Synthesis of precious metal nanoparticles supported on bacterial biomass for catalytic applications in chemical transformations

Zhu, Ju (2014). Synthesis of precious metal nanoparticles supported on bacterial biomass for catalytic applications in chemical transformations. University of Birmingham. Ph.D.

[img]
Preview
Zhu14PhD.pdf
PDF - Redacted Version

Download (5MB)

Abstract

Bacteria are used to ‘grow’ and scaffold precious metal nanoparticles possessing certain catalytic activities. Focusing on Escherichia coli, this thesis aims to investigate the catalytic behaviours of E. coli-supported palladium (bio-Pd/E. coli) or bimetallic gold-palladium (bio- AuPd/E. coli) in hydrogenations and oxidations operated in laboratory-scale three-phase slurry reactors. A discussion of hydrodynamics, mass transfer, reaction mechanisms and corresponding reaction performance is systematically presented for two major industrially important reactions: soybean oil hydrogenation and benzyl alcohol oxidation. Thermogravimetric analysis indicated a suitable operating temperature of below 175\(^0\)C for the E. coli-supported catalyst. A loading of 5 wt%Pd on E. coli showed an average particle size of 4.31 nm estimated by TEM measurements and a crystallite size of 4.12 nm using Scherrer’s equation from obtained X-ray powder diffraction data. This was smaller than an active particle diameter of 12.77 nm for 5wt%Pd/Al\(_2\)O\(_3\) (determined by CO chemisorption). It is concluded that biomass-supported precious metal catalyst is an environmentally attractive alternative to conventional heterogeneous catalyst for application in industrial catalytic processes.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Wood, JosephUNSPECIFIEDUNSPECIFIED
Macaskie, Lynne EUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Chemical Engineering
Funders: None/not applicable
Subjects: T Technology > TP Chemical technology
URI: http://etheses.bham.ac.uk/id/eprint/5009

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year