Controlling local quantum fluctuations of light using four-wave mixing in an atomic vapour

Embrey, Christopher (2016). Controlling local quantum fluctuations of light using four-wave mixing in an atomic vapour. University of Birmingham. Ph.D.

[img]
Preview
Embrey16PhD.pdf
PDF - Accepted Version

Download (5MB)

Abstract

The spatial character of the noise on a light field affects its usefulness for imaging. Multi-spatial-mode (MSM) squeezed light has noise below the quantum noise limit in multiple spatial modes, and can be used for super resolution imaging. The generation of such light has long been an experimental goal within the field of quantum optics.

This work introduces the theory behind the generation of squeezed light, and its measurement using a homodyne detector. A four-wave mixing process in a rubidium 85 vapour is used to experimentally generate squeezed light. The properties of this squeezed light are investigated, through the use of homodyne detection with a bichromatic LO.

This thesis further investigates how the squeezed quadrature changes from amplitude to phase over a range of 40 MHz. The MSM nature of a squeezed light field is directly investigated. The field is shown to contain at least 75 squeezed spatial modes in the frequency domain, each squeezed at a level of up to -2.5 dB. This thesis develops techniques to measure the spatial character of noise on a light field in the time domain. These are promising techniques for the analysis of the MSM nature of a squeezed light in the time domain.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Boyer, VincentUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Physics and Astronomy
Funders: Other
Other Funders: The University of Birmingham
Subjects: Q Science > QC Physics
URI: http://etheses.bham.ac.uk/id/eprint/6440

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year