Vibrational energy harvesting using piezoelectric ceramics and free-standing thick-film structures

Bai, Yang (2015). Vibrational energy harvesting using piezoelectric ceramics and free-standing thick-film structures. University of Birmingham. Ph.D.

[img]
Preview
Bai15PhD.pdf
PDF - Redacted Version

Download (18MB)

Abstract

This thesis presents a series of broad but systematic and consecutive investigations on the topic of piezoelectric energy harvesting. These include material fabrication and characterisation, harvester fabrication and material parameter selection, electric output and dynamic behaviour tests of energy harvesters, and the feasibility of utilising lead-free piezoelectric materials for energy harvesting. Three lead-based and one lead-free perovskite solid-solutions compositions have been researched individually and compared to each other. In the form of bulk ceramics the lead-free composition is considered capable of replacing the lead-based compositions for vibrational energy harvesting at room temperature. Typical properties of ε\(_r\)≈4700, \(P\)\(_r\)≈9 μC/cm\(^2\), \(d\)\(_3\)\(_3\)≈500 pC/N, \(k\)\(_p\)≈0.51 have been achieved for the lead-free and lead-based compositions respectively. Vibrational energy harvesting based on a novel structure of piezoelectric/silver multi-layer free-standing thick-film unimorph and bimorph cantilevers have been investigated using two of the lead-based compositions. A planar shrinkage difference of 3-6% between the silver and piezoelectric layers is suggested in order to ensure successful fabrication. When tested under harmonic vibration conditions, a comparison of unimorph individual harvesters suggests that higher piezoelectric voltage and electromechanical coupling coefficients may be preferred when selecting materials. Further optimisations involving bimorph devices with tip proof mass have demonstrated maximum harvester outputs (root mean square) of about 9 μW and 2.8 V with approximately 14% bandwidth under resonant vibrations (I 00-150 Hz, 0.5 - I.Og). In addition, the cantilevers have utilised to harvest wind energy with a modified spinning configuration, exhibiting 3.4 V average open-circuit output voltage in optimum wind conditions.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Button, Tim WUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Metallurgy and Materials
Funders: None/not applicable
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TN Mining engineering. Metallurgy
URI: http://etheses.bham.ac.uk/id/eprint/5826

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year