dispatch cost under the given first stage decision u  and within the 

uncertainty set . The overall objective of RUC models is to minimise the total cost of 

the worst-case scenario. ( , )F u v can be defined as follows: 

,
( , )= max ( )F f

p f
u v p       (2-7) 

. .s t   v v v vA u B p H f d      (2-8) 

Compared with the formulation of the SUC second stage problem, as defined by (2-2) 

and (2-3), the formulation of RUC second stage problem is almost the same, except 

that vA , vB , vH  and vd  are functions of the uncertain variables v . RUC models 
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have been applied to address different uncertainties, mostly in terms of wind 

availability [99, 100] and power system component contingencies [101, 102].  

2.4.3 Chance-Constrained Programming for Unit Commitment 

In SUC and RUC models, constraints (such as power balance and transmission 

capacity ) are enforced to be satisfied under all possible scenarios. However, such 

stringent constraints might result in too conservative UC solutions. For example, to 

avoid the possibility of load shedding, a large amount of up reserve might be needed. 

Or, to ensure the system operation reliability under all possible scenarios, there might 

be considerable amount of wind spillage. To deal with this problem, CCP is applied in 

some papers [103-109]. The general chance-constrained stochastic problem can be 

formulated as follows [105]: 

min ( )f
x

x
X

        (2-9) 

. . Pr{ ( , ) } 1s t    G x 0      (2-10) 

where x represents the vector of decision variables, and is the feasible region 

n .   is the random variable and its probability distribution is supported on set 

d . ( , )G x represents the constraint mapping n d m   . 0 represents a 

vector or zero with m dimensions. (0,1)  is a predefined probability that constraint 

( , )G x  can be violated. This formulation represents that the objective ( )f x is 

minimised while satisfying the constraint with the confidence level no less than 1  . 
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Problems involving chance constraints cannot be solved directly. There are two main 

approaches to deal with chance constraints.  

The first approach is to convert chance constraints into deterministic constraints, so 

that problems can be solved. One representative paper of applying this approach to 

solve the UC problem is [103], in which chance constraints were converted into 

deterministic ones, and the UC problem was solved iteratively in order to ensure 

chance constraints were satisfied by the specified confidence level. In [106], chance 

constraints were also converted into equivalent deterministic linear inequalities, by 

assuming that probability distributions of load demands were independent from each 

other. 

Another approach is to solve the problem through scenario-based stochastic 

programming methods. In [105, 107, 109, 110], a chance-constrained two-stage 

stochastic program for UC was formulated, in which a chance constraint for the wind 

utilisation was included into the model. The proposed model was solved by the 

sample average approximation algorithm (SAA). 

2.5 Summary 

This chapter has reviewed previous research related to TEP and UC problems, which 

are two important research topics of this thesis. With the rapid development of wind 

generation, both TEP and UC problems are facing more and more challenges, because 

of significant uncertainties brought by wind availability and load demands.  
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This chapter firstly reviewed the existing literatures about TEP problems, in terms of 

model formulation, solving approaches, the selection of candidate lines and the 

handling of uncertainties. There are two issues about TEP problems. The first issue is 

how to select candidate lines for the TEP problem. The second issue is how to deal 

with uncertainties in the TEP problem. 

Then, previous researches about UC problems, especially involving uncertainties, 

were summarised, in terms of SUC, RUC and CCP. UC is one of the most widely 

studied and important research topics in the power system. It is still worthwhile to 

investigate UC problems, aiming to provide optimal UC decisions, which can 

accommodate the large-scale integration of wind. 

Based on the above review, this thesis will conduct further study the selection of 

candidate lines, TEP and UC problems with uncertainties. In the following chapters, 

the research topics of this thesis will be introduced one by one.   
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CHAPTER 3  AN AUTOMATIC SELECTION 

METHOD FOR CANDIDATE LINES IN 

TRANSMISSION EXPANSION PLANNING 

3.1 Introduction 

The TEP problem is to select optimal lines to be built from a given set of candidate 

lines. Because of the complexity of the TEP problem, which is generally formulated 

as a MILP problem, it is impossible to consider all possible corridors as candidate 

lines. When selecting candidate lines, many factors need to be considered. For example, 

it is not economic to build lines over mountain areas and the length of a transmission 

line should not be too long. By considering various factors, many possible lines could 

be eliminated. Even so, the size of the rest of lines is still beyond the capability of TEP 

to solve. As a result, it needs to identify the rest of candidate lines and control the size of 

candidate set to be within an acceptable scale. However, currently there are no 

well-established methods available for determining the candidate lines. Considering the 

complexity of TEP problem, if the candidate set is manually selected, it is quite 

possible that some promising candidate lines are missing from the candidate set. As a 

result, the final expansion plan is not a globally optimal one, but a suboptimal one. To 

address above deficiencies, an automatic candidate lines selection approach for TEP is 

presented in this chapter.  
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The remainder of this chapter is organized as follows. Firstly, the two-stage 

deterministic model for TEP problem is presented. Secondly, the solution approach 

based on BD for the deterministic TEP problem is introduced. Thirdly, a method to 

select candidate lines for TEP is proposed. Fourthly, the performance of the proposed 

method is verified on the revised IEEE 24-bus test system and IEEE RTS-96. Finally, 

the conclusion is presented. 

3.2 Deterministic Model for Transmission Expansion 

Planning 

3.2.1 Nomenclature 

Sets and indices 

B   Set of buses (indexed by i and j). 

CL   Union of candidate lines selected in each stage. 

CLm Set of candidate lines selected in Stage m. 

CB   Set of candidate buses. 

RCi  Set of residual lines connected to bus i 

E   Set of transmission lines (indexed by e). 

E0   Set of existing transmission lines (indexed by e). 

iE    Set of transmission lines oriented into bus i. 

iE    Set of transmission lines oriented out of bus i. 

Gt   Set of generation units in year t (indexed by g). 
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Gi,t   Set of generation units in year t at bus i (indexed by g). 

d   Index of the time interval in one year. 

NT   Total planning years. 

(i, j)  Line from bus i to bus j 

ie/je  Tail/head (bus no) of line e. 

Sk Set of all contingency states, over existing and candidate lines, with exactly k 

failures (indexed by s). 

S Set of all contingency states, over existing and candidate lines, with k or 

fewer failures, 
0 1 2 kS S S S S . 

t   Index of the year . 

Wt   Set of wind units in year t (indexed by w). 

Wi,t  Set of wind units in year t at bus i (indexed by w). 

Parameters 

K Maximum size of contingency under consideration. In any contingency state, 

the number of line failures is between 0 and K.  

r  Discount factor. 

lolpC   Loss-of-load penalty 

resC   wind spillage penalty. 

eC   Annualised investment costs for line e. 

d   Time length of each duration. 

NT  Total planning years. 



53 

 

ND  Total time durations during one year.  

( )gC    Generation cost function for generator g. 

gc   Cost parameter for generator g 

eB   Electrical susceptance of line e. 

,

t

i dD   Load demand at bus i in dth interval of year t. 

t

dD   Total load demand in dth interval of year t. 

s

eh   Binary parameter that is 1 if line e is part of the contingency s. 

s

ef   Maximum capacity of line e under contingency state s. 

t

gp   Maximum capacity of generator g in year t. 

   Minimum utilisation level of wind generation. 

,

t

w dp   Maximum generation from wind w in dth interval of year t. 

k   Fraction of load demands that can be shed given contingency size k. 

y  Life time of line e in years. 

s   Number of failed lines in contingency s. 

Decision variables 

t

ex   Binary variable that is 1 if line e is built in year t. 

,

,

t s

g dp   Power generation of generator g in dth interval of year t under contingency s. 

,

,

t s

e df   Power flow for line e in dth interval of year t under contingency s. 

,

,

t s

w dp   Power generation of wind w in dth interval of year t under contingency s. 

,

,

t s

i dq   Loss of load at bus i in dth interval of year t under contingency s. 
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,

,

t s

i d   Phase angle of bus i in dth interval of year t under contingency s. 

wL   wind spillage amount of wind w . 

3.2.2 Deterministic Model of Transmission Expansion Planning 

The deterministic mathematical TEP model is presented in this section, with the 

consideration of N-k reliability criteria and wind utilisation. The DC model is applied in 

this section. In the DC model, the power losses are neglected and the reactive power is 

not considered because only the active power is considered in the calculation. Both 

investment costs and operation costs are considered in the objective function, to 

minimise the total costs. Both costing parameters can be obtained as given in [17]. The 

following formulation is referred to that in [21], and noted as DTEPM (Deterministic 

TEP Model). 

Min     ,0

,

1 1 1

1/ 1 1/ 1 ( )
t

NT NT ND
t tt t

e e g g d

t e t d g

r x C r d C p
    

        
E G

    (3-1) 

s.t. 

, ,

, , , ,

, , , , , , , ,
i t i i i t

t s t s t s t s t

g d e d e d w d i d

g e e w

p f f p D i d t s
    

          
G E E W

  (3-2) 

, , ,

, , ,( ) (1 ) , , ,
e e

t s t s t s t s

e i d j d e d e e eB f M x h e d t s               (3-3) 

, , ,

, , ,( ) (1 ) , , ,
e e

t s t s t s t s

e i d j d e d e e eB f M x h e d t s              (3-4) 

,

,(1 ) (1 ) , , ,s t s t s s t s

e e e e d e e ef x h f f x h e d t s             (3-5) 

,

,0 , , ,t s t

g d gp p g d t s            (3-6) 

,

, , , , , , 0t t s t

w d w d w dp p p w d t s            (3-7) 
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,

, ,0 , , , \ 0t s t

w d w dp p w d t s s            (3-8) 

01 ,t

ex e E t            (3-9) 

1

0, {0,1} \ ,t t t

e e ex x x e t     E E      (3-10) 

In the objective function (3-1), investment costs are annualised costs; investment costs 

for new transmission lines are also annualised costs, which are derived by applying the 

capital recovery factor (1 ) / ((1 ) 1)y yr r r   . As for operation costs, only generation 

costs for conventional generators are considered, and wind generation costs are 

assumed to be zero. Based on the annual load duration curve, each year is divided into 

several intervals according to load levels. The more time intervals one year is divided 

into, the more accuracy operation costs can be calculated with. However, the 

computation complexity increases quickly as the number of time intervals increases. To 

achieve a balance between the accuracy and the computation complexity, a proper 

number of time intervals should be implemented. For the sake of simplicity, cost 

functions are defined as linear functions: 
,0 ,0

, ,( )t t

g g d g g dC p c p .  

Constraints for the DTEPM are shown in (3-2)-(3-10). The power balance at each bus 

is shown by (3-2), which includes scenarios under normal state (no-contingency state 

s=0) and contingency state. Here s=0 represents the normal state. (3-3) and (3-4) utilise 

the Big-M method to represent the DC power flow on each line. If 1 1t s

e ex h   , it 

means , , , ,

, , , ,( )
e e

t s t s t s t s

e d e e i d j d e d ef M B f M         . Because Me is a large positive value, 

so ,

,e

t s

i d and ,

,e

t s

j d  are not bounded. If 1 0t s

e ex h   , it means 
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, , , ,

, , , ,( )
e e

t s t s t s t s

e d e i d j d e df B f       , so , , ,

, , ,( )
e e

t s t s t s

e d e i d j df B    . (3-5) ensures the power 

flow on each line to be within its capacity.(3-6) represents the power generation of each 

generator must be within its maximum capacity. (3-7) represents that the wind 

utilisation level needs to be no less than the specified level under the normal state. (3-8) 

shows that the wind utilisation level under contingency state is not restricted. (3-9) 

shows that existing lines have been built. (3-10) represents that candidate lines remain 

the existing state once they are selected to be built. 

3.3 Solution Approach Based on Benders Decomposition 

3.3.1 Benders Decomposition Algorithm for Two-Stage Problem 

The general two-stage stochastic problem can be formulated as follows: 

Tmin ( )Q



x

c x x         (3-11) 

where  1n
: : , 0    x Ax b x and ( )Q x is the optimal value of the second stage 

problem. 

n2

T( )= minQ
y

x q y         (3-12) 

s.t.    Tx Wy h         (3-13) 

0y          (3-14) 
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This two-stage problem can be decomposed into the master problem and 

subproblems. 

Master Problem 

Tmin c x          (3-15) 

s.t． Ax b         (3-16) 

T( ) ( )i i i   x x x T λ       (3-17) 

0x          (3-18) 

where: 

 
i

x is the trial decision obtained by the master problem in the ith iteration 

 
T( ) ( )i i i  x h Tx λ is the optimal value of the subproblem under the trial 

decision 
i

x . 

 
i
λ is the dual variable associated with the solution to the subproblem under the 

trial decision 
i

x . 

Subproblem 

The subproblem is the second stage problem under a given trial decision 
i

x . In the ith 

iteration, the subproblem can be expressed as follows: 

n2

T( )= mini
y

x q y        (3-19) 
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s.t.   i  Tx Wy h        (3-20) 

0y         (3-21) 

The corresponding dual subproblem can be expressed as follows: 

n2

T( )= max ( )i i



y

x h Tx λ       (3-22) 

s.t.  
T W λ q        (3-23) 

0λ         (3-24) 

The solving procedure of the BD algorithm can be summarised as follows[111]. 

Step 1: Initialise the iteration counter i=1, the lower bound 0i

lowerz   and the upper 

bound 
i

upperz   . 

Step 2: Solve the master problem by available solvers (CPLEX[112] , Gurobi[113], 

etc.), which is shown in (3-15)-(3-18). 

(3-17) is not included in the master problem in the first iteration i=1. Moreover,

min   where min is the predefined lower bound of the second stage problem. Store 

the optimal solution of x as xi. 

Step 3: Check the convergence by calculating the gap between the lower bound and 

the upper bound.  

The lower bound is calculated by 
T ( )i i i

lowerz  c x x . 
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where 
i

lowerz is the lower bound of the optimal solution in the ith iteration.  

If i=1, then 
i

upperz   . 

Else calculate 
T + ( )i i i

upperz Q c x x . 

where 
i

upperz is the upper bound of the optimal solution in the ith iteration. 

Compare the gap between the upper bound and the lower bound. 

If 

i i

upper lowerz z    

Then the algorithm terminates with the optimal solution to be 
i

x . 

Else, continuou to Step 4. 

Step 4: Update the counter 1i i  . Solve the subrporblem (3-19)-(3-21), and the dual 

of the subproblem (3-22) to (3-24).  

Step 5: The algorithm returns to Step 2.  

The steps summerised above are also represented by Figure 3-1. 
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Figure 3-1 Steps for the BD algorithm 

3.3.2 Application of Benders Decomposition Algorithm to TEP problem 

According to the formulation of DTEPM considering the reliability criteria, the size of 

the problem increases quickly, making the problem to be intractable. In this section, the 

solution approach based on BD is presented, which can decompose the problem of 

DTEPM into the master problem and subproblems. The master problem is the 

investment problem, which is to decide the expansion planning. Subproblems are 

operation problems, which are to verify whether the expansion plan is flexible or not. 

The master problem is to decide when and where the lines need to be built, and 

variables to represent the expansion plan are binary. This problem is called as MP: 

Min  
1

1/ 1 + ( )
NT

t t t

e e e

t e

r x C x
 

  
E

     (3-25) 

     Initialise the counter i=1; the lower bound                 the upper bound              

Solve the master problem, and get the optimal solution xi

                         Calculate the lower bound

                         Calculate the upper bound  

0i

lowerz  i

upperz  

T ( )i i i

lowerz  c x x

T + ( )i i i

upperz Q c x x

i i

upper lowerz z  

Update i=i+1; solve the 

subrporblem (3-19)-(3-21), 

and the dual of the 

subproblem (3-22) to (3-24).

End

No

Yes
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s.t   ( )t

e minx          (3-26) 

(3-9) and (3-10)  

The result of MP provides a predetermined expansion planning
t

ex , which needs to be 

verified by subproblems to determine whether it can meet the relative constraints, such 

as no load shedding, N-k reliability criteria and so on. 

According to the rank of contingency state ( 0,1,2, ,Ks  ), subproblems can be 

divided into K+1 groups. The first group is the subproblem with 0s  , which means 

there is no contingency and can be called as SP-0. The rest K groups are those 

subproblems with different numbers of contingencies, called as SP-k.  

For the first subproblem SP-0, the aim is to minimise the operation cost under given 

expansion planning
t

ex . The operation cost is the total cost over the planning horizon. 

The operation problem in different year t and different time interval d is not related with 

other time periods. So the problem SP-0 can be divided into SP-0(t, d) with each t and d, 

which is shown as follows: 

Min ,0

,( )
t

t

g g d

g

C p



G

       (3-27) 

s.t. (3-2)-(3-8)  

Under the given expansion planning
t

ex , the problem SP-0(t, d) might not be feasible, 

for the reason of load shedding or the low utilisation ratio of wind. If so, corresponding 
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feasibility cuts need to be created and added to the MP problem. If the problem is not 

feasible, optimality cuts are created and added to the MP problem. Since the BD 

approach has been widely introduced in many literatures, details about how to create 

feasibility and optimality cuts are not introduced here. Feasibility cuts are actually 

constraints on the MP variables. For a particular solution
t

ex , it needs to check whether 

it is feasible for all the subproblems. If any of the subproblem becomes infeasible, then 

a feasibility cut is generated and added to the MP problem. So that the particular 

solution can be removed from the solution set. Thus feasibility cuts are generated to 

make the subprolems feasible. Optimality cuts are constraints based on the MP 

variables and are generated only after all the feasibility cuts are generated. The idea of 

optimality cuts is to gradually take the solution towards the optimal solution.  

For the subproblem SP-k with the contingency rank s k ( 1k  ), it is to calculate the 

minimum loss-of-load under the given expansion planning 
t

ex and with k failures. If the 

minimum loss-of-load exceeds the specified amount, then the expansion planning is not 

feasible. For each year t and each time interval d, the loss-of-load calculation is 

independent from other time periods. Under each combination of failures 
s

eh with total 

k failures, and each t, d, the problem is represented as SP-k(t,d,
s

eh ). The formulation is 

shown as follows: 

Min 
,

,

t s

i d

i

q



B

         (3-28) 
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s.t.    (3-3)-(3-6) 

, ,

, , , , ,

, , , , , ,

i t i i i t

t s t s t s t s t s t

g d e d e d w d i d i d

g e e w

p f f p q D i
    

        
G E E W

  (3-29) 

,

, ,0 t s t

i d i dq D i         (3-30) 

,

,

t s t

i d ds
i

q D



B

       (3-31) 

(3-30) restricts the loss-of-load at each bus cannot exceed the load demand at that bus. 

(3-31) represents that the total loss-of-load under contingency s cannot exceed the 

specified ratio
s

 . The problem (3-28)-(3-31) is to calculate the loss-of-load under the 

given expansion decision 
t

ex  and given failures
s

eh . 

Under the given expansion decision 
t

ex  and given failures
s

eh , problem (3-28)-(3-31) 

might not be feasible, because the loss-of-load might be larger than the specified level

s
 , just as the constraint (3-31) shown. Under the given rank of contingencies, there are 

numerous combinations of failures. The worst-case loss-of-load scenario with the given 

t

ex  and given rank k can be found. As for how to achieve this task, please refer to [21]. 

Once the worst-case scenario s

eh is obtained, the subproblem SP-k(t,d, s

eh ) is solved. If 

the problem is not feasible, it can generate corresponding feasibility cuts and add them 

to the MP problem. If the problem is feasible, it means the loss-of-load is smaller than 

the specified level k under any contingencies with the rank k. 
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3.3.3 Procedure of Transmission Expansion Planning  

The general procedure to carry out TEP is shown in Figure 3-2, which includes four 

steps: selecting candidate lines, forming DTEPM, solving the model and obtaining the 

final plan. The left flow chart presents the traditional TEP procedure with all possible 

candidate lines or manually selected ones. The right flow chart shows the new 

procedure with the automatic selection of candidate lines, which is the focus of this 

chapter. The performance of these two procedures will be compared in terms of optimal 

cost and computation time.  

 

Figure 3-2 General procedure to carry out TEP, (a) traditional procedure, (b) new procedure.  

3.4 New Selection Method for Candidate Lines  

Over the planning horizon, the load demand and generation capacity at the last planning 

year is the largest, so the number of new lines needs to be built is also the largest. In this 

All possible candidate lines

Or manually selected ones

TEP model (DTEPM)

Solution Approaches

e.g. BD

Final optimal TEP Plan

Automatic selection of 

candidate lines

TEP model (DTEPM)

Solution Approaches

e.g. BD

Final optimal TEP Plan

(a) (b)
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section, the load demand and generation capacity at the last planning year is considered 

to select candidate lines. Before selecting candidate lines, the LMP of each bus LMPi is 

calculated, which is the required information for the proposed selection method for 

candidate lines.  

The problem to calculate LMP is called as LMPM (LMP model) and is formulated as 

follows: 

Min ( )
NT NT

g g lolp i res w

g i w

C p C q C L
  

     
G B W

   (3-32) 

s.t. 
, ,

:
i NT i i i NT

NT

g e e w i i

g e e w

p f f p D 
    

      
G E E W

   (3-33) 

0( )
e ee e i jf B e    E       (3-34) 

0e e ef f f e    E        (3-35) 

0 NT

g gp p g          (3-36) 

NT NT

w w w wp p L p w           (3-37) 

0 NT

w wp p w          (3-38) 

0 NT

w wL p w          (3-39) 

In the objective function (3-32), it includes generation cost, load shedding cost and 

wind spillage cost. The load shedding costs lolpC  and wind spillage cost 
resC  are set to 

be 5 times of the average generation costs[72]. These two parameters are only used to 

calculate the LMP at each bus.   
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The LMP at each bus is the dual variable for the constraint (3-33).The penalty of 

loss-of-load and wind spillage is much larger than generation cost. So the LMP at the 

bus with load shedding is a large positive value; and the LMP at the bus with wind 

spillage is a large negative value. Because if the load demand is increased by 1 unit at 

the bus with RES spillage, then the RES spillage at the corresponding bus can be 

reduced by 1 unit, which leads to the reduction of the objective with the value 
resC . The 

LMP difference is a very important factor to explore new corridors. In [16, 17], LMP 

difference was used as the only criterion to select the new corridors. However, the 

LMP difference is neither necessary nor sufficient condition for selecting new 

corridors.  

The selection method for candidate lines proposed in this chapter consists of five stages, 

which are carried out in sequence. The final candidate set provided by the selection 

method is CL, which is the union of candidate set ( 1,2,4,5)m m CL created in Stage 

m. 

3.4.1 Stage 1-Enforcement of Existing Corridors 

The TEP can be carried out for different reasons. For example, an existing transmission 

network may not be able to afford the increasing requirement of transmission capacity; 

or may not have the ability to meet the secure system operation. If new lines could not 

be built, then there would be congestion within the network. The congestion can be 
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reduced by enforcing the existing corridors. So the possible enforcement plan should be 

included into the candidate set. Here the set of candidate lines selected in Stage m is 

noted as mCL . The union of mCL is noted asCL , which is the final candidate set.  

The approach to select possible enforcement lines is to solve the problem LMPM. 

After solving LMPM, it gives the power flow on each line, load shedding amount and 

wind spillage amount. If the power flow on a line reaches its corresponding capacity 

limit, then there is congestion in the line, and the corresponding line is selected and 

included into the candidate set 1CL . Then the LMPM is solved again with existing 

lines and those lines in 1CL . If there is still congestion in some lines, new lines are 

added into 1CL . Such a process continues until there is no congestion in the network. 

The whole process is shown in Figure 3-3. 1CL  is the set of candidate lines generated 

in this stage. At beginning, 1CL  is empty, and then candidate lines are added into 

1CL  during the process. After Stage 1, CL becomes: 

1=CL CL . 
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Figure 3-3 Process to enforce existing corridors 

3.4.2 Stage 2-Reliability Criteria Check 

In Stage 1, congestion is reduced by enforcing existing lines. Another important issue 

for the TEP is to meet the reliability criteria, such as N-k contingencies. In Stage 2, a 

possible enforcement plan for existing lines is selected to satisfy the requirement of N-k 

contingencies. Take the N-1 contingency as an example, the common requirement is 

that the loss-of-load should not happen under any N-1 contingency. For other N-k 

contingencies, different ranks of contingencies have different limitations on the amount 

of loss-of-load that can be shed. Under the given rank of k contingencies, the worst-case 

loss-of-load should meet the specified limitation. According to the Transmission 

Planning Standards (TPL-004-0 [114]), defined by the North Electric Reliability 

Corporation (NERC), if only a single element is in failure (N − 1 contingency), there 

should be no loss-of-load. In the case of k simultaneous failures (N − k contingency), 
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the loss-of-load should be no greater than a specified level. These requirements can 

also be formalized as N − k-ε criterion [21], where ε represents the vector of the 

loss-of-load, under the contingency size k, as a fraction of total load demand. The 

process of Stage 2 is shown in Figure 3-4. 2CL is the set of candidate lines created in 

this stage. After Stage 2, CL becomes: 

1 2CL CL CL  

 

Figure 3-4 Process to consider N-k reliability criteria 

3.4.3 Stage 3-Defining Candidate Buses 

In the first two stages, candidate lines are selected to enforce existing corridors, so that 

the congestion can be reduced and the N-k reliability criteria can be met. However, it 

might not be the most efficient or economic way to meet the needs. It is quite possible 
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that a better choice is to construct new transmission corridors. The question is that how 

to select promising new corridors from a large number of possible corridors. Herein, an 

approach to select new corridors is presented. 

 

Figure 3-5 Illustration of exploring new corridors 

The basic idea of selecting new corridors is illustrated in Figure 3-5. Suppose that there 

is an existing corridor between bus i and bus j, with the power flow direction from i to j. 

In the first two stages, the line is enforced for the purpose of reducing congestion and/or 

meeting reliability criteria. Except to build a new line between bus i to bus j directly, an 

alternative way is to build new corridors connected with these buses, which are 

identified as candidate buses. Basically, candidate buses are those with either very 

heavy power generation or load or power flows. The candidate buses are related to the 

following three possible scenarios: 

 Candidate bus i as a generator bus: If bus i is a generation bus and a large 

amount of power needs to be dispatched through the line between i and j. By 

connecting bus i to other buses located in its vicinity, the power from bus i can be 

i j

Power direction

Existing line Candidate line
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dispatched through more lines, rather than just through the line between i and j, just as 

the left ellipse shows in Figure 3-5.  

 Candidate bus j as a load bus: If bus j is a load bus and the load demand is 

mainly met through the line between bus i and bus j, the power flow in this line can 

also be reduced by connecting bus j to other nearby buses so that the load demand can 

be met through more corridors, just as the right ellipse shows in Figure 3-5. 

 Candidate bus i and bus j as interconnection buses: If bus i and bus j are just 

interconnection buses or this line is required to be enforced for the purpose of meeting 

reliability criteria, the congestion or the reliability criteria can also be reduced or 

ensured, by connecting bus i or bus j to other buses. 

Based on the above analysis, the candidate buses are formed. Buses connected to lines 

included in 1 2CL CL CL  are formed as candidate buses and denoted as the set 

CB.  

 1 2= | connected to linesi i e CB B CL CL  

3.4.4 Stage 4-Exploring New Transmission Corridors 

For each candidate bus iCB , two factors are considered to select new corridors: the 

potential benefit and investment cost of new lines. The potential benefit brought by 

building a new line is estimated by the LMP difference and its capacity[16]. 
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From the aspect of LMP difference, the larger the LMP difference between two buses is, 

the more benefit the new line may achieve. From the aspect of investment cost, new 

lines with lower investment cost are more attractive. These two aspects are both 

considered by the following index. 

, ,ij i j ijprofit LMP LMP f i j i j     CB CB   (3-40) 

, ,
ij

ij

ij

profit
i j i j

inv
    CB CB    (3-41) 

The index ij for each possible corridor is calculated according to the above 

formulation. From the above analysis, the corridor with larger 
ij is more attractive. By 

sorting ij in descending order, the first M corridors are selected and included into the 

candidate set 4CL . M is a positive integer, and the larger M is, the larger the size of 

4CL  becomes. Although a large size of 4CL  might improve the completeness of the 

candidate set, it also increases the computation complexity of DTEPM. So a proper M 

should be selected to get a balanced size of 4CL . Here the completeness refers to the 

number of the optimal expansion lines covered by the candidate set CL . The optimal 

expansion plan can be achieved by solving the DTEPM with all possible candidate 

lines. After Stage 4, the candidate set becomes: 

1 2 4CL CL CL CL . 
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3.4.5 Stage 5-Checking Residual Possible Corridors 

In Stage 4, new corridors are selected by considering the LMP difference and 

investment cost. However, it may not be sufficient to select new corridors only based 

on LMP difference and investment cost. It is possible that after Stage 4, some 

promising candidate lines are still excluded from CL . In order to cover promising 

candidate lines as many as possible, all residual corridors connected to each candidate 

bus are examined. For each candidate bus iCB , the following steps are carried out.  

For each iCB  

1. Generate the residual corridors connected to bus i to form a temporary set of 

lines, noted as iRC . The residual corridors are referred to those corridors which 

are not included in the existing lines (corridors) and the candidate set CL  up to 

now.  

 0( , ) , , ( , )i i j j i j i j   RC B E CL  

2. The DTEPM is solved with candidate lines iCL RC . To reduce the 

computation time, the N-k reliability criteria are not considered in this DTEPM 

calculation. Also, the binary decision 
t

ex is relaxed as continuous variable 

varying from 0 to 1. So the DTEPM problem is relaxed as a LP problem, which 

can then be solved easily. 

3. In the optimal result, if 
NT

ex for some residual corridors are greater than the 
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threshold , and then the corresponding corridors are added into
i

5CL . 

  NT

ei

i xe RCCL5 . 

4. Update CL  

i

5CLCLCL   

After the above five stages, the final candidate set created by the selection method is: 

hiii

555421
21 CLCLCLCLCLCLCL   

where h is the number of candidate buses in CB . 

3.5 Case Studies 

Two test systems are applied to verify the performance of the proposed method and 

analysis is carried out with different parameter settings. The two test systems are the 

revised IEEE 24-bus test system and revised IEEE RTS-96. Only N-1 and N-2 

reliability criteria are considered in the case studies. Results with and without 

considering reliability criteria are compared. In Stage 4, the first M candidate corridors 

are added into the candidate set. The impact of different number of M is analysed. Also, 

in Stage 5, the continuous relaxation technique is applied to reduce the computation 

time. Results by solving the original MILP are compared with results by implementing 

continuous relaxation. In the two test systems, it is noted that the optimal value of 
t

ex in 
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the relaxed problem is either zero or larger than 0.1 in most cases. So   is set to be 0.1 

in the following tests. 

All case studies were coded with the YALMIP[115], which is a modelling language for 

advanced modelling. CPLEX 12.1.4 was utilised as the solver. The program was run on 

an Intel Core-i5 2.5-GHz personal computer with 4G memory. 

3.5.1 Revised IEEE 24-Bus Test System 

The detail data for IEEE 24-bus test system can be found in [116]. This test system is 

revised by adding three wind farms at bus 13, 17 and 22, respectively. The revised test 

system is shown in Figure 3-6. The TEP problem is a six-year plan, with annual 10% 

growth rate of load and generation capacity. Three wind farms at bus 13, 17 and 22 are 

installed in the 1st, 2nd and 4th year, with the capacity of 200MW, 200MW and 250 MW, 

respectively. There should be no loss-of-load under normal state and N-1 contingency, 

and 1% of total load can be shed during N-2 contingencies[114]. The wind utilisation 

level is set to be 0.8. Load penalty and wind spillage penalty are set to be 5 times of 

average generation cost. M is set to be 3, and   is set to be 0.1. 

3.5.1.1 Results of IEEE 24-bus with Reliability Criteria 

Firstly, the case with reliability criteria is considered. Candidate lines added into the 

candidate set in each stage are presented in Table 3-1. In total, it includes 54 candidate 

lines. To get the optimal expansion planning of this test system, the DTEPM is solved 
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with all possible 23*12=276 candidate lines. The results are shown in Table 3-2. Also, 

the DTEPM is solved with the created candidate set listed out in Table 3-2. The only 

difference is the line (4,5) is replaced by two lines (1,5) and (4,8). Buses 4 and 5 

become isolated when two lines connected to them disconnected during N-2 

contingencies. To ensure N-2 contingencies, the best solution is to link bus 4 and 5. 

However, this line is not included in the candidate set, so (1, 5) and (4, 8) are selected to 

meet the N-2 contingencies. 
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Figure 3-6 Revised IEEE 24-bus test system 

The optimal cost (objective of DTEPM (3-1)) with created candidate set is only 0.8% 

higher than that with whole candidate lines. The reason is that if the expansion plan can 

select from the whole candidate lines, then it has more choices than from the limited 

candidate set. So the expansion plan selected from the whole set should be better than 

that selected from the given candidate set.  
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The total computation time for the whole procedure in Figure 3-2 and the required time 

for selecting candidate lines (in bold fonts), is also shown in Table 3-2. With the created 

candidate set, the total computation time is less than 1/5 of that for the procedure with 

the whole set of candidate lines. 

Table 3-1 CANDIDATES FOR IEEE 24-BUS SYSTEM WITH RELIABILITY CRITERIA 

Stages New candidate lines Number 

Stage 1 (7,8) (14, 16), (16,17), (8,9), (11,14), (3, 24), (14,16) 7 

Stage 2 (2,6) (2,4), (4,9),(1,5),(5,10),(1,3),(15,24) 7 

Stage 4 

(3,7), (7,17), (7,18), (3,8), (8,17), (8,18), (14,15), (14,19), (16,18), 

(14,17), (17,19), (3,9), (9,17), (9,18), (11,24), (11,15), (11,17), 

(3,10), (3,5), (14,24), (12,24), (2,3), (2,17), (2,18), (3,6), (6,17), 

(6,18), (3,4) (4,17), (4,18), (1,17), (1,18), (5,17), (5,18), (10,17) 

(10,18), (15,17) 

37 

Stage 5 (4,7), (4,8), (6,9) 3 

Total  54 

Table 3-2 RESULTS OF DTEPM For IEEE 24-BUS SYSTEM WITH Reliability CRITERIA 

Approach Lines to be built Costs Computation time (s) 

DTEPM with whole 

candidate lines 

(4, 5), (14, 15) 

(6, 9), (16, 17) 
100% 2644 (0) 

DTEPM with created 

candidate set 

(14, 15), (6, 9), 

(16, 17), (1, 5), (4, 8) 
100.8% 523 (58) 

According to the proposed candidate selection method, the LMP is calculated before 

carrying out selecting candidate lines. For IEEE 24-bus test system, LMP information 

is shown in Table 3-3. Seen from Table 3-2, the best expansion planning is to build 4 

lines, and corresponding LMPs are marked in grey in Table 3-3. The LMP differences 

between 4 and 5, 6 and 9 are quite small. However, these two lines are included the 

optimal expansion plan. The reason to build the line between 4 and 5 is for the 



79 

 

consideration of N-2 reliability criteria. If the LMP difference is considered as the only 

factor to select candidate lines, then the line between 6 and 9 would not be selected. So 

the LMP difference is not sufficient for the candidate selection, which in turn, shows 

the importance of Stage 5. 

Table 3-3 LMP FOR IEEE 24-BUS TEST SYSTEM 

Bus 

No 

LMP 

($/MW) 

Bus 

No 

LMP 

($/MW) 

Bus 

No 

LMP 

($/MW) 

Bus 

No 

LMP 

($/MW) 

1 20.11 7 20.70 13 20.93 19 14.11 

2 20.21 8 21.10 14 29.49 20 15.80 

3 16.92 9 20.74 15 10.52 21 7.05 

4 20.50 10 21.46 16 12.15 22 5.74 

5 20.77 11 23.97 17 3.71 23 16.71 

6 21.16 12 20.21 18 5.47 24 12.97 

3.5.1.2 Results of IEEE 24-bus without Reliability Criteria 

To analyse the impact of N-k reliability criteria to the TEP problem, scenarios without 

considering N-k reliability criteria are also calculated. Results are shown in Table 3-4. 

The total number of candidate lines is 33, which is largely reduced compared that with 

reliability criteria. The optimal expansion planning is to build 3 lines, namely (16,17), 

(14,15) and (4,8). All of them are include in the candidate set. 
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Table 3-4 CANDIDATES FOR IEEE 24-BUS SYSTEM WITHOUT RELIABILITY CRITERIA 

Stages New candidate lines Number 

Stage 1 
(7,8) (14, 16), (16,17), (8,9), 

(11,14), (3, 24), (14,16) 
7 

Stage 2 N/A 0 

Stage 4 

(3,7), (7,17), (7,18), (3,8), (8,17), 

(8,18), (14,15), (14,19), (16,18), 

(14,17), (17,19), (3,9), (9,17), 

(9,18), (11,24), (11,15), (11,17), 

(3,10), (3,5), (14,24), 

21 

Stage 5 (4,7), (4,8), (6,9) (6,8), (6,7) 5 

Total  33 

From Table 3-1 and Table 3-4, it can be seen that the optimal candidate lines are 

covered by the combination of proposed five stages. So each stage plays an important 

role in selecting the most promising candidate lines. 

3.5.2 Revised IEEE RTS-96 

This test system is revised by adding 9 wind farms to 9 different buses, which is shown 

in Figure 3-7. The detail data of this standard test system can refer to [117]. The other 

parameters are the same with those in the IEEE 24-bus test system, which include total 

planning years, annual increase rate of load and generation, wind utilisation level and 

reliability criteria.  
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Figure 3-7 Revised IEEE RTS-96 [117] 
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Firstly, the candidate set is constructed with the reliability criteria. Results are shown in 

Table 3-5. The optimal expansion planning can be achieved by solving DTEPM with 

whole candidate lines. There are 73*36=2628 possible candidate lines for this test 

system. To save the computation time, candidate lines with high investment cost and 

long distance are excluded and only 437 candidate lines are taken into account into the 

DTEPM. Results of this DTEPM show that the best expansion planning is to build 23 

lines and 17 out of 23 lines are included in the candidate set, just as the third column of 

Table 3-5 shows. It can be seen that about 74% of the optimal expansion plan is covered 

through the combination of four stages. Table VI shows the results with the whole 

candidate set (437 lines) and with created candidate set. The number of lines to be built 

in two plans is the same. The optimal cost (objective of DTEPM (3-1)) with created 

candidate set is only 1.13% higher than that with whole candidate lines. The total 

computation time with created set is only 28% of that for the procedure with the 437 

candidate lines. 

Table 3-5CANDIDATES FOR IEEE RTS-96 WITH RELIABILITY CRITERIA 

Stages 
Number of 

candidate lines 
Number of Optimal lines covered 

Stage 1 23 2 

Stage 2 2 0 

Stage 4 83 9 

Stage 5 12 6 

Total 120 17 
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Table 3-6 RESULTS OF DTEPM For IEEE RTS-96 SYSTEM WITH Reliability CRITERIA 

Approach 
Number of lines 

to be built 
Costs Computation time (s) 

DTEPM with whole 

candidate lines 
23 100% 21603.6 (0) 

DTEPM with created 

candidate set 
23 101.13% 6053 (452) 

Secondly, the candidate set is constructed without the reliability check. 116 lines are 

selected into the candidate set, with 23, 0, 82 and 11 lines in the four stages, 

respectively. Results of the DTEPM with the above mentioned 437 candidate lines 

show that the best expansion planning is to build 5 lines, and 4 of them are included in 

the candidate set. The optimal cost (objective of DTEPM (3-1)) with created candidate 

set is also only 0.3% higher than that with whole candidate lines. 

3.5.3 Impact of Different M Values 

According to the analysis above, the larger M is, the more candidate lines are selected. 

Although more candidate lines might increase the completeness of the candidate set, it 

increases the difficulty to solve the TEP problem. So a proper M value needs to be 

found to control the size of candidate set, as well as to ensure the completeness of the 

candidate set. 

Table 3-7 and Table 3-8 show results for two test systems under different M values, 

considering the reliability criteria and implementing continuous relaxation. In these 

two tables, the second column shows the size of the candidate set by implementing 
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different M values; the third column is the increased ratio of optimal cost (objective of 

DTEPM (3-1)) under given candidate set, compared with that with whole candidate 

lines; the fourth column is the number of optimal lines (selected by using whole 

candidate lines) that the candidate set can cover. According to results for IEEE 24-bus 

test system shown in Table 3-7, different M values have no impact on the number of 

optimal lines that the candidate set can cover. As to results for IEEE RTS-96 shown in 

Table 3-8, the impact of different M values is small. Considering the size of the 

candidate set and the completeness of the candidate set, M should be 3 for this 

particular case, in accordance with Table 3-7and Table 3-8.  

Table 3-7 RESULTS OF IEEE 24-BUS TEST SYSTEM UNDER DIFFERENT M VALUES 

M value 
Size of 

candidate set 

Costs 

increased (%) 

Number of Optimal 

lines covered 

2 40 0.8 3 

3 54 0.8 3 

4 67 0.8 3 

Table 3-8 RESULTS OF IEEE RTS-96 UNDER DIFFERENT M VALUES 

M value 
Size of 

candidate set 

Costs 

increased (%) 

Number of Optimal 

lines covered 

2 92 1.19 16 

3 120 1.13 17 

4 148 0.96 18 

3.5.4 Impact of Continuous Relaxation 

In the final stage of the proposed selection method, the continuous relaxation is applied 

to reduce the computation time. In the section, the impact of continuous relaxation is 

evaluated. Candidate lines added in the Stage 5 by solving the original MILP problem 
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and by solving the relaxed problem are shown in Table 3-9. Scenarios under different M 

values are compared from aspects of the number of optimal lines covered by Stage 5, 

and the increased ratio of optimal cost (objective of DTEPM (3-1)).  

From Table 3-9, the number of candidate lines added in Stage 5 by solving the MILP 

and relaxed model is 7 and 12, respectively. The number of optimal lines covered by 

Stage 5 under two models is 3 and 6, respectively. In both models, different M values 

have no impact on the number of candidate lines added in Stage 5 and the number of 

optimal lines covered by Stage 5. The fifth column shows the increased ratio of optimal 

cost (objective of DTEPM (3-1)) under the given candidate set. The sixth column is the 

computation time required to carry out candidate selection by implementing two 

models. According to the results shown in Table 3-9, the relaxed model can discover 

more optimal lines than MILP model, and the required computation time for the relaxed 

model is only 1/3 or even 1/4 of that for the MILP model. 

Table 3-9 RESULTS OF IEEE RTS-96 BY SOLVING MILP AND RELAXED PROBLEMS 

M value Problem 
candidate 

lines in 

Stage 5 

Optimal 

lines in 

Stage 5 

Costs 

increased 

(%) 

Computation 

time(s) 

M=2 
MILP 7 3 2.04 1018.1 

Relaxed 12 6 1.19 371.2 

M=3 
MILP 7 3 1.93 1993.2 

Relaxed 12 6 1.13 452.4 

M=4 
MILP 7 3 1.82 2866.3 

Relaxed 12 6 0.96 406.1 
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3.6 Summary 

The problem of selecting candidate lines for TEP is studied in this chapter. The research 

about the selection of the candidate lines is still in the preliminary stage. A method has 

been proposed to select candidate lines through an automatic process. The proposed 

method consists of five stages, which are the combination of enforcing existing lines 

and exploring new corridors. In the first two stages, existing corridors are enforced to 

ensure the utilisation of wind, reduce congestion and meet N-k reliability criteria. To 

replace the enforcement of existing lines, new corridors are explored in the latter three 

stages, by considering LMP difference and investment cost. The work to explore new 

corridors begins with collecting candidate buses in the third stage, which can reduce the 

scale of new corridors significantly. Moreover, to improve the completeness of 

candidate set, other possible corridors connected to the candidate buses are also 

examined by solving a linear relaxation TEP problem. Results have shown that the 

proposed algorithm can cover most of the optimal candidate lines. Each stage plays an 

important role in creating the candidate set. It has been demonstrated that selecting 

candidate lines according to LMP differences is neither sufficient nor necessary.  

The selection method proposed in this chapter can provide a set of candidate lines for 

expert planners. However as the results of the case study shows, the selected candidate 

set can cover about 75% of the optimal expansion plan in the case of IEEE RTS-96. 

Thus, the selection method needs to be improved in the further research work.  
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CHAPTER 4  TWO-STAGE STOCHASTIC DUAL 

DYNAMIC PROGRAMMING FOR 

TRANSMISSION EXPANSION PLANNING WITH 

RENEWABLE ENERGY SOURCES 

4.1 Introduction 

As the development of wind, more and more attention has been paid to study the 

importance of considering uncertainties in TEP. There are two main uncertain sources, 

namely uncertain load demand and uncertain generation availability. The common 

approach to deal with load demand is to assume an annual increase ratio. As for 

generation availability, the uncertainty related to its availability is neglected in much 

published literature. However, as the penetration level of wind is increasing so 

quickly, wind generation is accounting for more and more percentage of the total 

generation. The intermittence nature of wind generation leads to the uncertain 

generation availability, which not only has considerable impact on system operations, 

but affects the planning strategy of TEP. It is quite often that wind-rich areas are 

always far away from load centres. As a consequence, the long distance transmission 

of wind power is required, through the means of high-voltage AC/DC technologies, or 

multi-regional interconnections, which all increase the difficulty of laying out TEP. 
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To deal with great uncertainties in the TEP problem, many methods have been 

investigated, including stochastic dual dynamic programming (SDDP), which is one of 

the most promising stochastic optimisation approaches. This method has been widely 

implemented in many areas of power system operations, such as generation expansion 

planning[118], TEP[111], hydro-thermal scheduling[119, 120]. In this chapter, the 

method to apply SDDP into a two-stage stochastic TEP problem is proposed.  

The remainder of the chapter is organised as follows. Firstly, the two-stage stochastic 

formulation of TEP problem is presented. Secondly, the basic knowledge about SDDP 

is provided, as well as the overall procedure for the application of SDDP algorithm to 

the two-stage stochastic problem. Thirdly, the application of SDDP to the established 

two-stage stochastic TEP problem is introduced. Fourthly, the proposed algorithm is 

verified on two test systems. Finally, it presents the conclusion.  

4.2 Two-stage Stochastic Formulation of Transmission 

Expansion Planning 

In Section 3.2, it presents the deterministic TEP model. In this section, the general 

two-stage stochastic formulation of TEP is given out.  
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4.2.1 Nomenclature 

The nomenclature used in the following model is the same or similar as that in 

Section 3.2. Several additional variables are required, which are listed as follows: 

    Index of realisation of uncertain parameters. 

Λ    Specified set of realisations of uncertain parameters (indexed by ). 

Ξ    Set of all realisations of uncertain parameters (indexed by ). 

   Expected value. 

Variables associated with  represent the corresponding variables under different 

realisations of . For example, 
,

, ( )t s

g dp   is the power generation of generator g in dth 

interval of year t under contingency s under realisation . 

4.2.2 Two-Stage Stochastic Formulation of Transmission Expansion Planning 

A two-stage stochastic formulation of TEP problem (noted as STEPM) is presented 

as follows, which is similar with that of the deterministic two-stage TEP problem 

(DTEPM).  

     ,0

,

1 1 1

Min 1/ 1 1/ 1 ( )
t

NT NT ND
t tt t

e e g g d

t e t d g

r x C r d C p 
    

 
    

 
    

E G

 (4-1) 
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s.t. 

, ,

, , , , ,

, , , , , ,( ) ( ) ( ) ( ) ( ) ( )

, , , ,

i t i i i t

t s t s t s t s t s t

g d e d e d w d i d i d

g e e w

p f f p q D

i d t s

     



    

    

    

   
G E E W  (4-2) 

 , , ,

, , ,( ) ( ) ( )+ (1 ) , , , ,
e e

t s t s t s t s

e i d j d e d e e eB f M x h e d t s                  (4-3) 

 , , ,

, , ,( ) ( ) ( ) (1 ) , , , ,
e e

t s t s t s t s

e i d j d e d e e eB f M x h e d t s                 (4-4) 

,

,(1 ) ( ) (1 ) , , , ,s t s t s s t s

e e e e d e e ef x h f f x h e d t s             (4-5) 

,

,0 ( ) , , , ,t s t

g d gp p g d t s            (4-6) 

,

, , , 0( ) ( ) ( ) , , , ,t t s t

w d w d w dp p p w d t s           S Λ   (4-7) 

 
,

, , 00 ( ) ( ) , , , \ ,t s t

w d w dp p w d t s         S S    (4-8) 

 
,

, ,0 ( ) ( ) , , , ,t s t

i d i dq D i d t s              (4-9) 

 
,

, ( ) ( ) , , ,t s t

i d ds
i

q D s d t   


     
B

Λ     (4-10) 

01 ,t

ex e t   E         (4-11) 

1

0, {0,1} \ ,t t t

e e ex x x e t     E E       (4-12) 

Similar with the objective function (3-1) for DTEPM, the objective function (4-1) for 

STEPM also represents the overall cost of investment for new lines and expected 
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operation cost for generators under various realisations. For DTEPM, the operation 

cost is calculated only under one deterministic realisation.  

STEPM needs to meet constraints (4-2)-(4-12), most of which remain the same or 

similar meanings as those in DTEPM. However, each constraint needs to be satisfied 

under all possible realisations of . The meaning of each constraint is introduced as 

follows.  

The power balance at each bus under any possible contingencies s S  should be 

fulfilled, which is represented by (4-2). The Kirchhoff’s voltage law for each line is 

represented by (4-3) and (4-4). Three assumption are applied: 1) the susceptance is 

larger relative to the conductance; 2) the phase angle difference is small enough to 

ensure  sin m n m n      ; 3) the voltage magnitudes are close to 1.0 and does not vary 

significantly. The Big-M method is applied to represent the power flow no matter 

whether the line is available or not. The maximum power flow on each line is limited by 

(4-5). The power generation of each generation unit needs to be within the installation 

capacity, shown by (4-6). In order to ensure the utilisation level of wind generation 

under normal state ( 0s S ), (4-7) represents the utilisation level of wind generation 

needs to be larger than a given ratio, under a given set of realisations  Λ . Ideally, 

(4-7) should be satisfied under any possible realisation  Ξ . However, the size of 

the problem would become so huge that it might become intractable even by the 

application of BD technique. So it comes up a trade-off solution, by reducing all 
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possible realisations  Ξ  to some specific realisations  Λ . The detail of the 

specific realisations is explained in the following paragraph. (4-7) only needs to be 

satisfied under  Λ  rather than  Ξ . When selecting realisations of the setΛ , 

the strategy is to select extreme realisations which are most possible to lead to wind 

spillage. For example, when power generation from wind is relatively large, but the 

load demand is in the period of low consumption, then it might happen wind spillage 

under this realisation. In this chapter, four realisations are selected, including: (1) large 

wind generation, large load demand; (2) large wind generation, low load demand; (3) 

low wind generation, large load demand; (4) low wind generation, low load demand. 

Under any contingency state 0\s S S , (4-7) is not required to be met, for the reason 

that the priority under contingency state is to keep the system secure, just as shown in 

(4-8). The loss-of-load at each bus must be smaller than the load demand at that bus, 

represented by (4-9). According to N-k reliability criteria, the total loss-of-load under a 

certain rank k of contingencies should be less than a specified ratio 
s

  of the total load 

demand, just as shown in (4-10). Similar with the reason for (4-7), the problem might 

become intractable, if (4-10) is required to be satisfied under any possible realisations 

 Ξ  and any possible contingencies. So the same strategy is applied for (4-10), 

which is to reduce all possible realisations  Ξ  to the set  Λ , applied in (4-7). 

(4-11) represents existing lines have been built. (4-12) ensures that once the candidate 

line is selected to be built, it remains in place in the later years. 
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4.3 Stochastic Dual Dynamic Programming Overview 

4.3.1 Two-Stage Stochastic Problem 

In this section, a brief introduction of SDDP method applied to the two-stage 

stochastic programming problem is given out[121]. The general two-stage stochastic 

problem can be formulated as follows: 

Tmin ( )



x

c x x          (4-13) 

where    1n
: : , 0 , ( ) : ( , )Q     x Ax b x x x ξ and ( , )Q x ξ is the optimal value 

of the second stage problem under the realisation of ξ . 

n2

T( , )= minQ
y

x ξ q y       (4-14) 

s.t.   Tx Wy h       (4-15) 

0y         (4-16) 

It is assumed that some/all elements of q, T, W and h are random. The dual of the 

subproblem can be expressed as follows: 

T( , )= max ( )Q 
λ

x ξ λ h Tx       (4-17) 

s.t.  
T W λ q         (4-18) 

0λ          (4-19) 
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A random sample 1 2, , , Nξ ξ ξ of N realisations is created according to the 

distribution of the random vector ξ . The probability of each realisation is the same with 

each other, 1/ N  to be specific. By doing this, the original problem (4-13) can be 

replaced by the so-called SAA problem.  

Tmin ( )



x

c x x         (4-20) 

where   1

1

( )= ( , ) ( , )
N

j

N

j

Q N Q



 x x ξ x ξ  and we use the notation

1 2, , , N

N
   ξ ξ ξS  to represent the random sample. 

Now the SDDP algorithm is implemented to the SAA problem rather than to the 

original problem. At the kth iteration of the SDDP algorithm, it carries out the 

procedure, called as backward pass. Let k x be the current first stage solution and 

( )k xQ be the approximation of ( )x . ( )k xQ can be updated by the supporting planes 

obtained in each iteration. Suppose ( )k kg x is a subgradient of ( )kx , then the 

new supporting plane can be obtained: 

T( ) ( ) ( )k k k k  x x g x x       (4-21) 

The approximation of the SAA problem can be updated with the new supporting 

plane:  1( ) max ( ), ( )k k k x x xQ Q . With the new approximation, kx can be updated 

with the new optimal problem: 



95 

 

T

1min ( )k






x

c x xQ        (4-22) 

Since each supporting plane ( )k x is less than or equal to ( )x , we can get: 

( ) ( ) 1,2,k k x xQ       (4-23) 

So the optimal value of the problem (4-22) is less than or equal to the problem (4-20). 

Let: 

 Tinf ( ) 1,2,k k k   c x xQ    (4-24) 

k  establishes the lower bound of the SAA problem in each iteration. To carry out the 

above mentioned backward pass, we need to calculate the second stage problem for 

kx x and each realisation  , , , , 1, 2, ,j

j j j j j N ξ h T W q . Let 
kjy be the optimal 

solution of the second stage problem (4-14)-(4-16), and 
kjλ be the optimal dual solution 

for jξ , then we can get: 

1 T

1

( )
N

k j kj

j

N 



 x q y and 
1 T

1

N

k j kj

j

N 



  g T λ    (4-25) 

Next, let us discuss the so-called forward pass of the SDDP algorithm. A subsample 

1 2, , , M

M
   ξ ξ ξS is generated from the 

1 2, , , N

N
   ξ ξ ξS . Let 

T

kj j kj  q y be 

the optimal objective of the corresponding second stage problem, with kx x and 

jξ ξ .  
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Let 

1

1 M

kj

jM
 



  and  
2

2

1

1
ˆ -

-1

M

kj

jM
  



     (4-26) 

be the corresponding average and variance of the optimal value
kj .  is an unbiased 

estimate of ( )x  and  

/2 /2
ˆ ˆ/ , /M M          

 
    (4-27) 

gives the 100(1 )% confidence level for ( )x , where  represents the 

(1 )-quantile  of the standard normal distribution.  

4.3.2 Overall Procedure of SDDP Algorithm 

Steps to carry out SDDP algorithm are explained as follows and shown in Figure 4-1: 

Step 1) Initialisation 

 initialise the counter k=0; initialise the approximation of second stage 

objective ( ) 0k xQ ; 

Step 2) Sampling 

 Sample N realisations based on probability distribution functions 

1 2, , , N

N
   ξ ξ ξS ; 

Step 3) Update kx  

 Increase the counter k=k+1; 

 Solve the following problem and update kx : 
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T

1min ( )kz





 
x

c x xQ  

 Get the lower bound: kz z ; 

Step 4) Forward Pass 

 Get a subsample 1 2, , , M

M
   ξ ξ ξS from 1 2, , , N

N
   ξ ξ ξS ; 

 Solve the second stage problem (4-14)-(4-16) with the current solution 

kx x , for each , 1,2, ,j j M ξ ξ , and let
T

kj j kj  q y  

 Calculate the unbiased estimate 
T

1

1 M

u k kj

j

z
M




  c x of the second stage 

problem with kx x , and the corresponding variance 

 
2

1

1
ˆ -

-1

M

kj

jM
  



   

where 
1

1 M

kj

jM
 



   

 Stop if  

/2 /2ˆ ˆ
u l uz z z

M M

 
 

 
      

 Else go to Step 5). 

Step 5) Backward pass 

 For the current solution kx x , the problem (4-14)-(4-16) is solved 

with each , 1,2, ,j j N ξ ξ ; 

 Let 
1 T

1

( )
N

k j kj

j

N 



 x q y and 
1 T

1

N

k j kj

j

N 



  g T λ ; 

 Let 
T( ) ( ) ( )k k k k  x x g x x and  1( ) max ( ), ( )k k kx x xQ Q ; 

 Go to Step 3). 
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Figure 4-1 Steps for SDDP algorithm 

              Set k=0;           

Sample N realizations

Increase the counter k=k+1;

Solve the following problem and update xk :

Get the lower bound:zk=z;

Step 1)

Step 2)

Step 3)

( )=0k xQ

1 2, , , N

N
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c x xQ
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current solution xk, for each 
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Calculate the unbiased estimate of the second stage 

problem

The variance 

T
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1 M
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j

z
M




  c x

 
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1

1
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kj
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  
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 
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 

/2 /2ˆ ˆ
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 
 

 
    

Step 5) Solve the second stage problem (4-14)-(4-16) with the 

current solution xk, for each 

Let 
, 1, 2, ,j j N ξ ξ

1 T

1

( )
N

k j kj

j

N 



 x q y 1 T

1

N

k j kj

j

N 



  g T λ

T( ) ( ) ( )k k k k  x x g x x  1( ) max ( ), ( )k k kx x xQ Q

Yes

No

End
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4.4 Application of SDDP for Two-Stage Stochastic TEP 

problem 

Similar with the decomposition approach for the deterministic two-stage TEP model 

(DTEPM, (3-1)-(3-10)), the stochastic two-stage TEP model (STEPM, (4-1)-(4-12)) 

can also be decomposed into a master problem and subproblems. The master problem 

for STEPM is the same as that for DTEPM, just as (3-25)-(3-26) show. The 

subproblem for STEPM is the operational problem, which is similar as that in 

DTEPM. The difference is that the subproblem for STEPM is to calculate the expected 

operation cost under all possible realisations, while the subproblem for DTEPM is to 

calculate the expected operation cost only under a specific realisation. Because the 

uncertainty is considered in STEPM in the form of calculating expected operation cost, 

the difficulty to solve STEPM is much larger than that to solve DTEMP. 

The subproblem for STEPM can be formulated as follows: 

   ,0

,

1 1

Min 1/ 1 ( )
t

NT ND
t t

g g d

t d g

r d C p 
  

 
  

 
  

G

    (4-28) 

s.t. (4-2)-(4-10) 

As seen from (4-28), the operation cost is the sum of operation cost over the planning 

horizon. For each time interval, the operation cost only relies on constraints in that 

time interval, so it can be calculated independently. According to this principle, the 
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subproblem (4-28) can be divided into subproblems for different intervals, which are 

noted as SP(t,d) and expressed as follows:  

 ,0

,Min ( )
t

t

g g d

g

d C p 


 
 
 


G

       (4-29) 

s.t. (4-2)-(4-10) 

For the subproblem shown in (4-29) specified for each t and d, the size of the problem 

is greatly reduced, which is very helpful to make the problem tractable.  

After solving the master problem, it can get the expansion plan x . However, under the 

obtained x , the subproblem SP(t,d) might not be feasible. For example, there might be 

loss-of-load under normal state or the amount of loss-of-load under contingencies 

exceeds the specified ratio, so constraint (4-10) is violate. Moreover, the utilisation 

level of wind generation cannot reach the specified ratio, so constraint (4-7) is violated. 

If the subproblem SP(t,d) is not feasible, corresponding feasibility cuts are generated 

and added into MP problem.  

To solve the subproblem SP(t,d), it needs to make the subproblem itself feasible, which 

can be realised by three steps: 

(1) The constraint (4-10) needs to be satisfied under normal state (
0sS ), which 

means there is no load shedding. 

(2) The constraint (4-7) needs to be satisfied under normal state (
0sS ), which 
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means the utilisation level of wind should be no less than the specific level.  

(3) The constraint (4-10) needs to be satisfied under contingency states 

(
0\s S S ), which means that the ratio of load shedding under a given rank of 

contingency k should be no larger than
k . 

If the above three requirements cannot be met, then the corresponding feasibility cuts 

are generated and added into the MP problem.  

When the above three constraints can be satisfied, the subproblem is feasible. After 

that, the subproblem shown in (4-29) can be optimised to get the optimal operation 

cost, under the given expansion plan x . In this chapter, N-k reliability criteria only 

include N-1 and N-2 reliability criteria, so 
0 1 2S S S S . The approach to consider 

N-k reliability criteria has been introduced in Section 3.3.2.  

Figure 4-2 shows the overall steps to conduct the proposed algorithm. The original 

complicated problem is decomposed into the MP problem and subproblems, based on 

the implementation of BD approach. Steps to ensure the feasibility of subproblems are 

carried out before solving subproblems to get the optimal operation cost. The N-k 

reliability criteria can be fully considered by the proposed algorithm. The SDDP 

method is applied to calculate the expected operation cost under uncertainties of load 

demand and wind generation. Because of the independency of subproblems for each 

time interval, the overall expectation of operation cost can be obtained by summing up 
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the operation cost of each interval. The ( )k xQ  represents the approximation of 

operation cost under a given expansion plan x , which is calculated based on the 

subproblem SP(t,d) for each time interval.  

 

Figure 4-2 Overall Steps of proposed algorithm 

              Set k=0;                         Set k=0;           

   Solve the MP problem to get xk    Solve the MP problem to get xk 

For each t and each dFor each t and each d

Check the loss-of-load under normal state;

If it exceeds zero, creating and adding cuts to MP

Check the loss-of-load under normal state;

If it exceeds zero, creating and adding cuts to MP

Check the utilization level of RES under normal state;

If it does not reach the specific level, creating and 

adding cuts to MP

Check the utilization level of RES under normal state;

If it does not reach the specific level, creating and 

adding cuts to MP

Calculate the worse-case loss-of-load under given rank 

of contingency ;

If the worse-case loss-of-load exceeding the specific 

amount, creating and adding cuts to MP

Calculate the worse-case loss-of-load under given rank 

of contingency ;

If the worse-case loss-of-load exceeding the specific 

amount, creating and adding cuts to MP

All three constraints 

pass through?

All three constraints 

pass through?    k=k+1;   k=k+1;

Forward pass calculationForward pass calculation

Meet convergence criteriaMeet convergence criteria

Backward pass calculationBackward pass calculation

                  Update                   Update ( )k xQ

EndEnd

InitializationInitialization

Mater ProblemMater Problem

Subproblems

Feasibility Check

Subproblems

Feasibility Check

SDDPSDDP

NoNo

NoNo

YesYes

YesYes

( )=0k xQ



103 

 

4.5 Case Studies 

To verify the performance of the proposed algorithm in this chapter, case studies are 

carried out on two test systems, which are similar as those applied in Chapter 3, 

namely revised IEEE 24-bus test system and revised IEEE RTS-96. 

Since N-k reliability criteria are the most important and difficult factors in the TEP 

problem, expansion plans with and without considering N-k reliability criteria are 

compared. Without losing generality, only N-1 and N-2 reliability criteria are 

considered in the following case studies. N-k ( 3k  ) reliability criteria can also be 

integrated into the proposed algorithm, if required. It needs to check the feasibility of 

the solution in the stage of subproblem feasibility check, by checking the N-k ( 3k  ) 

reliability criteria, together with N-1 and N-2 criteria. The requirements for N-k 

reliability criteria are listed as follows: 1) loss-of-load should not happen under normal 

state and N-1 contingency; 2) the loss-of-load percentage should be no larger than 1% 

under N-2 contingencies.  

To illustrate the impact of considering uncertainties in TEP, expansion plans with and 

without considering uncertainties are also compared. In other words, the difference 

between stochastic planning and deterministic planning is analysed.  

As for the utilisation level of wind, it is assumed that the utilisation level should be no 

less than 80% of the available wind generation under normal state. As for parameters 
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in the SDDP approach, they can be summarised as follows: 1) the size of samples for 

backward pass is 200; 2) 50 samples are selected from the obtained 200 samples during 

the forward pass; 3) normal distributions are applied when generating random samples 

for loads and wind generation, with the standard deviation to be 20% of the expected 

value. For example, the probability distribution function for wind generation is 

 ,0.2w wN P P , where Pw is the expected wind generation.  

The sets of candidate lines for these two test systems are selected according to the 

method proposed in Chapter 3. All case studies were coded with the YALMIP[115], 

which is a toolbox in Matlab. The commercial solver, CPLEX 12.1.4, was taken as the 

solver for MILP problem. All programs were run on an Intel Core-i5 2.5-GHz personal 

computer with 4G memory. 

4.5.1 Revised IEEE 24-Bus Test System 

The revised IEEE 24-bus test system is the same as that applied in Section 3.5.1, 

where details about this test system can be found.  

Firstly, N-k reliability criteria are not considered in this test system. New lines need to 

be built in each year under two approaches, namely SDDP approach and deterministic 

approach, are shown in Table 4-1. It can be seen that these two approaches get the 

same expansion plan, with three new lines to be built over the planning horizon. In 

average, one line needs to be built in every two years.   
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The deterministic approach refers to the scenario that load demand and wind generation 

only have one realisation, which is the expectation of load demand and wind generation. 

It can be seen that these two approaches get the same expansion plan, with three new 

lines to be built over the planning horizon.  

Table 4-1 EXPANSION PLAN FOR IEEE 24-BUS SYSTEM WITHOUT RELIABILITY CRITERIA 

Years 
New lines by 

SDDP 

New lines by deterministic 

approach 

1 N/A N/A 

2 N/A N/A 

3 N/A N/A 

4 (16,17),(14,15) (16,17),(14,15) 

5 (4,8) (4,8) 

6 N/A N/A 

Total lines 3 3 

Secondly, N-k reliability criteria are considered in this test system. From Table 4-2, it 

can be seen that five new lines are selected to be built in both two approaches. 

Compared with the expansion plan without N-k reliability criteria, two more lines are 

built with the consideration of N-k reliability criteria, which illustrates the necessity of 

considering N-k reliability criteria in TEP problem. Although uncertainties of load 

demand and wind generation have no influence on expansion plans of two approaches 

in this test system, the impact of uncertainties is revealed by the next test system.  
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Table 4-2 EXPANSION PLAN FOR IEEE 24-BUS SYSTEM WITH RELIABILITY CRITERIA 

Years New lines by SDDP 
New lines by deterministic 

approach 

1 (14,15), (1,5), (4,8), (6,9) (14,15), (1,5), (4,8), (6,9) 

2 N/A N/A 

3 N/A N/A 

4 N/A N/A 

5 (16,17) (16,17) 

6 N/A N/A 

Total lines 5 5 

4.5.2 Revised IEEE RTS-96 Test System 

The revised IEEE RTS-96 test system is the same as that applied in Section 3.5.2. So 

details about this test system are not introduced here.  

Firstly, N-k reliability criteria are not considered in this test system. Expansion plans 

under SDDP approach and deterministic approach are shown in Table 4-3. It can be 

seen that, four lines are selected to be built in the deterministic approach, while nine 

lines are built in the SDDP approach. So uncertainties of load demands and wind 

generation do make a difference to the expansion plan. The four lines obtained in the 

deterministic approach are also covered by the SDDP approach. However, the sequence 

to build those four lines in the deterministic approach is different from that in the SDDP 

approach. For instance, in the deterministic approach, the line (23,41) is built in the 

fourth year, while that line is built in the third year in the SDDP approach.  
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Table 4-3 EXPANSION PLAN FOR IEEE RTS-96 WITHOUT RELIABILITY CRITERIA 

Years New lines by SDDP 
New lines by deterministic 

approach 

1 N/A N/A 

2 N/A N/A 

3 (23,41) N/A 

4 (13,38), (7,26) (23,41) 

5 (14,15), (62,63), (52,56) (16,17) 

6 (16,17), (28,32), (9,27) (14,15), (13,38) 

Total lines 9 4 

Two expansion plans are obtained from SDDP approach and deterministic approach, 

respectively. The question is which plan can have a better performance under the real 

operation with uncertainties of load demand and wind generation. For example, 1000 

samples are generated by the Monte-Carlo simulation technique, according to the 

probability distribution functions of uncertain parameters (load demand and wind 

generation), then the expected operation cost (the objective of the second stage 

problem, which is the latter part of (4-1)) can be calculated. The expected operation 

cost under two plans is shown in Table 4-4. From the table, it can be seen that 

investment cost for SDDP approach is about 1.203 (M$) larger than that for 

deterministic approach. However, SDDP approach has a lower operation cost, which is 

about 7.65 (M$) less than that for deterministic approach. As a consequence, the overall 

cost for SDDP approach is about 6.4467(M$) (or 2.72% in percentage) smaller than 

that for deterministic approach. The expansion plan obtained by SDDP approach has a 
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better performance than that obtained by deterministic approach. So it is worthwhile to 

consider uncertainties during the process of TEP.  

Table 4-4 TOTAL COST UNDER TWO PLANS WITHOUT RELIABILITY CRITERIA 

Approaches 
Operation 

Cost (M$) 

Investment 

Cost(M$) 

Total 

Cost(M$) 

SDDP 236.3 1.8 238.1 

Deterministic 243.95 0.6972 244.65 

Secondly, N-k reliability criteria are considered in this test system. Expansion plans 

under SDDP approach and deterministic approach are shown in Table 4-5. It can be 

seen that the number of new lines to be built under two expansion plans is the same, 

with the size of 23 in total. Compared with expansion plans without N-k reliability 

criteria, the required number of lines to be built with N-k reliability criteria is greatly 

increased from 9 to 23 (SDDP approach), and 4 to 23 (deterministic approach), 

respectively. So N-k reliability criteria greatly affect the expansion plan. 

Although the total number is the same, the detail expansion plans are not the same. 

There are fifteen same lines in two expansion plans, which are shown in the bold font. 

However, the consequence to build those fifteen lines is not the same. For instance, in 

the expansion plan under SDDP approach, the line (10,27) is planned to be built in the 

second year, while in the expansion plan under deterministic approach, that line is to 

be built in the fifth year. 
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Also, to compare the performance of two plans under the real operation with 

uncertainties, Monte-Carlo simulation is utilised to generate 1000 samples to calculate 

the expected operation cost. Results are shown in Table 4-6. Although the expansion 

plan obtained by SDDP approach has a larger investment cost than that for 

deterministic approach (increased by 0.473 (M$)), the operation cost under SDDP 

approach is about 4.43(M$) smaller than that under deterministic approach. In total, the 

cost under SDDP approach is about 3.957 (M$) (or 1.53% in percentage) less than that 

under deterministic approach. Again, SDDP approach can obtain a better expansion 

plan that under deterministic approach. 

Compared with the total cost without N-k reliability criteria (in Table 4-4), the total 

cost with N-k reliability criteria (in Table 4-6) is increased by 7.65% (under SDDP 

approach) and 6.34% (under deterministic approach), respectively. So when 

considering N-k reliability criteria in TEP, not only more lines need to be built, but 

the overall cost is increased.  
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Table 4-5 EXPANSION PLAN FOR IEEE RTS-96 WITH RELIABILITY CRITERIA 

Years New lines by SDDP New lines by deterministic approach 

1 

(14,15), (13,38), (62,63), (4,8), (5,8), 

(51,53), (28,32), (52,56),(6,27), 

(30,33), (54,57) 

(54,58), (14,15), (13,38), (62,63), (4,8), 

(5,8), (51,53), (6,29), (28,32), (52,56) 

2 (6,29), (10,27), (6,9), (6,10) (30,33) 

3 (7,26) N/A 

4 (23,41) (23,41) 

5 (3,29), (9,27) (3,7), (11,48), (6,27),(9,27), (10,27) 

6 (16,17), (7,27), (7,8), (6,7) 
(7,27), (38,48), (35,48), (6,33), (6,34), 

(7,32) 

Total lines 23 23 

Table 4-6 TOTAL COSTS UNDER TWO PLANS WITH RELIABILITY CRITERIA 

Approaches 
Operation 

Costs (M$) 

Investment 

Costs(M$) 

Total 

Costs(M$) 

SDDP 245 11.218 256.22 

Deterministic 249.43 10.745 260.18 

4.5.3 Convergence Analysis and Computation Time 

The performance of convergence is a very important aspect of an algorithm. In this 

section, the convergence analysis is carried out, and results are shown in Table 4-7. 

The required number of iteration and computation time with and without N-k reliability 

criteria are presented in this table. It is obvious that N-k reliability criteria greatly 

increase the difficulty of TEP. In IEEE 24-bus test system, the required computation 

time without N-k reliability criteria is 43.1 seconds, while it is 523.2 seconds for that 

with N-k reliability criteria. In IEEE RTS-96 test system, the required computation 

time with and without N-k reliability criteria is 105.8 seconds and 6053.5 seconds, 

respectively. In two test systems, the required computation time without N-k 



111 

 

reliability criteria is only a twelfth and a fifty-seventh of that with N-k reliability 

criteria, respectively. The number of iteration required in two test systems is smaller 

than 30, which is acceptable for practical application.  

Table 4-7 COMPUTATION PERFORMANCE 

Test system 
Reliability 

criteria 

Number of 

 Iteration 

Computation 

time (s) 

IEEE 24-bus 
× 5 43.1 

√ 13 523.2 

IEEE RTS-96 
× 17 105.8 

√ 23 6053.5 

4.6 Summary 

The problem of TEP with uncertainties of load demand and wind generation is 

investigated in this chapter. A two-stage stochastic formulation of TEP is presented, 

with the objective to minimise investment cost and the expected operation cost under 

different realisations of uncertain parameters. To solve the established model, BD 

approach is applied to decompose the original complicated problem into a MP 

problem and subproblems. SDDP is applied to get the expansion plan under 

uncertainties. The method to apply SDDP to a two-stage stochastic problem is 

presented, as well as the overall procedure. Moreover, the application of SDDP for 

two-stage stochastic TEP problem is explained. To verify the performance of the 

proposed algorithm, two test systems, IEEE 24-bus test system and IEEE RTS-96, are 

utilised. Results with and without uncertainties, with and without N-k reliability 

criteria are all compared. Monte-Carlo simulation is applied to get the expected 
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operation cost of a given expansion plan. Results show that the expansion plan 

obtained by SDDP approach has a better performance than that obtained by 

deterministic approach. Results also show that the proposed algorithm can converge 

within an acceptable number of iterations.  

According to the results from the case studies of IEEE 24-bus system and IEEE 

RTS-96, it can be seen that the uncertainties of load demand and wind generation do 

affect the optimal expansion plan. So in the future TEP, the impact of uncertainties 

should not be neglected. The approach proposed in this chapter can be applied in the 

practical TEP, considering the acceptable computation time and convergence 

performance.  
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CHAPTER 5  CHANCE- CONSTRAINED 

TWO-STAGE PROGRAM FOR UNIT 

COMMITMENT WITH RENEWABLE ENERGY 

SOURCES 

5.1 Introduction 

The UC problem is to get an optimal schedule and the production level of generation 

units over a specified horizon of time. It needs to satisfy various constraints, such as 

physical constraints for generators, system-wide constraints and reliability constraints. 

As the development of wind generation, it has been bringing great challenges to the 

system operation. On one hand, wind generation is environment-friendly and 

sustainable, which has been considered as the priority alternative for traditional 

energy source. On another hand, the intermittence nature of wind generation also 

increases the difficulty to determine the optimal schedule for each unit. The 

fluctuation of wind generation needs to be compensated by sufficient amount of 

spinning reserve. However, to get enough spinning reserve, the scheme of demand 

response has been widely investigated to reduce reliance on conventional generators 

to provide spinning reserve [122]. If the spinning reserve cannot support the variation 

of wind generation, then it might need to shed load or curtail wind generation to ensure 

the secure operation of the system [123]. However, for consideration of the long-term 
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development, the penetration level of wind generation should be increased to relieve 

energy crisis and carbon emission. Hence, it has been becoming a critical problem to 

maximise the utilisation of wind generation, while keeping the reliability of the system.  

The most common objective for a stochastic UC problem is to minimise the overall 

operation cost [85, 124, 125]. To ensure the utilisation level of wind generation, 

constraints to restrict the minimum utilisation level of wind generation are included 

into the model. The policy to absorb wind generation might vary in different countries. 

For example, in some countries like Germany[126], wind generation is given the 

priority to be utilised. To achieve this task, it requires advanced schedule techniques 

and sufficient spinning reserve capacity to accommodate the fluctuation of wind 

generation. In some extreme scenarios of wind generation and load demand, it is 

possible that the scheduled reserve amount from thermal and other generation 

technologies cannot cover the power shortage. It might not be economical to schedule 

excessive reserve only to deal with some extreme scenarios with very low probability. 

It needs cost to request reserve service from providers, no matter thermal generation or 

demand response scheme. So it might be more reasonable to permit loss-of-load or 

wind spillage in some scenarios but with very small probability, which can be realised 

by the application of CCP.  

In this chapter, the chance-constrained two-stage stochastic program for UC problem is 

proposed. Three chance constraints are established, namely LOLP, LOWP and TLOP. 
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Here, LOWP represents the probability that wind power utilisation level is less than a 

specified level. A new approach to convert chance constraints into equivalent 

deterministic constraints is proposed through a sequence of approximation and 

verification.  

This chapter is organised as follows. Firstly, it describes uncertainties of loads and wind 

power, presents the background of chance-constrained optimisation, formulates the 

chance-constrained two-stage stochastic UC problem. Secondly, the method to convert 

chance constraints into equivalent deterministic constraints is presented. Thirdly, it 

presents the methodology to solve the proposed problem. Fourthly, numerical results 

are presented and analysed. Finally, it presents the conclusion.  

5.2 Chance-Constrained Two-Stage Stochastic Unit 

Commitment Formulation 

5.2.1 Nomenclature 

Sets and indices 

b  Index of bus 

B  Set of all buses 

i  Index of thermal units 

j  Index of wind farms 

k  Index of loads 
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t  Index of time period 

NG  Number of thermal units 

NL  Number of loads 

NT  Number of time periods 

NW  Number of wind farms 

NE  Number of scenarios to calculate the expected second-stage costs 

Nv  Number of scenarios to verify chance constraints 

Nop  Number of iterations to optimise the z values 

b   Set of wind farms connected to bus b 

b   Set of thermal units connected to bus b 

b   Set of loads connected to bus b 

R   Correlation matrix of random variables 

wwρ  Correlation matrix of wind power at different buses 

lwρ   Correlation matrix of loads and wind power at different buses 

llρ   Correlation matrix of loads at different buses 

L   Set of all transmission lines linking bus pairs 

f

ic / l

ic  Fixed/linear cost for thermal unit i ($/MW) 

up

ic / dw

ic  Up/down spinning reserve costs unit i ($/MW) 

lsdc   Penalty costs of load shedding ($/MW) 

wspc   Penalty costs of wind spillage ($/MW) 

iG ,
iH  Minimum on/off time for thermal unit i($) 
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,

b

m nk  Line flow distribution factor for transmission line linking bus m and bus n due 

to the net injection at bus b 

0

,k tL   Forecast demand of load k, at time t (MW) 

g

iq , g

iq   Minimum/maximum generation of thermal units i (MW) 

iRU ,
iRD  Ramp-up/ramp-down rate limit for thermal unit i (MW/h) 

up

ir , dw

ir    Maximum up/down spinning reserve from thermal unit i (MW) 

up

tr , dw

tr    Maximum up/down spinning reserve from all thermal units at time t(MW) 

up

tr , dw

tr    Minimum up/down spinning reserve from all units at time t(MW) 

,m np   Power limits on transmission line which links bus m and bus n(MW) 

0

,j tW   Forecast power of wind farm j at time t(MW) 

LOLP  Probability limit for loss of load  

LOWP   Probability limit for wind utilisation not meeting the specified level 

TLOP  Probability limit for transmission line overloading 

i   Start up cost for thermal unit i($) 

w   Specified wind utilisation level 

   Tolerance of chance constraints 

   Tolerance of transmission line overloading ratio 

,

l

k t   Standard deviation of load k at time t(MW) 

,

w

j t   Standard deviation of wind farm j at time t(MW) 

1  
 100(1  )th percentile for the standard normal distribution 



118 

 

Variables 

,i to   Binary variable to indicate if unit i is on at time t 

,i tu   Binary variable to indicate if thermal unit i is started up at time t 

,

up

i tr ,
,

dw

i tr  
Up/down spinning reserve provided by thermal unit i at time t (MW) 

,0

,

t

m np  Day-ahead power in transmission line connected bus m and bus n at time t 

(MW) 

,

g

i tq   Power generation of thermal unit i, at time t (MW) 

,0

,

w

j tq   Day-ahead power from wind farm j at time t (MW) 

dz   Vector of z value in the dth  iteration 

l

d,t   LOLP in the dth iteration at time t 

,

w

d t   LOWP in the dth iteration at time t 

,

,

m n

d t  TLOP of line connecting bus m and bus n in the dth iteration at time t 

( )g

iC   Cost function for thermal units 

, ( , )r

i tC    Cost function for providing reserve service 

( )lsd

tC   Cost function for load shedding 

( )wsp

tC   Cost function for wind spillage 

( , )TN    Truncated normal distribution function 

( , )N    Normal distribution function 

Pr{}  Probability measure 

[ ]   Expectation of random variable 
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Random Variables 

, ( )k tl   Demand of load k, at time t (MW) 

, ( )lsd

k tl   Load shedding of load k at time t(MW) 

, ( )t

m np   Line power connecting bus m and n at time t (MW) 

, ( )w

j tq   Power of wind farm j, at time t(MW) 

,

, ( )w sp

j tq   Wind spillage of wind farm j at time t (MW) 

,

, ( )w real

j tq  Power utilisation of wind farm j at time t (MW) 

,

, ( )up real

i tr  Up reserve provided by thermal unit i at time t (MW) 

,

, ( )dw real

i tr  Down reserve provided by thermal unit i at time t (MW) 

5.2.2 Uncertainties of Loads and Wind Power 

Various probability distribution functions (PDF) have been studied to represent the 

forecast of load demand, such as normal distribution function[83, 104], hyperbolic 

distribution function[127] and truncated normal distribution function[106, 128]. In this 

chapter, the truncated normal distribution is applied to represent the forecast of load 

demand, which is shown by (5-1). Compared with the other two distributions, the 

truncated normal distribution is more reasonable considering the fact that the forecast 

should be within a specified level [129]. The application of truncated normal 

distribution for the forecast of load demand and wind power is verified in[129], and it 

showed that truncated normal distribution can represent the forecast of load and wind 

power properly.  

0 2

, , ,( ) ~ ( , ) ,l

k t k t k tl TN L k t         (5-1) 
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Similarly, the forecast of wind power can also be represented by various PDFs [130, 

131]. In this chapter, the uncertainty of wind power is also represented by the 

truncated normal distribution, represented by (5-2). 

0 2

, , ,( ) ~ ( , ) ,w w

j t j t j tq TN W j t        (5-2) 

Monte Carlo simulation is utilised to create multiple realisations of uncertain 

parameters, based on given PDFs. The probability of each realisation is equal with 

each other, which is one divided by the total number of realisations. For example, if 

200 realisations are generated according to the PDF, then the probability for each 

realisation is set to be 0.005. 

5.2.3 Chance-Constrained Two-Stage Stochastic Unit Commitment 

Formulation 

In this section, a chance-constrained two-stage stochastic mathematical model for the 

UC problem is presented, considering uncertainties of load demand and wind power. 

The whole problem can be divided into two stages. In the first stage, it determines the 

optimal day-ahead schedule for each unit, including 1) the status and power output of 

each generation unit, 2) the up/down spinning reserve capacity provided by each 

generation unit, 3) the wind power to be utilised. The objective of the first-stage 

problem is to minimise the total energy dispatch cost, which includes fuel cost for 

generation, startup cost and up/down spinning reserve cost. The second stage problem 

is to dispatch the reserve capacity and to reschedule the wind power, after knowing 



121 

 

the real realisation of load demand and wind power. The objective of the second stage 

problem is to minimise the penalty of load shedding and wind spillage. The penalty of 

load shedding is widely considered in literatures related to the UC problem. In this 

chapter, the penalty of wind spillage is also included into the objective, to emphasise 

the utilisation of wind power or to avoid excessive wind spillage. The formulation of 

first stage problem and second stage problem is presented as follows, which can refer 

to [104, 105]. 

5.2.3.1 First Stage Problem 

 , , , , ,

1 1

min ( ) ( , )
NG NT

g g r up dw

i i t i i t i t i t i t

i t

C q u C r r
 

     (5-3) 

s.t.     
,0 0

, , ,

1 1 1

NG NW NL
g w

i t j t k t

i j k

q q L t
  

          (5-4) 

, , , ,g g g

i i t i t i i tq o q q o i t         (5-5) 

, 1 , , 0 1 ( 1) , ,i t i t i k io o o k t G i t             (5-6) 

, 1 , , 1 1 ( 1) , ,i t i t i k io o o k t H i t              (5-7) 

, 1 , , 0 ,i t i t i to o u i t             (5-8) 

, , 1 , 1 , , 1 ,(2 ) (1+ ) ,g g g

i t i t i t i t i i t i t iq q o o q o o RU i t             (5-9) 

, 1 , , 1 , , 1 ,(2 ) (1- ) ,g g g

i t i t i t i t i i t i t iq q o o q o o RD i t             (5-10) 

, , , ,g up g

i t i t i i tq r q o i t           (5-11) 

, , , ,g dw g

i t i t i i tq r q o i t           (5-12) 

, , ,up up

i t i i tr r o i t           (5-13) 
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, , ,dw dw

i t i i tr r o i t           (5-14) 

,

1

,
NG

up up up

t i t t

i

r r r i t


           (5-15) 

,

1

,
NG

dw dw dw

t i t t

i

r r r i t


             (5-16) 

, , 1 , , 1 , , 1 ,(2 ) (1+ ) ,g g up g

i t i t i t i t i t i i t i t iq q r o o q o o RU i t             (5-17) 

, 1 , , , 1 , , 1 ,(2 ) (1 ) ,g g dw g

i t i t i t i t i t i i t i t iq q r o o q o o RD i t              (5-18) 

,0 0

, , ,w

j t j tq W j t            (5-19) 

,0 ,0 0

, , , , ,( ) ( , ) ,
b b b

t b w g

m n m n j t i t k t L

b B j i k

p k q q L m n t
   

            (5-20) 

,0

, , , ( , ) ,t

m n m n m n Lp p p m n t            (5-21) 

, , , ,

1 1 1 1

Pr{ ( ) ( )} 1
NL NG NG NW

g up w

k t i t i t j t LOLP

k i i j

l q r q t  
   

             (5-22) 

, , , ,

1 1 1 1

Pr{ ( ) ( ) } 1
NL NW NG NG

w g dw

k t w j t i t i t LOWP

k j i i

l q q r t   
   

             (5-23) 

, ,Pr{ ( ) } 1- ( , ) ,t

m n m n TLOP Lp p m n t            (5-24) 

, , , , ,, , 0, , {0,1} ,up dw w

i t i t j t i t i tr r q u o i t          (5-25) 

Equation (5-3) represents the first stage objective, which includes fuel cost for 

generation, startup cost and up/down spinning reserve. The cost function for the 

thermal generator is simplified as a linear function: , , ,( )g g f l g

i i t i i t i i tC q c o c q    ;

, , , , ,( )r up dw up up dw dw

i t i t i t i i t i i tC r r c r c r     . 

The meanings of constraints (5-4)-(5-25) are introduced as follows. Constraint (5-4) 

represents the active power balance, which means the load demand should be equal to 
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the power generation from thermal units and wind power. Constraint (5-5) represents 

the power output of each generator must be within the maximum capacity. Constraint 

(5-6) ensures that the minimum on time of the thermal unit. For example, if 
, 1 0i to  

and 
, 1i to  , it represents the unit is turned on at time period t, then 

,i ko should be 1 in 

the following Gi time periods. So the minimum on time limit can be satisfied by (5-6). 

Also, the thermal unit needs to keep the off status for a minimum time period once it is 

shut down. Constraint (5-7) can fulfil this limitation, which is similar as (5-6). 

Constraint (5-8) indicates the time period, in which the unit is started up. Constraints 

(5-9) and (5-10) represent ramp up/down limits of thermal units. Constraints (5-11) and 

(5-12) ensure the power output of the thermal unit is still within its feasible range after 

dispatching up/down spinning reserve. Constraints (5-13) and (5-14) restrict the 

maximum amount of up/down spinning reserve that each thermal unit can provide. To 

ensure the reliability of the system, the amount of down/up spinning reserve should be 

no less than the minimum level, which is defined by constraint (5-15). Also, the 

available amount of up/down spinning reserve in a system is limited and should be less 

than a certain maximum level, which is defined by constraint (5-16). Constraints (5-17) 

and (5-18) ensure the thermal unit can dispatch the scheduled up/down spinning reserve, 

considering the status of the unit, ramping up/down limit and minimum/maximum 

power output. Constraint (5-19) restricts that in the day-ahead schedule, the committed 

wind power should be less than or equal to its forecast power. Constraint (5-20) uses the 

line flow distribution factor to calculate the power flow on each transmission line. 

Constraint (5-21) restricts that in day-ahead schedule the power flow on each line 

should be less than or equal to its maximum capacity. Three chance constraints for 
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LOLP, LOWP and TLOP are represented by constraints (5-22), (5-23) and (5-24) 

respectively. How to convert chance constraints into deterministic constraints are 

explained in the next section. The rest of ancillary constraints are listed out in (5-25). 

5.2.3.2 Second Stage Problem 

   ,

, ,

1 1 1

min ( ) ( )
NT NL NW

lsd lsd wsp w sp

t k t t j t

t k j

C l C q 
  

 
 

 
       (5-26) 

, , ,

, , , , , ,

1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ,
NG NW NG NG NL

g w real up real dw real lsd

i t j t i t i t k t k t

i j i i k

q q r r l l t     
    

            (5-27) 

, ,

, , ,( ) ( ) ( ) ,w sp w w real

j t j t j tq q q t            (5-28) 
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(
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)

)
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b

t b g b w

m n m n i t m n j t

b B i b B j

b b

m n m n
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b

m n k

w sp

j t
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i t i t
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t
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t Lk

b

p k q q

r r

k q

k k

k l m n tl














   

   

 

    

 

    

   

   

 

  (5-29) 

, ,( )t

m n m np p     ( , ) ,Lm n t       (5-30) 

,

, ,0 ( ) , ,up real up

i t i tr r i t            (5-31) 

,

, ,0 ( ) , ,dw real dw

i t i tr r i t           (5-32) 

,

, ,( ) 0, ( ) 0 , , ,lsd w sp

k t j tl q k j t             (5-33) 

The second stage problem is defined under each realisation of uncertain parameters, 

including the load demand and wind power. The objective of the second stage 

problem, shown by (5-26), is to minimise the penalty of load shedding and wind 

spillage, by means of dispatching up/down spinning reserve and rescheduling wind 

power. The day-ahead schedule, referring to the three first stage decision variables ,

g

i tq ,

,

up

i tr and ,

dw

i tr , is included into the second stage problem. For the sake of simplicity, the 
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penalty of load shedding and wind spillage is defined as a linear function: 

, ,( ( )) ( )lsd lsd lsd

t k t lsd k tC l c l   ,
, ,

, ,( ( )) ( )wsp w sp w sp

t j t wsp j tC q c q   . 

Constraints for the second stage problem are listed by (5-27)-(5-33). Constraint (5-27) 

represents the power balance under the specified realisation. Constraint (5-28) 

represents the amount of wind power which is wasted under the realisation. Constraint 

(5-29) represents the power flow of each transmission line under the specified 

realisation. Constraint (5-30) represents the overloading of the line should be within the 

limit. 

After defining the first stage problem and second stage problem, the overall problem 

can be formulated as a two-stage stochastic problem. The objective of the overall 

problem is shown in (5-34). It has two parts: the former part is the objective of the first 

stage problem and the latter part is the expectation of the second stage problem under a 

number of realisations. Constraints for the overall problem include first stage 

constraints (5-4)-(5-25) and second stage constraints (5-27)-(5-33) under each 

realisation. It can be seen that the overall problem can be formulated as a MILP 

problem, which can be solved by state-of-the-art solvers (CPLEX, Gurobi, and so on).  

 

   

, , , , ,

1 1

,

, ,

1 1 1

min ( ) ( , )

( ) ( )

NG NT
g g r up dw

i i t i i t i t i t i t

i t

NT NL NW
lsd lsd wsp w sp

t k t t j t

t k j

C q u C r r

C l C q



 

 

  

 

  
   

   



  
   (5-34) 
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5.3 Convert Chance Constraints into Equivalent 

Deterministic Constraints 

As mentioned above, chance constraints (5-22), (5-23) and (5-24) cannot be solved 

directly. In this section, a method to convert those three chance constraints into 

equivalent deterministic ones is proposed.  

5.3.1 Loss of Load Probability 

Firstly, the method to convert the chance constraint (5-22) into an equivalent 

deterministic one is presented in this section. The reason for load shedding is that the 

load demand under one realisation exceeds the available power output from thermal 

units, wind power and up spinning reserve, as shown in Figure 5-1. So constraint (5-22) 

can be reformulated as follows: 

, , , ,

1 1 1 1

Pr{ ( ) ( ) } 1
NL NW NG NG

w g up

k t j t i t i t LOLP

k j i i

l q q r t  
   

            (5-35) 

 

Figure 5-1 Load shedding and wind spillage 
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Load demands at different buses may have some certain correlations, rather than are 

totally independent from each other. However, the correlation of load demand has 

been neglected in most literatures related to UC. Also, the wind power at different 

buses may have some correlations. Moreover, load demands and wind power might 

also correlate with each other to some degree. Here, the correlation matrix of load 

demands , ( )k tl   and wind power , ( )w

j tq  is denoted by R: 

ww wl

lw ll

 
  
 

ρ ρ
R

ρ ρ
 

wwρ  is a submatrix to represent correlations among wind generation at different buses. 

llρ  is a submatrix to represent correlations among load demands at different buses. 

lwρ and wlρ are two submatrices to represent correlations among load demands and 

wind generation. wlρ is the transposition of lwρ . The wind generation and load demands 

might be correlated in the long run (e.g. seasons). However, such correlations can be 

neglected in a short run (e.g. a day). So in this chapter, correlations among load 

demands and wind generation are set to be 0, which means wlρ and lwρ are zero matrix. 

Even if correlations among load demands and wind generation do exist in a short run, 

correlations can also be considered in the proposed method.  

To convert (5-35) into the deterministic constraint, we need to know the exact PDF of 

, ,

1 1

( ) ( )
NL NW

w

k t j t

k j

l q 
 

  . However, it has two obstacles: 1) , ( )k tl   and , ( )w

j tq  follow 
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truncated normal distributions 2) , ( )k tl   and , ( )w

j tq   have certain correlations. So it is 

very difficult to get the PDF of , ,

1 1

( ) ( )
NL NW

w

k t j t

k j

l q 
 

  , considering it combines multiple 

truncated normal distributions and the correlation matrix. To make it possible, two 

assumptions are applied to deal with these two obstacles, and a sequence of 

approximation and verification is carried out to get the optimal deterministic constraint.  

The two assumptions are explained as follows: 

(1) To deal with the first obstacle, which is caused by the truncated normal 

distribution, here we assume , ( )k tl  and , ( )w

j tq  follow the normal distribution: 

0 2

, , ,( ) ~ ( , ) ,l

k t k t k tl N L k t         (5-36) 

0 2

, , ,( ) ~ ( , ) ,w w

j t j t j tq N W j t          (5-37) 

(2) To deal with the second obstacle, which is caused by correlations among , ( )k tl   

and , ( )w

j tq  , here we assume the load demand and wind power are independent 

from each other. 

By applying above two assumptions, the PDF of , ,

1 1

( ) ( )
NL NW

w

k t j t

k j

l q 
 

   can be obtained 

easily: 

0 0 2 2

, , , ,

1 1

, ,

1 1

( ) ( ) ~ ( , )
NL NW

l w

k t j t k t

NL NW
w

k t j t j

j kk

t

j

l q N tL W  
 

       (5-38) 
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After knowing the PDF of , ,

1 1

( ) ( )
NL NW

w

k t j t

k j

l q 
 

  , the chance constraint (5-35) can be 

approximately converted into the following equivalent deterministic one: 

0 0 2 2 1/2

, , , , 1 , ,

1 1 1 1

( )
LOLP

NG NG NL NW
g up l l w

i t i t k t j t t k t j t

i i k j

q r L W z t  

   

             (5-39) 

It is worthwhile to mention that there is a parameter l

tz in the constraint (5-39), which 

is caused by the application of two assumptions. How to get the optimal l

tz becomes a 

new challenge, since l

tz  cannot be calculated directly. According to (5-39), it can find 

that the right hand side of (5-39) increases together with the increase of l

tz . That is to 

say, if l

tz  is increased, the left hand of (5-39) also needs to be increased to meet the 

inequality, which results in the increase of up spinning reserve. Based on the analysis of 

load shedding, if the up spinning reserve is increased, then the probability to happen 

load shedding should be reduced. As seen from Figure 5-1, the probability of load 

shedding, also called as LOLP, is the area covered by oblique lines in the right side of 

the figure. As the increase of up spinning reserve, the area representing LOLP is 

reduced. So the value of l

tz  has a direct impact on LOLP. The choice of l

tz is the most 

important factor to convert the chance constraint into the deterministic constraint. The 

method to get the optimal l

tz is introduced in the next section.  

Although the method to convert chance constraints into deterministic ones had been 

studied in[106], two simplifications were applied. On one hand, the wind generation 
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was not considered when converting the chance constraint for LOLP. However, as the 

development of wind generation, the penetration level of wind generation is increasing, 

and the wind generation should not be neglected in the power balance. On another hand, 

the second obstacle mentioned above was neglected. That is to say, the load demand 

and wind generation were assumed to be independent from each other.  

5.3.2 Loss of Wind Probability 

When the load demand is low but the scheduled power from thermal units is high, 

then the down spinning reserve is dispatched to reduce the power generation from 

thermal units. However, if even after the full dispatch of down spinning reserve, the 

available generation from thermal units and wind generation is still larger than the 

load demand, then the wind generation is required to be curtailed.  

Under a given realisation of wind generation, the minimum available power 

generation can be calculated as , , ,

1 1 1

( )
NW NG NG

w g dw

w j t i t i t

j i i

q q r 
  

     , which is the sum of 

power from thermal units and wind power, subtracted by down spinning reserve. w is 

the minimum utilisation level of wind generation. So under the given realisation, if the 

load demand is less than , , ,

1 1 1

( )
NW NG NG

w g dw

w j t i t i t

j i i

q q r 
  

     , then the minimum utilisation 

of wind generation cannot be fulfilled. The chance constraint for LOWP is represented 

by (5-23), which can be converted into the deterministic constraint by the similar 
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method to convert the chance constraint (5-22). By applying two assumptions 

mentioned above, the chance constraint (5-23) can be converted into the following 

equivalent deterministic constraint, shown as follows: 

0 0 2 2 1/2

, , , , , ,

1 1 1 1

( ( ) )
LOWP

NG NG NL NW
g dw w l w

i t i t k t w j t t k t w j t

i i k j

q r L W z t    
   

               (5-40) 

Also, there is a new parameter w

tz in the deterministic constraint (5-40). As the 

increase of w

tz , the right hand side of (5-40) decreases, leading to the left hand side to be 

smaller. As a result, the down spinning reserve needs to be increased to make the left 

hand side smaller. As seen from Figure 5-1, LOWP is covered by oblique lines in the 

left side of the figure. As the increase of down spinning reserve, the area of representing 

LOWP is reduced. So the value of w

tz  has a direct impact on LOWP. As for how to 

choose w

tz , the method will be discussed in the next section. 

5.3.3 Transmission Line Overloading Probability 

The chance constraint of transmission line overloading is represented by (5-24). To 

convert chance constraint (5-24) into the deterministic constraint, one more assumption 

is required. As we all know, the power flow on the transmission line might be in two 

directions: the positive direction or the negative direction. So the transmission line 

overloading might happen in two directions. However, we assume that during one 
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interval, the probability to happen overloading in both directions can be neglected. 

The assumption can be further explained by the following equations: 

, , 1Pr{ ( ) }=t

m n m np p  , , , 2Pr{ ( ) - }t

m n m np p   , 

1 2 TLOP     

For example, transmission line overloading happens in two directions in the same 

interval: 1) 1  is the probability of overloading in the positive direction; 2) 2 is the 

probability of overloading in the negative direction. The sum of 1 and 2 is larger than 

the specified limit of overloading
TLOP . That is to say, the chance constraint (5-24) for 

the TLOP cannot be satisfied under this situation. However, in the practical operation, 

the probability of happening overloading in both directions is rather small and can be 

neglected. Based on this assumption, the chance constraint (5-24) only needs to be 

satisfied in two directions, which are shown by the following two constraints: 

, ,Pr{ ( ) } 1- ( , ) ,t

m n m n TLOP Lp p m n t        (5-41) 

, ,Pr{- ( )} 1- ( , ) ,t

m n m n TLOP Lp p m n t        (5-42) 

According to the expression of , ( )t

m np  , shown by (5-29), the constraint (5-41) can be 

expressed as follows: 
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  (5-43) 

It can be seen that there are , ( )lsd

k tl  and 
,

, ( )w sp

j tq   on the left hand side of (5-43). To 

simplify the expression of (5-43), , ( )lsd

k tl  can be omitted for two reasons: 1) the 

probability of happening load shedding is quite small; 2) during the event of load 

shedding, the loss-of-load is also only a small percentage of the overall load demand. 

According to (5-31) and (5-32), the constraint (5-43) can be simplified as follows: 
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( ( )) ( ( )) ( )
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where 

,'

,

, ,

0 0

0

b

m nb

m n b b

m n m n

k
k

k k

 
 



  
, ,''

,

,

0

0 0

b b

m n m nb

m n b

m n

k k
k

k

 
 



 

min ,

,

0

1 0

b

m n

b

m n

k

k




 
 



 

In the constraint (5-44), a new parameter  is introduced. The function of  is 

explained as follows: 

(1) If , 0b

m nk  , then
min  . In this case, 

,

,, ( ) ( )w sp

jt t

w

j qq   is simplified as

min , ( )w

j tq  . min  is recommended to be equal to w , considering the fact that 
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,

,, ( ) ( )w sp

jt t

w

j qq   is larger than , ( )w

j tw q  with a very large probability 1 LOWP . 

(2) If , 0b

m nk  , then 1  . In that case, 
,

,, ( ) ( )w sp

jt t

w

j qq   is simplified as , ( )w

j tq  . 

Because of , 0b

m nk  , then  ,

,

, ,( ) ( )w sp

j

b w

m n j t tk q q   is reduced to , , ( )b w

m n j tk q  . 

Based on the above analysis, constraint (5-43) is simplified as constraint (5-44). The 

impact of different min choices is analysed in case studies. 

Similarly, equation , ,- ( )t

m n m np p  can be expressed as: 
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Also, by applying the assumptions of (5-36) and (5-37), as well as the assumption of 

independence from each other, it can get: 
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 (5-46) 

According to (5-44) and (5-46), the chance constraint (5-41) can be converted into the 

following equivalent deterministic constraint: 
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  (5-47) 

Similarly, the chance constraint (5-42) can be converted into the following constraint: 
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  (5-48) 

According to constraint (5-47), the right hand side of the constraint increases together 

with the increase of ,

t

m nz 
. As a result, the left hand side of the constraint also needs to 

be increased, which can be achieved through three options: 1) decreasing

, ,( )
b

b g

m n i t

b B i

k q
 

  , or 2) increasing up spinning reserve with negative ,

b

m nk , or 3) 

increasing down spinning reserve with positive ,

b

m nk . Based on the expression of power 

flow, shown by (5-29), all these three options can reduce the power flow in the positive 

direction, which can decrease the probability of happening , ,( )t

m n m np p  . So ,

t

m nz 
 

directly affects the probability of overloading with the power flow in the positive 

direction.  

Similarly, the probability of overloading with the power flow in the negative direction 

is directly affected by ,

t

m nz 
. According to (5-48), the right hand side of (5-48) would 
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decrease as the increase of ,

t

m nz 
. In order to meet the inequality, the left hand of (5-48) 

needs to be reduced, which can be realised by three options: 1) increasing

, ,( )
b

b g

m n i t

b B i

k q
 

  , or 2) increasing up spinning reserve with positive ,

b

m nk , or 3) 

increasing down spinning reserve with negative ,

b

m nk . 

So chance constraints (5-22), (5-23) and (5-24) are converted into four deterministic 

constraints (5-39), (5-40), (5-47) and (5-48) with new parameters l

tz , w

tz ,
,

t

m nz   and -

,

t

m nz . 

In the overall problem (5-34), three chance constrains (5-22), (5-23) and (5-24) are 

replaced by these four deterministic constraints (5-39), (5-40), (5-47) and (5-48). 

5.4 New Solving Algorithm for the Proposed Formulation  

In the last section, it has been pointed that chance constraints for LOLP, LOWP and 

TLOP are directly affected by the choice of l

tz , w

tz ,
,

t

m nz   and -

,

t

m nz . In this section, how 

to select optimal values for these parameters are presented in this section. According to 

the analysis carried out in the last section, if values of l

tz , w

tz ,
,

t

m nz   and -

,

t

m nz are increased, 

the corresponding LOLP, LOWP and TLOP are decreased. So a feasible strategy is to 

set up small values for l

tz , w

tz ,
,

t

m nz   and -

,

t

m nz  at first, and the UC problem (5-34) is 

solved with obtained deterministic constraints with the given values. When solving 

the problem (5-34), it can get the day-ahead schedule for thermal units, the capacity of 

up/down spinning reserve and wind power to be utilised. After obtaining the 

day-ahead schedule, Monte Carlo technique can be applied to get values of LOLP, 
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LOWP and TLOP. If some LOLP, LOWP and TLOP are not met, corresponding 

parameters of l

tz , w

tz ,
,

t

m nz   and -

,

t

m nz  should be increased and updated. The UC problem 

(5-34) needs to be solved again with new values of l

tz , w

tz ,
,

t

m nz   and -

,

t

m nz . To simplify 

the description, we denote l

tz , w

tz ,
,

t

m nz   and -

,

t

m nz  as a vector

, , , , ,1 , ,1 ,

1 1 , , , ,, , , , , , , , ,{ }, ,d l d l d w d w d d NT d d NT

NT NT m n m n m n m nd z z z z z z z z   z , where d is the counter 

for the iteration and 
dz  is the value of z at the dth iteration. To get the optimal z values, 

it needs to go through the following steps: 

Step 1): Create a number of NE  realisations of load demand and wind generation, 

which are applied to calculated the expectation of the second stage problem. 

Step 2): Create a number of Nv realisations, which are applied to calculate LOLP, 

LOWP and TLOP after solving the UC problem (5-34). 

Step 3): Set the lower bound zlower and upper bound zupper for z, where  

zlower={ , ,

1 , ,l lower l lower

NTz z , , ,

1 , ,w lower w lower

NTz z , 1 , , 1 , ,

, , , ,, , , , ,lower NT lower lower NT lower

m n m n m n m nz z z z    }, 

zupper={ , ,

1 , ,l upper l upper

NTz z , , ,

1 , ,w upper w upper

NTz z , 1 , , 1 , ,

, , , ,, , , , ,upper NT upper upper NT upper

m n m n m n m nz z z z    }. 

Step 4): initialise z1 

4.1): set z1=(zlower+zupper)/2; 

4.2): replace chance constraints (5-22), (5-23) and (5-24) with (5-39), (5-40), 

(5-47) and (5-48); 

4.2): solve the problem (5-34) to get values of LOLP, LOWP and TLOP, 

which are represented by
1,

l

t , 
1,

w

t , ,

1,

m n

t . 

Step 5): optimise z values 
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5.1): d=d+1;  

5.2): update zd according to 
1,td

l 
, 

1,td

w 
 and ,

1,

m n

d t 
 in the (d-1)th iteration; 

5.3): solve the problem (5-34) with constraints (5-39), (5-40), (5-47) and 

(5-48) and new values of zd ; 

5.4): calculate ,

l

d t , ,

w

d t  and
,

,

m n

d t  with the new schedule obtained in Step 5.3); 

5.5): if chance constraints (5-22), (5-23) and (5-24) are met, and d<=Nop, go to 

Step 6);  

else if there are violations of chance constraints and d>Nop, go to Step 7); 

else go to Step 5.1). 

Step 6): Successfully solve the two-stage stochastic UC problem (5-34). 

Step 7): Fail to solve the problem (5-34) and quit. 

In Step 3.1), the lower and upper bounds for z can be given based on several rounds of 

numerical tests. The strategy is quite direct, and can be summarised as two rules: 1) 

when z equals to zlower, LOLP, LOWP and TLOP should be greater than the specified 

levels; 2) when z equals to zupper, LOLP, LOWP and TLOP should be less than the 

specified levels, 

In Step 5.2), zd  are updated in each iteration, according to values of LOLP, LOWP and 

TLOP in the (d-1)th iteration. The task of Step 5) is to optimise z values to provide a 

day-ahead schedule, so that LOLP, LOWP and TLOP can be met. To achieve this task, 
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the following method to update z values are applied. Take the method to update ,

l

d tz as 

the example, the strategy is explained as follows: 

If 1, (1 )l

t LOLPd       

Then ,

1.

l lower l

t d tz z  , , ,l upper l upper

t tz z ; 

, ,

, ( ) / 2l l lower l upper

t td tz z z  ; 

Else if 1, (1 )l

t LOLPd       

Then ,

1.

l upper l

t d tz z  , , ,l lower l lower

t tz z ; 

, ,

, ( ) / 2l l lower l upper

t td tz z z  ; 

Else , 1,

l l

td d tz z  ; 

End 

The same method is applied to update ,

w

d tz ,
,

,

d t

m nz 
and

, -

,

d t

m nz . By applying the above 

strategy, the gap between the lower bound and upper bound is reduced. As the decrease 

of gap, the optimal z values can be achieved through a number of iterations. Based on 

numerical experiments, the required number of iterations to reach optimal z values is 

mostly less than 10. The lower and upper bounds can be set to be 0 and 5, respectively.  

5.5 Case Studies 

To evaluate the performance of the new algorithm for the chance-constrained 

two-stage stochastic UC problem, two test systems are applied, namely the 6-bus test 

system and the IEEE 118-bus test system with several wind farms added into the 

system. Case studies are carried out in the following aspects: 
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(1) Different levels of LOLP are simulated to reveal the relationship between LOLP 

and the required up spinning reserve. 

(2) Different levels of LOWP are simulated to reveal the relationship between LOWP 

and the required down spinning reserve. 

(3) Different correlation matrices are simulated to analyze the impact of correlations 

among the load demand and wind generation. 

(4) Different values of min are simulated to analyze the impact of min to the 

required up/down spinning reserve capacity.  

A number of 200 realisations are applied to calculate the expectation of the second 

stage cost, and a number of 1000 realisations are applied to calculate LOLP, LOWP 

and TLOP under the given day-ahead schedule. The maximum number of iterations to 

get the optimal z values is 20. To check whether chance constraints are met, the 

tolerance is set to be =0.1 . The time interval is set to be 1 hour, and there are 24 

time intervals in total, considering it is a day-ahead schedule problem.  

All case studies were coded with the YALMIP[115], which is a toolbox in Matlab. The 

commercial solver, CPLEX 12.1.4, was taken as the solver for the MILP problem. All 

programs were run on an Intel Core-i5 2.5-GHz personal computer with 4G memory. 
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5.5.1 Case A: 6-Bus System 

This test system was applied in [105], and detail data can be found in that paper. In this 

test system, there are three generators, two wind farms and three loads, which are all 

shown in Figure 5-2. From Table 5-1 to Table 5-4, the detail information about this test 

system (including physical constraints for generators, generation costs, transmission 

lines, loads and wind farms) is all listed. As for the uncertainties of loads and wind 

generation, the forecast errors are set to be 10% and 30%, respectively. In practice, the 

cost caused by loss-of-load is much larger than that caused by wind spillage. So in the 

section, we set lsd =100 and
wsp =5.3. The limits of LOLP, LOWP and TLOP are set to 

be 0.01, 0.05 and 0.01, respectively. The ratio of overloading  needs to be less than 

1.1. The required utilisation level of wind generation w is set to be 0.8, and min  is 

set to be equal with w . 

The impact of correlation is not studied in the section 5.5.1 and 5.5.2. That is to say, 

the load demand and wind generation are assumed to be independent from each other. 

In the latter section, the importance of correlation is studied in the section 5.5.3.  

 

G1 G2

G3

W1

W2

L1

L2 L3

B1 B2 B3

B4 B5 B6
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Figure 5-2 Layout of the 6-bus system 

Table 5-1 GENERATORS 

Unit 
g

iq  g

iq  iG  iH  
iRU / iRD  up

ir / dw

ir  

G1 100 300 4 2 50 60 

G2 80 200 3 3 40 40 

G3 150 350 2 3 15 70 

Table 5-2 COSTS 

Unit 
f

ic  l

ic  i  up

ic / dw

ic  

G1 50 6 100 1.2 

G2 40 5.5 300 1.1 

G3 60 4.5 0 0.9 

Table 5-3 WIND FARMS AND LOADS 

Loads Capacity(MW) Wind Farms Capacity(MW) 

L1 320 W1 50 

L2 320 W2 50 

L3 160   

Table 5-4 LINE INFORMATION 

Line Number From To Reactance(p.u.) Capacity(MW) 

1 1 2 0.17 200 
2 1 4 0.15 200 
3 2 4 0.197 200 
4 5 6 0.16 180 
5 3 6 0.14 180 
6 2 3 0.258 300 
7 4 5 0.15 200 

Results for this test system are shown in Table 5-5. It takes 6 iterations before getting 

the optimal z values. Information about LOLP, LOWP, TLOP, up spinning reserve, 

down spinning reserve, total costs and computation time is all listed out. Also, the 

change of ,

l

d tz and ,

w

d tz  for the 10th time interval over the optimisation process is 

present. 
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The 8th and 9th columns represent the ratio of scheduled up/down spinning reserve 

capacity to the forecast load at the 10th time period. Obviously, when ,10

l

dz and ,10

w

dz  

increases, the corresponding up and down spinning reserve capacity also increases, 

which leads to the decrease of LOLP and LOWP. This finding can approve the analysis 

of constraints (5-39) and (5-40).  

Table 5-5 RESULTS FOR CASE A 

Iteration 

Count 
,10

l

dz  
,10

w

dz  15

3,6z   LOLP LOWP TLOP 
Up 

(%) 

Down 

(%) 

Total 

Costs($) 

Computation 

Time(s) 

1 0 0 0 0.113 0.97 0.0825 4.62 3.47 85386 10.0 

2 0.6 0.6 2 0.005 0.008 0 8.81 8.86 86515 10.1 

3 0.3 0.3 1 0.113 0.081 0.0025 4.62 3.85 85682 10.1 

4 0.45 0.45 0.5 0.027 0.073 0.0075 6.65 5.67 85663 10.2 

5 0.375 0.525 0.25 0.008 0.052 0.017 7.68 7.28 85852 10.2 

6 0.375 0.525 0.375 0.008 0.052 0.012 7.72 7.29 85845 10.2 

The power flow on line 5 (connecting bus 3 and bus 6) is overloaded in the negative 

power direction during the 15th time interval. So the change of 
15

3,6z 
over the 

optimisation process is presented in the 4th column of Table 5-5. It can be seen that as 

the increase of
15

3,6z 
, TLOP is reduced correspondingly, which is accordant with the 

analysis of constraint (5-48). 

Table 5-6 TLOP INFORMATION FOR CASE A 

 
Without TLOP With TLOP 

G1 G2 G3 Total G1 G2 G3 Total 

3,6

bk  0.0781 0 -0.4796  0.0781 0 -0.4796  

,15

g

iq  134.8 188.6 342.8 666.2 134.8 195.9 335.5 666.2 

,15

up

ir  40.0 11.4 7.2 58.6 40.0 4.1 14.5 58.6 

,15

dw

ir  34.7 0 0 34.7 22.1 0 15.0 37.1 
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To show the effect of TLOP, scenarios with and without considering TLOP are all 

illustrated in Table 5-6. As mentioned above, there is overloading in the line 5 from bus 

6 to bus 3, which is in the negative power direction. According to results in Table 5-6, 

the total generation, up spinning reserve capacity and down spinning reserve capacity 

dispatched by three generators are the same or almost the same under two scenarios. 

However, the dispatched power and reserve capacity from each generator are not the 

same. To reduce TLOP, the following operations are applied:  

(1) Generation from G3 is reduced to cut down 
, ,( )

b

b g

m n i t

b B i

k q
 

  .To calculate the line 

flow distribution factor b

m,nk , bus 2 is taken as the slack bus. G3 is connected to 

bus 6, and 6

3,6k  has a negative value. So it can reduce the power flow on line 5 if 

the power output from G3 is decreased, while the power output from G2 is 

increased. According to generation costs in Table 5-2, generation from G2 is more 

expensive than G3. However, G2 is scheduled with more power to reduce the line 

power in line 5. 

(2) According to the analysis of constraint (5-48), the down spinning reserve with 

negative b

m,nk should be increased to reduce the power flow. So the down spinning 

reserve at G3 is increased, since 6

3,6k is negative.  

(3) As for the option to increase up spinning reserve with positive ,

b

m nk , the up 

spinning reserve from G1 can reduce the power flow on line 5. However, G1 only 

has a small very positive ,

b

m nk , which is not an effective option, compared with 
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the other two options. 

To investigate the impact of LOLP to the required up spinning reserve and the total 

cost, different levels of LOLP are simulated. The level of LOWP and TLOP keeps the 

same, 0.05 and 0.01, respectively. Results are presented in Table 5-7. The 2nd column 

shows the total cost under different levels of LOLP. The 3rd and 4th columns represent 

the average ratio of up and down spinning reserve to the corresponding load demand 

over the whole time periods. From Table 5-7, it clearly shows that as the increase of 

LOLP, the total cost and required up spinning reserve capacity is decreased. The 

variation of LOLP has little effect to the required down spinning reserve.  

Table 5-7 DIFFERENT LEVELS OF LOLP IN CASE A 

LOLP Total Costs($) Up (%) Down (%) 

0.001 86215 9.46 7.61 

0.005 85968 8.33 7.46 

0.01 85845 7.72 7.29 

0.02 85781 7.48 7.27 

0.05 85775 7.33 7.37 

Similarly, different levels of LOWP are simulated to investigate the impact of LOWP 

to the required down spinning reserve capacity. Results are shown in Table 5-8. It can 

be seen that as the increase of LOWP, the total cost and required down spinning reserve 

capacity are reduced, while the required up spinning reserve almost keeps the same 

level.  
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Table 5-8 DIFFERENT LEVELS OF LOWP IN CASE A 

LOWP Total Costs($) Up (%) Down (%) 

0.01 86121 7.72 9.13 

0.02 85956 7.67 8.29 

0.05 85845 7.72 7.29 

0.08 85755 7.70 6.94 

0.10 85716 7.76 6.74 

5.5.2 Case B: Modified IEEE 118-Bus System 

This system is revised according to the IEEE 118-bus test system, presented in [132]. 

A number of 14 wind farms are added into this test system, to replace the original 

thermal generation units. The overall penetration level of wind generation reaches 20%. 

Results of this test system are shown in Table 5-9.  

It can be seen that it takes seven iterations before reaching the optimal z values. Taking 

results in the 8th time interval as the example, information about
,8

l

dz , 
,8

w

dz , LOLP, 

LOWP, up spinning reserve amount, down spinning reserve amount, total cost and 

computation time is all listed out in that table. The same findings are obtained as that in 

the first test system. Also, there is overloading in the line (connecting bus 82 and bus 83) 

in the negative power direction (from bus 83 to bus 82) during the 19th time interval. 

Detail results about the change of 
, -

82,83

d tz and TLOP are shown in Table 5-9. 
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Table 5-9 DETAILS FOR CASE B 

Iteration 

Count 
,8

l

dz  
,8

w

dz  
,19-

82,83

dz  LOLP LOWP TLOP 
Up 

(%) 

Down 

(%) 

Total 

Costs($) 

Computation 

Time(s) 

1 0 0 0 0.117 0.092 0.11 2.38 1.78 1.0916E06 61.1 

2 3 4 6 0 0 0 10.36 8.61 1.2767E06 61.4 

3 1.5 2 3 0 0.018 0.005 6.36 5.42 1.1371E06 61.7 

4 0.75 1 1.5 0.034 0.086 0.055 3.01 2.08 1.0963E06 61.7 

5 1.125 1.5 2.25 0.002 0.041 0.025 4.93 3.27 1.1112E06 62.1 

6 0.9375 1.25 2.6250 0.012 0.069 0.018 4.25 2.17 1.1043E06 62.2 

7 0.9375 1.375 2.4375 0.012 0.051 0.012 4.24 2.52 1.1044E06 62.4 

To prove the relationship between LOLP and the required up spinning reserve amount, 

as well as the relationship between LOWP and the required down spinning reserve, 

different levels of LOLP and LOWP are simulated, just as the work done in Case A. 

The results relating to different levels of LOLP and up spinning reserve capacity are 

shown in Table 5-10. The results relating to different levels of LOWP and down 

spinning reserve capacity are shown in Table 5-11. The same finding is obtained as that 

in Case A. It can be seen that the larger LOLP and LOWP are, the less required 

up/down spinning reserve capacity would be.  

Table 5-10 DIFFERENT LEVELS OF LOLP IN CASE B 

LOLP Total Costs($) Up (%) Down (%) 

0.001 1.1083E06 5.68 2.53 

0.005 1.1057E06 4.87 2.56 

0.01 1.1044E06 4.24 2.52 

0.02 1.1041E06 4.12 2.54 

0.05 1.1028E06 3.75 2.52 
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Table 5-11 DIFFERENT LEVELS OF LOWP IN CASE B 

LOWP Total Costs($) Up (%) Down (%) 

0.01 1.1058E06 4.33 3.45 

0.02 1.1053E06 4.28 3.09 

0.05 1.1044E06 4.24 2.52 

0.08 1.1041E06 4.26 2.14 

0.10 1.1032E06 4.27 1.98 

5.5.3 Impact of Correlation 

To study of the impact of correlations, different correlation matrices R are simulated 

in this section. Here, LOLP and LOWP are set to be 0.01 and 0.05 respectively. The 

whole correlation matrix R is composed by four submatrices, namely wwρ , llρ wlρ and

lwρ . In this section, wlρ and lwρ are set to be 0, just as explained in Section 5.3.1. 

Different wwρ and llρ are simulated in this section. For example, =0.3llρ represents 

that the diagonal of 
llρ is filled with one, and the rest elements are set to be 0.3. That is 

to say, the correlations between different loads are set to be 0.3. Although the 

correlation matrices used in this section might be too ideal or simple, it can prove the 

proposed algorithm can consider the correlations of the load demand and wind 

generation.  

Simulations are carried out in both test systems. Results for these two test systems with 

different wwρ and llρ are shown in Table 5-12 and Table 5-13. In Case A, the 

correlations of the load demand and the wind generation have no obvious impact on the 

results of total cost, up and down spinning reserve capacity. However in Case B, the 

correlations do affect the day-ahead schedule. As wwρ  or llρ  increases from 0 to 0.5, 
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the total costs, up and down spinning reserve capacity also increase. As seen from the 

table, up and down spinning reserve capacity are greatly affected by the correlations.  

Table 5-12 DIFFERENT CORRELATIONS IN CASE A 

Correlation 

Level 
Total Costs($) Up (%) Down (%) 

0, 0ww ll ρ ρ  85845 7.72 7.29 

0, 0.1ww ll ρ ρ  86052 8.13 7.38 

0, 0.3ww ll ρ ρ  86531 8.68 7.98 

0, 0.5ww ll ρ ρ  86709 9.49 7.32 

0.1, 0ww ll ρ ρ  85782 7.75 7.28 

0.3, 0ww ll ρ ρ  85957 8.01 7.26 

0.5, 0ww ll ρ ρ  85916 7.95 7.31 

Table 5-13 DIFFERENT CORRELATIONS IN CASE B 
Correlation 

Level 
Total Costs($) Up (%) Down (%) 

0, 0ww ll ρ ρ  1.1044E06 4.24 2.52 

0, 0.1ww ll ρ ρ  1.1321E06 6.92 3.71 

0, 0.3ww ll ρ ρ  1.1789 E06 10.16 6.01 

0, 0.5ww ll ρ ρ  1.2023E06 12.81 8.13 

0.1, 0ww ll ρ ρ  1.1129E06 5.11 3.12 

0.3, 0ww ll ρ ρ  1.1302E06 6.81 4.23 

0.5, 0ww ll ρ ρ  1.1412E06 8.43 4.93 

5.5.4 Impact of Different min  

To analyse the importance of min to the optimal day-ahead schedule, different 

choices of min are studied in this section. Simulations are carried out in both test 

systems, and results are shown in Table 5-14 and Table 5-15. Although different min

is applied, the total costs, up spinning reserve capacity and down spinning reserve 

capacity are most unchanged. The difference is that the optimal z values are changed. 
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The reason is that the algorithm can find the best z values to adapt different min , while 

keeping the left hand side of (5-47) and (5-48) unchanged. So the choice of min  only 

has very little effect to the optimal schedule. So min can be equal to the utilisation 

level of wind generation.  

Table 5-14 DIFFERENT
min  IN CASE A 

min  Total Costs($) Up (%) Down (%) 
15

3,6z   

min 0.3   85862 7.75 7.31 0.6250 

min 0.5   85821 7.67 7.26 0.6875 

min 0.8   85845 7.72 7.29 0.375 

Table 5-15 DIFFERENT
min  IN CASE B 

min  Total Costs($) Up (%) Down (%) 
,19-

82,83

dz  

min 0.3   1.1054E06 4.31 2.55 3.0625 

min 0.5   1.1031E06 4.18 2.48 1.5156 

min 0.8   1.1044E06 4.24 2.52 2.4375 

5.5.5 Discussion of the Proposed Approach 

In this chapter, a new method to convert chance constraints into equivalent 

deterministic constraints is proposed, based on two assumptions. A sequence of 

approximation and verification is carried out to get the optimal deterministic 

formulations. According to results obtained from two test systems, the proposed 

method can achieve the optimal schedule within 10 iterations.  

Although the proposed method has been only testified under the condition that the load 

demand and wind generation obey truncated normal distributions, the proposed method 
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can be apply to other PDFs, as long as knowing the expectation and deviation of the 

corresponding PDFs.  

5.6 Summary 

The chance-constrained two-stage stochastic program for UC is studied in this chapter. 

The first stage problem is the day-ahead optimal dispatch problem, with the objective to 

minimise the total energy dispatch cost, including generation cost, startup cost and 

up/down spinning reserve cost. The second stage problem is to dispatch the reserve 

capacity and to reschedule the wind power, after knowing the real realisation of load 

demand and wind power. The objective of the second stage problem is to minimise 

the penalty of load shedding and wind spillage. 

Three chance constraints are considered, namely, LOLP, LOWP and TLOP. To solve 

the proposed chance-constrained formulation, a new method to convert chance 

constraints into equivalent deterministic constraints is proposed. Two main 

assumptions are applied during the conversion, and a sequence of approximation and 

verification is carried out to get the optimal deterministic formulation.  

The proposed method is testified on two test systems, namely a 6-bus test system and 

a modified IEEE 118-bus test system. Case studies show that 1) the level of LOLP 

affects the required up spinning reserve capacity; 2) the level of LOWP affects the 

required down spinning reserve capacity; 3) the correlations of the load demand and 
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wind generation also affect the required up/down spinning reserve capacity; 4) the 

choice of min has no great impact on the final day-ahead schedule. 
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CHAPTER 6  CONCLUSION AND FUTURE 

RESEARCH WORK 

6.1 Conclusions 

To deal with energy crisis and environmental problems, wind generation (mainly 

wind and solar generation) has been considered as the most favourite choice to 

replace traditional fossil energy. Compared with fossil energy, wind generation is 

environmentally friendly, and can reduce the greenhouse gas emissions. However, the 

intermittence of wind generation raises many great challenges to every aspect of 

power system operations, such as TEP and UC problems, which are two main 

research focuses of this thesis. For the TEP problem, researches are carried out from 

two aspects: the selection of candidate lines and TEP under uncertainties. For the UC 

problem, a chance-constrained two-stage stochastic programming for UC with wind is 

studied. Conclusions for each research point are summarised as follows. 

Firstly, the selection of candidate lines is one of the most important prerequisites for 

the TEP problem, especially when the size of the system is relatively large. The size 

and completeness of candidate lines have a direct impact on the optimal expansion 

plan. Currently, the selection of candidate lines is mainly carried out manually by 

system operation planners. There are several shortcomings of the manual selection. 

For one hand, it takes great efforts to get the set of candidate lines. For another, the 
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obtained candidate set might be suboptimal, because of the limitation of planner’s 

experience. However, the existing research about candidate lines selection is 

insufficient. The research about the selection of candidate lines is still in its 

preliminary stage and much more research work can be done. Hence the selection of 

candidate lines becomes the first research focus of this thesis. An automatic selection 

method for candidate lines is proposed in Chapter 3. There are five stages in the 

proposed method, which consists of enforcing existing corridors at the first two stages 

and exploring new corridors at the latter three stages. Each stage proposed in the 

method plays an important role in the process of selecting candidate lines. New 

corridors can be efficiently identified through the identification of candidate buses. 

The technique of LP can not only reduce the required computation time, but can also 

improve the completeness of the created candidate lines. Results of two case studies 

show that the LMP difference between two buses cannot be the only index to select 

new corridors. Some corridors with small LMP difference can also become part of the 

optimal expansion plan.  

As the case studies show, the LMP difference is neither sufficient nor necessary 

condition for the candidate lines. The selection method in Chapter 3 is proposed 

according to the practical needs of TEP, such as reducing the congestion, satisfying 

N-k reliability criteria, LMP difference.    
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Secondly, the main task of TEP is to determine the optimal plan to upgrade the 

transmission network to meet the increasing load demands and generation. As the 

development of wind generation, the penetration level of wind generation is 

increasing so quickly that uncertainties brought by wind generation play an important 

role in the TEP problem. There are three main constraints within the TEP problem: 1) 

loss-of-load should not occur under any possible scenarios under the normal state, or 

LOLP should be less than a given probability; 2) although wind generation has the 

characteristic of intermittence, the utilisation level of wind generation should be 

ensured; 3) N-k reliability check should be satisfied under any possible scenarios, or 

be satisfied with a large probability. All these constraints make the TEP problem 

complicated. To deal with this dilemma, a two-stage stochastic dual dynamic 

programming for the TEP problem is proposed, with the overall objective to minimise 

the sum of investment costs and expected operation costs, considering uncertainties of 

loads and wind generation. SDDP algorithm is applied to get the optimal expansion 

plan under uncertainties of load demands and wind generation. Through the 

implementation of BD approach, the original intractable problem can be decomposed 

into the master problem and many simple operation subproblems. Results of two case 

studies show that expansion plan obtained from SDDP approach has a better 

performance than the expansion plan obtained from the deterministic approach. As the 

case study results show, it is quite important to consider the uncertainties of load 
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demand and wind generation during the process of TEP. The method presented in 

Chapter 4 provides an approach to include the uncertainties into the TEP as well as 

considering the N-k reliability criteria. The required computation time is within a 

reasonable limit for a practical application.  

Thirdly, the UC problem is to determine the optimal schedule of generation units over 

a given operation period, while meeting relative constraints, including physical 

constraints, system-wide constraints and reliability constraints. The UC problem can 

be modelled as a MILP problem, which is NP-hard. However, the large-scale 

integration of wind increases the difficulty of the UC problem. Three constraints 

might be violated because of the intermittence of wind generation. (1) There might be 

load shedding, because insufficient ramping capability is provided to tackle the 

fluctuation brought by wind generation. (2) The utilisation level of wind generation 

might be violated under some realisations of wind generation. (3) The power flow on 

transmission lines might exceed corresponding transmission capacity under some 

realisations. To deal with this problem, the chance-constrained two-stage stochastic 

program for UC problem is proposed, including chance constraints for LOLP, LOWP 

and TLOP. An approach based on a sequence of approximation and verification is 

proposed to convert chance constraints into equivalent deterministic constraints. 

Correlation between loads at different buses and correlation between wind power 

outputs at different buses are also considered in the proposed approach. Results of two 
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case studies demonstrate the proposed method can solve the chance-constrained 

two-stage UC problem efficiently. It is reasonable to allow violations under some 

extreme scenarios but with very small probability, otherwise the UC might be too 

conservative with the costs of wind spillage or much up/down spinning reserve. The 

solving approach proposed in Chapter 5 enables the UC commitment with chance 

constraints, and the approach is also applicable if the uncertain parameters follow 

different PDFs.  

6.2 Future Research Work 

Based on the research work presented in this thesis, future studies can be continued in 

the following aspects: 

Firstly, in Chapter 3, a method to select candidate lines is proposed. Further studies 

can be carried out in several aspects. (1) The proposed method should be verified on 

larger test systems. Currently, the method was only tested on the IEEE RTS-96 with 

73 buses. However, the bus number for a practical transmission network might be 

even larger. The performance of the proposed method on the practical system needs to 

be verified. However, it is not available data for the practical system, especially the 

detail geographical information. (2) How to improve the completeness of the 

proposed method, as well as to control the size of the candidate lines, are also 

worthwhile to be studied. In the case study of the IEEE RTS-96, the completeness of 
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the proposed selection method is about 74%. How to improve the completeness of the 

selection method based on some other indices rather than the LMP difference is 

worthwhile to be studied.  

Secondly, in Chapter 4, SDDP is proposed to solve a two-stage stochastic TEP 

problem. The technique of BD is applied to solve the overall problem. How to select 

the proper M value for the Big-M approach and to ensure the convergence 

performance of the algorithm needs to be further studied. The N-k reliability criteria 

are checked under four specified realizations of uncertainties. However, it cannot 

ensure that the N-k reliability criteria can be satisfied under any realizations of 

uncertainties. So how to realize the robust TEP to meet N-k reliability criteria will be 

studied in the further research.   

Thirdly, in Chapter 5, a new method is proposed to convert chance constraints into 

equivalent deterministic constraints by a sequence of approximation and verification. 

The method needs to be further verified when the penetration level of wind generation 

becomes larger (e.g. 40% of the overall generation comes from wind generation). The 

chance-constrained UC problem can also be solved by the approach of BD. The 

comparison of the BD approach and the approach proposed in Chapter 5 can be carried 

out.  
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