Quraan, Mahran (2016). Modular multilevel converter with embedded battery cells for traction drives. University of Birmingham. Ph.D.
|
Quraan16PhD.pdf
PDF - Accepted Version Download (7MB) |
Abstract
This thesis proposes a new modular multilevel converter with embedded cell balancing for battery electric vehicles. In this topology, the battery cells are directly connected to the half-bridge choppers of the sub-modules, allowing the highest flexibility for the discharge and recharge of each individual cell. Tht: traditional battery management system is replaced by the control of the converter, which individually balances all the cells. A new balancing algorithm is presented and discussed in. the thesis, showing that the converter generates symmetric three-phase voltages with low harmonic distortion even for significantly unbalanced cells. The thesis also analyses stationary recharge of the battery cells from both three-phase and single-phase ac sources. The performance of the converter as a traction drive is assessed in terms of torque-speed characteristic and power losses for the full frequency range, including field weakening. A simplified model for estimating conduction and switching losses for the proposed modular multilevel converter is presented and the results for a typical driving cycle are compared with a traditional two-level converter. Simulation and experimental results on a kW-size prototype have confirmed the feasibility of the proposed traction modular converter in terms of effectiveness of the cell balancing control, validity of the proposed loss model, suitability of use for traction and effectiveness of recharging operations.
Type of Work: | Thesis (Doctorates > Ph.D.) | ||||||
---|---|---|---|---|---|---|---|
Award Type: | Doctorates > Ph.D. | ||||||
Supervisor(s): |
|
||||||
Licence: | |||||||
College/Faculty: | Colleges (2008 onwards) > College of Engineering & Physical Sciences | ||||||
School or Department: | School of Engineering, Department of Electronic, Electrical and Systems Engineering | ||||||
Funders: | Other | ||||||
Other Funders: | The University of Birmingham | ||||||
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering T Technology > TL Motor vehicles. Aeronautics. Astronautics |
||||||
URI: | http://etheses.bham.ac.uk/id/eprint/6653 |
Actions
Request a Correction | |
View Item |
Downloads
Downloads per month over past year