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Abstract 

Bacteria are used to ‘grow’ and scaffold precious metal nanoparticles possessing certain 

catalytic activities. Focusing on Escherichia coli, this thesis aims to investigate the catalytic 

behaviours of E. coli-supported palladium (bio-Pd/E. coli) or bimetallic gold-palladium (bio-

AuPd/E. coli) in hydrogenations and oxidations operated in laboratory-scale three-phase 

slurry reactors. A discussion of hydrodynamics, mass transfer, reaction mechanisms and 

corresponding reaction performance is systematically presented for two major industrially 

important reactions: soybean oil hydrogenation and benzyl alcohol oxidation. 

The selective hydrogenation of alkyne/alkene is studied over Pd-based catalysts in a semi-

batch Baskerville autoclave reactor. Under identical operating conditions in 2-pentyne 

hydrogenation using isopropanol as a solvent (40 °C, 2 bar of hydrogen, 1000 rpm of 

stirring), 5wt%Pd/E. coli achieved 100% of 2-pentyne conversion in 20 mins and produced 

10.1±0.7 ×10-2 mol.l-1 of desired cis-2-pentene; in contrast a conventional 5wt%Pd/Al2O3 

catalyst gave 100% of 2-pentyne conversion in 40 mins and a cis-2-pentene concentration of 

6.5±0.4 ×10-2 mol.l-1. The solvent-free hydrogenation of soybean oil was assessed over bio-

Pd/E. coli with the aim to reduce the cis-trans isomerisation. The operating conditions were 

optimised and mass transfer limitations minimised using 5wt%Pd/Al2O3. A maximum of 

1.07±0.02 mol.l-1 of cis-C18:1 was obtained, with 0.52±0.02 mol.l-1 of trans-C18:1. Two 

kinetic models were established, with the experimental data fitted based on Langmuir-

Hinshelwood kinetic expressions. Optimally in the same reactor (100 °C, 5 bar of hydrogen, 

800 rpm of stirring), the use of 5wt%Pd/E. coli yielded cis-C18:1 of 1.03±0.04 mol.l-1 and 

trans-C18:1 of 0.26±0.03 mol.l-1 (i.e. ~50% less than 5wt%Pd/Al2O3) after 5 hours, indicating 

an advantage of lower cis-trans isomerisation by using bio-Pd/E. coli catalyst. 
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Bimetallic bio-AuPd catalysts were tested in the solvent-free oxidation of benzyl alcohol 

using air in a semi-batch Parr autoclave reactor. In a dead-end operating mode, a levelling-off 

of reaction rate with time was attributed to the drop of oxygen partial pressure, although a 

constant overall pressure was maintained. Reactor modifications were developed to create a 

continuous air flow. The rate of benzyl alcohol oxidation was found to be zero-order with 

respect to oxygen at an air flow rate of 200 ml.min-1 or above. Under optimised reaction 

conditions (110 °C, 5 bar of air, 200 ml.min-1 of air flow rate, 1200 rpm of stirring), the bio-

AuPd/E. coli catalyst exhibited a good compromise of thermal stability and activity in 

comparison with bio-AuPd on other strains of bacteria, and a loading of 2.5wt%Au2.5wt%Pd 

on E. coli gave better activity (TOF= 1423±20 hr-1) than other bio-AuPd/E. coli with different 

metal loadings. 

Thermogravimetric analysis indicated a suitable operating temperature of below 175 C for 

the E. coli-supported catalyst. A loading of 5 wt%Pd on E. coli showed an average particle 

size of 4.31 nm estimated by TEM measurements and a crystallite size of 4.12 nm using 

Scherrer’s equation from obtained X-ray powder diffraction data. This was smaller than an 

active particle diameter of 12.77 nm for 5wt%Pd/Al2O3 (determined by CO chemisorption). 

It is concluded that biomass-supported precious metal catalyst is an environmentally 

attractive alternative to conventional heterogeneous catalyst for application in industrial 

catalytic processes. 

 

http://en.wikipedia.org/wiki/Thermogravimetric_analysis
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1 Chapter 1 

Introduction 

1.1 Background and Motivation 

In heterogeneous catalysis, chemical reactions take place at the surface of an active 

component. The development of metal nanoparticles (NPs) as highly desirable catalysts has 

attracted significant interest and research since, compared with bulk metal, the superior 

surface-area-to-volume ratio of metal NPs confers a high reactivity [1,2]. Moreover, chemical 

intermediates that underpin a wide range of chemical products are called platform chemicals. 

Often they are synthesised as only one product within a reaction that may also generate other 

products which are not desired. Therefore, developing a catalyst possessing both high 

reactivity and selectivity towards the desired product becomes crucial in various industrial 

processes [3]. 

The partial hydrogenation of vegetable oils is an example of a catalytic process of great 

importance in industry in order to raise the melting point and oxidative stability of natural 

unsaturated substrates [4]. This process consists of complex reaction pathways, i.e. the 

saturation, positional migration and cis-trans geometrical isomerisation of carbon-carbon 

double bonds (C=C), with a particular aim for the production of cis-isomers because they 

have been associated with, e.g. in health aspects, lower incidence of diseases compared with 

trans-isomers [5,6]. The catalyst of most universal choice is still nickel on different carriers, 

giving high activity but with a lack of selectivity towards cis-isomers [4]. Another example is 

the catalytic oxidation of primary and secondary alcohols into the corresponding carbonyl 

compounds which plays a central role in organic synthesis of either finished products or 

intermediates [7,8]. There are relatively few selective oxidation reactions that are catalysed 

over heterogeneous catalysts using molecular oxygen [7], instead using stoichiometric 
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quantities of inorganic oxidants (e.g. chromate or permanganate) to achieve selectivity 

towards aldehydes in oxidation processes [9,10] or performing in homogeneous systems to 

result in high product yields [11,12]. However, the disadvantages of these processes are the 

cost and serious toxicity issues of these reagents associated with major problems of product 

separation and catalyst recycling. 

In the development of catalysts to improve existing catalytic systems, supported palladium 

NPs appear to be promising for both the partial hydrogenation of fatty oils [13,14] and the 

selective oxidation of alcohols [7,8]. The general routes for manufacture of monodisperse 

NPs are based on chemical/electrochemical reduction or thermal decomposition of palladium 

precursors, which usually require an appropriate reducing agent and a stabiliser to form the 

metal NPs that would otherwise tend to agglomerate [15,16]. Overall these synthesis methods 

involve rigorous experimental procedure, extreme conditions, or expensive equipment, or all 

three [17-19]. Alternatively, an effective and novel approach was recently established to use 

bacterial cells as carriers for precious metal nanoparticles (e.g. palladium or gold) that are 

held in a stable configuration on the bacterial cells [20]. This stability of NPs could 

potentially lead to a catalyst of certain activity and with superior selectivity towards products 

of interest [21-23]. In addition, the catalyst material can be recovered at the end of the 

reaction by filtration or centrifugation and recycled. The precious metal can be easily and 

economically recovered from the used catalyst by incineration, sonication or microwaving the 

biomass [24], following multiple reaction cycles [25]. 

An exemplar case is the sulfate-reducing bacterium Desulfovibrio desulfuricans which 

reduces soluble Pd(II) to Pd(0) [20]. Palladised D. desulfuricans cells had high catalytic 

activity in the production of hydrogen from hypophosphite [26], the dehalogenation of 

polychlorinated biphenyls [27] and the reduction of Cr(VI) to Cr(III) in batch suspension [28] 

or flow-through reactor [29] systems. Creamer et al. [30] reported that a 5 wt%Pd loading on 
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D. desulfuricans produced palladium particles of ~5 nm diameter which were found to be 

active in the hydrogenation of itaconic acid. Bennett et al. [24] investigated the selectivity of 

5wt%Pd/D. desulfuricans in the hydrogenation of 2-pentyne and found better alkene/alkane 

and cis/trans selectivities in comparison with a conventional 5wt%Pd/Al2O3 catalyst. A 

comparison of the catalytic activity of ‘bio-Pd’ on various bacteria in the reduction of Cr(IV) 

showed that the Gram-negative species D. desulfuricans and Escherichia coli gave the most 

active catalytic NPs. E. coli was selected as the candidate for further development due to ease 

of growth at scale, lack of production of catalyst poisons (e.g. H2S) and the well-developed 

molecular genetics of this organism to enable future strain development for targeted 

applications [31]. 

The work presented in this study focuses on the use of E. coli as the support to produce two 

classes of bionano-catalysts (i.e. bio-Pd/E. coli and bio-AuPd/E. coli). The resulting E. coli-

supported catalysts were tested for catalytic activities and selectivities in the hydrogenation of 

alkyne/alkene and oxidation of alcohols in three-phase slurry reactors. The specific details are 

addressed in the objectives of this work. 

 

1.2 Objectives of the Present Study 

Given the range of knowledge reported above, the following objectives were set for the 

present study: 

i) To manufacture the bio-catalysts using a bacterial strain of Escherichia coli. 

ii) To evaluate hydrogenation reactions over Pd-based catalysts in a 500 ml Baskerville 

autoclave reactor. 

a) To compare the catalytic performance of bio-Pd/E. coli with Pd/Al2O3 in 2-

pentyne hydrogenation; to study the reaction kinetics of this simple hydrogenation. 
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b) To investigate the mass transfer in soybean oil hydrogenation (solvent free) 

and optimise the reaction conditions using conventional Pd/Al2O3 catalyst; to interpret 

reaction results and establish kinetics models for experimental data. 

c) To test bio-Pd/E. coli in the soybean oil hydrogenation under optimised 

reaction conditions and compare the reactivity and selectivity with the conventional 

Pd/Al2O3 catalyst. 

iii) To test bio-AuPd catalysts in the solvent-free oxidation of alcohols in a 100 ml Parr 

autoclave reactor. 

a) To operate the selective oxidation of benzyl alcohol under solvent-free 

conditions using compressed air with the aim of establishing a green catalytic process. 

b) To modify the reactor and study the hydrodynamics of the reaction system. 

c) To study the influence of catalyst formulation on the reaction performance. 

d) To evaluate the catalytic activity of AuPd/E. coli against a range of different 

alcohols. 

iv) To characterise the bio-catalysts evaluated in this study using different techniques, 

and relate observed features to the catalytic properties described from objectives ii) ~ iii). 

 

1.3 Thesis Layout 

Given the range of objectives stated above, the structure of the present thesis is set as the 

following 8 chapters. 

Chapter 1 gives an introduction and background information about current work, along with 

objectives of this study. 



Chapter 1 Introduction 

5 

Chapter 2 presents a literature review, which introduces the application of platinum group 

metals (PGMs) in manufacturing heterogeneous catalysts and current conventional 

manufacturing methods. Biological synthesis of metal NPs using bacterial cells as the catalyst 

supports is described in detail. Two major types of catalytic reactions, i.e. hydrogenation and 

oxidation, on the catalyst surface are described. This chapter also includes a description of the 

use of an agitated slurry reactor for three-phase catalytic reactions. 

Chapter 3 is a compilation of the list of materials and instruments used in this work and 

descriptions of the catalyst manufacturing, experimental systems, operating procedures, and 

analytical methods employed. This chapter also provides detailed information about the 

characterisation techniques used and their significance. 

Chapter 4 presents investigations of Pd-based catalysts in 2-pentyne hydrogenation and 

soybean oil hydrogenation in a three-phase Baskerville autoclave reactor. 

Chapter 5 studies the catalytic activity of biomass-supported AuPd catalysts in the aerobic 

oxidation of alcohols in a three-phase Parr autoclave reactor. 

Chapter 6 discusses characterisation results of biomass-supported Pd and AuPd catalysts 

based on various techniques. 

Finally, Chapter 7 brings the results together in final conclusions, which attempt to place the 

work in context at the cutting edge and identify the fundamental questions that should be 

addressed in future work. References are added at the end of the thesis. 

Additional methodology and method validations are addressed in the appendices in Chapter 

8. It also includes a list of conference presentations, reproduction of posters gave at 

conferences, and a manuscript accepted for publication subjected to minor referee’s 

comments. The Health and Safety Risk Assessments needed as part of health and safety 

regulations are included.  



 

2 Chapter 2 

Literature Review 

2.1 Chapter Overview 

This chapter opens with an introduction about the application of platinum group metals 

(PGMs) in manufacturing heterogeneous catalysts in §2.2. Typical industrial heterogeneous 

catalysts may consist of three main components: active metal, support and secondary metal 

(co-catalyst or promoter). The active metal, being palladium (Pd) as a specific focus in this 

study (§2.2.1), is responsible for the principal chemical reaction. Conventional materials for 

catalyst supports are introduced in §2.2.2, along with manufacturing methods ranging from 

conventional synthesis to novel nanotechnology being summarised in §2.2.3. Despite the high 

catalytic activity of Pd-based catalyst, current challenges of catalyst deactivation are 

reviewed and mechanisms of deactivation are explained in §2.2.4. This section also includes 

a discussion on the role of metal promoter gold on palladium catalyst in §2.2.5. 

Thereafter a bioreductive synthesis of metal nanoparticles (NPs) using bacterial cells as the 

catalyst supports (bio-Pd or bio-AuPd NPs) is introduced in §2.3. An introduction of cellular 

structures and components of bacterial cells which are able to perform the reduction of Pd(II) 

to Pd(0) is given in §2.3.1. Subsequently, the use of bio-Pd or bio-AuPd NPs in some 

catalytic reactions are reviewed in §2.3.2 and §2.3.3 respectively. In addition, the overall 

advantages and challenges of this biological synthesis method are presented in §2.3.4. 

The application of supported Pd catalyst in both hydrogenation and oxidation and reaction 

mechanisms are presented in §2.4. An agitated slurry reactor is selected for this study and is 

described in §2.5, with particular emphasis upon mass transfer effects in this three-phase 

catalytic reaction system (gas-liquid-solid). Towards the end of the chapter, some conclusions 

and rationales for the current work are presented in §2.6. 
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2.2 PGM-Based Heterogeneous Catalyst 

Platinum group (PG) metals include ruthenium, rhodium, palladium, osmium, iridium and 

platinum. These are extracted and refined from primary ores by complex processing [32,33], 

and have high technological importance due to their excellent resistance to corrosion and 

high-temperature, stable electrical conductivity and outstanding catalytic activity [34]. These 

properties have been exploited for a variety of industrial applications such as jewellery, 

glassmaking, electrical/electronics, automotive and chemical industries [33]. For example a 

large chemical sector use of PG metals is in catalysts [35] for many catalytic processes of the 

petrochemical and chemical manufacturing industries. PG metals, although more expensive 

initially (in comparison with nickel, cobalt and iron catalysts), often display greater activity 

and product selectivity which makes it possible to carry out commercially important reactions 

at appreciably lower temperatures and pressures than those necessary with base metal 

catalysts [36]. Also PG metals could readily be recovered and recycled, making their use 

much more commercially attractive [36]. Table 2.1 shows the applications of some PGM-

based catalysts which were realised on an industrial scale since the 1940s. 

Table 2.1 Important catalytic processes commercialised after 1940s [3]. 

Year  Process Catalyst Products 

1939-1945 dehydrogenation Pt/Al2O3 toluene from methylcyclohexane 

1946-1960 oxidation (Wacker process) PdCl2-CuCl2 acetaldehyde from ethylene 

1961-1970 reforming bimetallic catalysts 

(Pt, Sn, Re, Ir) 

gasoline 

1971-1980 automobile emission control Pt-Rh-CeO2-Al2O3 

(three-way catalyst) 

removal of NOx, CO, CHx 

carbonylation (Monsanto process) organic Rh complex acetic acid from methanol 

1981-1985 hydrocarbon synthesis (Shell) Pt/SiO2 middle distillate from CO+H2 

environmental control 

(combustion process) 

Pt/Al2O3 (monoliths) deodoration 

1986-present dehydrogenation of C3, C4 alkanes 

(Star and Oleflex processes) 

Pt(Sn)-zinc 

aluminate, Pt/Al2O3 

C3, C4 olefins 
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Among the six PG metals, palladium is the most widely used, e.g. in reforming reactions in 

the petroleum refining industry, hydrogenation and dehydrogenation reactions in the 

pharmaceutical industry, and both organic and inorganic oxidation reactions [32]; herein is 

the focus in the present study. 

2.2.1 Palladium in Catalysis 

Palladium (Pd), with an atomic number of 46 on the periodic table, is a soft silver-white 

metal. It is the least dense and has the lowest melting point of the PG metals. Given the 

widespread use of palladium in many industrial catalytic processes, it is interesting to review 

the properties of palladium and to consider why Pd-based catalysts are so active and crucial 

for industrial applications. 

2.2.1.1 Properties of Palladium 

Palladium has a face-centred cubic (fcc) structure with a lattice parameter of a= 0.3890 nm at 

room temperature (298 K) [37] (Figure 2.1). Graham [38] first noted the adsorption of 

hydrogen gas by palladium in 1866 and produced an alloy of palladium with metallic 

hydrogen. Upon hydrogen adsorption the lattice undergoes an isotropic expansion while 

retaining its fcc structure [37]. At the molecular level, as a result, hydrogen fills the palladium 

metal forming a palladium hydride (PdHx, x value varies depending on the formed crystalline 

phase), which despite its name is not an ionic hydride but rather is metallic palladium that 

contains a substantial quantity of hydrogen within its crystal lattice [39]. 
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Figure 2.1 Unit cell of palladium face-centred cubic (fcc) structure. a, the lattice parameter, refers to the 

constant distance between unit cells in a crystal lattice [37]. 

 

At room temperature and pressure, palladium is known to have a remarkable adsorption 

capacity for hydrogen, being able to adsorb up to 900 times its own volume of hydrogen [40]. 

This therefore makes palladium highly suitable for use in hydrogen storage [41,42], gas 

sensing applications [43,44] and also as an efficient catalyst with industrial importance [45]. 

2.2.1.2 History of Palladium Catalyst 

The discovery of the great activity of palladium in the catalysis of chemical reactions (e.g. 

combustion of hydrogen and oxygen, production of sulphuric and nitric acids) is owed to the 

early research of the Davy, Dobereiner, Faraday, and Kuhlmann [36,46] in the early 19th 

century. After almost 40 years with no further progress in the application of catalysis in 

industry, palladium black became of research interest in a number of catalytic reductions in 

1912 and was investigated by Zelinsky for converting cyclohexane into benzene at about the 

same time [36]. During this early period, however, palladium blacks often showed a low or a 

varying activity [36]. These early forms of finely divided palladium catalyst were largely 

superseded by supported catalyst from the late 20th century, to make more effective use of the 

metal and to enable a wider range of reaction conditions to be met. The application of 

supported palladium catalyst on a range of suitable carriers (e.g. alumina, asbestos, silica gel 

and activated charcoal) then started to burgeon from the 1970’s in many key industrial 

processes [33,36]. 
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Since, in heterogeneous catalysis, a chemical reaction proceeds at the surface of active metal 

atoms, the catalytic activity of solids is therefore usually proportional to the surface area of 

the active component of the catalyst per unit weight or per unit volume [1,2]. It is apparent 

that small particles expose increased numbers of low-coordinate surface metal atoms [3], in 

other words smaller particles provide larger surface area per unit weight and thus more 

efficient activity. This has led to intense interest recently in developing Pd nanoparticles 

[15,47], due to the high surface-area-to-volume ratio, as a desirable type of catalytic material 

for use in industry. 

2.2.1.3 Nanoparticulate Palladium in Heterogeneous Catalysis 

Nanodimensional materials (in the 1~100 nm size domain) are seen as a bridge between 

atomic and bulk materials and have been shown to exhibit a variety of unique chemical, 

physical, electronic (and catalytic) properties that are different from those of bulk material 

[17,48,49]. For example, palladium is a paramagnetic metal and the bulk metal is considered 

to be on the verge of ferromagnetism [50] while nanoscale Pd-clusters are ferromagnetic [51]. 

Ferromagnetism has been demonstrated in high purity Pd nanoparticles (NPs) with radii of 

between 2 and 6 nm [52,53]. As to the impact on catalysis, Mikheenko [22] manufactured 

ferromagnetic Pd NPs (~5 nm at loading of 5 wt%Pd) via use of sulphate-reducing bacteria 

and found the catalytic activity of the resulting bio-Pd(0) NPs was comparable with that of a 

commercial catalyst (5wt%Pd/C) in the hydrogenation of itaconic acid. 

For catalytic applications, there are conflicting needs to maintain the nanoparticle format for 

high reactivity whilst stabilising the active metal NPs. The transition and noble metals 

typically have high surface free energies [3,54] and therefore a pronounced tendency for 

small particles or crystallites to reduce their surface areas by particle growth [1], which 

occurs either by coalescence (the fusing of two or more smaller particles to form a larger one) 

or by ripening (the growth of large particles by migration of material from smaller ones) [55]. 
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Accordingly, intervention is required to preserve and stabilise the nanosized particles, which 

can be achieved by dispersing active metals on high surface area supports. 

2.2.2 Conventional Catalyst Support 

The primary aim of applying a catalytically active component to a support is to spread out an 

expensive catalyst ingredient (usually only a minor percentage), such as a precious metal, in 

order to achieve a greater effective utilisation of the metal via providing a larger active 

surface area compared with a bulk metal system (e.g. a palladium black) [56], meanwhile to 

stabilise the active component against particle growth [57]. As indicated in Figure 2.2, the 

growth of small particles alone leads to a low active surface area, whereas application of the 

active component on a support can stabilise the active surface area. 

 

Figure 2.2 Top: Rapid growth of unsupported active particles. Bottom: Supported thermostable active material 

(Taken from Geus et al. [1]). 

 

It is well known that the nature of the support (e.g. inertness, surface area, pore size 

distribution) influences the metal particle size, charge and morphology, forming specific 

active sites at the metal-support boundary [58]; ultimately this would result in differences in 

catalytic properties of the resulting metal particle. Therefore, in the development of a novel 

catalyst, much research and trials are required to find the most appropriate support. 
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2.2.2.1 Properties of Support Material 

Materials suitable for the use as a catalyst support are usually solids with a high surface area 

[59]. The desirable physical and chemical characteristics to be considered in the choice of a 

support are listed in Table 2.2. 

Table 2.2 Physical and chemical properties of supports [56]. 

Physical properties Chemical properties 

i mechanical strength i inert to undesired reactions 

ii optimised bulk density ii stable under reaction and regeneration conditions 

iii high active surface area iii high specific activity/selectivity 

iv optimised catalyst porosity iv stabilise the catalyst against sintering 

v optimised metal crystal and particle size v minimise catalyst poisoning 

 

There are many types of catalyst support but the most frequently used support materials are 

alumina, silica, titania, magnesia, zeolites, silica-alumina and various forms of carbon 

(charcoal, activated carbon) [60]. Table 2.3 summarises some typical oxide and carbon 

supports and a comparison of their important properties. 

Table 2.3 Properties of typical catalyst supports [3]. 

Support Crystallographic phases Properties Applications 

Al2O3 mostly α- and γ-Al2O3 SA up to 400 m2.g-1 

thermally stable 

catalyst for three-way 

converters; steam reforming 

SiO2 amorphous SA up to 1000 m2.g-1 

thermally stable 

hydrogenation and other 

TiO2 anatase, rutile SA up to 150 m2.g-1 

limited thermal stability 

selective catalytic reduction 

MgO fcc SA up to 200 m2.g-1 steam reforming 

Zeolites faujasites, ZSM-5 Highly defined pore system 

shape selective 

bifunctional catalysts 

Silica-

alumina 

amorphous SA up to 800 m2.g-1 

medium strong acid sites 

dehydrogenation; 

bifunctional catalysts 

Carbon charcoal, activated carbon SA up to 1000 m2.g-1 

unstable in oxide environment 

hydrogenation 

α-Al2O3: polymorphic phase; γ-Al2O3: cubic lattice; fcc: face-centred cubic structure; ZSM: Zeolite Socony 

Mobil-5; SA: surface area, m2.g-1. 
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In addition, support materials can be obtained in a variety of forms [56], such as spheres, 

granules, extrudates, cylinders and powders, the selection of which depends on the nature of 

the reaction and on the type of applied reactor [3]. 

2.2.2.2 Functions of Catalyst Support 

The support material may or may not take part in the catalytic reaction. In some cases the 

support may actively interfere with or promote the catalytic process, e.g. zeolites and silica-

alumina supported bifunctional catalysts [1,3,60]. Other than playing a direct role in the 

catalysis, the support is more often considered to be more or less catalytically inert [3], 

simply maintaining a high surface area to disperse small quantities of active valuable metals. 

For example, in catalytic converters, a ceramic honeycomb acts as a high surface area support 

for the catalyst such as Pt, Rh and Pd for changing pollution gases from the engine to 

environmentally acceptable emissions [61]. The stabilisation of the active metal NPs on the 

surface is achieved via favourable metal-support interactions (MSI). The metal-support 

interactions (MSI) may influence the electronic properties of the active phase particles 

relative to the bulk metal and are responsible for the dispersion and size of the particles [3], 

eventually revealing the individual catalytic performance in the chemical reactions. 

Nohair et al. [62] used various oxide supports (SiO2, α-Al2O3, γ-Al2O3, TiO2, MgO, ZnO, 

CeO2, CeZrO2) to deposit 0.3 wt% palladium (Pd0.3) and found the mean Pd particle sizes 

ranged from 1.3~3.6 nm; meanwhile they observed the Pd0.3/SiO2 (mean particle size of 1.7 

nm) tended to be more active in sunflower oil hydrogenation than the Pd0.3 catalysts 

supported on MgO, ZnO, CeO2, and CeZrO2 (mean particle sizes of 2.4 nm, 3.5 nm, 3.6 nm, 

and 3.2 nm respectively) while slightly less active than Pd0.3 catalysts supported on the two 

aluminas (mean particle sizes of 1.6 nm using α-Al2O3, and 1.3 nm using γ-Al2O3 

respectively). Similarly, Fernandez et al. [63] prepared Pd catalysts for the hydrogenation of 
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sunflower oil using 4 different supports (α-Al2O3, γ-Al2O3, ZSM-5 and MCM-22) and 

reported a metal loading in the range 0.7~1 wt% giving a main Pd particle size of 1.9~4.5 nm. 

With similar metallic particle sizes of 4 nm, the MCM-22 supported catalyst was slightly 

more active than α-Al2O3, γ-Al2O3 and ZSM-5 supported ones. Also, they found the particle 

size distribution was broader for Pd/α-Al2O3 catalyst than that for Pd/γ-Al2O3. The Pd/γ-Al2O3 

catalyst using Pd(C5H7O2)2 as palladium precursor, with a metal loading of 0.78 wt% and a 

60% dispersion (~2.9 nm), showed a specific activity higher than the other Pd catalysts in the 

hydrogenation of sunflower oil under the same reaction conditions. It is apparent that the 

nature of the support materials played an important role, and the smaller active particles (i.e. 

higher surface area) deliver better catalytic activities. 

Moreover, the nature of the support could also affect the product selectivity. Palladium 

supported on mesoporous silica was reported to give higher reaction rates but lower 

selectivity to cis-alkene than that supported on amorphous silica in the liquid-phase 

hydrogenation of phenyl alkyl acetylenic compounds [64]. More recently Enache et al. [65] 

investigated the effect of inorganic supports for bimetallic AuPd catalysts in liquid phase 

benzyl alcohol oxidation, in which they suggested that the more acidic nature of the Al2O3 

and Fe2O3 supports led to enhanced ester formation as compared with TiO2. Additionally, the 

heterogeneous catalyst has the complexity that active sites could be associated with just the 

exposed metal sites or the metal sites adjacent to the support [66], i.e. at the periphery of the 

nanoparticles. The detailed surface chemistry of the Pd NPs can influence the selectivity 

observed in the reactions, for example the number of edge or corner atoms, and defects in the 

Pd crystal structure [67] and the relative surface concentrations of the precursors [66]. 

Some other research suggested that carbons (charcoal, activated carbon) are potential highly 

effective supports since they possess outstanding surface areas of 800~1200 m2.g-1 [3,68] due 

to a considerable number of pores, superior to most of the oxide supports (Table 2.3). 
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Palladium catalysts supported upon activated carbon have played an important part in low 

pressure liquid phase hydrogenation reactions in the pharmaceutical industry to produce 

vitamins, cortisone and dihydrostreptomycin among other products [36]. Pd/C was found to 

adsorb less hydrocarbon/coke than Pd/Al2O3 during an alkyne hydrogenation reaction [69]. A 

carbon support offers many other advantages such as stability in both acidic and basic 

environments [70,71]; moreover it can be simply burnt off when the catalyst becomes 

deactivated to easily recover the precious metals [71]. Unlike metal oxides, carbon supports 

are electronically inert but extremely conductive to provide a means for conduction of the 

electrons for the electrocatalytic reactions in fuel cells; however the detachment and 

agglomeration of active metal particles (e.g. Pt) caused by carbon corrosion remains a 

problem [72]. 

The effect of the support material on catalytic activity and selectivity of a metal can be 

significant and complex. Careful control of the dispersion of precious metal as stable active 

particles needs to be performed in order to maximise the utilisation of active metal. On the 

other hand, the broad application of supported catalysts in industrial catalysis has led to the 

development of numerous preparation methods applicable on a technical scale. 

2.2.3 Methods of Catalyst Manufacture 

A variety of techniques have been established to deposit an active species onto to a support 

material, such as ion exchange, impregnation, anchoring, grafting, deposition-precipitation 

[57] and recent applications of novel nanotechnology [15]. In the following sections, only the 

most common preparation methods and recently developed novel nanotechnology for 

supported active nanoparticles will be considered. 
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2.2.3.1 Conventional Catalyst Preparation 

There are two main steps in conventional catalyst preparation, namely depositing the 

precursor in a divided form upon the support and transforming it into the required active 

component(s) [57]. Ion exchange and impregnation are the two most frequently employed 

methods [57,73] to deposit the active component, particularly for preparing catalysts 

consisting of one or several precious metal(s) at small loading [1]. When several active 

components are required, e.g. supported bimetallic catalysts, they can be deposited 

consecutively or simultaneously [57]. 

Deposition of Active Component 

i) Ion Exchange 

Ion exchange is an operation which consists of replacing an ion in an electrostatic interaction 

with the surface of a support by another ion species [57]. The support containing ion A is 

plunged into an excess volume (much larger than the pore volume) of a solution containing 

ionic form of the active metal B. Ion B gradually penetrates into the pore space of the support 

and takes the place of ion A, which passes into the solution, until an equilibrium is established 

corresponding to a given distribution of the two ions between the solid and the solution. The 

solid is then washed, and finally separated by filtration or centrifugation. This technique is 

usually influenced by the number of available adsorption sites on the support, the 

concentration of ions, the pH and the adsorption strength [74]. This process is very effective 

with the use of zeolites, such as ZSM-5 or Y-type faujasite since they are known to exchange 

ions efficiently; however often only low loadings can be achieved. 

ii) Impregnation 

The impregnation technique is to fill the pores of the support with a solution of the catalyst 

precursor, e.g. a metal salt of sufficient concentration to achieve the desired loading [3,60]. 
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By this technique, the whole precursor is expected to be retained on the support since no 

intermediate washing step is involved [57], thus there is no risk of loss of active precursor 

through the washing step [1] and no waste water is produced. With precious metals, for 

example noble metals on activated carbon, impregnation is therefore the procedure of choice 

since it eliminates waste [3]. 

Impregnation is usually followed by drying, the rate of which needs to be carefully controlled 

depending on the desired distribution, as some redistribution of the active species can occur 

as the liquid fronts move within the pore structure and create concentration gradients [56]. 

Reasonable results can be achieved with a powdered, finely divided support that is 

continuously and intensively kneaded during evaporation of the liquid, but the distribution of 

the active component in the dried support is generally not homogeneous [1,56]. Similar to the 

ion exchange technique, high loadings can often not be achieved by pore-volume 

impregnation, as the required amount of active precursor cannot be dissolved in a liquid 

volume equal to the pore-volume of the support [1]. 

Formation of the Final Catalysts 

The catalyst activation is defined as the transformation of a solid precursor to the material 

immediately active for the desired reaction [75] which, depending on the reaction to be 

catalysed, can be found in the ionic, oxidic, sulfided, or metallic state [57]. This process is 

crucial for catalyst activity, product selectivity, catalyst life and its resistance to deactivation 

[76]. A typical procedure is the transformation of hydroxides to oxides by calcination 

followed by the reduction of metal oxides to dispersed metal particles. 

i) Calcination 

After active metal deposition, the catalysts are calcined to convert the salts and hydroxides to 

oxides. The temperature of calcination should not substantially exceed the reduction 
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temperature used to activate the catalyst [56]. Typically the higher the calcination 

temperature used in preparation, the more difficult it will be to activate the catalyst by 

reduction. The calcination step plays an important role in the case of oxides used as catalysts 

and supports, e.g. Al2O3, TiO2, silica-alumina, and many other oxides or mixed oxides [76]. 

The group of Hutchings [7,77,78] reported the effect of calcination on the stability and 

reactivity of supported AuPd catalysts. The non-calcined materials, both of AuPd/Al2O3 and 

AuPd/TiO2 catalysts, were highly unstable due to loss of metals during use. In contrast, 

catalysts that were pre-calcined at 400 °C prior to use were very stable and did not leach any 

Au or Pd into solution. The use of lower temperatures than 400 °C, even for a longer time, 

led to catalysts that leach Au and Pd on use. It was suggested that the chemical composition 

of metal particles in those catalysts was strongly influenced by the heat treatment process 

used; both of the calcined and non-calcined catalysts contained small Pd particles, however 

only the non-calcined sample exhibited any pure Au particles [78]. Furthermore, Edwards et 

al. [78] noticed the presence of a very few large (~70 nm) metal particles in the non-calcined 

sample, suggesting that either these large particles were a direct byproduct of the 

impregnation synthesis process or they formed over time even in the absence of elevated-

temperature calcination. For catalytic activity, catalysts that were calcined (400 °C) were 

significantly less active than non-calcined catalysts in the direct synthesis of H2O2. 

ii) Reduction 

In the majority of cases, the final step in the preparation of catalytically active metal is the 

reduction of its oxide forms [76]. This activation procedure usually takes place under a 

reducing gas (e.g. hydrogen), which can be either part of the manufacturing process or 

employed as catalyst pre-activation before use. For example the AuPd/TiO2 catalyst for 

alcohol oxidations [79], became oxidised after a long term in storage. Hence the catalyst 

needs to be reactivated before use by reduction, i.e. passing hydrogen over the AuPd/TiO2 
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catalyst sample with careful control of the temperature, to regenerate the reduced active 

component. 

To give better control of the final active form, the operating temperature of this process is 

crucial and the presence of water seems always to be detrimental [80,81]. In general a higher 

temperature always brings about a higher degree of reduction [76], but this is always 

accompanied by a loss in dispersion of the metal. Extremely high temperatures may lead to 

the overgrowth of the particles due to the so-called strong metal-support interactions (SMSI) 

effect [82], or alloying of the active metal with some reduced metallic element of the support, 

for example nickel with silicon [83,84]. 

There are also many other conventional catalyst preparation processes such as deposition-

precipitation [1], or a more recent study on the use of colloidal methods [85]. The careful 

control of metal deposition on the support by conventional methods is generally achieved by 

adjusting the quantity of support, pH, time of crystallisation, calcination procedure and 

concentrations of metal ions in solutions [73]. In modern heterogeneous catalysis, the 

overwhelming applications of active metal nanoparticles require reliable preparations of the 

nanomaterials, which remains an area of active research. 

2.2.3.2 Nanotechnology for Palladium Nanoparticles 

As the intrinsic properties of the metal nanoparticles (NPs) are mainly determined by their 

size, shape, composition and crystallinity [86,87], the preparation of metal NPs with well-

controlled particle sizes and shapes [88,89] of a high monodispersity is a key technology. The 

formation of active metal NPs can be achieved via various synthetic strategies, of which the 

general routes are based on chemical or electrochemical reduction or thermal decomposition 

of precursors of the active components [15,16]. Appropriate reducing agents (e.g. H2O2 and 

NaBH4) are required to reduce metal salts into their zero-valent metallic form while 
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stabilisers (e.g. organic ligands, surfactants, polymers and dendrimers) are required to prevent 

the particles from aggregating [15]. 

Yu et al. [90] prepared a series of palladium colloids using H2PdCl4 as the precursor and 

polyvinylpyrrolidone (PVP) as the stabiliser at room temperature, at different pH conditions 

by the addition of NaOH into the mixture. The average diameter of Pd colloids was found to 

decrease with increasing pH. It was suggested that adding a suitable amount of base (molar 

ratio of NaOH to metal: 6~8) promoted the reduction rate, leading to smaller particle size 

formation (~1.9 nm). Berger et al. [91] also synthesised Pd NPs by a polyol-based method at 

140 °C, using different palladium precursors (PdCl2 and K2PdCl4) and stabilisers (PVP: 

polyvinylpyrrolidone and CTAB: cetyl trimethyl ammonium bromide). Pd NPs synthesised 

from PdCl2 in the presence of PVP by a reduction reaction with ethylene glycol in an argon 

atmosphere had a spherical shape and 7.5 nm average size with a size distribution in the 

range of 5~10 nm. By using a mixture of PVP and CTAB, Pd NPs synthesised from K2PdCl4 

resulted in polyhedral shapes with an average size of 8.4 nm (for those obtained in air), and 

6.3 nm (for those synthesised in an argon atmosphere), respectively. 

Seed-mediated growth method is another popular synthetic strategy since it can take place at 

room temperature in the presence of air and water. Many noble metal NPs in the form of 

spheres [92,93], cubes [94], rods [95-97], plates [98,99] and even core/shell nanostructures 

[100,101] have been successfully synthesised using this method. Chen et al. [45] reported a 

seed-mediated growth route to the synthesis of Pd NPs from H2PdCl4 as the precursor, while 

a colloidal gold (~3 nm) solution needed to be pre-prepared as the seed solution. The 

synthesised Pd NPs were polyhedral in shape maintaining a uniform distribution with sizes 

from 33 nm to 110 nm depending on the amount of gold seeds.  

It appears that the size and morphology of Pd NPs strongly depends on the reaction 

conditions like pH, temperature, and the type of metallic precursor and stabiliser. Preparation 
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of the stabilisers can be complicated, as in the case of complex ligand synthesis, which 

requires specialist equipment or the use of an inert atmosphere [24]. In addition, these 

synthetic strategies require the use a series of reductants, which are usually toxic and 

expensive chemical agents [102]. Overall, the current preparation of supported metal NPs 

involves rigorous experimental procedure, extreme conditions, or expensive equipment, or all 

three [17-19]. 

2.2.4 Catalyst Deactivation 

Another major challenge of using platinum group metal (PGM)-based catalysts, Pt and Pd in 

particular, is that they can deactivate quickly under certain reaction conditions [103]. Catalyst 

deactivation is a problem of great technical, economic and ecological concern in industrial 

chemical processes [104-107]; for PGM-based catalysts this is a major reason that limits their 

applications in the fine chemicals industry [108]. Therefore, in most academic laboratories 

involved in heterogeneous catalysis, mastering catalyst stability has now become nearly as 

important as controlling activity and selectivity. In practice, it is inevitable that all the 

catalysts undergo mechanical, physical and/or chemical deactivation with, as a consequence, 

a loss in both activity and (but not always) a decrease in selectivity to the desired product 

[109]. Depending on the commercial process (reactors or reaction conditions such as 

temperature, pressure and reactant composition), deactivation can be rapid or slow [105,107]. 

It is therefore very important to understand the causes and mechanisms of catalyst 

deactivation to aid the development, design and operation of commercial processes. 

The causes of deactivation of solid catalysts and their mechanisms were reviewed in recent 

papers by Moulijn et al. [105] and Bartholomew [107], based on which the five major types 

of causes of deactivation are listed in Table 2.4. It appears that with most of them (except 

type 4), chemical steps play a major role. A schematic representation of the deactivation 

phenomena inside a catalyst particle taken from Moulijn et al. [105] is shown in Figure 2.3. 
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Table 2.4 Summary of origin, mechanism and typical examples of catalyst deactivation [105,107,109]. 

Type Origin Mechanism Examples 

1 Chemical 

poisoning 

Strong chemisorption of species on catalytic 

sites which block sites for catalytic reaction. 

Reversible or irreversible. 

Metals: S compounds, CO, 

polyaromatics, coke  

Acid oxides: bases, polyaromatics 

2 Fouling/ 

coking 

Physical deposition of species from fluid 

phase onto catalytic surface and in catalyst 

pores, by simple deposition (fouling) or by 

catalytic or thermal transformation of feed 

components (coking). 

Only reversible by oxidative regeneration. 

Metals: coke (e.g. Pt), carbon (e.g. Ni) 

Acid oxides: deposit of heavy feed 

components, catalytic or thermal coke 

3 Thermal 

degradation 

Thermally induced loss of catalytic surface 

area, support area and active phase support. 

Irreversible. 

Metals: sintering 

Acid oxides: e.g. dealumination then 

collapse of the zeolite framework under 

hydrothermal conditions 

4 Mechanical 

damage 

Loss of catalytic material due to abrasion, loss 

of internal surface area due to mechanical 

induced crushing of catalyst particle. 

Irreversible. 

Fracture, erosion, e.g. in fluidised beds 

i) from collisions of particles with each 

other or with reactor walls ii) or due to 

high fluid velocities 

5 Leaching Leaching of active species, e.g. by dissolution 

in reaction medium. Most common in liquid 

phase synthesis of fine chemicals. 

Often reversible 

Dissolution of metal framework (e.g. 

Cr in CrS-1) component of 

metallosilicate molecular sieves 

 

 

Figure 2.3 Major types of deactivation in heterogeneous catalysis (Taken from Moulijn et al. [105]). 

 

The purpose of this general review, which is essentially based on some review papers [104-

107,109], is to selectively present the possible causes of supported palladium NPs 

deactivation (i.e. Type 1, 3 and 5 in Table 2.4) that would most likely occur in this study and 
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the means which are used to prevent, limit and cure this deactivation. To illustrate this 

presentation, examples will be chosen, if feasible, in the field of PGM-based or, more closely, 

Pd-based catalytic processes. 

2.2.4.1 Chemical Poisoning 

Poisoning of a catalyst is caused by the strong chemisorption of reactants, products or 

impurities on catalytic active sites [105,107,109]. Mechanisms by which a strongly adsorbed 

poison may affect catalytic activity involves some or all of the following [107]: i) physically 

blocking adsorption/reaction sites; ii) electronically modifying the surface atoms; iii) 

restructuring the catalyst surface; iv) blocking access of adsorbed reactants to each other; and 

v) preventing or slowing the surface diffusion of adsorbed reactants. Depending upon the 

strength of poison adsorption, poisoning may be reversible or irreversible. If the 

chemisorption is weak, reactivation may occur; if it is strong, deactivation results. 

Bartholomew [107] (Table 2.5) listed a number of common poisons for selected catalysts in 

important representative reactions. It is apparent that PGM metals (e.g. Pd and Pt), very 

relevant to this work, may be widely affected by a broad range of poisons in both 

hydrogenation and oxidation processes. 

Reaction rate profiles for oxidation over PGM-based catalysts are surprisingly given the 

problem of catalyst deactivation [103] which makes their application in oxidations being 

relatively rare in comparison with their widespread application in hydrogenations. It was 

found that the deactivation of Pt and Pd catalysts in liquid phase oxidation can be caused by 

over-oxidation of the metal to form oxides on the surface due to strongly adsorbed oxygen 

[103,108,110,111], in other words, the oxygen that is essential for the reaction is also 

responsible for deactivation of the catalyst. Grunwaldt et al. [112] studied the formation of 

surface PdO by measuring the Pd-O distance using Extended X-Ray Absorption Fine 
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Structure (EXAFS) which revealed that Pd was oxidised on a Pd/Al2O3 catalyst used for 

cinnamyl alcohol oxidation in organic solvent at 65 °C. A similar result was reported by 

Keresszegi et al. [113] using the same technique for Pd/Al2O3 during 1-phenylethanol 

oxidation at 55~80 °C and 1 bar (air) in a continuous-flow fixed-bed reactor. Gogova et al. 

[114] reported that deactivation by over-oxidation was reversible for Pd/C catalyst in glucose 

oxidation in a continuous stirred-tank reactor (CSTR) by replacing dioxygen with dinitrogen 

for a short amount of time at 30 °C and atmospheric pressure, during which the metal oxide 

surface was thought to be re-reduced in situ by the alcohol groups of glucose. 

Table 2.5 Poisons for selected catalysts in important representative reactions [107]. 

Catalyst Reaction Poisons 

Silica-alumina, zeolites Cracking Organic bases, hydrocarbons heavy 

metals 

Nickel, platinum, 

palladium 

Hydrogenation dehydrogenation Compounds of S, P, As, Zn, Hg, halides, 

Pb, NH3, C2H2 

Nickel Steam reforming of methane, 

naphtha 

H2S, As 

Iron, ruthenium Ammonia synthesis O2, H2O, CO, S, C2H2, H2O 

Cobalt, and iron Fischer-Tropsch synthesis H2S, CO, S, As, NH3, metal carbonyls 

Noble metals on zeolites Hydrocracking NH3, S, Se, Te, P 

Silver Ethylene oxidation to ethylene 

oxide 

C2H2 

Vanadium oxide Oxidation selective catalytic 

reduction 

As, Fe, K, Na from fly ash 

Platinum, palladium Oxidation of CO and 

hydrocarbons 

O2, Pb, P, Zn, SO2, Fe 

Cobalt and molybdenum 

sulfides 

Hydrotreating of residue Asphaltenes, N compounds, Ni, V 

 

It was suggested that [70,103,113,115-119] adjusting the reaction conditions (e.g. by using 

compressed air or low oxygen partial pressure) could protect the catalyst from being 

deactivated. The presence of inert gas, such as nitrogen, could have an effect on the 

hydrodynamics and decrease the gas holdup of the reactant gas [120], as a result oxygen 

dissolved in the reactant mixture would be totally consumed. It is worth noting that the ability 
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to perform oxidation reactions in air (as an inexpensive and environmentally acceptable 

reagent) without strong oxidising agents, could be attractive for future green industrial 

applications. On the other hand, alloying materials to create bimetallic catalysts can also be 

used to increase the stability and thus longevity of heterogeneous catalysts [70,103,121]. For 

instance, the synthesis of bimetallic catalysts for benzyl alcohol oxidation is focused on AuPt 

and AuPd catalysts [103], which is detailed in §2.2.5.2. 

2.2.4.2 Thermal Degradation 

One typical process of catalyst deactivation which belongs to the category of thermal 

degradations is high-temperature-induced sintering. The activity losses result from [107]: i) 

loss of catalytic surface area due to crystallite growth of the catalytic phase; ii) loss of support 

area due to support collapse; and iii) loss of catalytic surface area due to pore collapse on 

crystallites of the active phase. Sintering is strongly dependent on the temperature and 

atmosphere [105]: the rate of sintering increases with increasing temperature, the presence of 

oxygen or steam can accelerate the process while under hydrogen the rate is relatively slow. 

The metal crystallite growth on a support can go via three principal mechanisms [107]: i) 

crystallite migration, ii) atomic migration, and iii) (at very high temperatures) vapour 

transport. The last type of mechanism is least likely to occur in this study since low 

temperatures (50~160 °C) were used in most cases. A conceptual model of the first two types 

is illustrated in Figure 2.4. Thermal degradation can occur in all stages of the life cycle of the 

catalyst. It might occur due to local heating during preparation (calcination), reduction (fresh 

or passivated catalyst), reaction (hot spots, maldistribution) or regeneration (coke burn-off) 

[105]. 
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Figure 2.4 Two conceptual models for crystallite growth due to sintering by (A) atomic migration (B) crystallite 

migration (Taken from Bartholomew [107]) 

 

Herzing et al. [122] synthesised a series of AuPd/Al2O3 catalysts by impregnation and the 

catalysts were subjected to a variety of heat treatments from 200 °C to 400 °C. It was 

observed that the nature and size distribution of the AuPd particles was highly dependent 

upon both the heat treatment temperature and the atmosphere. ‘As-synthesised’ particles were 

homogeneous alloys, but subsequent calcination in air produced metal particles which 

showed a progressive enrichment of Pd at their surface. The change from homogeneous alloy 

to Pd(rich shell)-Au(rich core) morphology and increase in average particle size induced by 

the calcination treatment was accompanied by a significant decrease in the activity of the 

catalyst. 

Sintering is irreversible or difficult to reverse [107], which is slow at moderate reaction 

temperatures. The key to prevent sintering processes is to maximise catalytic activity enough 

to enable operation at temperatures low enough that sintering rates are negligible [123]. 

2.2.4.3 Leaching 

Leaching, which occurs essentially during the liquid-phase synthesis of functionalised 

organic molecules, results from the presence in the reaction medium of highly polar species, 

often bearing complexing and/or solvolytic moieties which favour the dissolution of the 
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active components of the catalyst (this is typically the case with metal sites) [109]. With 

precious metal catalysts it is essential that the metals are not lost from the catalyst during use. 

However, typical noble metal catalysts are known to have leaching rates of 5~10% per year 

or higher, which represents a substantial economic burden on any catalytic process [105]. A 

very typical example is heterogeneous catalytic hydrogenation of unsaturated oil in food 

processing, in which nickel is the catalyst of choice, but traces of nickel appear in the product. 

Leaching of palladium is much slower, which might be a good reason to replace nickel with 

palladium, although being more expensive for the latter [105]. 

The support material itself may also be subjected to leaching if the reaction medium is 

corrosive. For instance, corrosion and leaching of alumina will occur at both high (pH>12) or 

low pH (pH<3) [105]. Therefore, for reactions carried out at high or low pH, carbon should 

be considered as the catalyst support, not alumina. 

Leaching causes not only the loss of catalyst activity of the solid catalysts, but also the loss of 

the active metal to the product phase which results in contamination of the product [24,105], 

from which the dissolved metal may lead to the formation of an active homogeneous catalyst 

[7]. Leaching can be minimised by the addition of sophisticated ligands to the surface of the 

support but this makes the catalyst immobilisation procedure more time-consuming and 

expensive [124]. Alternatively, the addition of a second metal component as the metal 

promoter has received substantial research interest. Alloying two metals for alcohol oxidation 

catalysts has been shown to inhibit the leaching of active component from the support or to 

prevent catalyst deactivation [125], for example the alloying of Pd and Au to prevent the 

leaching of Pd from the catalyst support [126]. 

In summary, supported palladium is a promising heterogeneous catalyst, but the drawback of 

utilising palladium individually is that frequently poor selectivity and deactivation are often 

observed [111]. The main challenges of the application of PGM-based catalysts are to 
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improve the selectivity and stability of the catalyst without deactivating the catalyst. 

Extensive research has therefore investigated ways to improve their resistance to 

deactivation. One way of achieving this goal is with the help of promoters, which can prevent 

the PGM-based catalysts from over-oxidation and leaching. 

2.2.5 Promoter 

Since heterogeneous catalysts have been used industrially, commercial catalysts tend to 

involve multiple promoters to enhance the activity, selectivity, lifetime and structural 

integrity of the catalyst [127]. The promotion in heterogeneous catalysis by adding another 

metal atom results from a number of effects [127,128]: i) by geometric modifications 

between the metal components to selectively block specific surface sites; ii) by electronic 

effects (caused by intra-atomic bond length or lattice constants changes) which aid the 

adsorption, dissociation, and desorption processes on a metal catalyst surface; and iii) by 

elimination of non-desired gas phase reactions. Ultimately the formed bimetallic surface 

could exhibit chemical and catalytic properties that are very different from those of the 

surfaces of the individual metals [129,130], which is why many bimetallic catalysts have 

been studied [131,132]. However, the overall catalytic activity of the resulting bimetallic 

catalyst not only depends on the matching of geometric and electronic modifications 

occurring in metal particles but also on the support, the substrate and the specific reaction 

conditions [71]. Synergistic effects normally describe the enhanced activity and selectivity of 

the promoted catalyst as the results of a complex synergy of all the effects involved. 

In the case of palladium, a wide range of metals have been used as promoting elements. For 

example, the combination of chemically produced Pd and Fe is a very well-documented 

bimetallic catalyst for reduction reactions [133,134]. Other transition metals like Cu, Ni, and 

Ag have also been used as promoting elements for Pd catalysts [135-137]. Recently, the 

combination of Pd and Au has become widely applied for oxidation reactions [7], which is 
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relevant to this study. In this section, the discovery of gold in heterogeneous catalysis and the 

addition of gold upon the supported palladium catalyst, forming an AuPd bimetallic surface, 

are considered and described. 

2.2.5.1 Discovery of Gold in Catalysis 

Gold (Au), with an atomic number of 79 on the periodic table, is a very stable transition 

metal. Bulk gold is an immutable, ductile metal hardly tarnishing in air or water and thus is 

prized for its great beauty and value in coinage, jewellery, and other arts rather than for the 

depth of its chemistry [7]. 

For many years researchers had tried to use Au as a catalyst but it was found to be relatively 

inactive, which often related to its large particle size [71]. However, when prepared in 

nanocrystalline form, as a collection of a few hundreds of atoms, it displays remarkable 

activity as a heterogeneous catalyst for a broad range of redox reactions [7,77]. Bond and co-

workers [138] showed that nanocrystalline Au could be effective for the hydrogenation of 

dienes, however Au was not shown to be more effective than well dispersed Pd or Pt and, as 

these catalysts were well established, Au was not viewed as a viable alternative. 

Subsequently, Haruta [139,140] made the unexpected discovery that Au nanoparticles (NPs) 

could act as effective catalysts for the oxidation of CO at temperatures as low as -76 °C. In 

the 1980s Hutchings [141] demonstrated that cationic Au had outstanding catalytic properties 

in acetylene hydrochlorination. These two key discoveries have led to a burgeoning interest 

in gold catalysis. In recent years, highly dispersed supported Au NPs have been found to be 

active for a range of reactions [142], including the preferential oxidation of CO in the 

presence of H2, CO2 and H2O for fuel cell applications [143], the oxidation of alcohols [144], 

the epoxidation of alkenes [145-148] as well as the hydrogenation of unsaturated aldehydes 

[149], the hydrogenation of alkynes in the presence of alkenes [150], the hydrosilylation of 

alcohols and aldehydes [151] and the hydrogenation of N-O bonds [152]. 
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Of particular note relevant to this study is the ability of Au, when alloyed with Pd NPs 

forming mixed ensembles of reactive sites at the alloy surface on the catalyst support, to 

catalyse selective oxidation reactions, e.g. aerobic oxidation of an alcohol to an aldehyde 

under solvent-free conditions [65] in which Pt and Pd catalysts suffer deactivation caused by 

over-oxidation of the metal to form oxides on the surface (discussed in §2.2.4.1). 

2.2.5.2 Supported AuPd Bimetallic Catalyst 

The combination of Au and Pd in an alloy nanoparticle configuration (or chemical ordering) 

has now been demonstrated on many supports such as CeO2 [153], carbon [71,125,154], 

Al2O3 [155,156], Fe2O3 [157,158], SiO2 [159] and TiO2 [65,66,78] as well as bacterial 

biomass [160,161] (to be introduced in §2.3.3). Various configurations of the bimetallic 

particles were obtained depending on the preparation conditions. The mechanism behind the 

formation of specific bimetallic ensembles is not well-understood yet. Some theoretical 

studies suggest the Au(shell)-Pd(core) segregation is energetically favoured due to the 

slightly higher cohesive energy of Pd and the lower surface energy of Au [162,163]. However 

some experimental research obtained inverted Au(core)-Pd(shell) structures [65,157,161]. 

Deplanche et al. [161] suggested that pre-formed Pd(0) atoms or clusters have a reduction 

effect on Au(III) to generate Pd(II) ions which then relocate around Au(0) NPs and are 

reduced to Pd(0) via H2 on the surface of Au NPs. Other experimental studies have reported 

that AuPd mixed configurations [66,160] can also be formed. Table 2.6 summarises the AuPd 

particles have been synthesised by various methods. 
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Table 2.6 Summary of supported AuPd bimetallic catalysts using different preparation methods. 

Loading, wt% 
Support Precursor 

Stabiliser and 

reductant 
Preparation method 

Compositions of the metal particles and 

particle size 
Reference 

Au Pd 

0.2 1.0 CeO2 HAuCl4∙4H2O aqueous 

solution 

Pd(II) acetate acetone 

solution 

NA Surface redox reaction between the 

Ce(III) oxide support and noble metal 

ions (protected under N2) under 

sonication in an ultrasonic water bath 

CeO2 support: nanorods with 10~20 nm 

in diameter and 50~300 nm in length 

AuPd particles: nanoparticles with size 

~2.6 nm, may be the mixture of Au and 

Pd atoms 

Zhang et al. [153] 

0.63 0.65 SiO2 HAuCl4∙3H2O aqueous 

solution 

Ethanol solution of PdCl2 

PVP Simultaneous reduction of Pd and Au 

precursors by ethanol in the presence 

of the polymer 

Calcination in air at 673K 

3.5 nm for the non-calcined sample 

6.2 nm for the sample after calcination, 

both PdO and AuPd alloys are present  

Venezia et al. [159] 

0.73 0.27 Activated 

carbon 

NaAuCl4∙2H2O aqueous 

solution 

Na2PdCl4 aqueous 

solution 

PVA 

NaBH4 

Sol-immobilisation technique, 

sequential deposition of Au sol and 

Pd sol 

Alloyed phases of a single composition 

Average size of 3.4 nm 

Dimitratos et al. [125] 

Prati et al. [71] 

0.5 0.5 Carbon 

PdCl2 aqueous solution 

HAuCl4∙3H2O aqueous 

solution 

NA Simultaneous impregnation method 

Calcination in static air at 673K 

AuPd alloy nanoparticles 

Average size of ~6 nm with a broad 

range between 2 and 14 nm 

Lopez-Sanchez et al. [154] 

PVA 

NaBH4 

Sol-immobilisation technique, 

simultaneous deposition of mixture 

of the two metal sols 

AuPd alloy nanoparticles with a 

narrower particle size range between 4 

and 7 nm 

2.5 2.5 Fe2O3 PdCl2 aqueous solution 

HAuCl4∙3H2O aqueous 

solution 

NA Simultaneous impregnation via an 

incipient wetness method 

Calcination in static air at 673K 

Au(rich core)-Pd(rich shell) metal alloy 

A bimodal metal particle size 

distribution: 

smaller particles in range of 4~10 nm 

larger particles in range of 30~70 nm 

Edwards et al. [157] 

5.9 3.2 γ-Fe2O3 HAuCl4 aqueous solution 

Na2PdCl4 aqueous 

solution 

PEGMs 

2-propanol 

Sonochemical method Au(core)-Pd(shell) structure 

Average particle size of 8.3 nm 

Nitani et al. [158] 
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Table 9.6 continued. 

Loading, 

wt% Support Precursor 

Stabiliser 

and 

reductant 

Preparation method 
Compositions of the metal particles and 

particle size 
Reference 

Au Pd 

2.5 2.5 γ-Al2O3 Pd(NO3)2∙6H2O 

aqueous solution 

AuCl4∙3H2O aqueous 

solution 

NA Impregnation or co-precipitation 

Calcination in static air at 673K and 

reduction in flowing H2 at 673K 

Metal nanoparticles present as AuPd 

alloys with a size range of 2~9 nm 

Landon et al.[156] 

1 1 γ-Al2O3 solutions of H2PdCl4 

and HAuCl4 

NA Sequential impregnation of Au and 

Pd salt via an incipient wetness 

method 

Au(core)-Pd(shell) configuration 

After calcination, the grain size of the Au 

increased from 5.5 to 8.4 nm 

Nutt et al. [164] 

2.5 2.5 γ-Al2O3 HAuCl4∙3H2O aqueous 

solution 

PdCl2 aqueous solution 

NA Simultaneous impregnation 

Calcination in static air at 673K 

Au(core)-Pd(shell) morphology 

Particles size in range of 2~10 nm 

Solsona et al. [165] 

2.5 2.5 TiO2 PdCl2 aqueous solution 

HAuCl4∙3H2O aqueous 

solution 

NA Simultaneous impregnation via an 

incipient wetness method 

Calcination in static air at 673K 

Au(core)-Pd(shell) structure 

A bimodal metal particle size 

distribution: most of the particles in 

range of 1~8 nm while minority larger 

particles in range of 40~70 nm 

Edwards et al. [78] 

Enache et al. [65] 

Miedziak et al. [85] 

0.65 0.35 TiO2 PdCl2 aqueous solution 

HAuCl4∙3H2O aqueous 

solution 

PVA 

NaBH4 

Sol-immobilisation method Homogeneous alloys 

Particle sizes in range of 1~11 nm with a 

mean diameter of 4 nm 

Meenakshisundaram et al. [66] 

Miedziak et al. [85] 

5 5 Desulfovibrio 

desulfuricans Na2PdCl4 aqueous 

solution 

HAuCl4∙nH2O aqueous 

solution 

NA 

A two-step microbial method 

combined with successive reduction 

of Pd and Au particles onto the 

biomass 

Homogeneous mixing and complex 

segregations 

Particles sizes in range of 4~40 nm in 

diameter 

Tran et al. [160] 

5 5 Escherichia 

coli 

Ordered Au(core)-Pd(shell) 

nanostructures 

Deplanche et al. [161] 

PVP: polyvinylpyrrolidone; PVA: polyvinylalcohol; PEGMs: polyethylene glycol monostearate; NA: not applicable. 
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In terms of the catalytic application in oxidation reactions by using gold to alloy with 

palladium, Au could act as a diluent to isolate Pd monomer sites (i.e. to reduce the oxygen 

coverage), thereby enhancing the durability of Pd catalyst (i.e. resistance to over-oxidation) 

[166,167]. It was suggested that the addition of Au to Pd decreased the binding energy of 

oxygen to the surface and drastically reduced the oxygen coverage, as found by thermal 

desorption spectroscopy (TDS) [168,169]. A range of supported AuPd NPs has been tested 

for the oxidation of benzyl alcohol [65,66,125,153,154,170] and a synergistic enhancement in 

the activity and selectivity has been suggested over both the Au- and Pd- only catalysts 

[65,125,170]. Thus there is a growing trend in the potential use of supported bimetallic AuPd 

NPs [71], of which the structure of bimetallic combinations is crucial in order to obtain the 

necessary synergistic interactions that lead to increases in catalytic activity. However most of 

the physico-chemical syntheses (Table 2.6) produce metal particles which can be relatively 

non-uniform and can show variations in morphology depending on the support and particle 

composition making any correlation difficult and often not reliable. Such irreproducibility 

limits commercial production and implementation. 

 

2.3 Biomass-Supported Catalyst 

A promising alternative for chemical synthesis is to exploit the bioreductive deposition of 

metals by bacteria, in which the sulphate-reducing bacterium (SRB) Desulfovibrio 

desulfuricans was the first reported species with Pd-reducing capacities [20]. When Pd(II) 

was added to a D. desulfuricans culture together with H2 or formate as the electron donor, 

nanoscale deposits of Pd(0) were observed at the outer surface of the bacterial cells [20,171], 

which makes them available for applications as catalyst. 
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2.3.1 Chemical Components and Cellular Structures of Microbes 

Bacterial cells, typically a few micrometres in length with a wide range of shapes ranging 

from spheres to rods and spirals, are composed of mainly polymeric organic materials and 

inorganic components in an organised configuration. Taking Escherichia coli as an example, 

the polymeric organic molecules comprise ~96% of the dry weight of the cell; small 

molecules and inorganic ions (Fe2+, Mn2+, Cu2+, NH4
+, SO4

2-, PO4
3- etc.), which are 

constituents of the cytoplasm, comprise the remaining 4% [172]. There are four fundamental 

types of polymeric organic materials (made up of monomeric subunits) that occur in all forms 

of cells: polysaccharides are composed of carbohydrate (sugar) molecules; lipids are 

composed of fatty acids; proteins are composed of amino acid molecules; and nucleic acids 

(DNA and RNA) are made up of molecules called nucleotides. It is the arrangement or 

sequence in which the subunits are put together that often determines the exact properties that 

the polymeric organic materials will have. Some molecules can be substituted, for example 

glucose in the form of poly-n-acetyl glucosamine (NAG) is a key component of 

peptidoglycan found extensively at bacterial surfaces and the component which confers 

structural rigidity along with n-acetyl muramic acid (NAM), with chains of NAG and NAM 

forming a peptidoglycan network. Bacteria fall into two fundamental types, namely Gram-

positive (+) and Gram-negative (-) types (Table 2.7), presenting major differences in cell 

envelope composition and structure (Figure 2.5). 

The Gram-positive cell envelope comprises a cytoplasmic membrane and a very thick 

peptidoglycan layer (20~80 nm, embedded with teichoic acids and lipoteichoic acids). Gram-

positive bacteria lack an outer membrane but adjacent to the thick peptidoglycan layer, are 

often found an attached outermost S-layer (depending on species, the S-layers have a 

thickness between 5 and 25 nm and possess identical pores with 2~8 nm in diameter [173]). 

In contrast, the Gram-negative bacteria possess a more complex double-membrane structure 
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(the cytoplasmic membrane and an outer membrane) separated by a periplasmic space, which 

contains a thinner peptidoglycan layer (2~3 nm, a single layer of peptidoglycan) and many 

proteins responsible for various biological activities (e.g. substrate binding or hydrolysis, 

reception of extracellular signals and hydrogenase in some species [30,174]). The outer 

membrane, composed of phospholipids and lipopolysaccharides (which face into the external 

environment) allows for transport of many ions across through the porins channels. For both 

Gram-positive and Gram-negative bacteria, particles of approximately 2 nm can pass through 

the peptidoglycan [175]. 
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Table 2.7 Characters of some bacteria. 

 Species (Abbreviation) Shape and size Biology and biochemistry Rationale 

Gram-negative (-)    

 Rhodobacter sphaeroides (R. sphaeroides) rod-shaped facultative anaerobe purple non-sulfur bacteria, photosynthetic, metal resistant [176] 

 Escherichia coli (E. coli) rod-shaped, 2.0~4.0 μm length facultative anaerobe purple sulfur bacteria, hydrogen producing through 

fermentation, metal-reducer, hydrogenase activity [177,178] 

 Desulfovibrio desulfuricans (D. desulfuricans) rod-shaped, 3.0~5.0 μm length obligate anaerobe purple sulfate-reducing bacterium, metal-reducer, high 

hydrogenase activity [20,26] 

Gram-positive (+)    

 Arthrobacter oxydans (A. oxydans) rod-shaped obligate aerobe metal resistant, accumulates metal 

 Micrococcus luteus (M. luteus) spherical, 0.5~3.5 μm diameter obligate aerobe metal-reducer, accumulates high amounts of metals 

 Bacillus shaericus (B. sphaericus) rod-shaped obligate aerobe shown to make pd(0) nanoparticles [30] 

 
Figure 2.5 Differences in the cell wall structure between the Gram-positive and Gram-negative bacteria (Adapted from [179]). 
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2.3.2 Bio-Pd Catalyst 

Previous studies of bio-Pd observed differences in Pd(II) sorption and Pd(II) reduction ability 

between different bacterial strains [23]. The fundamentally different biochemical support 

matrices were noted by Creamer et al. [30] whom observed the difference of Pd(0) deposition 

on D. desulfuricans (Gram-negative) and B. sphaericus (Gram-positive). In the Transmission 

Electron Microscopy studies by Deplanche et al. [31], biogenic Pd(0) NPs showed strain-

specific size distributions, which were consistently larger on Gram-positive cells than those 

on Gram-negative strains. Within the same Gram-negative catalogue, R. sphaeroides and D. 

desulfuricans also showed different Pd(0) NPs deposition behaviours [176]. 

During the manufacturing process of Pd(0) NPs on Gram-negative bacteria, hydrogenases are 

believed to be responsible for the reduction of Pd(II) to Pd(0) and act as a focus for the initial 

formation of Pd(0) ‘seeds’ [177], taking the well understood mechanism of bio-Pd 

manufacture in D. desulfuricans [30] as an example. Initially, the soluble Pd(II) coordinates 

to oxygen and amine groups [180], which are on or near a hydrogenase enzyme that mediates 

the reduction of Pd(II) to Pd(0) via oxidation of H2 (or formate). A more detailed study by 

Mikheenko et al. [181] used a molecular approach to construct strains of D. fructosovorans 

(Gram-negative) deficient in its periplasmic hydrogenases and they observed relocation of the 

Pd(0) deposits to the cytoplasmic membrane, the site of the remaining hydrogenases. Similar 

findings were recently reported with hydrogenases-deficient E. coli mutants [177]. After the 

nucleation of Pd(0), further cluster growth then occurs to make cell-bound deposits of 

catalytically active Pd NPs being stabilised by the architecture of the bacterial matrix. In 

addition, the average Pd(II) accumulation capacity (per gram of cell dry weight) of Gram-

negative strains without added electron donor (‘biosorption’) was found to be ~7 times 

greater than Pd(II) uptake by the Gram positive strains [31]. Since the bioreduction of Pd(II) 

by D. desulfuricans and E. coli leads to apparently homogeneous coverage of small (5~10 
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nm) Pd(0) NPs on the cell surface [31], these two strains become the most studied organisms 

and bio-Pd produced by D. desulfuricans and E. coli have shown their remarkable catalytic 

activity in a wide variety of reactions [24,26,30,31,177,182-184]. 

The catalytic potential of this biomineralised Pd(0) (bio-Pd) was first demonstrated by Yong 

et al. [26] in a simple reaction involving the formation of H2 from sodium hypophosphite 

using bio-Pd/D. desulfuricans catalyst. This was followed by the demonstration of 

remarkable catalytic properties of bio-Pd in a number of test reactions including the 

remediation of metallic pollutants (e.g. Cr(VI)) [31,177,185] and xenobiotics (halogenated 

aromatics and flame-retardants) [27,171,182,184]. Being particularly relevant to the current 

study, bio-Pd catalyst has demonstrated certain activities in hydrogenation reactions [24,30]. 

In the hydrogenation of itaconic acid [30], 5wt%Pd/D. desulfuricans gave an initial rate of 

1.1 ×10−2 mol.g(Pd)-1.s-1, which compared well with a commercial 5wt%Pd/graphite catalyst 

(1.3 ×10−2 mol.g(Pd)-1.s-1). An advantage in selectivity using 5wt%Pd/D. desulfuricans was 

also revealed in the hydrogenation of 2-pentyne [24]. At 92% 2-pentyne conversion, 

5wt%Pd/D. desulfuricans gave a cis/trans ratio of 2.5 and pentene/pentane ratio of 3.3, as 

opposed to respective values of 2.0 and 2.0 with 5%Pd/Al2O3. On the other hand, Deplanche 

et al. [170] used E. coli as the support for 5 wt%Pd and tested in benzyl alcohol oxidation 

with molecular oxygen. However a levelling-off of the reaction rate after 2.5 hours was 

observed, indicating the potential of deactivation of bio-Pd due to the over-oxidation of Pd 

metal (see §2.2.4.1). This leads to the postulation that using gold to alloy biomass-supported 

palladium NPs could enhance the overall catalytic property. 

2.3.3 Bio-AuPd Catalyst 

De-Corte et al. [186,187] synthesised bio-AuPd catalyst by co-precipitation of Pd and Au 

onto the metal-respiring bacterium Shewanella oneidensis (Gram-negative). TEM images 

revealed that aggregates of AuPd bimetallic NPs were precipitated mainly on the outer parts 
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of the S. oneidensis cells giving a bimetallic crystalline structure [186]; no zones with pure Pd 

or pure Au were present within one aggregate as shown by the EDX elemental line-scan 

across an AuPd aggregate. The bimetallic bio-AuPd/S. oneidensis, compared to the 

monometallic bio-Pd/S. oneidensis, resulted in a greatly improved catalytic activity with 

more reproducible results in dehalogenation of environmental contaminants [186] and in 

Suzuki cross-coupling reactions (iodobenzene and phenylboronic acid) [188]. However using 

this simultaneous reduction of Pd and Au supported on cells of S. oneidensis, the authors 

have not yet been able to obtain bimetallic Au(core)-Pd(shell) structures [186,189], which 

was thought to be responsible for the high reaction rate in dehalogenation reactions [190]. 

More relevant to this study, a two-step method combining a successive reduction of Pd(II) 

and Au(III) onto the bacterial cells was developed as the manufacturing method. The 

synthesis relies on the ability of bacterial cells to firstly reduce Pd(II) ions enzymatically 

from a precursor using H2 as an electron donor [177]. The resulting fine layer of Pd(0) leads 

to an increase in the rate of Au(III) reduction under H2 and results in the incorporation of Au 

atoms into the Pd seeds [161]. Deplanche et al. [161] presented this to be a facile, size-

controlled and cost-efficient method to synthesise Au(core)-Pd(shell) nanostructures using E. 

coli. Following the sequential reduction of Pd(II) and Au(III), E. coli cells exhibited complete 

coverage of both the cell surface and the periplasmic space by metal NPs, with some cells 

showing a small number of intracellular NPs. Characterising the bio-AuPd nanoparticle by 

comprehensive techniques (high-resolution TEM, energy dispersive X-ray elemental 

mapping, cyclic voltammetry, X-ray absorption spectroscopy techniques and XRD) revealed 

a non-random alloy with an Au(core)-Pd(shell) structure. Bio-AuPd catalyst material 

possessing Au(core)-Pd(shell) nanostructure, to the best of the author’s knowledge, has not 

been studied extensively in the application in organic chemical synthesis reactions, which 

becomes one of the major research objectives in this study. 
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2.3.4 Advantages and Challenges of Bioreductive Synthesis of Bio-Catalyst 

Biological synthesis of supported metal nanoparticles (bio-Pd or bio-AuPd in this study) is an 

innovative method for manufacturing heterogeneous catalysts potentially useful in a wide 

range of chemical reactions. This section discusses the advantages of this biological synthesis 

method, together with some challenges which need to be fulfilled in order to create a stable, 

sustainable and applicable biocatalyst. 

Advantages 

Using microorganisms as the supports for bio-Pd or bio-AuPd catalysts can have several 

advantages over chemically produced catalysts, such as imparting reliable size control on the 

metal particle, while the method is environmentally benign and often cheaper than chemical 

methods [161]. 

i) A reliable route to produce Pd(0) NPs on the cell surface. 

The bacterial cells are support materials with extremely high specific surface areas [188], on 

which the precipitation of the metals occurs within minutes. For example, discrete Pd(0) NPs 

of ~5 nm diameter were synthesised on D. desulfuricans [30] and stabilised against 

agglomeration [25]. Offering particle size and shape control, being the most attractive 

requirement in industrial application, this microbial method has been reported as an effective 

route for synthesising nanoparticles [161,176,191,192]. 

ii) Fewer toxic and expensive chemical agents (reductants and stabilisers) involved. 

The bacterial cells serve both as stabilising and as reducing agents for the metal NPs [188]. 

Bacterial strains like the facultative anaerobe Escherichia coli (the focus in this study), is fast 

and easy to grow (aerobically) since it is less sensitive to O2 than strict anaerobes, and is well 

characterised in physiological and biochemical terms as well as having a very well defined 

molecular biology and hence being the laboratory ‘workhorse’ for studies in molecular 
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engineering. E. coli displays a remarkable flexibility in its respiratory electron transport 

processes that allows for growth on a wide range of substrates [193,194]. Additionally, E. 

coli possesses significant metal-reducing capacity and, in the case of Tc(VII) reduction, 

studies using mutants revealed similarities in the reducing mechanism between E. coli and 

sulphate-reducing bacteria (SRB) such as D. desulfuricans [195,196]. Hydrogenases, the 

primary route for metal reduction described in this study, are enzymes associated with 

anaerobic (not aerobic) metabolism. Hence, practically, aerobically-pregrown cells are 

exposed to a period of anaerobiosis in order to upregulate hydrogenase production prior to 

metal reduction. 

Hydrogen, as the electron donor in most circumstances, is a clean and low-cost species for 

the reduction of metal salts into their zero-valent metallic forms. As hydrogen is mostly 

produced electrochemically, its cost is very dependent on the energy price. It could be 

promising when fermenting bacteria are used, since biogenic hydrogen can be delivered in 

situ and this cost can be omitted. 

iii) A potential win-win technique: catalytic application of biorecovered Pd. 

While precious metals (e.g. Pd and Pt) are available to a very limited extent, there is an 

increasing demand to use them as catalyst [47]. Since biological reduction of metals is well 

documented [20], it could be attractive to synthesise bio-Pd from a Pd-containing scrap 

leachate and subsequently apply it as a catalyst in order to obtain a closed cycle of Pd. The 

bioreduction process is sensitive enough to recover metal at parts-per-million (p.p.m.) 

concentrations, which is often below the economic threshold of traditional recovery methods, 

thus biorecovery provides a clean alternative to traditional reclaiming treatments [177]. Such 

bio-recovered Pd(0) has been found to be catalytically active [29]. 
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Challenges 

A major limitation for the use of bionanomaterial would be the long-term stability, which 

needs to be further investigated [47]. If bio-nanocatalysts are used in advanced synthetic 

organic chemistry, which is often performed at high temperature, the bacterial biomass may 

disintegrate, causing the detachment of active components. Even worse, poisoning of the 

catalyst may occur via the disintegration of bacterial biomass at high temperature application, 

during which the sulphur will be released via breakdown of sulphur-amino acids (an essential 

component of microbial biomass). Sulphur is known to have a strong affinity for the Pd metal 

and may block the active sites of the catalyst via formation of strong Pd-S bonds and layers 

of sulphur around the Pd clusters [197,198]. De-Corte et al. [47] suggested that sulphur 

poisoning was the reason for a very rapid loss of catalytic activity of the bio-Pd catalyst in 

dehydrogenation reactions at 250 °C. 

Another challenge could exist in the concept of sustainable recycling and production of bio-

Pd for catalytic application (as stated in advanteages iii)) from real waste scrap leachates. It is 

probable that the success of both the biorecovery and the catalytic application are very 

dependent on the composition of metal-containing wastes. The scrap can contain compounds, 

such as Cu(II) (a known hydrogenase inhibitor), which inhibit the biorecovery process and 

other metals present on the bacteria after the recovery process might decrease the catalytic 

activity of Pd [47]. 

Therefore, more in-depth understanding of the mechanisms behind this biotechnology of 

nanoparticle-formation is urgently required. However, the production process of biomass-

supported catalysts has great potential for improvement; it can be further optimised, which 

will make these catalysts even more competitive with chemically produced catalysts. 
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2.4 Reaction Mechanism on Catalyst Surfaces 

Given that palladium has the reputation of being one of the most active and selective metals 

in catalysis, nanoparticles of palladium have been heavily studied in a wide range of catalytic 

applications including hydrogenation of various organic reactants [199,200] and liquid phase 

oxidation of alcohols [201,202]. These selective redox processes are the key synthetic steps 

for the preparation of many pharmaceuticals, agrochemicals and commodity chemicals, 

which commonly require a partial reaction product, rather than the finished products of total 

hydrogenation or oxidation [77]. To achieve very high selectivity in a particular reaction, it is 

thus important to understand the reaction mechanisms, i.e. all the parallel and consecutive 

reactions that are active in the overall transformation, to assist catalyst design and fine tuning. 

This section focuses on the examples of vegetable oil hydrogenation and alcohol oxidation 

reactions over heterogeneous catalysts and reaction mechanisms on the catalyst surface. 

2.4.1 Hydrogenation of Vegetable Oil 

Being the most used feedstocks in industrial oleochemical hydrogenation reactions, vegetable 

oils (e.g. palm oil, rapeseed oil, soybean oil, and sunflower oil) are composed of natural fatty 

triglycerides which are derived from glycerol and three molecules of natural fatty acids 

[4,13,203]. The fatty acids distributing in natural triglycerides vary depending on the source, 

but are mostly with an even number of carbon atoms from 6 to 22 in their chains (C6~C22). 

Unsaturated fatty acids (mainly C18~C22) are those that contain single or up to six non-

conjugated carbon-carbon double bonds (C=C), correspondingly known as oleic acid 

(C18:1), linoleic acid (C18:2), linolenic acid (C18:3), gadoleic acid (C20:1) and erucic acid 

(C22:1). It is also noted that unsaturated C=C bonds in natural fatty acids appear exclusively 

in a cis configuration [4,203], which means that adjacent hydrogen atoms are on the same 

side of the C=C bond. Typical compositions of some vegetable oils are given in Table 2.8. 

The highest average degree of multiple unsaturated double bonds can be found in soybean oil 
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(23.8 wt% C18:1, 53.2 wt% C18:2, 7.8 wt% C18:3), or sunflower oil (18.6 wt% C18:1, 68.2 

wt% C18:2, 0.5 wt% C18:3) [204]. 

Table 2.8 Fatty acid composition of some common vegetable oils [204]. 

C-chain:double bondsa Fatty acid 
 Composition (wt%) in different vegetable oils 

 Coconut Palm Canola Rape seed Soybean  Sunflower  

C6:0 Capronic  0.5      

C8:0 Caprylic  8.0      

C10:0 Caprinic  6.4      

C12:0 Lauric  48.5 0.3    0.5 

C14:0 Myristic  16.2 1.1  0.1 0.1 0.2 

C16:0 Palmitic  7.7 45.1 3.9 2.8 11.0 6.8 

C18:0 Stearic  3.2 4.7 1.9 1.3 4.0 4.7 

C18:1 Oleic  8.3 38.8 64.1 23.8 23.8 18.6 

C18:2 Linolic  1.0 9.4 18.7 14.6 53.2 68.2 

C18:3 Linoleic   0.3 9.2 7.3 7.8 0.5 

C20:0 Arachidic   0.2 0.6 0.7 0.3 0.4 

C20:1 Gadoleinic    1.0 12.1   

C22:0 Behenic    0.2 0.4 0.1  

C22:1 Erucic     34.8   

a C denotes carbon; the first number, e.g. 18, represents the total carbon number of the acyl groups; the second 

number, e.g. 3, represents the total number of double bonds. 

 

Natural unsaturated triglycerides and fatty acids need to be modified in most cases through 

partial or complete catalytic hydrogenation (saturation) of the C=C bonds to raise the melting 

point and oxidative stability [4], before they can be used as base stocks in either industrial or 

consumer products, such as frying oils, shortenings, margarines, soap stock, industrial oils 

and greases [13]. 

2.4.1.1 Selectivity in Catalytic Hydrogenation of Vegetable Oil 

In a typical industrial application, the oils are hydrogenated in three-phase reactors in the 

presence of a heterogeneous catalyst at about 50~220 °C and 5~7 atm of hydrogen, in 1~3 h 

depending on the catalyst and oil [205-208]. Some studies are summarised in Table 2.9. This 

catalytic process consists of complex reaction pathways, e.g. the sequential saturation of 
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multiple C=C bonds (i.e. hydrogenation of triene to diene to monoene, and finally to 

saturated fat), positional migration and cis-trans geometrical isomerisation of single C=C 

bond, thus yielding a variety of products. It is noted here that a trans configuration, by 

contrast with cis configuration, means that the two adjacent hydrogen atoms are bound to 

opposite sides of the C=C bond. 

Table 2.9 Some investigations on hydrogenation of fatty oils [206,208]. 

Substrate Catalyst Pressure, atm Temperature, °C Reactor type 

Castor oil Ni 1.3~5 130~200 stirred-tank 

Methyl oleate Pt/C 2.2~5.5 160~180 stirred-tank 

Soybean oil Ni 0.34~1.35 160~210 stirred-tank 

Rapeseed oil Raney Ni 2.55 60 stirred-tank 

Groundnut oil G-111 Ni 3.8~9.3 100~160 stirred-tank 

Soybean oil Ni 2.4~4.2 140~180 stirred-tank 

Soybean oil Pd/charcoal 1~5 80~160 stirred-slurry 

Soybean oil CuO-Cr2O3-MnO2 1 185~215 continuous slurry 

(bubble column) 

Sunflower-seed oil Ni-spherosil 2.2~3.4 138~238 agitated-slurry 

(autoclave) 

Rapeseed oil Ni 0.3~10 140~220 stirred-slurry 

Soybean oil Raney Ni, copper 

chromite Ni-Cu, Cu-Al, 

Pd-Al, Cu-Cr, Al alloys 

2.2~8.5 110~190 fixed-bed, 

continuous 

downflow 

Soybean oil Copper chromite 2 155 agitated-slurry 

Soybean oil Nickel flakes, nickel on 

kieselgur, copper 

chromite 

1.5~4.8 180~200 bubble column, 

continuous upflow 

Soybean oil Copper chromite 2 170~200 agitated-slurry 

Cottonseed oil Ni 3 139~169 agitated-slurry 

Soybean oil Ni 1 170 agitated-slurry 

 

In terms of the products from this type of hydrogenation process, trans-isomers of 

unsaturated fatty acids and the terminal product (saturated fatty acid) are highly undesirable 

in food applications since they have been linked to the incidence of coronary artery disease 

[209] and cardiovascular disease [210]. In contrast, diets higher in monounsaturated fatty 

acid, especially oleic acid (cis-C18:1), has been associated with good aspects to lower the 
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incidence of diseases [5,6]. Thus cis-C18:1 becomes a highly desirable product in the partial 

hydrogenation process. To selectively produce cis-isomers has been challenging due to the 

overall complex reaction network, which leads to the importance of understanding its 

mechanism. 

2.4.1.2 Hydrogenation of Vegetable Oil on the Catalyst Surface 

Though partial hydrogenation of fatty oils is one of the oldest industrial processes and a large 

number of papers, patents and books have been published on the subject, only a few papers 

have been devoted to the kinetics of this reaction [13,206]. Instead, simplified reaction 

systems are usually studied, for example using pure methyl esters of unsaturated fatty acids 

[203,211,212]. The results of these studies can be extended with difficulty to the 

interpretation of the behaviour of natural oils, that is, mixtures of polyunsaturated fatty acids. 

The total immiscibility between the fatty acids and their derivatives could influence the 

selectivity and reaction rate in and around the solid catalyst [4]. Herein the elementary 

reaction step of hydrogenation of edible oil on the catalyst surface is described, as the 

fundamental principle of kinetics investigation (Appendix §8.1.2) for hydrogenation of 

soybean oil in this study. 

For a hydrogenation reaction between unsaturated oil and hydrogen at the presence of a 

catalyst, the unsaturated double bond (C=C) is firstly adsorbed on the catalyst surface as well 

as hydrogen becoming dissociated into atomic hydrogen. The subsequent addition of 

hydrogen atoms to the C=C bond is considered as a two-step addition, which is well-known 

to follow the Horiuti-Polanyi mechanism [213]. The schematic reaction sequence of 

hydrogenation and isomerisation of C=C bonds on the active site is established in Figure 2.6. 
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Figure 2.6 Elementary reaction of hydrogenation and isomerisation of carbon-carbon double bond based on 

Horiuti-Polanyi mechanism. C= one cis form of double bond, while T= one trans form of double bond, *= one 

active site, H*= one adsorbed hydrogen atom, CCH*/CH*= one half-hydrogenated surface intermediate, and S= 

saturated compound. 

 

In the above reaction scheme, the addition of the first hydrogen atom (H*) to one of the 

carbon atoms linked to the double bond on the active site (CC*) forms a half-hydrogenated 

surface intermediate (CCH*), which is considered as reversible with characteristic 

equilibrium constant. As a consequence, the double bond remains to be a single bond in the 

resulting half-hydrogenated surface intermediate (CCH*), of which the easy rotation at the 

surface leads to the loss of its geometrical cis or trans configuration. Accordingly, the release 

of a hydrogen may result in the original cis-bond (step 3) or in the formation of a trans-bond 

(step 4). Like the diene CC*, the cis-monoene C is adsorbed onto the catalyst surface (C*) in 

step 6 and reacts with a hydrogen atom to form a half-hydrogenated surface intermediate 

(CH*) in step 8. Unlike the CCH*, this half-hydrogenated fatty acid CH* has no residual 

double bond left so it is only loosely attached to the catalyst surface. Therefore it is likely to 

dissociate (steps 8 and 9) and leave the surface as a cis-monoene (step 6) or a trans-monoene 

(step 7). The saturation of one double bond (to form C in step 5, or S in step 10) is 

accomplished by a successive addition of the second hydrogen atom to the other carbon atom 

that was originally linked to the double bond. The second hydrogen insertion can be regarded 

as an irreversible reaction, because dehydrogenation occurs above 670 K only [214]. In 

addition, the positional migration of double bond along the carbon chain, merely one position 



Chapter 2 Literature Review 

48 

only, may occur via the π-allyl intermediate, which is mainly present at low hydrogen 

pressure [215,216]. It is suggested that the characteristics of the double bonds from the 8, 9, 

or 10 position can be assumed to be similar due to the always comparable surroundings and, 

under most conditions, the migration products are only minor, compared to cis-trans 

isomerisation products [203]. Thus the cis-trans geometrical isomerisation is a major 

consideration in this study. 

2.4.2 Oxidation of Alcohol 

The selective oxidation of primary and secondary alcohols into the corresponding carbonyl 

compounds plays a central role in organic synthesis of either finished products or 

intermediates [7,8]. For example, aromatic aldehydes are highly valuable both as 

intermediates for pharmaceuticals, agrochemicals and as direct components for the flavour 

and perfume industries [10,65,217]. Due to their applications, these aromatic aldehydes have 

to be obtained with high selectivity. 

There are many synthetic routes to produce aromatic aldehydes. In contrast to hydrogenation 

reactions which are often conducted catalytically with molecular hydrogen, there are 

relatively few selective oxidation reactions that are catalysed using molecular oxygen [7], 

instead using stoichiometric quantities of inorganic oxidants, e.g. chromate or permanganate, 

to achieve selectivity towards aldehydes in oxidation processes [7,9,218,219]. These reagents 

are expensive and have serious toxicity issues associated with them [9,10,65] as well as often 

resulting in a poor atom efficiency of the overall process [7]. In response, many 

homogeneous systems able to catalyse liquid phase oxidation have been used successfully, 

resulting in high product yields [85]. However, the disadvantage of the use of homogeneous 

systems is widely known to be associated with separation and catalyst recycling. From both 

economic viewpoint and environmental concern, atom efficient heterogeneous catalytic 

systems that employ clean oxidants such as air or molecular oxygen in combination with the 
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utilisation of heterogeneous catalyst are more desirable [8,160] for the fine chemicals 

industry and, even more demanding, using mild solvent-free reaction conditions [7]. 

2.4.2.1 Benzyl Alcohol Oxidation Using Molecular Oxygen 

Oxidation of primary alcohols with molecular oxygen to aldehydes in the liquid phase over 

heterogeneous catalysts is a fundamentally important laboratory and commercial procedure 

[65]. A variety of different metal loaded heterogeneous catalysts, having ease of recovery and 

recycling and amenability to continuous processing, has been developed in the last decade. 

Benzyl alcohol is chosen in this section as a model alcohol to summarise some new 

developments, such as the use of supported Pd, Au and bimetallic (AuPd) catalysts. 

Pd Catalyst in Benzyl Alcohol Oxidation 

Mori et al. [220] studied oxidation of benazyl alcohol under atmospheric O2 pressure by 

nanoparticles of Pd on a variety of materials, including hydroxyapatite (HAP), carbon, Al2O3 

and SiO2. The highest conversion (99%) and selectivity to aldehyde (99%) after 1 hour was 

observed when using HAP-supported Pd catalyst. The other supports examined (Al2O3, SiO2 

and C) produced the aldehyde with less than 50% selectivity; among which the most selective 

catalyst was Pd/SiO2 (47%) though the conversion was only 71%. Pd/Al2O3 catalyst achieved 

a benzyl alcohol conversion of 96%, though the selectivity was the lowest (38%). The Pd/C 

catalyst produced the lowest conversion (46%) and low selectivity (42%) under the identical 

reaction conditions. The above reactions were all performed in the presence of 

trifluorotoluene as a solvent. 

Chen et al. [221] proposed that the interaction between the Pd precursor and the support plays 

a key role in tuning the mean size of the Pd NPs. Using SiO2-Al2O3 mixed oxide as the 

support, they synthesised Pd NPs with mean sizes ranging from 2.2 to 10 nm. It was found 

that the intrinsic turnover frequency (TOF) per surface Pd atom depended significantly on the 
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mean size of Pd particles and showed a maximum at a medium mean size (3.6~4.3 nm), 

revealing that the aerobic oxidation of benzyl alcohol catalysed by the supported Pd NPs was 

structure-sensitive. The optimised catalysts (Pd particle sizes of 4.3 nm and 3.6 nm) 

demonstrated high TOF (2.53 s-1 and 2.45 s-1, respectively) as well has high selectivity to the 

aldehyde (98% selectivity with 73% conversion and 98% selectivity with 99% conversion, 

respectively, in 10 h) in solvent-free conditions. 

Au catalyst in Benzyl Alcohol Oxidation 

Rossi, Prati and co-workers [222-224] were the first to demonstrate clearly that supported Au 

NPs can be very effective catalysts for the oxidation of alcohols. To some extent this 

observation is counterintuitive since extended Au surfaces do not chemisorb oxygen, nor do 

they corrode. Large Au particles are unable to chemisorb reactant molecules unless the 

particles are small enough to be deficient in the complete metal coordination character [225]. 

The effects of added base and support have been investigated thoroughly for benzyl alcohol 

oxidation over Au catalysts. Much of the literature on alcohol oxidation over Au catalysts 

describes results obtained in the presence of a homogeneous base (typically NaOH), which is 

considered to be essential for the first hydrogen abstraction [7]. Guo et al. [226] reported 

successful aerobic oxidation of benzyl alcohol over unsupported bulk Au performed in 

aqueous NaOH and found the product distribution was strongly dependent on the reaction 

temperature and concentration of NaOH. At a reaction temperature of 333K, benzyl benzoate 

was obtained as the major product at lower concentrations of base (≤ 0.6 M NaOH) while 

benzoic acid was produced at higher concentrations (1.2 M NaOH). For benzyl alcohol 

oxidation at 363K, mainly aldehyde was produced over a range of NaOH concentrations. 

As an alternative to a homogenous base, some groups investigated the effect of acid and base 

sites on the support (‘solid base’) in Au catalysis for benzyl alcohol oxidation [227-229]. In 
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the oxidation of primary alcohols without additional homogeneous base [228], a maximum 

benzyl alcohol conversion of only 7.1% was obtained over an Au/Fe2O3 catalyst (87.6% 

selectivity to benzaldehyde) after 3 h at 373 K and 200 kPa O2. The highest selectivity to 

aldehyde (100%) was obtained using Au/CeO2 along with a benzyl alcohol conversion of 

3.4%. Maintaining the selectivity to aldehyde of 100%, however the lowest conversion was 

observed over Au/TiO2 (0.65% conversion in 3 h). Fe2O3 supported Au catalyst gave the 

highest selectivity (12%) to benzyl benzoate, which was formed by subsequent oxidation of 

benzaldehyde to the corresponding benzoic acid by a standard acid-catalysed mechanism. 

Among the examined supported Au catalysts, the strongest acidic sites on Au/Fe2O3 was 

revealed by temperature programmed desorption of NH3. 

Bimetallic AuPd catalyst in Benzyl Alcohol Oxidation 

As introduced in §2.2.5.2, a breakthrough was made with the discovery that alloying of 

multiple metals has the potential to enhance reaction rate, alter product selectivity, and/or 

help slow or prevent catalyst deactivation. Synthesis of bimetallic catalysts for benzyl alcohol 

oxidation is focused on Au, Pt and Pd catalysts, which were found active under more 

environmental friendly conditions such as in aqueous solution or even under solvent-free 

condition [103]. 

Dimitratos et al. [125] used gold to promote PGM (platinum group metal) catalysts supported 

on activated carbon for the selective oxidation of various primary alcohols under mild 

conditions (333 K, 152.0 kPa O2). When water was used as solvent in place of organic 

solvent (toluene) for benzyl alcohol oxidation, a positive synergistic effect was observed in 

the case of Pd with the addition of Au. It was found that TOF increased from 30 h-1 for 

1wt%Pd/C catalyst to 160 h-1 for 0.73wt%Au0.27wt%Pd/C catalyst. 
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Enache et al. [65] synthesised a bimetallic AuPd/TiO2 catalyst by adding Au to Pd 

nanoparticles. An improved selectivity to aldehyde was obtained in solvent-free benzyl 

alcohol oxidation under mild conditions (373 K, 100 kPa O2), which was 92% at 75% 

conversion for bimetallic 2.5wt%Au2.5wt%Pd/TiO2 compared with a 54% selectivity at 51% 

conversion for monometallic 5wt%Pd/TiO2. It was suggested that the enhancement of activity 

of AuPd/TiO2 was due to Au altering the electronic structure of Pd [65]. Characterisation by 

Electron Microscopy and X-ray photoelectron spectroscopy revealed that the formed AuPd 

nanocrystals on TiO2 were made up of an Au-rich core with a Pd-rich shell. Other materials 

such as Al2O3 and Fe2O3 were also used to synthesise bimetallic AuPd catalysts; though the 

selectivity to the aldehyde was lower (87% at 83% conversion on Al2O3, 67% at 63% 

conversion on Fe2O3) possibly due to acid sites on the support promoting ester (benzyl 

benzoate) formation.  

It is suggested that Pd is largely responsible for the transformation of benzyl alcohol by the 

AuPd catalyst [230]. The reaction rate of benzyl alcohol oxidation over AuPd bimetallic 

catalysts was found to be zero order in O2 pressure in the range 100~3000 kPa 

[66,71,231,232]. In addition to the synergistic effect on the catalytic activity, alloying Au and 

Pd for alcohol oxidation catalysts has been shown to inhibit the leaching of metal (Pd) from 

the support or to prevent catalyst deactivation [125]. 

2.4.2.2 Aerobic Oxidation of Alcohol on the Catalyst Surface 

The aerobic oxidation of primary and secondary alcohols forms the corresponding carbonyl 

compounds. For example, as outlined in Figure 2.7, a primary alcohol proceeds first to an 

aldehyde and subsequently to a carboxylic acid. 

 
Figure 2.7 General oxidation scheme for primary alcohol oxidation to acid. 
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The precise reaction pathway for the oxidation of alcohols using dioxygen is still under 

dispute as several different mechanisms have been proposed [70,233-236]. There are still too 

many uncertainties as to the complex nature and coverage of the adsorbed species on the 

metal surface (e.g., the origin of adsorbed oxygen species, O2 or OH- or H2O, or the type of 

adsorbed reactant alcohol, RCH2OH or RCH2O
- or RCH2O [117]) which depend upon many 

factors such as pH, oxygen availability, substrate concentration and nature of the metal [70]. 

However, there is a general agreement on the dehydrogenation mechanism, via β-hydride 

elimination from the metal alkoxide to form a metal hydride [8,103], for which the active site 

is considered to be the reduced metal such as Pd(0) [230]. As to the oxygen adsorption on the 

active site, molecular O2 is suggested to be adsorbed dissociatively on most metal surfaces, 

such as Pt and Pd, whereas associatively on the surface of Au [103]. The role of adsorbed 

oxygen is ultimately to remove electrons from the metal surface, oxidise metal-hydride 

bonds, and regenerate hydroxide ions [103,237,238]. 

This section presents the mechanism of aerobic oxidation of an primary alcohol to an 

aldehyde over a heterogeneous catalyst as the representative based on the latest review by 

Davis et al. [103], who proposed three steps: i) the alcohol adsorbs on the metal surface, 

producing an adsorbed metal-alkoxide; ii) β-hydride elimination occurs to produce a carbonyl 

species and a metal-hydride; and iii) the metal-hydride is oxidised by dioxygen to regenerate 

the metal surface. 

Metal-alkoxide formation 

The alcohol (RCH2OH) adsorbs dissociatively on the metal surface (*), the O-H bond is 

broken producing an adsorbed metal alkoxide (RCH2O*) and a metal-hydride (H*) 

[220,221,239,240]. The corresponding path is as follows: 

RCH2OH + *  RCH2OH* 
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RCH2OH* + * → RCH2O* + H* 

The formation of metal alkoxide may be affected by the nature of the metal or the nature of 

substrates adsorbed on the metal [103]. 

β-hydride elimination 

After the formation of the metal-alkoxide (RCH2O*), a β-hydride elimination occurs on the 

metal surface to produce a carbonyl species (RCHO*) and a metal hydride (H*) 

[220,221,240-243]. The β-hydride elimination step can be described as: 

RCH2O* + *→ RCHO* + H* 

At this point, O2 does not play a role in the mechanism, yet O2 is required for the oxidation to 

proceed. Isotopic labelling studies indicated that oxygen atoms from dioxygen are not 

directly incorporated in the acid products, but are essential for the oxidation of aldehyde to 

acid. The β-hydride elimination step has been proposed to be the likely rate-determining step 

in alcohol oxidation [220,221,241]. 

Oxidation of metal-hydride and regeneration of catalyst surface 

The third step in alcohol oxidation to aldehyde is the oxidation of the metal-hydride species 

(H*) generated from the β-hydride elimination step to regenerate either the metal-hydroxide 

(OH*) or metal surface (*), which can be described as: 

O2 + 2H* → H2O2* + 2* 

The oxidation of the metal-hydride (H*) likely proceeds through a peroxide intermediate 

(OOH*) to yield a water molecule (H2O) and one half of an O2 molecule [220]. 
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2.5 Three-Phase Catalytic Reactor 

Because of the good heat transfer, temperature control and catalyst utilisation, three-phase 

catalytic reactors are usually employed in many heterogeneous hydrogenation and oxidation 

reactions [206]. The ‘global’ classifications of three-phase catalytic reactors used in industry 

can be summarised in Figure 2.8 as follows: 

 

Figure 2.8 Classification of industrial three-phase catalytic reactors [3,206]. 

 

It is of primary importance to select the proper reactor to obtain the required information. A 

rational choice from the variety of reactor types available requires knowledge of chemical 

reaction kinetics, thermodynamics, heat and mass transport, reactor hydrodynamics and the 

properties of the reaction mixture throughout the reaction [244]. Furthermore, the criteria for 

the selection of a reactor for catalyst testing are different from those for the selection of an 

industrial reactor. Laboratory reactors are small-scale reactors. Scaling down as far as 

possible is desirable for reasons of lower equipment costs, lower materials consumption, less 

waste formation, lower utility requirements, reduced demands on laboratory infrastructure 

and increased intrinsic safety (reduced hazards of toxic emissions, explosions and fires). 

However, a small-scale laboratory reactor requires an accurate experimentation and the use of 

representative (catalyst) samples. Table 2.10 lists characteristic properties of the reactors 

discussed in Figure 2.8, which can serve as guidelines for preliminary reactor selection. 

Three-phase reactors

(Gas-Liquid-Solid)

Slurry reactors

(Solid catalyst is suspended and is in motion)

Mechanically agitated slurry

(Mechanical agitation)

Bubble column slurry

(Gas-induced agitation)

Three-phase fluidised-bed

(Bubble movement and cocurrent liquid flow)

Fixed bed reactors

(Solid catalyst is stationary)
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Table 2.10 Characters of three-phase reactor types with typical values are given. (Adapted from Diepen and 

Moulijn [244]) 

Characterises  Catalyst in suspension  Fixed bed 

Reactor  mechanically 

agitated 

bubble 

column 

three-phase 

fluidised-bed 

 trickle-bed 3-phase monolith 

Catalyst  mobile small particles 

1~200 µm 

mobile 

particles 

0.1~5 mm 

 spheres, 

extrudates, etc. 

1.5~6 mm 

blocks with 

channels covered 

with catalyst layer 

10~150 µm 

Mode of 

operation 

 (semi)batch or continuous continuous  continuous (+ quasi batch), cocurrent 

downward 

Liquid hold-

up 

(ml
3mr

-3) 

 0.8~0.9 0.8~0.9 0.2~0.8  0.05~0.25 0.1~0.5 

Fraction of 

catalyst 

(mcat
3ml

-3) 

 0.01~0.1 0.01~0.1 0.1~0.5  0.55~0.6 0.07~0.15 

al 

(mi
2ml

-3) 

 1000~2000 600~1000 500~1000  100~1000 500~1000 

klal 

(s-1) 

 0.15~0.5 0.05~0.25 0.05~0.3  0.01~0.3 0.05~0.7 

ksas 

(s-1) 

 0.1~0.5 ≈ 0.25   0.06 0.03~0.09 

η≈  1 1 < 1  < 1 < 1 

al= gas-liquid interfacial area per unit volume of liquid; as= liquid-solid interfacial area per unit volume of 

liquid; kl= mass-transfer coefficient from gas-liquid interface to bulk liquid ≈10-4-4×10-4ml
3mi

-2s-1 for all 

systems; ks= mass transfer coefficient from liquid-solid interface to solid surface (ml
3ms

-1s-1). 

 

This section is limited to the mechanically agitated slurry reactor, since it is the most suitable 

type for the determination of the reaction kinetics of a three-phase reaction system on the 

laboratory scale [206,244] if after careful investigations of improving the mass transfer. 

2.5.1 Mechanically Agitated Slurry Reactor 

The mechanically agitated slurry reactor can be operated both batchwise and semi-

continuously. Most laboratory units are dead-end autoclaves equipped with a gas-inducing 

impeller with only feed of the reactant gas by keeping the pressure constant (semi-batch 

operation) [245]. The cylindrical vessels are equipped with different types of stirrers or 

turbines to keep the solid catalyst suspended in the form of fine particles in the liquid phase. 

The products are removed from the vessel after some time and separated from the catalyst. 
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Table 2.11 lists some practical advantages and disadvantages of commonly used slurry 

reactors. 

Table 2.11 Advantages and disadvantages of agitated three-phase catalytic reactors [3,206,244,245]. 

Advantages Disadvantages 

i) highly active catalysts can be used i) often poor gas-liquid mass transfer 

ii) small particles with catalyst effectiveness 

approaching unity 

ii) potential non-uniform distribution of the catalyst 

particles in the reactor  

iii) good temperature control iii) catalyst attrition 

iv) high liquid-solid mass transfer rates iv) catalyst/product separation difficult 

vi) low pressure drop vi) operation at high pressure (>30 bar) can be costly 

vii) ease of design and scale-up vii) hard to detect catalyst deactivation 

 

For a three-phase catalytic reaction taking place, gaseous reactant (e.g. hydrogen or oxygen) 

needs to be dissolved in the liquid phase, followed by the adsorption of both gaseous and 

liquid reactants on the catalyst surface and the successive surface reaction. This involves a 

number of mass transfer steps. It is useless to try and improve the reaction rate by using a 

more active catalyst or increasing the catalyst load, when the overall rate of reaction is 

determined by mass transfer, i.e. when the latter is slow compared with the intrinsic rate of 

reaction. Therefore, mass-transfer characteristics must be considered in the choice and design 

of three-phase reactors, based on which certain efforts can be made to improve the mixing 

and minimise the mass transfer resistance [244]. 

2.5.2 Mixing and Mass Transfer 

With the goal of obtaining intrinsic catalyst properties (reaction kinetics) from experimental 

data without this being obscured by the mass transfer rates, the following conditions are 

suggested to be fulfilled [245]: i) Effective contact between reactants and catalyst; ii) 

Absence of mass and heat transport limitations inside and outside the catalyst particles; and 

iii) Good description of reactor characteristics, with well-defined residence time distributions 

under isothermal conditions (ideal systems). 
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2.5.2.1 Particle Suspension 

Proper agitator selection is very important to provide good contact between the phases [244]. 

The catalyst particles must be kept uniformly suspended in the reaction medium for 

maximum utilisation of the catalyst, i.e. no catalyst should settle at the bottom in an ideal 

operation. This requires a minimum degree of agitation [244], which is relevant to the system 

geometry (stirrer diameter dI), properties of the catalyst (catalyst loading w’, mean diameter 

of catalyst particles dp, density ρp) and the liquid substrate at the operating conditions 

(viscosity μL, density ρL). A correlation (Equation 2-1) proposed by Zwietering et al. [246] is 

globally used to calculate the minimum agitation (Nm) required to ensure complete 

suspension in a stirred vessel, so that proper operating conditions can be chosen. 

 
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where, β is a dimensionless constant for a given system geometry. Nienow [247,248] has 

shown that an approximate value of β is given by: 
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2.5.2.2 External Transport Limitation 

In the three-phase catalytic reaction systems, the liquid substrate is usually present at much 

higher concentrations (e.g. pure liquid phase reactant in this study) than the gas dissolved in 

the liquid; gas reactant is the ‘limiting’ reactant. Therefore, the transport rate of gas (noted as 

G) from the gaseous phase to the liquid phase and then to the catalyst particle is of 

predominant significance. There are five major mass transfer resistances (see Table 2.12) 

during the transportation of G from the bulk gas-phase to the catalyst surface; each step 

reduces the effective concentration of gas reactant as reflected in Figure 2.9. 
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Table 2.12 Mass transfer resistances and resistance terms [4]. 

Steps in Figure 2.9 Mass transfer resistance of gaseous reactant G Inverse resistance term 

1 Diffusion in the bulk gas phase kga (s-1) 

2 Mass-transfer in the gas-liquid interface kLa (s-1)  

3 Convective (diffusive) transport across bulk D (m2.s-1) 

4 Mass transfer in the liquid-solid film ksas (s-1) 

5 Diffusion of reactants into porous network of the catalyst η 

 

Figure 2.9 Mass transport resistances of gaseous reactant in three-phase catalytic reaction system [4]. 

 

Steps 1~4 are often grouped as external mass transfer resistance of the gaseous reactant G, 

accordingly step 5 as the internal mass transfer resistance. 

Diffusion in gas phase 

The gaseous reactant G is initially present in the reactor as gas bubbles, its concentration in 

the interior of these bubbles being CGg and on the gas-side of the gas-liquid interface being 

CGig. The diffusion rate of G in the gas bubble is determined by gas film mass transfer 
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coefficient kg, gas-liquid interfacial area per unit volume of liquid a, and concentration 

difference (CGg-CGig), which can be expressed as: 

rG=kga(CGg-CGig)          2-3 

This part of the diffusion resistance is negligible for a sparingly soluble gas, such as 

hydrogen, and for pure gas feeds (i.e. no inert dilutes) [13,206]. For instance, Fernandez et al. 

[249] reported that in the hydrogenation of sunflower oil with constant pure hydrogen feed, 

the diffusion of hydrogen in the gas bubble was not considered since the diffusivity in gases 

is much greater than in liquids. 

Mass-transfer in the gas-liquid interface 

The rate of mass transfer between gas and liquid is determined by the volumetric liquid-side 

mass-transfer coefficient (kLa) and concentration difference of gaseous reactant G between 

liquid-side of the gas-liquid interface and the liquid bulk (CGi-CGb) [244]. The rate of gas-to-

liquid mass transfer is given as: 

rG=kLa(CGi-CGb)          2-4 

Assuming equilibrium between the phases at the interfaces, the concentration of G on the 

liquid side of the interface can be obtained by Henry’s law (H is Henry's constant): 

CGi=CGig/H           2-5 

The volumetric liquid-side mass-transfer coefficient (kLa) may be affected by the operating 

variables, mainly dependent on agitation speed N, operating temperature T, stirrer type and 

diameter dI, and viscosity if the liquid (μL) [120]. Empirical gas-liquid mass transfer 

correlations have been thoroughly investigated for different conditions for agitated slurry 

reactors in the literature [250-254]. 
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It was suggested that the poor gas-liquid mass transfer, is often, but not always, the limiting 

step in a heterogeneous catalytic process [244,245]. The agitation test appears useful to check 

for the presence of interphase gradient at the gas-liquid interphase, at which the mass transfer 

resistance can be minimised by an adequate stirring speed [260,261]. 

Diffusion in the bulk liquid phase 

The resistance to the diffusion of reactant gas G in the liquid substrate can be neglected 

taking into account that near perfect mixing occurs when the applied agitation speed is above 

the estimated minimum agitation (Nm) [249]. 

Mass transfer in the liquid-solid film 

The 4th step of mass transfer in Figure 2.9 is the transport of reactant gas G onto the catalyst 

surface through a liquid-solid film. Likewise, the rate of reactant transport depends on the 

external specific surface area of the catalyst particles as, the liquid-solid mass transfer 

coefficient ks, the catalyst loading w and the reactant concentration difference between the 

liquid bulk and the catalyst surface (CGb-CGs). The transport rate can be expressed as: 

rG=ksas(CGb-CGs)          2-6 

The measurement techniques for ksas in mechanically agitated slurry reactors have been 

reviewed by Ramachandran et al. [206], and there are many semi-empirical formulae based 

on the Reynolds and Schmidt number that can be used to estimate its value [235,255-259]. 

For a three-phase catalytic operation, mass transport at the liquid-solid interface can be 

improved by establishing a high relative particle-liquid velocity [249]. 

2.5.2.3 Internal Transport Limitation 

The concentration of reactants may not be uniform throughout the catalyst particle due to 

internal transport resistance, if the porous catalyst support was used to distribute active metal 

particles [255]. When the diffusion in the interior of the catalyst particles is rate determining, 
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not only are the rates often reduced but selectivities are also affected [244]. The rate of 

internal diffusion and reaction depends on the catalyst loading w, the intrinsic reaction rate 

kint, the reactant concentration on the catalyst surface Cs and the internal effectiveness factor 

ηc. Accordingly the following rate equation can be expressed: 

rG=wkintCsηc           2-7 

The catalytic effectiveness factor η (0≤η≤1) is defined as the ratio of reaction rate per unit 

volume of catalyst and the maximum reaction rate in the catalyst particle based on Cs. When 

η→1, the reactor operates at maximum efficiency, while in the presence of intraparticle 

transport resistance, η will be less than unity. To determine if the reaction is intrinsically 

limited or diffusion rate limited, a generalised criterion- the dimensionless Weisz-Prater 

modulus Φ [260,261] can be applied: 

Φ=
2

,

( )

[ ]

G p p

l

G

r d

D G


          2-8 

Where rG is the observed reaction rate of gas G per unit gram of catalyst particles, ρp is the 

catalyst density, dp is the mean diameter of catalyst particles, [Gl] is the initial concentration 

of gas reactant G in the bulk liquid, and Dε,G is the effective diffusivity of G in the liquid 

[261]. It was suggested that the use of very small catalyst particles (mainly smaller than 200 

µm) can minimise the intraparticle concentration gradients [206]. 
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2.6 Conclusions and Rationale for Current Studies 

Some of the following conclusions can be made from the above discussion: 

 Pd has been widely used in heterogeneous catalysis due to its outstanding catalytic 

activities, particularly in the form of nanoparticles on appropriate support materials. 

 Physico-chemical synthesis to stabilise Pd NPs on conventional support materials (e.g. 

oxide and carbon) usually requires toxic and expensive chemical agents or a rigorous 

experimental procedure in order to obtain nanoparticles with uniform sizes and shapes. 

Deactivation remains as a problematic issue for the use of supported Pd catalysts, 

which could be caused by chemical poisoning, thermal degradation and leaching of 

palladium. Alloying Au to Pd to form bimetallic AuPd catalyst was found to have a 

synergistic enhancement in the activity and selectivity. 

 Bioreductive synthesis of Pd NPs supporting on bacterial cells appears to be a 

promising method to manufacture bio-Pd catalysts with reliable size-control and 

certain catalytic activities in some applications (e.g. remediation of metallic pollutants, 

hydrogenations and organic chemical synthesis reactions). 

 There are desirable requirements to minimise the yield of trans-isomers in 

hydrogenation of vegetable oils and replace stoichiometric oxidants with 

environmentally-friendly alternatives (e.g. oxygen with heterogeneous catalyst) in the 

oxidation of alcohols; supported Pd or AuPd NPs have the potential to fulfil this need. 

A good choice for operating and studying the intrinsic mechanism of these reactions 

is an agitated slurry reactor, in which a perfect mixing needs to be ensured and 

reaction is not under mass-transfer control. 

Based on the literature review provided, it is clear that challenges exist in manufacturing and 

application of palladium catalysts in heterogeneous catalysis. The work in this thesis 
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highlights the potential roles of bio-catalysts in organic chemical synthesis reactions using 

three-phase autoclave reactors. The first part of the work will examine the bio-Pd catalyst in 

partial hydrogenation of soybean oil, with particular attention paid to minimising the 

production of trans-isomers. The second part of the work will investigate bio-AuPd catalysts 

in the oxidation of alcohols under solvent-free conditions using compressed air as a green 

oxidant. Detailed characterisation analysis will also be presented to understand the properties 

of bio-catalysts and relate these to the catalytic activities observed. 

 



 

3 Chapter 3 

Experimental Setup and Analytical Methods 

3.1 Chapter Overview 

This Chapter describes four experimental procedures or methods: i) the preparation of bio-

catalyst, ii) the experimental rigs and the standard operating procedure of the chemical 

reactions, iii) the methodologies for sample analyses, and iv) the techniques for catalyst 

characterisation. Firstly section §3.2 provides a full list of the commercial materials used in 

this study, including the information of supplier and specification. It also provides a table 

giving a brief specification of the instruments employed throughout this work. This is 

followed by the introduction of the microbial method of manufacturing bio-catalyst in §3.3, 

describing the lab work carried out with the strain of Escherichia coli. The bio-catalysts 

supported on the other strains reported in the later results chapters were provided by Drs I. 

Mikheenko and K. Deplanche from the School of Biosciences, University of Birmingham. 

The setups of two lab-scale semi-batch autoclaves are then described in §3.4, along with 

detailed instructions of the operating procedure, catalyst pre-reduction, and sampling method. 

The analytical method, performed using gas chromatography (GC), which has been 

developed to identify and quantify the products liberated during the reactions is presented in 

§3.5. Finally, the techniques employed to characterise the bio-catalysts are detailed in §3.6. 

 

3.2 Materials and Equipment 

A full list of all the commercial chemicals and materials used in this study is provided in 

Table 3.1. All the chemicals were used as received without further purification, unless 

otherwise stated. Table 3.2 presents a list of the major instruments employed for various uses, 

such as separations, analysis of chemicals and characterisation of catalysts. 
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Table 3.1 Commercial chemicals and materials used in this study. 

 Material Supplier Specification 

For chemical reaction   

 2-pentyne 

soybean oil 

Alfa Aesar, UK 

Sigma-Aldrich, UK 

>98% (hydrogenation reactants) 

 benzyl alcohol, 1-phenylethanol, 1-octanol, 2-

octanol, and 1,4-butanediol 

Sigma-Aldrich, UK >99.9% (oxidation reactants) 

 methyl linolenate, methyl linoleate, methyl oleate, 

methyl elaidate, methyl stearate, methyl palmitate 

benzaldehyde, benzoic acid, benzyl benzoate 

Sigma-Aldrich, UK >99% (GC analytical standards) 

 boron trifluoride/methanol Sigma-Aldrich, UK 10 w/w% (derivatisation reagent) 

 sodium chloride, sodium hydroxide Sigma-Aldrich, UK >99% (reagents) 

 2-propanol, n-heptane, hexane, and methanol Sigma-Aldrich, UK >98% (solvents) 

For bio-catalyst preparation   

 nutrient broth no. 2 (NB no. 2) Oxoid, UK general media for bacteria 

 sodium fumarate, glycerol Sigma-Aldrich, UK ≥99% (cellular respiration) 

 MOPS: 3-(n-morpholino)propanesulfonic acid-

NaOH buffer (20 mM, pH 7.0) 

Sigma-Aldrich, UK ≥99.5% (biological buffer) 

 palladium(II) sodium chloride (Na2PdCl4) 

gold(III) chloride hydrate (HAuCl4·nH2O) 

Sigma-Aldrich, UK >99.9% 

>99.9% 

 Tin(II) chloride, thiamine hydrochloride, 

hydrochloric acid, concentrated nitric acid, 

(Ethylenedinitrilo)tetraacetic acid (EDTA) 

Sigma-Aldrich, UK analytical reagents 

 phloxine B Sigma-Aldrich, UK stains and dyes 

Gas   

 compressed air BOC, UK gas reactant, GC 

 hydrogen  >99.9% (gas reactant, GC) 

 nitrogen  >99.9% (inert gas) 

 hydrogen/argon   10 vol/vol% (chemisorption) 

 CO  >99.9 % (chemisorption) 

 Helium  >99.9% a (GC carrier gas) 

Commercial catalyst    

 2 wt% Pd/Al2O3, 5 wt% Pd/Al2O3 Johnson Matthey powder, Type 335 b 

Others   

 Sieve Endecotts Ltd Aperture size: 63 µm 

 TEM grids Agar Scientific, UK copper c 

 γ-DEXTM 225 (30m×0.25mm×0.25µm) 

SPTM-2560 (75m×0.18mm×0.14µm) 

RTX-1701 (30m×0.25mm×0.25µm) 

Sigma-Aldrich, UK 

Sigma-Aldrich, UK 

Restek, USA 

GC capillary columns d 

a Helium was further purified using a moisture, hydrocarbon and oxygen trap; b Type 335 specification: D50:45 

(average size of 45 µm with distribution percentage reaches 50%); c Holey carbon film supported by a 300 mesh 

copper TEM grid, grid thickness: 20~30 nm; d column specification: Length(m)×Internal Diameter(mm)×Film 

Thickness(µm). 

 

Table 3.2 Instruments involved in this study. 

Instrument Manufacture Note 

A&D analytical balance  A&D Instruments Ltd. Series: HR-200 

IEC Centra Mid bench centrifuge DJB Labcare Ltd.  

Ultraspec III UV/VIS spectrophotometer  Pharmacia Biotech, Inc. optical density (OD) measurement 

JEOL 1200EX2 TEM JEOL, Inc. Lanthanum hexaboride (LaB6) filament 

Emscope SC 500 sputter coater Emscope carbon coating 

Philips XL-30 Environmental SEM FEI Company Oxford Inca 300 EDS system 

Equinox 3000 Powder X-Ray 

diffractometer 

Inel, USA CuKα radiation 

TG 209 F1 NETZSCH ceramic crucible, Proteus analysis 

Autochem II 2920 analyser Micromeritics thermal conductivity detector (TCD) 

Accupyc II 1340 Pycnometer Micromeritics density measurement 

Varian CP-3380 Gas Chromatography Varian, Inc. Flame Ionisation Detector (FID) 
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3.3 Bio-Catalyst Manufacture 

The novel biochemical method to synthesise biomass-supported monometallic Pd or 

bimetallic AuPd nanoparticles (NPs) is based on the sacrificial hydrogen strategy. The 

detailed preparation procedure using Escherichia coli (the major strain of bacteria 

investigated in this work) is described in the following section. 

3.3.1 Bacterial Growth and Metal Solutions Preparation 

Specially-grown E. coli 

Escherichia coli MC4100 (provided by Prof J.A. Cole, University of Birmingham, UK) 

precultures were grown overnight at 37 °C under anaerobic respiratory conditions (NB no. 2 

supplemented with 0.4% sodium fumarate (wt/vol) and 0.5% glycerol (vol/vol)) [177]. The 

precultures were then inoculated into 2 litre Durham bottles, which were filled to the brim 

with medium (NB no. 2) and sealed with rubber stoppers, degassed via a syringe through the 

stopper, and grown anaerobically in the same way as above for overnight. The cells were 

harvested by centrifugation (7000 rpm, 4 °C, 10 min), washed three times in degassed 

MOPS-NaOH buffer (20 mM, pH 7.0), re-suspended in a known volume of the same buffer 

under N2, and stored at 4 °C as concentrated cell suspensions until use. 

The cell concentration, g(dry weight).l-1, was estimated from optical density (OD) 

measurements using spectrophotometer at 600 nm by reference to a pre-determined OD600 to 

dry weight conversion, an OD600 of 1 corresponding to a biomass concentration of 0.482 g.l-1 

for E. coli [23]. 

‘Second-life’ E. coli 

The fermenting bacteria E. coli was harvested from a 4-litre fermentation bioreactor after 3 

weeks of hydrogen production [262], the primary process. The harvest ‘second-life’ E. coli 

cells were divided for two different treatments to active cells before palladisation: (A) 
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Incubated under H2 at 30 °C (30 min), then H2 substituted by N2; and (B) Transferred into 

anaerobic respiratory medium (NB no. 2 with 0.4% sodium fumarate (wt/vol) and 0.5% 

glycerol (vol/vol)), left overnight at 30 °C. 

Pd (II) and Au (III) solutions 

An aqueous Pd(II) solution (2 mM) was made by dissolving an appropriate amount of sodium 

tetrachloropalladate (Na2PdCl4) in HNO3 (0.01 M), to a pH of 2.3 as this was previously 

shown to be optimal for production of active catalyst using whole cells [26]. Similarly, 

aqueous Au(III) solution (2 mM) was made by dissolving an appropriate amount of hydrogen 

tetrachloroaurate (HAuCl4.nH2O) into distilled water and adjusting the pH to 2.3. 

3.3.2 Metallisation of Bacteria 

Preparation of bio-Pd 

The above harvested resting cell suspension was palladised following a standard procedure as 

described below. A calculated volume of the resting cell suspension was transferred 

anaerobically into an appropriate volume of degassed (vacuum pump) 2 mM Pd(II) solution, 

the amount of each depending on the final Pd loading required, e.g. weight of Pd:dry weight 

of cells being 1:19 or 1:3 to give loadings of 5 wt% and 25 wt% Pd on biomass respectively. 

The cell/Pd(II) mixture was left to stand at 30 °C for 30 mins to allow the biosorption of 

Pd(II) complexes [263]. After that H2, as the electron donor, was sparged through the 

suspension (200 ml.min-1, 20 min) for reduction [20]. In some cases sodium formate was 

added; this is noted where appropriate. Reduction of cell surface-bound Pd(II) to Pd(0) was 

confirmed by observing the colour of the mixture changing from yellow to grey during H2 

sparging [170]. The Pd loaded cells were allowed to settle overnight under gravity. 

Thereafter, the black bio-Pd(0) precipitate was harvested by centrifugation (4000 rpm, 4 °C, 

15 min), while the complete removal of Pd(II) from the solution was confirmed by assaying 
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the cell/Pd mixture supernatant for residual Pd(II) by the SnCl2 method to be described in 

§3.3.3. The solid was washed three times in distilled water and one final wash in acetone. The 

washed bio-Pd(0) was then re-suspended in a small volume (~5 ml) of acetone, left to dry in 

air and finally finely ground to approximately 63 µm particle diameter (estimated by sieve) in 

an agate mortar. 

Preparation of bio-AuPd 

Overall, the procedure of bio-AuPd preparation is a successive reduction of Pd(II) and 

Au(III) on bacterial biomass. The black bio-Pd(0) precipitate, after washing in distilled water 

three times, was re-suspended in a known volume of distilled water. The bio-Pd(0) 

suspension was degassed and then transferred anaerobically into a bottle containing an 

appropriate amount of 1 mM Au(III) solution saturated with hydrogen by bubbling gas (200 

ml.min-1, 1 h), the amount of each again was adjusted based on the final ratio of Pd:Au (w:w) 

required (i.e. 1:4, 2.5:2.5, and 4:1). The mixture was then allowed to react overnight in a 

rotary shaker (150 rpm, 30 °C) during which the suspension developed an intense purple/dark 

red colour from yellow [160], indicating the formation of colloidal gold Au(0). The AuPd 

loaded bacterial cells were allowed to settle overnight under gravity, and the supernatant was 

assayed for residual Pd(II) and Au(III) to ensure complete removal of both metal species 

(methods refer to §3.3.3). The final material bio-AuPd precipitate was recovered as the same 

process described above for bio-Pd, washed three times in distilled water, once in acetone and 

left to dry in air, followed by grinding into fine powder. Figure 3.1 depicts simplified 

procedure of metallisation steps during the bio-catalyst preparation. 
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Figure 3.1 Simplified procedure of bio-catalyst manufacturing using bacterial cells. 

 

3.3.3 Quantitative Assays for Pd(II) and Au(III) 

Before harvesting metallised biomass, the concentration of free Pd(II) or Au(III) ions in the 

cell/Pd in samples supernatants was monitored in order to confirm the complete reduction of 

Pd(II) and Au(III) using the following methods. 

Assay of Pd(II) 

Complete removal of residual Pd(II) from the cell/Pd mixtures supernatants was confirmed 

by carrying out the spectrophotometric SnCl2 method [264]. The Sn(II) reagent was made by 

dissolving 29.9 g of SnCl2 powder into 500 ml of concentrated HCl. For Pd(II) assay, 0.2 ml 

of sample was well mixed into 0.8 ml of SnCl2 solution in a 1.5 ml plastic cuvette and the 

absorbance at 463 nm was determined after one hour of incubation at 30 °C against a blank 

prepared in the same way (distilled water in lieu of sample). The system obeyed Beer’s law 

over the range 5~80 ppm Pd(II). 
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Assay of Au(III) 

Removal of Au(III) from the sample supernatants was monitored by the thiamine-phloxine 

assay as described by Fujita et al. [265]. The following were added to 1 ml of test solution in 

an assay tube and mixed well: 0.5 ml of 0.5% (w/v) methylcellulose, 1 ml of 10 mM 

thiamine, 2 ml of EDTA-citrate buffer (0.05 mM EDTA, 0.1 mM citric acid pH 4.6), 1 ml of 

1 mM phloxine and 4.5 mL of distilled water. Assay tubes were incubated in a water bath (20 

min; 40 °C) and absorbance at 570 nm was recorded against a blank prepared in the same 

way (distilled water in lieu of sample). The system obeyed Beer’s law over the range 0.2~20 

ppm Au(III). 

 

3.4 Apparatus and Procedure 

This section covers the employment of two autoclaves throughout this study, i.e. one 500 ml 

Baskerville autoclave reactor for hydrogenation and the other 100 ml Parr autoclave reactor 

for oxidation reactions. 

3.4.1 Experimental Rigs 

Baskerville Reactor for Hydrogenation Reactions 

The hydrogenations were all carried out in a 500 ml stainless steel autoclave reactor (max 

pressure 159 bar, temperature range 10 to 200 °C) manufactured by Baskerville Reactors and 

Autoclaves Ltd, Manchester, UK. Figure 3.2 shows a schematic of this reactor setup. 

The 500 ml autoclave (cylindrical, flat-bottomed vessel, diameter×height: 7.62×11.43 cm) is 

a typical gas-sparging type reactor equipped with a gas inlet pipe reaching near to the bottom 

of the reactor for the purpose of gas dispersion into the slurry phase. The agitator (50~1500 

rpm) used for mixing is a four-bladed impeller (5.84 cm diameter). The sampling line, from 

which aliquots could be removed during the reaction, is a small diameter (0.32 cm) dip-pipe 



Chapter 3 Experimental Setup and Analytical Methods 

72 

reaching near to the bottom of the reactor. A thermocouple is fitted to monitor the real-time 

temperature of the slurry, together with a heating jacket around the vessel that can be 

programmed to a desired set-point for the control of the temperature in the unit. In addition, a 

venting line for gas releasing and a safety relief bursting disc (SR, set at 16 bar) are located 

on the top of the reactor head. During the experiments, the heat flow, gas uptake, pressure 

and temperature in the reactor and temperature of the heating jacket were all monitored and 

recorded by a computer through an interface control system (Eurotherm Instruments, Inc.). 
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Figure 3.2 Schematic of the Baskerville autoclave reactor for the hydrogenation reactions. 
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Parr Reactor for Oxidation Reactions 

Catalyst testing in aerobic oxidation was conducted in another stainless steel autoclave 

reactor (max pressure 60 bar, temperature range 10 to 350 °C) manufactured by Parr 

Instrument Company, Illinois, US. Figure 3.3 shows a schematic of the original Parr 

autoclave used in this study. During the course of the experimental study it was necessary to 

make a number of modifications to the Parr reactor which are further described in detail in 

the results chapter §5.2.1.2. 

This 100 ml autoclave is a cylindrical and flat-bottomed vessel with the inside dimensions of 

3.30 cm(diameter)×11.68 cm(height). An efficient gas entrainment impeller is equipped to 

maximise the gas dispersion into a liquid system. This is obtained with a specially designed 

hollow four-bladed impeller (2.06 cm diameter) attached to a hollow stirring shaft through 

which gas is continuously recirculated from the head space above the liquid through the 

impeller into the liquid phase. As with all impellers, the speed of the stirrer creates a vacuum 

at the tip of the impeller. Gas enters openings near the top of the shaft and is pulled through 

dispersion ports located at the tips of the impellers. In the present Parr system with dispersion 

ports located at the very tips of the impellers, increased stirring speed leads to higher vacuum 

and associated increase of driving force for this very effective gas dispersion system. The 

liquid sampling valve is attached to the same fitting as the gas inlet valve and connected to 

the same dip tube. With this arrangement, incoming gas is always introduced below the 

surface of the liquid and the operator is provided with a means for clearing the dip tube to be 

sure that any sample taken during a run will be representative of the charge. 
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Figure 3.3 Schematic of the original Parr autoclave reactor for the oxidation reactions. 

 

3.4.2 Operation Procedure for Baskerville and Parr Reactors 

A standard procedure of the reactor operation is described in this section with specific 

reaction conditions listed individually in the corresponding results chapters. 
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Reactor Operating 

Typically, the autoclave reactor was charged with a weighed mass of catalyst and a known 

volume of solvent-free (unless otherwise stated) liquid substrate. After filling, the reactor was 

closed and purged with nitrogen three times in order to remove either the dissolved oxygen in 

the liquid or the remaining oxygen in the headspace of the reactor. Then the mixture was 

programmed to heat up to the desired reaction temperature with a gentle stirring speed (~500 

rpm). Thereafter the reaction was initiated by switching from a nitrogen gas flow to a reactant 

gas flow (i.e. hydrogen for hydrogenation and air for oxidation). For a typical semi-batch 

operation, gas reactant was through-flow and the reactant gas consumed was automatically 

replenished to maintain the set point of the pressure by the controller. Thus the reaction 

proceeded isothermally under a constant pressure throughout the set reaction time, during 

which liquid samples were taken periodically. The total reaction time depended on the 

operating conditions, the catalyst activity and the catalyst amount. After each experiment, the 

reactor was allowed to cool down to minimise the amount of vapour. Residual liquid 

chemicals were stored in waste drums prior to professional disposal. Table 3.3 illustrates the 

range of different variables used for the different catalysts studied. 

Table 3.3 Parameters investigated and varied for different catalysts in this study. 

 Hydrogenation in Baskerville  Oxidation in Parr 

Substrate 2-pentyne soybean oil  benzyl alcohol 1-phenylethanol, 1-octanol 

2-octanol, 1,4-butanediol 

Solvent isopropanol solvent-free  solvent-free solvent-free 

Catalyst Pd/Al2O3 Pd/Al2O3 

bio-Pd a 

 bio-AuPd a bio-AuPd 

Stirring speed (N, rpm) 1000 500~1200  1200 1200 

Agitator Reynolds number (Re) b 25241 3681~8834  1619 - 

Power consumption (P, w.g-1) c 0.132 0.016~0.228  0.004 - 

Pressure (p, bar) 2, hydrogen 3~7, hydrogen  5, air 5, air 

Flow rate (F, ml.min-1) NA NA  0~350 200 

Temperature (T, °C) 40 100-150  100~140 140~160 

a Various strains of bacteria used as the catalyst support, as detailed in individual sections. b Turbulence was 

assumed for both hydrogenation system (Re>2300) and oxidation system (a gas entrainment impeller as 

described in §3.4.1), detailed calculation refers to Appendix §8.3.1. c calculation refers to Appendix §8.3.1. NA: 

not applicable. 
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Catalyst Pre-reduction 

Catalyst pre-treatment usually consists of activating a catalyst prior to its use in a chemical 

reaction. For example, catalyst after long-term storage may be covered with impurities such 

as moisture or adsorbed O2 or become otherwise oxidised [266]. Reduction under a flow of 

H2 at a sufficiently high temperature to achieve reduction is necessary to regenerate the active 

sites, or reduced atoms of active metals, which are responsible for the catalytic activity. 

In-situ pre-reduction to the catalyst before reaction was carried out if solvent was used in the 

reaction system, i.e. 2-pentyne hydrogenation. After charging the required amount of catalyst 

and solvent into the reactor, a flow of hydrogen (500 ml.min-1) was bubbled through the 

system for 20 min with a gentle stirring of 500 rpm. The reactor was then opened again and 

the substrate was added into the catalyst/solvent mixture for the subsequent reaction. 

Ex-situ activation of the catalyst was carried out in the case of bio-AuPd catalyst used for the 

solvent-free oxidation. The catalyst was placed in a dry and clean glass vial, which after 

sealing and applying a vacuum was half-immersed into an oil bath with constant temperature 

of 120 °C for reducing the active metal. The ex-situ pre-reduction started by continuously 

flowing H2 through the ‘catalyst bed’ in the vial for 1 hour. The reduced catalyst was kept 

under nitrogen until required for use. 

Sampling method 

Liquid samples from the reactor were taken periodically, via a sampling valve, ensuring that 

the volume purged before sampling was higher than the tube volume. In the case of soybean 

oil hydrogenation, liquid samples taken were subjected to derivatisation. The derivatisation of 

fatty acids to fatty acid methyl esters, which offer excellent stability, and provide quick and 

quantitative samples for GC analysis, is performed using an alkylation derivatisation reagent. 

A typical derivatisation procedure was as follows: 2 ml of 0.5 M sodium hydroxide in 
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methanol was added into the liquid sample (~0.2 ml) in a test tube, which was then placed in 

a water bath at 60 °C for 15 mins; After cooling, 2 ml of boron trifluoride/methanol (10 

w/w%) were added and the mixture was kept under temperature of 60 °C for a further 10 

mins; 2 ml of a saturated solution of NaCl and 1 ml hexane were added sequentially and the 

tube was shaken to aid separation and dissolution of the fatty acid methyl esters (FAMEs) in 

the hexane layer top. After allowing the tube to stand for a few minutes and the layers to 

settle, the hexane layer was extracted and placed in a small, clean vial and kept in a cool dark 

place until further composition analysis. 

 

3.5 Qualitative and Quantitative Analytical Methods to Liquid Sample 

3.5.1 Gas Chromatography 

The compositions of the reaction mixtures were analysed using a Varian CP-3380 Gas 

Chromatograph equipped with a Flame Ionisation Detector (FID) (Figure 3.4). The FID uses 

hydrogen and air to partially burn the organic constituents that are carried by helium through 

a retention column. This produces ionic sub-compounds that are detectable by the FID and 

the resulting signals shown at different retention times are proportional to the quantity 

injected into the GC, with retention time corresponding to individual components. 

 
Figure 3.4 Simplified schematic of the Varian CP-3380 gas chromatography system. 

 

An optimised chromatographic separation begins with the column. The selection of the 

proper capillary column is of crucial importance, and should be based on four significant 
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factors: stationary phase (match to the polarity of the sample), column I.D. (dependent on the 

size of the sample), film thickness (dependent on the volatility of the sample), and column 

length (to increase the resolution when needed). An appropriate oven method then needs to 

be developed to keep the column at the right temperature or temperature ramp, allowing the 

elution of different substrates to be sufficiently separated from each other to obtain distinct 

peaks but within a reasonable amount of run time. Thereafter known chemical standards can 

be injected in the GC to determine the corresponding retention time, which allows the 

identification of the compounds from experimental samples. By injecting a standard 

containing a series of known concentrations, a calibration plot between the signal versus the 

analyte concentration can be established which permits the quantifications of the analyte 

concentrations in the experimental samples. Hence, the qualitative and quantitative analysis 

of chemicals can be established. The following Table 3.4 summarises the specific columns 

and oven methods established for the sample analysis throughout this study. 

Table 3.4 GC columns and oven conditions for the analysis of different substrates in this study. 

  2-pentyne 

hydrogenation 

Soybean oil 

hydrogenation 

Alcohol oxidation 

GC Column    

 capillary column 30 m γ-DEXTM 225 75 m SPTM-2560 30m RTX-1701 

Carrier gas flow rate 

 helium, ml.min-1 30.0 24.0 33.3 

Injector 

 temperature, °C 200 250 230 

 injection volume, µl 0.1 0.5 0.1 

Detector 

 temperature, °C 220 265 230 

 range 11 11 11 

Oven Conditions 

 equilibrium time - 5.0 min at 200 °C 0.5 min at 130 °C 

 isothermal temperature and time 40 ˚C for 10 min  - - 

 ramp rate  - 4 °C/min 20 °C/min 

 2nd isothermal temperature and 

time 

- 240 ˚C for 15 min 240 ˚C for 7 min 
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3.5.2 Assays for Residual Pd(II) and Au(III) 

In order to check if the active metal components, i.e. Pd(II) and Au(III), leach from the 

catalyst particles into the bulk mixture during the course of the reaction, assays were 

conducted to the supernatant liquid (after centrifugation) using the same methods as 

described in §3.3.3. 

 

3.6 Catalyst Characterisation Techniques 

The morphology of the catalyst, dispersion of the active metal particles and the interaction 

with the support are known to be strongly related to the catalyst activity and selectivity 

toward different products. To obtain the information of the catalyst characteristics, this 

section describes the characterisation techniques employed in this study. 

3.6.1 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) is used to record small and precise changes in weight as a 

function of programmed temperature ramps under certain gas atmospheres (e.g. H2, N2, or air, 

depending on the application). TGA is commonly employed to determine characteristics of 

materials such as polymers, to determine the absorbed moisture content of materials, 

degradation temperatures and levels of inorganic and organic components. If a species is 

thermally stable, over a certain temperature range there will be negligible mass change 

corresponding to little or no slope in the TG trace. However unstable materials will show a 

mass loss with temperature due to degradation reactions occurring. Hence TGA is a very 

useful technique to obtain the limit of upper temperature for use of a material, where beyond 

this temperature the material will begin to degrade. 

http://en.wikipedia.org/wiki/Thermogravimetric_analysis
http://en.wikipedia.org/wiki/Polymers
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Figure 3.5 TG 209 F1 measuring unit for thermogravimetric analysis. 

 

In this study air was chosen as the oxidising atmosphere to perform thermogravimetric 

analysis of combustion behaviour [267], which provides a useful indication of the catalyst’s 

physical stability in the oxidation reaction environment. A thermal analyser instrument TG 

209 F1 Iris developed by NETZSCH was employed for all the thermal studies (Figure 3.5). 

The bio-catalyst powder is evenly spread over the bottom of the ceramic crucible and 

precisely weighed with an analytical balance (Table 3.2). TGA was performed in an 

atmosphere of flowing air (50 ml.min-1) at a linear heating rate of 10 K.min-1, covering the 

temperature range from ambient to 1000 K. The temperature program and the corresponding 

curve of weight (percentage) against temperature are recorded by the computer data system. 

After the complete curve is obtained, results processing such as curve smoothing and peak 

detection are performed by using the Proteus software to find the exact points of inflection. 

Based on the TGA analysis, the reaction temperatures were selected carefully during the bio-

catalyst catalytic testing, for example to avoid using temperatures at which the catalyst may 

degrade. 

3.6.2 CO Pulse Chemisorption 

CO Pulse Chemisorption technique uses the principle of gas molecular chemical adsorption 

on catalyst sites to determine information on active surface area, percent metal dispersion, 

and active metal particle size by applying measured doses of carbon monoxide to the sample. 
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Figure 3.6 shows the Micromeritics Autochem II 2920 analyser equipped with a thermal 

conductivity detector (TCD) used for CO Pulse Chemisorption in this study. 

 

Figure 3.6 Micromeritics Autochem II 2920 for CO chemisorption analysis. 

 

This characterisation technique involves firstly the cleaning the metal surface by purging 

hydrogen over the sample while ramping the temperature, which should reach a value high 

enough to remove any contaminants or moisture (informed by TGA, §3.6.1) but not so high 

as to cause sintering or fusing of the sample. The temperature was then lowered to room 

temperature (25 °C) under an inert gas (e.g. helium, argon, or nitrogen), and known pulses of 

analytical gas (i.e. CO) measured by the injection loop were applied to the cleaned catalyst 

sample either until each active site has reacted and no more adsorption is detected or 

otherwise for a prescribed maximum number of pulses (20). The gas flow is monitored by the 

TCD and when few consecutive pulses contain the same amount of initially administrated 

gas, the catalyst surface is said to be saturated, i.e. a monolayer is formed on the catalyst 

surface. The quantity of molecules chemisorbed is the difference between the total amount of 

reactant gas injected and the sum amount that did not react with the active sites of the sample 

as measured by the detector. It is worth noting here that the chemisorption is not 
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recommended to be used for bimetallic catalyst samples such as Au-Pd/TiO2 since different 

metals have different binding energies and stoichiometric factors for an analytical gas. 

In this study, the catalyst powder was precisely weighed and well dispersed on the top of 

quartz wool in the clean sample tube, through which the gas flows downwards. 

Approximately the same amount of sample was used for each analysis for comparing data 

from sample to sample. The CO chemisorption analysis was performed under the following 

temperature program. The catalyst metal surface was first cleaned by being heated to 100 °C 

(10 °C/min) under hydrogen (10 vol/vol% H2/Ar, 50 ml.min-1), then allowed to cool to room 

temperature and subsequently CO gas was introduced by pulse-dosing, flushing with pure 

helium in between. 

The percent metal dispersion, metallic surface area and active particle size can be determined 

from the following equations calculated by the software of the Micromeritics Autochem II 

2920: 
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     3-2 

where Vs is the volume of adsorbed CO (cm3 at STP), F is the stoichiometry factor, Ws is the 

sample weight (g), the gram molecular weight (GMW) is a weight average of the number of 

moles of each active metal, and the SAcalc is the calculated specific surface area (per gram of 

metal). 

3.6.3 Electron Microscopy 

The techniques of electron microscopy are particularly useful for characterisation of bio-

catalysts, since they provide direct images of surfaces of the biomass, identification of the 
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element, and structural information of the active phases. This section includes the application 

of scanning electron microscopy (SEM), backscattered-SEM (BSE), energy dispersive X-ray 

analysis (EDS), and transmission electron microscopy (TEM). 

SEM-EDS 

A scanning electron microscope (SEM) is a type of electron microscope that images a sample 

by scanning it with a high-energy beam of secondary electrons in a raster scan pattern. The 

electrons interact with the atoms that make up the sample producing images that reflect the 

information about the specimen's surface topography of a surface layer 5~50 nm thick. For 

specimens with thick surface coatings, no information is provided regarding the underlying 

base. Back-scattered electron (BSE) is another type of signal produced by an SEM and used 

to image compositional contrast. The intensity of the BSE signal is strongly related to the 

atomic number (Z) of the chemical composition, by almost linear monotonic increase. In 

other words, heavy elements (high atomic number) backscatter electrons more strongly than 

light elements (low atomic number), and appear brighter in the BSE image [268]. In addition, 

SEM always includes an Energy-dispersive X-ray spectroscopy (EDS) capability, which is a 

powerful analytical technique used for the elemental analysis or chemical characterisation of 

a sample. It relies on the investigation of an interaction of a source of X-ray excitation and a 

sample. Its characterisation capabilities are due to the fundamental principle that each 

element has a unique atomic structure allowing X-rays that are characteristic of an element's 

atomic structure to be identified uniquely from one another. 

In this study dried samples of catalyst powder were mounted onto a microscope stub, and 

coated with an ultrathin layer of electrically conducting material (graphite) by high-vacuum 

evaporation (Emscope SC 500 sputter coater; Table 3.2), then examined on a Philips XL-30 

Environmental SEM fitted with an Oxford Instruments Inca energy dispersive X-ray 

spectroscopy (EDS) system, operating at an accelerating voltage of 10 kV. The 
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backscattering detector was used to allow for visualisation of metallic nanoparticles on the 

biomass and elemental analysis of the metals (Pd and Au) was determined by EDS. Detector 

controlling, analysing and processing were performed using INCA software. 

TEM 

Transmission electron microscopy (TEM) is capable of imaging at a significantly high 

resolution (usually ~20 nm) for examining material features as small as a single column of 

atoms. The principle behind the technique is that a beam of electrons is transmitted through 

an ultrathin specimen which interacts with the specimen as it passes through, leading to the 

generation of a corresponding image at a detector. The specimen must be of sufficiently low 

density to allow electrons to travel through it. These thin samples can be produced in 

different ways depending on the material under analysis, the desired information to obtain 

from the specimen, and the availability of equipment. For instance, dry materials that have 

dimensions small enough to be electron transparent, such as powders or nanotubes, can be 

quickly prepared by the deposition of a dilute sample containing the specimen onto support 

grids or films an in use after drying. On the other hand, samples like biological material 

contains large quantities of water which must be removed since the TEM works in vacuum, 

thus an ultrathin sectioning method is usually employed using fixed, dehydrated samples. To 

avoid disruption as a result of the loss of water, the material was preserved with fixatives to 

maintain the original stable structures. The material is then dehydrated in alcohol or acetone. 

After that, the specimen is embedded in plastic that polymerises into a solid hard plastic 

block. The block is cut into thin sections by a diamond knife in an instrument called 

ultramicrotome. Each section is only 50~100 nm thick. The thin sections of the sample are 

placed on a copper grid. The slice of tissue can then be studied under the electron beam. 

In this study the TEM specimens of catalyst were prepared in the two ways (i.e. whole cells 

and sections) as mentioned above. More specifically, the former simple method is to disperse 
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the dried catalyst powder in ultra-high purity water. A drop of the suspension is then allowed 

to evaporate on a holey carbon film supported by a 300 mesh copper TEM grid. For viewing 

the detailed cells structure in sections, the later complex sectioning procedure is applied to 

prepare the specimen using freshly harvested metal-loaded bacteria. The pellets of metal-

loaded bacteria were rinsed twice with distilled water, fixed in 2.5% (wt/vol) glutaraldehyde, 

centrifuged, re-suspended in 1.5 ml of 0.1 M cacodylate buffer (pH 7) and stained in 1% 

osmium tetroxide in 0.1 M phosphate buffer, pH 7 (60 min). Cells were dehydrated using an 

ethanol series (70%, 90%, 100%, 100%, 100% dried ethanol, 15 min each) and washed twice 

in propylene oxide (15 min, 9500g). Cells were embedded in epoxy resin and the mixture was 

left to polymerise (24 h; 60 °C). Sections were cut from the resin block with a diamond knife 

in ultramicrotome, and placed onto a copper grid. 

A JEOL 1200EX2 TEM operating at accelerating voltage of 80 kV was employed to view the 

specimens. The TEM images were acquired in Gatan Digital Micrograph and subsequently 

processed with the aid of Image J software. For the measurement of the particle size 

distribution, at least 100 individual surface metal particles were examined for each catalyst. 

3.6.4 X-Ray Diffraction 

X-ray diffraction (XRD) is a non-destructive analytical technique which reveals information 

about the crystallographic structure, chemical composition, and physical properties of 

materials and thin films. The atomic planes of a crystal cause an incident beam of X-rays to 

be refracted at specific angles, from which the generated pattern allows the identification of 

the structure when compared to a database of XRD patterns. The crystal size can be 

calculated from the width of the peaks, by application of the Scherrer’s equation [269] as: 

'
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            3-3 
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where λ' is the X-ray wavelength in nanometer (nm), B is the peak width of the diffraction 

peak profile at half maximum height resulting from small crystallite size in radians and K is 

the Scherrer constant related to crystallite shape. 

In this study X-ray powder diffraction patterns were acquired using an Equinox 3000 Powder 

X-Ray diffractometer. The catalyst powder is packed into the sample cup tightly so that the 

powder is level with the top of sample cup. The analysis was conducted by directing 

monochromatic high-intensity CuKα radiation (λ'= 0.154056 nm) at the powder specimen. 

The software Match! is employed to process the obtained data, and the powder pattern was 

compared to references in the Crystallography Open Database (COD). 

 

 



 

4 Chapter 4 

Selective Hydrogenation Using Bio-Pd Catalyst 

4.1 Chapter Overview 

This chapter describes the evaluaton of the catalytic performance of both conventional 

palladium catalyst (Pd/Al2O3) and biomass-supported palladium nanoparticles (bio-Pd) for 

two hydrogenation reactions of industrial significance. Reactions were all carried out in a 500 

ml Baskerville autoclave reactor (as described in §3.4.1) in a semi-batch manner with a 

through-flow of hydrogen gas. Firstly in §4.2, the liquid phase hydrogenation of 2-pentyne, 

which may include reactions of both the saturation of carbon-carbon triple-/double-bond and 

the cis-trans isomerisation of double-bond, was studied. Several systematic studies have been 

previously published by group members e.g. Bennett et al. [24,270]. In their work a 

5wt%Pd/D. desulfuricans bio-catalyst was investigated and revealed a higher selectivity 

towards cis-2-pentene although a lower initial reaction rate (~70% slower) in comparison 

with a conventional 5wt%Pd/Al2O3 catalyst, showing cis/trans ratios of 2.5 and 2.0 at a 2-

pentyne conversion of 92% respectively. The work reported here extends earlier studies to 

explore the potential for using Escherichia coli as the bio-Pd catalyst support. 

The other substrate used for hydrogenation investigation was soybean oil (§4.3), which is a 

complex mixture of fatty acids usually of different degrees of unsaturation. The chemistry of 

soybean oil hydrogenation is similar to, but more complicated than 2-pentyne hydrogenation, 

being a saturation reaction of multiple carbon-carbon double bonds simultaneously involving 

geometric (cis-trans) and positional isomerisations. Enhancing the production towards the 

desirable cis-monoene (i.e. cis-C18:1) in this catalytic process remains a problematic issue in 

industry. Herein, the primary objective is to investigate the catalytic performance of the bio-

catalyst for the partial hydrogenation of soybean oil, with a specific aim of improving the 
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production of cis-isomer. This is the first time that the bio-Pd catalyst has been tested in 

soybean hydrogenation. 

Finally conclusions were drawn in §4.4 to summarise the catalytic performance of bio-Pd, as 

a novel heterogeneous catalyst, in the hydrogenation of both 2-pentyne and soybean oil. 

 

4.2 Hydrogenation of 2-Pentyne 

The reaction network of 2-pentyne hydrogenation is shown in Figure 4.1, including the 

saturation of the carbon-carbon triple bond (step 6), the saturation (step 8 and step 9) and the 

cis-trans isomerisation (step 7) of the formed double bond. The cis-siomer is the specifically 

sought in industrial hydrogenations such as olefin metathesis [271]. 

 
Figure 4.1 The overall integral reaction network of 2-pentyne hydrogenation. Reaction step numbers shown 

maintain consistent with those in the kinetic study in Appendix 8.1.1. 

 

In this section, the reaction conditions employed were optimum conditions determined by 

Bennett et al. [270] for minimising the mass transfer limitations, which were a temperature of 

40 °C, a constant hydrogen pressure of 2 bar, and a stirring speed of 1000 rpm. For all the 2-

pentyne hydrogenation experiments, the amount of the substrate used was 4 ml of 2-pentyne 

in 150 ml of isopropanol as a solvent. The Pd loading was maintained identically as 0.375 

mg(Pd).ml(2-pentyne)-1 for each test. The catalyst weight, if of a variable Pd loading (e.g. 

2wt%, or 5wt%), was adjusted in order to keep constant the weight of Pd among the various 

experiments. Reactant and product profiles over the course of the reaction were followed by 
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withdrawing liquid samples for the analysis by gas chromatography (column and oven 

method refer to Table 3.4 in §3.5.1). Results are all presented from at least triplicate 

experiments as mean ± standard error of mean, unless otherwise stated. Error bars are within 

the dimensions of the symbols if not shown. Each catalyst was sampled from the same 

preparation, unless otherwise stated. The catalytic activity of the Pd catalyst was mainly 

evaluated by estimating the conversion of 2-pentyne, which was defined as the fraction of the 

2-pentyne that has been consumed with respect to the original amount after corresponding 

reaction time as follows: 

0

0

[2-pentyne] [2-pentyne]
2-pentyne conversion % 100%

[2-pentyne]

t
      4-1 

where [2-pentyne]0 and [2-pentyne]t correspond to the concentrations at initial time (t=0) and 

subsequent time (t) respectively. 

The typical concentration profiles for 2-pentyne hydrogenation using 2wt%Pd/E. coli under 

the aforementioned conditions (40 °C, 2 bar, and 1000 rpm) are shown in Figure 4.2. 

Complete hydrogenation of 2-pentyne was achieved within 40 mins. Cis-2-pentene was 

observed as the major product during the initial 30 mins, suggesting a preferentially syn-

addition of hydrogen onto the triple bond (C≡C) (step 6 in Figure 4.1). Meanwhile, the other 

two identified products, trans-2-pentene and pentane, were formed slowly at roughly equal 

rates by observing very close concentration profiles on the plot. It is noted that the 

concentration of cis-2-pentene, reaching a maximum value of 18.11±0.36 ×10-2 mol.l-1 (~66.7 

wt% of the mixture) at ~30 mins, and began to fall at >90% of 2-pentyne conversion. 

Simultaneously a continuing increase in both the trans-2-pentene and pentane was observed. 

This implies that the reaction path is the hydrogenation of 2-pentyne to cis-2-pentene 

followed by its deposition and re-adsorption for further hydrogenation to pentane or cis-trans 

isomerisation to trans-2-pentene. The adsorption of alkyne on the palladium surface is 
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suggested to be stronger than that of the corresponding alkene [272-276] thus could prevent 

the re-adsorption of the product alkene [271,277]. In other words, cis-2-pentene is able to 

compete for the metal active sites only when most of the 2-pentyne is consumed from the 

solution, to be further hydrogenated to pentane or converted to its trans-isomer. As a 

consequence, cis-2-pentene was not consumed in the presence of 2-pentyne (0~30 mins in 

Figure 4.2), while it underwent ready hydrogenation and isomerisation in the absence of the 

2-pentyne (after ~30 mins). The mole balance of the liquid substances was conserved during 

the course of the reaction. 

 

Figure 4.2 Concentration profiles as the function of reaction time in 2-pentyne hydrogenation using a 

2wt%Pd/E. coli catalyst. Reaction conditions were: 75 mg of 2wt%Pd/E. coli, 4 ml of 2-pentyne, 150 ml of 

isopropanol (solvent), T= 40 °C, 
2Hp = 2 bar, N= 1000 rpm. Discrete symbols are experimental data points 

averaged from two experiments with a reproducibility of within 10%. Lines shown represent the kinetic model 

in Equations 4-2 ~ 4-5. 

 

The kinetics of 2-pentyne hydrogenation in the present system were studied with the reaction 

rate equations derived based on a Langmuir-Hinshelwood type relationship. By taking into 

account the cis-trans isomerisation of 2-pentene, which was considered following the well-

known Horiuti-Polanyi mechanism [213] (details in §2.4.1.2), the overall reaction rates of the 

key components during the course of the 2-pentyne hydrogenation were derived in Equations 

4-2 ~ 4-5 accordingly (procedure of the equation derivation refers to Appendix §8.1.1): 
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Py, cis-Pe, trans-Pe, and Pa denote 2-pentyne, cis-2-pentene, trans-2-pentene, and pentane 

correspondingly; w denotes the catalyst loading per unit volume of liquid; rate constants kPy’ 

and kPe’ incorporate hydrogen concentration and hydrogen adsorption coefficient; k7 and k-7 

represent the reversible rate constants of cis-trans isomerisation (step 7 in Figure 4.1); and Ki 

(i= Py, cis-/trans-Pe, Pa) denotes the adsorption coefficient of each component. 

To solve for the above model parameters kiˈ, ki and Ki, the following objective function, F’, 

which represents the sum of the squares of the difference between experimental and 

calculated concentration for each component was minimised: 
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All the model parameters were simultaneously estimated using a Solver function of MS Excel 

software. A constraint was imposed that the coefficients must be greater than or equal to zero. 

The procedure was successful for all the components in 2-pentyne hydrogenation system as 

shown by the fitted lines in Figure 4.2 being a good match to the experimental data points. 

Table 4.1 lists the predicted values of the kinetic and adsorption parameters. Hydrogenation 

rate constants estimated by the model indicate a 7.6-fold faster hydrogenation of the carbon-
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carbon triple bond (C≡C) than that of the carbon-carbon double bond (C=C), which were 

22.3×10-3 mol.g-1.s-1 and 2.9×10-3 mol.g-1.s-1 respectively. Values of cis-trans isomerisation 

rate constants (k7 and k-7) were predicted lower than those of hydrogenation rate constants 

(k’Py and k’Pe), suggesting a lower level of isomerisation than hydrogenation in the present 

reaction system. A stronger adsorption of 2-pentyne than that of 2-pentene, and a very weak 

adsorption of pentane on the active site are revealed by the model-predicted values of 

adsorption coefficients (KPy>KPe>>KPa). Very few values of the rate constant and adsorption 

coefficient of 2-pentyne in a similar hydrogenation process are reported in the literature for 

the purpose of comparison. However, it is still worth to note that in the hydrogenation of 2-

butyne-1,4-diol using isopropanol as solvent over a Pd/A. oxidans bio-catalyst by Wood et al. 

[278], adsorption coefficients of 2-butyne-1,4-diol and 2-butene-1,4-diol were reported as 

31.28 m3.mol-1 and 0.00 m3.mol-1. In another study of 2-methyl-3-butyn-2-ol hydrogenation 

over a Pd/CaCO3 catalyst under solvent free conditions by Bruehwiler et al. [279], the 

estimated adsorption coefficients of 2-methyl-3-butyn-2-ol and 2-methyl-3-buten-2-ol were 

rather small, which were 1.03×10-3 m3.mol-1 and 10-5 m3.mol-1 respectively. Although the 

above variance from the literature due to the use of different substrates, catalysts and reaction 

conditions, it is evident that the adsorption strength of alkyne on a palladium surface is 

stronger than that of alkene. 

Table 4.1 Values of fitted parameters for 2-pentyne hydrogenation using Equations 4-2 ~ 4-5. 

Catalyst 

Rate constant 

×10-3 mol.g-1.s-1 
  

Adsorption coefficient 

×10-3 m3.mol-1 

k’Py k7 k-7 k’Pe   KPy KPe KPa 

2wt%Pd/E. coli 22.3 0.2 0 2.9   28.48 12.20 0.002 

 

One of the objectives of this study is to compare the catalytic performance of bio-Pd/E. coli 

in 2-pentyne hydrogenation with that of the conventional catalyst Pd/Al2O3. Figure 4.3 shows 

a comparison of 2-pentyne consumption profiles over four different catalysts, which are 
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2wt%Pd and 5wt%Pd on both E. coli and Al2O3, under identical reaction conditions (40 °C, 2 

bar, and 1000 rpm). It can be observed from Figure 4.3 that under the same reaction 

conditions, the 2-pentyne consumption rates decreased in the order of catalysts: 5wt%Pd/E. 

coli > 2wt%Pd/Al2O3 > 2wt%Pd/E. coli close to 5wt%Pd/Al2O3. 

 

Figure 4.3 2-pentyne concentration profiles versus reaction time over different catalysts. Reaction conditions 

were: 30 mg of 5 wt%Pd (or 75 mg if 2 wt%Pd), 4 ml of 2-pentyne, 150 ml of isopropanol (solvent), T= 40 °C; 

2Hp = 2 bar, N= 1000 rpm. Discrete symbols are experimental data points. Where error bars are shown these 

were calculated as mean ± standard error of the mean from at least three experiments. Where no error bars are 

shown (2wt%Pd/E. coli) the data were averaged from two experiments with a reproducibility of within 10%. 

Lines shown represent the kinetic model in Equation 4-2. 

 

Increasing the Pd loading from 2 wt% to 5 wt% upon Al2O3, the catalytic activity decreased; 

whereas with E. coli support over the same range of Pd loadings an increase in catalytic 

activity was observed. For the conventional Pd/Al2O3 catalyst, it is suggested that a lower Pd 

loading leads to a higher metal dispersion [280] with Pd particles possessing smaller size and 

larger surface area per unit mass of metal. 2wt%Pd/Al2O3 and 5wt%Pd/Al2O3 catalysts in the 

present work were examined by CO pulse chemisorption analysis with metallic surface areas 

of 57.85 m2.g(metal)-1 and 39.32 m2.g(metal)-1 respectively (details to be presented in §6.4.1). 

At the same Pd loading in each test, i.e. 0.375 mg(Pd).ml(2-pentyne)-1, 2wt%Pd/Al2O3 

provided larger surface area than 5wt%Pd/Al2O3 for reaction to take place, thus showing a 

faster 2-pentyne consumption rate over 2wt%Pd/Al2O3 than that over 5wt%Pd/Al2O3. 
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However this was not the case with bio-Pd/E. coli catalysts, in which Pd particle seeds were 

suggested to be localised by hydrogenases (within the cell wall structure of Gram-negative 

bacteria) [177,181]. At a relatively low loading of 2 wt%Pd, most of Pd particles may be 

encased within the E. coli cell membrane or surface layers. As the increase of Pd loading 

leads to the growth of Pd particles, there could be an increasing possibility of them rupturing 

the membrane and some of the metallic surface becoming exposed to the exterior 

environment. This ruptured particle growth was observed in the Electron Microscopy images 

as to be detailed in §6.3; as a result the increased availability of active metal surface in 

5wt%Pd/E. coli led to the faster rate of reaction as compared to 2wt%Pd/E. coli. 

Table 4.2 Comparison of the product distribution at 100% conversion of 2-pentyne using different catalysts. 

Reaction conditions were: 30 mg of 5 wt%Pd (or 75 mg if 2 wt%Pd), 4 ml of 2-pentyne, 150 ml of isopropanol 

(solvent), T= 40 °C; 
2Hp = 2 bar, N= 1000 rpm. 

 
Catalyst 

 Product concentration, ×10-2 mol.l-1 

  cis-2-pentene trans-2-pentene pentane 

1 2wt%Pd/Al2O3  7.34±0.53 10.29±0.60 9.44±0.48 

2 5wt%Pd/Al2O3  6.52±0.46 9.62±0.38 10.94±0.79 

3 2wt%Pd/E. coli  15.11 5.36 6.61 

4 5wt%Pd/E. coli  10.09±0.52 6.20±0.54 9.96±0.64 

 

Table 4.2 compares the product distribution when the 2-pentyne reached 100% conversion 

using these four catalysts. It is apparent that, at an equal Pd loading, the E. coli-supported 

catalyst selectively produced a higher amount of cis-2-pentene and a much lower yield of the 

unwanted trans-2-pentene than the Al2O3-supported catalyst. The better selectivity towards 

cis-2-pentene over bio-Pd/E. coli can be attributed to a smaller average size of Pd particles as 

compared to Pd/Al2O3 at an equivalent Pd loading, e.g. 4.31 nm for 5wt%Pd/E. coli and 12.77 

nm for 5wt%Pd/Al2O3 respectively (details to be presented in §6.4). 

In summary, it can be concluded that in 2-pentyne hydrogenation (T= 40 °C; 
2Hp = 2 bar; N= 

1000 rpm), promising reaction rates and lower yield of trans-pentene by using bio-Pd/E. coli 
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catalyst were obtained in comparison with the Pd/Al2O3 catalyst. Based on this, the more 

complicated hydrogenation of soybean oil was conducted to assess whether the bio-Pd 

catalyst could be used beneficially in place of existing catalyst, as reported in the following 

section. 

 

4.3 Hydrogenation of Soybean Oil 

Commercial soybean oil purchased from Sigma-Aldrich (UK) was used in this study, which 

mainly contains linolenic acid (cis-C18:3), linoleic acid (cis-C18:2), oleic acid (cis-C18:1), 

stearic acid (C18:0), and palmitic acid (C16:0). The chemical composition of each component 

determined by gas chromatography (GC) and some of the physical properties are presented in 

Table 4.3. 

Table 4.3 Fatty acid compositions and physical properties of untreated soybean oil. 

Chemical properties 

 Fatty aicds Trivial name C-chain:double bonds a Composition, wt% b 

 

hexadecanoic acid palmitic C16:0 10.6~10.8 

octadecanoic acid stearic C18:0 4.2~4.4 

cis-9-octadecenoic acid oleic cis-C18:1 22.4~24.6 

trans-9-octadecenoic acid elaidic trans-C18:1 <0.1 

cis,cis-9,12-octadecadionic linoleic cis-C18:2 53.4~55.3 

cis,cis,cis-9,12,15-octadecatrienoic acid linolenic cis-C18:3 6.8~7.4 

Physical properties 

 

 Correlation Reference 

viscosity, µ, kg.m-1.s-1 log10 μ = -3.073 + 46.6×106×T-3 Haighton et al. [281] 

density, ρL, kg.m-3 ρL = 1108-0.65×T Bailey [282] 

vapour pressure, p, MPa log10 ps = -1145×T-1 + 0.476 Fillion and Morsi [208] 

a C denotes carbon; the first number, e.g. 18, represents the total carbon number of the fatty acids; the second 

number, e.g. 3, represents the total number of double bonds. b Weight percentage determined by GC, range from 

different batches of purchased oil. 
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Figure 4.4 Simplified soybean oil hydrogenation and isomerisation network in the presence of solid catalyst. 

 

A simplified reaction network of soybean oil hydrogenation is shown in Figure 4.4. For an 

agitated three-phase catalytic reactor, it is essential to operate the reaction under conditions 

such that the mass transfer and other complex effects (e.g. hydrodynamic resistances) are 

absent. For this purpose, in §4.3.1 the conventional inorganic catalyst 5wt%Pd/Al2O3 was 

firstly employed in soybean oil hydrogenation to fully evaluate the mass transfer limitations 

in the present Baskerville autoclave reactor and achieve the minimisation by altering reaction 

operating conditions based on the engineering aspects (§4.3.1.1). This was followed by a 

kinetic study of soybean oil hydrogenation and the estimation of activation energy in the 

present reaction system (§4.3.1.2). Thereafter, §4.3.2 presents the evaluation of bio-Pd 

catalyst in soybean oil hydrogenation under the set of reaction conditions optimised using the 

inorganic supported catalyst. The catalytic performance of 5wt%Pd/E. coli was compared 

with that of conventional 5wt%Pd/Al2O3 under identical operating conditions (§4.3.2.1), 

followed by the examination of the thermal stability of 5wt%Pd/E. coli by changing the 
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reaction temperature (§4.3.2.2). A different biomass strain (Desulfovibrio desulfuricans) was 

also used as the support of bio-Pd to investigate the effect of bacterial strain on the catalytic 

performance in soybean oil hydrogenation (§4.3.2.3). In addition, the reduction of Pd(II) to 

Pd(0) upon E. coli cells during bio-Pd/E. coli preparation was proceeded using two different 

pathways, namely H2-reduction and formate-reduction, and its effect on the catalytic activity 

in soybean oil hydrogenation was also investigated (§4.3.2.4). 

A control experiment was firstly conducted using dry biomass of E. coli in soybean oil 

hydrogenation and no substrates were converted. The performance of the palladium catalysts 

under different conditions was assessed in terms of conversion (of cis-C18:3, cis-C18:2) and 

product formation at the same conversion. The conversion is defined as the fraction of the 

cis-C18:i (i=2, 3) that has been consumed with respect to the original amount after the 

corresponding reaction time as follows: 

0

0

[ -C18: ] [ -C18: ]
-C18:  conversion % 100%

[ -C18: ]

tcis i cis i
cis i

cis i


       i=2, 3   4-7 

where [cis-C18:i]0 and [cis-C18:i]t correspond to concentrations at initial time (t=0) and 

subsequent time (t) respectively. 

4.3.1 Conventional Catalyst 5wt%Pd/Al2O3 

The palladium loading in the soybean oil was maintained at 0.05 mg(Pd).ml(oil)-1 for all the 

soybean oil hydrogenation experiments, unless otherwise stated. Results are all presented 

from at least triplicate experiments as mean ± standard error of mean, unless otherwise stated. 

Error bars are within the dimensions of the symbols if not shown. Each catalyst was sampled 

from the same preparation, unless otherwise stated. Figure 4.5 depicts a typical time course of 

fatty acid concentration profiles using 5wt%Pd/Al2O3 under 5 bar of hydrogen at temperature 

of 125 °C with a stirring speed of 800 rpm. At the beginning of the reaction, it is thought that 
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the catalyst surface is saturated with the cis-C18:3 and cis-C18:2 components ready for initial 

reaction, due to the strong multi-site adsorption via multiple C=C double bonds and the C=O 

bond of the carbonyl group [283]. Referring to Figure 4.5 the concentration of cis-C18:3 

(~0.23 mol.l-1 in the starting material) was completely depleted within 1.5 hours. Meanwhile 

the other major reactant cis-C18:2 (~1.77 mol.l-1 in the staring material) showed a conversion 

of 96.80±1.31% after 2 hours, with a residual mass percent of 1.74±0.41 wt%. 

 

Figure 4.5 Example of the evolution of products distribution during the reaction time in soybean oil 

hydrogenation. Reaction conditions were: 150 mg of 5wt%Pd/Al2O3, 150 ml of soybean oil (solvent free), T= 

125 °C, 
2Hp = 5 bar, N= 800 rpm. Vertical dashed lines at time of 1 hour and 2 hours divide the profile into 3 

time intervals, details refer to text. 

 

The product formation with the course of the reaction time can be divided into 3 stages as 

demonstrated on Figure 4.5. i) Interval 1: 0~1 hours. During this period both cis-C18:1 and 

trans-C18:1 were formed from the beginning, indicating hydrogenation and isomerisation 

take place simultaneously. A gentle increasing rate was observed with cis-C18:1 (an increase 

from 0.72±0.00 mol.l-1 to 1.02±0.02 mol.l-1) while the formation of trans-C18:1 increased 

rapidly to 0.46±0.05 mol.l-1 from almost zero initial concentration. According to the Horiuti-

Polanyi mechanism [213] (as described in §2.4.1.2), the half-hydrogenated intermediate is 

firstly formed on the catalyst surface, and the free rotation of the half-hydrogenated 
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intermediate followed by hydrogen abstraction and desorption of the olefin results in cis-

trans isomerisation. Hence, before the newly formed cis-C18:1 could be desorbed from the 

active site, it would be converted further to the higher thermochemical stable trans-C18:1 due 

to the steric hindrance [284]. The amount of terminal product C18:0 was maintained stably 

around the starting concentration (0.13±0.00 mol.l-1) showing a very minor increase by 

observing the almost flat trend line within the initial 1 hour. ii) Interval 2: 1~2 hours. The 

amount of intermediate cis-C18:1 levelled off and decreased in this time period, suggesting 

its consumption had started to take place. Meanwhile the trans-C18:1 kept increasing at a 

stable rate. It was also observed that the formation of C18:0, most directly from the 

hydrogenation of C18:1, accelerated dramatically. Evidently, the considerable decrease of the 

polyenic fatty acids concentration in the mixture (after 2 hours a conversion of 100% for cis-

C18:3 and 96.80±1.31% for cis-C18:2) could have vacated some of the catalyst active sites 

and thus promoted the access for cis-C18:1 adsorption onto the catalyst surface. This would 

lead to the successive hydrogenation of cis-C18:1 giving C18:0 and isomerisation to trans-

C18:1. The profiles observed with steep increase of trans-C18:1 between 1 and 2 hours 

reaction time indicate intensification or acceleration of the reaction cis-trans isomerisation of 

cis-C18:1 during the consumption of cis-C18:2. iii) Interval 3: 2~3 hours. Both cis-C18:1 and 

trans-C18:1 decreased as a result of their further hydrogenation to saturated C18:0, with only 

C18:0 mounting up steadily to a concentration of 1.72±0.27 mol.l-1 (~53.4 wt% of the 

mixture) after 3 hours reaction time. From the above observations, the reaction path was 

elucidated as the stepwise hydrogenation of polyenoic fatty acids (C18:3 and C18:2) to 

monoenoic fatty acid (C18:1) followed by deposition and re-adsorption for monoene (C18:1) 

and further hydrogenation to saturated fatty acid (C18:0), while the cis-trans isomerisation 

occurs as a parallel reaction of the unsaturated components. The mole balance of the liquid 

substances was conserved during the course of the reaction. 
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As described above, this being a typical multiphase catalytic process involving hydrogen 

(gas), soybean oil (liquid) and catalyst (solid), hydrodynamic resistances and several 

transport limitations may occur due to the low solubility of hydrogen in the oil and the long 

carbon chains of reactant molecules in the liquid phase. These engineering challenges of mass 

transfer and mixing must be overcome for maximum product yield or selectivity, as 

addressed in the following section. 

4.3.1.1 Mixing and Mass Transfer Investigation 

In the present agitated Baskerville reactor, a minimum stirring speed for complete suspension 

of Pd/Al2O3 catalyst particles must be determined, so that proper operating conditions can be 

chosen and altered to minimise the intervention of mass transfer in order not to limit the 

hydrogenation rates. The mass-transfer in this study was divided into two categories: i) 

external mass transfer that first takes place from the bulk fluid phase to the external surface of 

the solid catalyst, which is frequently the rate limiting step in the hydrogenation of fatty 

acids, and ii) intra-particle diffusion of the reactants from the external catalyst surface into 

and through the pores within the pellet to an active site, on which the reaction occurs. The 

following section presents a systematic study to identify these mass transfer limitations with 

the aim to improve the mass-transfer process. 

4.3.1.1.1 Particle Suspension 

The minimum stirring speed (Nm) was predicted using a correlation proposed by Zwietering 

et al. [246] (Equation 2-1 in §2.5.2.1) to be 279.0 rpm in the present system, for a catalyst 

(5wt%Pd/Al2O3) loading of 0.115 g.100g(solution)-1 at an operating temperature of 100 °C. 

Parameters for calculation are listed in Table 4.4, which involve geometries of the 

Baskerville autoclave reactor, properties of the catalyst and soybean oil under the working 

temperature. 



Chapter 4 Selective Hydrogenation Using Bio-Pd Catalyst 

101 

Table 4.4 Parameters used for the calculation of the minimum stirring speed (Nm) in the case of solvent-free 

soybean oil hydrogenation over 5wt%Pd/Al2O3 in the Baskerville autoclave reactor. 

 Parameter Value  Description 

System geometries  

 dT 7.62 cm reactor inside diameter 

 dI 5.84 cm stirrer diameter 

 β a 2.85 constant 

Catalyst properties (5wt%Pd/Al2O3)  

 w’ 0.115 g(catalyst).100g(solution)-1 percentage catalyst loading 

 dp b 4.5×10-3 cm average diameter of catalyst particles 

 ρp c 3.538 g.cm-3 catalyst density 

Soybean oil properties d  

 µL 0.0668 g.cm-1.s-1 liquid viscosity 

 ρL 0.866 g.cm-3 liquid density 

Others:   

 g 981 cm.s-2 gravitational acceleration 

a estimated using Equation 2-2; b Johnson Matthey Type 335; c measured by Micromeritics Accupyc II 1340 

Pycnometer; d estimated using correlations in Table 4.3 under the reaction temperature of 100 °C. 

 

4.3.1.1.2 External Mass Transfer 

In order for the hydrogen to take part in a heterogeneously catalysed hydrogenation reaction, 

it must diffuse through the gas phase followed by dissolving in the oil and then diffuse to the 

catalyst surface. All the diffusion rate equations in this section are derived based on the 

details in §2.5.2.2~2.5.2.3 in the Literature Review chapter. 

Step 1: Hydrogen Diffusion in the Gas Phase 

Hydrogen diffusion rate in the gas bubble is determined by gas film mass transfer coefficient 

kg, interfacial area a, and pressure difference (
2Hp -

2iHp ), which can be expressed as: 

2 2 2
( )

iH g H Hr k a p p            4-8 

while the diffusion resistance of hydrogen in gas phase can be neglected due to the constant 

pure hydrogen feed (0.5 MPa) and the negligible vapour pressure of the oil (in the range of 
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0.85~3.97 ×10-3MPa based on the correlation in Table 4.3) at the temperatures of reaction in 

this study (50 °C~125 °C). 

Step 2: Mass-Transfer in the Gas-Liquid Interface 

The rate of dissolution of hydrogen is proportional to the volumetric gas-liquid mass-transfer 

coefficient kLa, and the difference between the hydrogen solubility and its actual 

concentration in the bulk liquid 
2 2([ ] [ ])lH H   at the prevailing temperature and pressure, 

which can be expressed as: 

2 2 2([ ] [ ])l

H Lr k a H H           4-9 

where the solubility of hydrogen in soybean oil is proportional to the pressure inside of the 

autoclave, in accordance with Henry’s law. The Henry’s law coefficient is a function of 

temperature (T) and can be represented by an Arrhenius type expression. The above 

relationships have been incorporated in an expression reported by Fillion et al. [120] as: 

22

5000
[ ] 0.113exp( ) HH p

RT

 
                    4-10 

For the reactions under identical temperature and hydrogen pressure, hydrogen mass transfer 

rate in the gas-liquid interface is mainly determined by kLa. The volumetric liquid-side mass 

transfer coefficient kLa of hydrogen can be affected by various parameters [252,285,286], 

such as the dimensions of reactor equipment (e.g. impeller type and diameter), speed of 

agitation, and liquid/solid type. For example, in the hydrogenation of monoeneic fatty acid 

methyl ester over nickel-based catalysts, Jonker [203] reported a kLa of 1.8 s-1 in a reactor 

setup with baffles. In the set of hydrogenations of sunflower oil over a nickel catalyst with 

only a change of the stirring speed reported by Fernández et al. [249], kLa was 0.03 s-1 for the 

reaction at 700 rpm and 0.1 s-1 at 1416 rpm. It appears that agitation speed plays an important 

role on kLa for a specific type of reaction in a given reactor configuration. Hence a set of 
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experiments were conducted at varied stirring speeds (500 rpm, 800 rpm, 1000 rpm, and 1200 

rpm; all above Nm= 279.0 rpm), to examine the effect of stirring speed upon mass transfer 

rate in practice. The other reaction conditions were maintained the same as: 150 mg of 

5wt%Pd/Al2O3 in 150 ml of soybean oil (solvent free), 
2Hp = 5 bar, and T= 100 °C for 5 

hours. 

 

Figure 4.6 Evolution of the initial reaction rates with stirring speed (for both cis-C18:3 and cis-C18:2 at the 

initial 30 mins) in soybean oil hydrogenation. Reaction conditions were: 150 mg of 5wt%Pd/Al2O3 in 150 ml of 

soybean oil (solvent free) for 5 hours, T= 100 °C, and 
2Hp = 5 bar. 

 

Figure 4.6 shows the influence of agitation rate on the reaction performance, in which the x-

axis denotes stirring speeds while the y-axis shows the corresponding initial reaction rates (at 

30 mins) obtained for both cis-C18:3 and cis-C18:2. As clearly seen in the figure, the initial 

reaction rates (at 30 mins) were strongly dependent on the agitation speed within the range of 

500~800 rpm, over which the rates increased from 0.07±0.00 mol.l-1.h-1 to 0.26±0.02 mol.l-

1.h-1 for cis-C18:3 and 0.33±0.01 mol.l-1.h-1 to 1.26±0.07 mol.l-1.h-1 for cis-C18:2. While the 

later part of the graph (N≥ 800 rpm) shows the initial rates of both cis-C18:3 and cis-C18:2 to 

be independent of the stirring speed. As the lowest stirring speed of 500 rpm applied was 

greater than the calculated minimum speed for particle suspension (i.e. > Nm=279.0 rpm), the 

catalyst particles were assumed to be dispersed uniformly in the reaction medium. However 
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the observed lower reaction rate indicates that a gas-liquid mass-transfer rate control regime 

occurred at a stirring speed of 500 rpm, i.e. the reaction rate was significantly affected by 

gas-liquid mass transfer. The strong influence of agitation speed from 500 rpm to 800 rpm 

implies the contribution of a sufficient stirring speed to a higher volumetric gas-liquid mass-

transfer coefficient kLa (s-1) of hydrogen, as suggested by Fernández et al. [249], thus a faster 

transfer rate of hydrogen across the gas-liquid interface occurred. More specifically, the 

liquid-side mass-transfer coefficient kL (m.s-1) is affected since increasing mixing speed 

increases the turbulence and surface renewal rate at the gas-liquid surface while decreases the 

liquid film thickness, correspondingly increasing kL [208,287]. Also the volumetric gas-liquid 

interfacial area a (m-1) could increase since a higher mixing speed introduces more gas into 

the slurry and breaks large gas bubbles into several small ones with larger specific surface 

area [287,288]. Considering the invariant reaction rates observed at the agitation conditions 

exceeding 800 rpm being within experimental error in Figure 4.6, it is verified by the 

agitation test that at a speed of 800 rpm the system was not under the gas-liquid mass-transfer 

rate control. 

Regarding the effect of stirring speed on the product distribution, it is observed that at high 

cis-C18:2 conversion (>60%), stirring speed affected marginally the formation of the trans-

C18:1 (Figure 4.7 a) and C18:0 (Figure 4.7 b). A slightly higher amount of trans-C18:1 was 

produced at a stirring speed of 500 rpm, a gas-liquid mass-transfer rate control regime, in 

which the lower hydrogen availability on catalyst surface may increase the possibility of cis-

trans isomerisation. It is also likely that a low agitation speed slowed down the transport of 

product away from the catalyst surface (i.e. the retention time of the half-hydrogenated 

intermediate upon the catalyst), in turn promoting the isomerisation taking place on the same 

catalyst surface to form trans-C18:1. On the other hand, less saturated fatty acid C18:0 was 

formed at 500 rpm, which can also be explained by the limited hydrogen availability due to 
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the hydrogen mass-transfer limitation. When there were not gas-liquid limitations for the 

hydrogen molecule to reach at the metal (i.e. ≥ 800 rpm), an excess of gas was more likely to 

exist on the active site, and the fatty acid molecule would tend to saturate before the 

isomerisation. 

 

 

Figure 4.7 Comparison of the formation of a) trans-C18:1 and b) C18:0 at the same cis-C18:2 conversion under 

different stirring speeds. Reaction conditions were: 150 mg of 5wt%Pd/Al2O3, 150 ml of soybean oil (solvent 

free), T= 100 °C, 
2Hp = 5 bar. 

 

Thereafter, it was concluded that under the agitation conditions of 800 rpm and above, the 

gas-liquid mass transfer resistance in the present Baskerville autoclave was negligible. A 
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stirring speed of 800 rpm was consequently chosen as the stirring speed in all further 

hydrogenation experiments. 

Step 3: Diffusive Transport of Hydrogen across Bulk 

The resistance to the diffusion of hydrogen molecules in the oil can be neglected taking into 

account that near perfect mixing occurs due to the agitation and to bubbling of the gas [249]. 

Step 4: Mass Transfer in the Liquid-Solid Film 

The agitation test is useful to check for the presence of interphase gradients both at the gas-

liquid interphase and the liquid-solid interphase [289,290]; the resistance at the former 

interphase has satisfactorily reduced at a stirring speed of 800 rpm. However, the agitation 

test could be inadequate to evidence liquid-solid transport limitations, as stirring affects gas-

liquid transport more than liquid-solid transport [291]. For example, in the study of 2-pentyne 

hydrogenation in a similar agitated slurry reactor by Bennett et al. [270], increasing the 

stirring speed from 445 rpm to 1100 rpm, the average gas-liquid mass-transfer coefficient kL 

increased by a factor of 5.8, while the liquid-solid mass transfer coefficient ks increased by a 

factor of only 1.85. The highest possible relative particle-liquid velocity favours faster mass 

transport at the liquid-solid interface; nevertheless the small catalyst particle tends to move 

together with the liquid in practice and thus the slip velocity of smaller particles is lower than 

larger ones [249]. Therefore, the increase of the agitation rate only causes the mixture to 

circulate faster, without increasing the relative velocity of the catalyst particle with respect to 

the liquid [249]. The 5wt%Pd/Al2O3 tested in this section was supplied by Johnson Matthey 

(Type 335), with an average size of 45 µm. In an attempt to identify the hydrogen mass 

transfer in the liquid-solid film, an additional test can be performed by varying the amount of 

catalyst mc. As suggested by Ramachandran et al. [206] and Santacesaria et al. [13], 
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experimental results can be plotted classically by the reciprocal of the hydrogenation rate 

22[ ] /l

HH r  versus the inverse of the catalyst mass 1/m using: 

2

2[ ] 1l

H

H
f

r m

 
  

 
                    4-11 

If a first-order reaction with respect to gaseous reactant occurs, the resulting plot from 

Equation 4-10 is expected to be linear, meanwhile revealing the comparative effects of the 

gas absorption resistance through liquid film at gas-liquid interface (intercept=
1

Lk a
, s) and 

the combined resistance to mass transfer through liquid film at liquid-solid interface and 

resistance to intra-particle diffusion and reaction within catalyst particle (slope=
1

1

6

p p

s c

d

k k






, kg.m-3.s) on the measured rate. 

Adopting the determined optimal reaction conditions with agitation speed of 800 rpm, a 

series of experiments were conducted with the series of catalyst (5wt%Pd/Al2O3) loadings 

from 0.017, 0.025, 0.033 to 0.05 mg(Pd).ml(oil)-1. In these experiments the temperature and 

pressure were maintained at 100 °C under 5 bar of hydrogen. At steady state, the rate of 

hydrogen mass transfer across the phase boundaries should be equal to the rate at which 

hydrogen is consumed in the catalyst particle [255,292]. Based on the discussion of Figure 

4.5, at the early stage of the reaction (Interval 1: 0~1 hours), polyenic fatty acids (cis-C18:3 

and cis-C18:2) are likely to occupy the catalyst active sites predominantly and undergo the 

hydrogen addition. Thereafter, it is reasonable to estimate the initial hydrogen uptake rate (

2Hr  at 30 mins) as the sum of initial disappearance rates of cis-C18:3 and cis-C18:2. The 

concentration of hydrogen in the liquid-phase at the interface 2[ ]lH  , for the absence of gas-

liquid mass transfer limitation, was approximated as being equal to the saturation value in 

soybean oil at the same temperature and pressure as the operating conditions 2[ ]H   (100 °C, 5 
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bar) by using Equation 4-9. Figure 4.8 a shows the resulting plot of 
22[ ] / HH r

 versus 1/m in 

the present soybean oil hydrogenation system, giving a nonlinear relation. Extrapolating such 

data to obtain the values of kLa and ks may lead to significant error [206]. In fact, the resulting 

pattern of 
22[ ] / HH r

 versus 1/m in Figure 4.8 a indicates a fractional reaction order with 

respect to hydrogen concentration as suggested by Ramachandran et al. [206] (Figure 4.8 b). 

In the present specific soybean oil hydrogenation system, the detailed discussion on the 

reaction order with respect to the hydrogen is to follow based on the surface reaction 

mechanism (§4.3.1.2). 

 

 

Figure 4.8 a) A plot of 
22[ ] / HH r  against 1/m. Reaction conditions were: 5wt%Pd/Al2O3, 150 ml of soybean oil, 

T= 100 °C, N= 800 rpm, 
2Hp = 5 bar; b) An illustrative [G*]/rG versus 1/m plot for different reaction orders 

(Taken from Ramachandran et al. [206]). 
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Thereafter for the evaluation of the coefficient of hydrogen mass transfer in the liquid-solid 

film ks was estimated with, using the following expression proposed by Gutiérrez-Ortiz et al. 

[259]: 

 

2 2

2/32 3

16 4.84
18

p p Ls p

H H

gdk d

D D

    
   

   
   

                 4-12 

Table 4.5 lists the corresponding parameters in Equation 4-12 for the calculation of ks. 

Table 4.5 Parameters, conditions, and references to determine the coefficient of hydrogen mass transfer in the 

liquid-solid film ks. 

 Variable Value Reference 

Catalyst (5wt%Pd/Al2O3)    

mass of catalyst per unit volume of slurry w 1×10-3 g.cm-3 Experimental 

mean particle diameter dp 4.5×10-3 cm Johnson Matthey 

density of catalyst ρp
a 3.538 g.cm-3 Experimental 

Hydrogen    

diffusivity for H2 in soybean oil 2HD  10.1×10-5 cm2.s-1 Fillion and Morsi [208] 

Henry’s constant H 44.31 ×109 pa.cm3.mol-1 Fillion and Morsi [208] 

hydrogen concentration in soybean oil 2[ ]lH
b 0.0113 kmol.m-3 Fillion et al. [120] 

Soybean oil c    

viscosity µL 0.0668 g.cm-1.s-1 Haighton et al. [281] 

density ρL 0.866 g.cm-3 Bailey [282] 

Reaction conditions    

operating temperature T 373 K Experimental 

hydrogen pressure 2Hp  0.5×106 pa Experimental 

a Catalyst density was measured by Micromeritics Accupyc II 1340 Pycnometer; b the concentration of 

hydrogen in soybean oil was approximated as being equal to the saturation value at the operating conditions 

(100 °C, 0.5 Mpa); c properties of soybean oil were estimated using correlations in Table 4.3 under the reaction 

temperature of 373 K. 

 

The value of liquid-solid mass transfer coefficient ks estimated in the current reaction system 

at 100 °C was 9.32×10-2 cm.s-1. A criterion suggested by Ramachandran et al. [206] was used 

to test for the absence of liquid-solid mass transfer, which occurs if the following relationship 

is satisfied: 
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The overall rate of reaction 
2HR  was obtained as the sum of the reaction rates of the cis-

C18:3 and cis-C18:2 at the initial 30 mins. In the present reaction system, the value of α was 

then obtained as 0.8×10-3; therefore the reaction was not under liquid-solid mass transfer 

limitation. 

4.3.1.1.3 Intra-Particle Diffusion 

In obtaining kinetics data for a nonlinear system, it is preferable to ensure that an intra-

particle gradient (caused by limitations in the reactant and products mass transfer within the 

catalyst) is absent. 

Intra-particle Diffusion of Fatty Acids 

The catalyst is uniformly immersed in the solvent-free soybean oil throughout the catalytic 

process, it is reasonable to assume that the catalyst particles are completely wetted and the 

pores filled with liquid. The concentrations of fatty acids are much greater compared with 

that of the dissolved hydrogen and vary very little from one position to another in the slurry, 

being virtually equal to the bulk concentration throughout. Thus the intra-particle diffusion of 

fatty acid molecules can be neglected. 

Intra-particle Diffusion of Hydrogen 

The determination of intra-particle mass transfer of hydrogen can usually be achieved 

experimentally by comparing the rate achieved with a large catalyst particle (in which there 

may be diffusion limitations) with the rate obtained using a fine size of catalyst particles 

[206,292,293]. For the given conventional 5wt%Pd/Al2O3 catalyst (Johnson Matthey) 

employed in this study, the average size of spherical catalyst particles is known as 45 µm 
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with a distribution percentage that reaches 50%. The influence of intra-particle diffusion was 

then studied by the calculative approach as follows. 

If the reaction rate expression is not known beforehand, a generalised criterion- the 

dimensionless Weisz-Prater modulus Φ [260,261] for the initial hydrogenation rate can be 

applied in order to evaluate the concentration gradient between the external surface and the 

inside of the pore structure:  

Φ=
 

2

2

2

2[ ]

H p p

l

H

r d

D H


                    4-14 

The initial hydrogen uptake rate 
2Hr , as aforementioned, equals the sum of the reaction rates 

of the cis-C18:3 and cis-C18:2 at the initial 30 mins. The corresponding parameters in 

Equation 4-14 were also listed in Table 4.5 for the calculation of Φ, which was obtained as 

0.002. Usually, the absence of pore diffusion control for unknown kinetics is assumed when 

the values of Φ< 0.03~0.7 [294], as found by calculation in this work. 

Summarising the results, a surface reaction regime is assured for a stirring rate above 800 

rpm, using 150 mg of 5wt%Pd/Al2O3 catalyst in 150 ml soybean oil under the temperature of 

100 °C and hydrogen pressure of 5 bar. 

4.3.1.2 Kinetics Model of the Surface Reaction 

In the absence of diffusion limitations, the intrinsic reaction mechanism of soybean oil 

hydrogenation in the present system was investigated. 

4.3.1.2.1 Effect of Hydrogen Pressure 

Increasing the pressure to enhance the hydrogen dissolution (Equation 4-9) could increase the 

reaction rate and conversion. Thus in this section a range of pressures from 2 to 5 bar were 

investigated to understand their effect on the reaction performance. Other reaction conditions 
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were kept constant: 150 mg of 5wt%Pd/Al2O3 in 150 ml of soybean oil (solvent free), T= 100 

°C, and N= 800 rpm. 

 

Figure 4.9 Effect of hydrogen pressure on initial reaction rate of hydrogen in soybean oil hydrogenation. 

Reaction conditions were: 150 mg of 5wt%Pd/Al2O3, 150 ml of soybean oil, T= 100 °C, N= 800 rpm. 

 

Figure 4.9 displays the dependence of the initial reaction rate of hydrogen (
2Hr ) on the 

operating pressure, in which 
2Hr  was obtained as the sum of initial hydrogenation rates of cis-

C18:3 and cis-C18:2 at the initial 30 mins. A nonlinear dependence of rate on H2 pressure 

was observed, indicating a fractional order-dependence with respect to H2. This is consistent 

with the finding in Figure 4.8 a that a fractional order in hydrogen concentration suggested by 

the plot of 
22[ ] / HH r

 versus 1/m for 5wt%Pd/Al2O3. However, inconsistent findings were 

reported in the literature in terms of the hydrogen reaction order. For example, a reaction 

order in hydrogen varying from 0.24 at 413 K to 0.54 at 473 K in rapeseed oil hydrogenation 

was reported by Bern et al. [295]; a half-order with respect to hydrogen was interpreted in the 

hydrogenation of butynediol in a batch slurry reaction by Chaudhari [293]; while the 

hydrogen reaction order was proposed to be zero in the report of the partial hydrogenation of 

a rapeseed oil in the presence of a supported palladium catalyst by Santacesaria et al. [13]. In 

this study, findings from effects of catalyst amount and hydrogen pressure on soybean oil 
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hydrogenation over 5wt%Pd/Al2O3 suggested that a fractional order with regard to the 

hydrogen concentration may be assumed. However, given the errors in Figure 4.9 and the fact 

that the triplicate experiments were performed on one catalyst sample only, further tests are 

required for determining the hydrogen reaction order. 

 

 

Figure 4.10 Comparison of the formation of a) trans-C18:1 and b) C18:0 at the same cis-C18:2 conversion 

under different hydrogen pressures. Reaction conditions were: 150 mg of 5wt%Pd/Al2O3, 150 ml of soybean oil, 

T= 100 °C, N= 800 rpm. 

 

The influence of hydrogen pressure on the product formation was also evaluated. Figure 4.10 

a shows the concentration of side product trans-C18:1 as a function of the cis-C18:2 

conversion, indicating that a slightly higher amount of trans-isomer was produced at lower 
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pressure of 3 bar, whereas very close behaviour was observed for 5 bar and 7 bar. This may 

suggest that low concentration of dissolved molecular hydrogen in the bulk liquid at low 

operating pressure promoted isomerisation on the catalyst surface, in preference to 

hydrogenation. A lower availability of hydrogen on the catalyst site also showed a lower 

production of saturated fatty acid (C18:0) in the case of 3 bar pressure (Figure 4.10 b). It 

appeared to be that the hydrogen concentration influences the reaction selectivity of 

hydrogenation versus isomerisation, a low hydrogen concentration favours the cis-trans 

isomerisation relative to the hydrogenation whilst increasing the hydrogen concentration on 

the catalyst surface by higher hydrogen pressure leads to the over-hydrogenation (saturation 

reaction) at the expense of the isomerisation reaction. Furthermore it is suggested that 

hydrogen is needed in isomerisation, which stops in the absence of hydrogen [120,296,297]. 

In the selective hydrogenation of fatty acid methyl esters of sunflower oil (FAME), Pérez-

Cadenas et al. [296] found the isomerisation rate was weakly dependent on the hydrogen 

pressure although hydrogen was not consumed. The effect of hydrogen concentration on the 

reversible cis-trans formation in the soybean oil hydrogenation was reported to give different 

hydrogen orders, 0.88±0.01 for cis-isomer to react (forward) and 1.56±0.03 for trans-isomer 

to react (backward) respectively [120]. Another study by Dijkstra [297] on the isomerisation 

of the mono-unsaturated fatty acid suggested a half an order isomerisation in hydrogen. 

Based on the above results, 5 bar of hydrogen pressure was chosen as a compromise between 

achieving an acceptable reaction rate and less formation of C18:0 for the following study. 

The cis-trans isomerisation mechanism in the present reaction system is studied. 

4.3.1.2.2 Kinetic models for Soybean Oil Hydrogenation 

In this section, the intrinsic mechanism of soybean oil hydrogenation using 5wt%Pd/Al2O3 

was fully investigated in the present Baskerville autoclave reactor with the set of operating 
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conditions (150 mg of 5wt%Pd/Al2O3 in 150 ml of soybean oil, T= 100 °C, 
2Hp = 5 bar, and 

N= 800 rpm), under which the mass transfer limitations can be ignored. A well-accepted 

simple mechanistic kinetic Model 1 (Figure 4.11), proposed in 1949 by Bailey [298], was 

firstly applied as a preliminary model to identify the adsorption coefficients of the fatty acids 

upon the palladium active site. In Model 1, both cis- and trans-isomers with the same 

numbers of double bonds are combined or lumped into groups. On the basis of Model 1, a 

novel comprehensive Model 2 (Figure 4.13) was subsequently proposed to describe the 

soybean oil hydrogenation process involving cis-trans isomerisation and hydrogenation. Rate 

equations of both models were derived and fitted to the obtained experimental data. This 

section addresses the discussion on the model fitting with the details of equation derivation 

procedures referring to Appendix 8.1.28.1.2. 

Model 1 

 

Figure 4.11 The reaction scheme of soybean oil hydrogenation based on Model 1 [298]. Reaction step numbers 

shown maintain consistent with those in the kinetic study in Appendix 8.1.2. 

 

A Langmuir-Hinshelwood based adsorption kinetic relation was used to establish partial 

differential equations (Equations 4-15 ~ 4-18 in Table 4.6) of the fatty acids in Model 1. 

Ki (i=1, 2, 3), is the equilibrium adsorption constant of the fatty acid. A ratio of 3:2:1 for 

K3:K2:K1, corresponding to the adsorption probabilities of trienic (C18:3), dienic (C18:2), 

monoenic (C18:1) fatty acids on the palladium surface respectively, was proposed by 

Santacesaria et al. [13]. k denotes the rate constant of the double bond hydrogenation which 

was assumed to be independent of the degree of saturation [203]. To solve for parameters Ki 

and k in Model 1, the objective function F’ (Equation 4-6, i= C18:3, C18:2, C18:1, and 

C18:0; j= 1, 2, 3…) was minimised. 
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Table 4.6 Partial differential equations in two kinetics models for hydrogenation of soybean oil. 

 Equations for corresponding components in soybean oil hydrogenation kinetics models a Equation number 

Model 1 
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All model parameters were simultaneously estimated using a Solver function of MS Excel 

software. A constraint was imposed that the coefficients must be greater than or equal to zero. 

The experimental and predicted fatty acid compositions are displayed in Figure 4.12. It is 

clear that the Model 1 predicted the experimental concentration data points closely as a 

function of the reaction times and the trends of trienic (C18:3), dienic (C18:2), monoenic 

(C18:1) and saturated (C18:0) fatty acids distribution were also closely represented by the 

model. The values of optimised parameters by regression are shown in Table 4.7. It is noted 

that the equilibrium adsorption constant of the saturated product C18:0 was predicted as K0= 

0, indicating that the saturation product moves away from the catalyst surface since the 

reaction is highly exothermic [297]. 

 

Figure 4.12 Experimental (scattered symbols) and predicted (solid lines) fatty acid composition profiles using 

Equations 4-15 ~ 4.18 for Model 1. Reaction conditions were: 150 mg of 5wt%Pd/Al2O3, 150 ml of soybean oil 

(solvent free), T= 100 °C, 
2Hp = 5 bar, N= 800 rpm. 

 

Table 4.7 Values of fitted parameter using Equations 4-14 ~ 4.17 for Model 1. 

Adsorption constant, l.mol-1  
Rate constant, mol.g-1.h-1 

C18:3 C18:2 C18:1 C18:0 H2  

K3 K2 K1 K0 KH  k 

5.51×106 3.68×106 1.84×106 0 54.73  4.17 
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Although the above Model 1 is able to represent hydrogenation rates adequately as shown in 

Figure 4.12, it neglects isomerisation by lumping isomers of the same chemical formula as 

one product. While in addition to the hydrogenation mechanism on the Pd surface site, the 

cis-trans isomerisation should also be taken into the account as the aim of this study since 

cis-isomers are of primary importance for the quality of the final product and trans-isomers 

are undesirable. Hence a more complete kinetic Model 2 where hydrogenation reactions are 

considered together with cis-trans isomerisation in a complex reaction scheme was proposed 

to better describe the soybean oil hydrogenation process. 

Model 2 

In this Model 2, the cis-trans isomerisation is considered following the well-known Horiuti-

Polanyi mechanism [213]. Figure 4.13 describes the reaction scheme of soybean oil 

hydrogenation based on Model 2. 

 

Figure 4.13 The reaction scheme of soybean oil hydrogenation based on Model 2. Reaction step numbers shown 

maintain consistent with those in the kinetic study in Appendix 8.1.2. 

 

Likewise, the Langmuir-Hinshelwood-Hougen-Watson (LHHW)-based kinetics were applied 

in order to obtain the intrinsic rate equations. The mass balance for each component is given 

by the differential equations listed in in Table 4.6 as Equations 4-19 ~ 4-24. 

The hydrogen orders for the isomerisation reactions are assumed to be different, presented as 

γ for cis-isomer to react (forwards) and δ for trans-isomer to react (backwards). Equations 4-

19 ~ 4-24 were applied to fit to the experimental data. The equilibrium adsorption 

coefficients of the fatty acids Ki (i=0, 1, 2, 3) and the rate constant k obtained in Model 1 
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were used as the initial values in Model 2 to accelerate the parameter estimation routine. All 

the parameters were simultaneously optimised in the same way as for Model 1 using the 

Solver function of MS Excel software. As is shown in Figure 4.14, Model 2 is able to 

reproduce accurately the evolution of each component in the course of reaction time, 

including the concentration changes of trans-C18:1. Meanwhile, Table 4.8 summarises the 

values of optimised parameters for Model 2 by regression. 

 

Figure 4.14 Experimental (scattered symbols) and predicted (solid lines) fatty acid composition profiles using 

Equations 4-18 ~ 4-23 for Model 2. Reaction conditions were: 150 mg of 5wt%Pd/Al2O3, 150 ml of soybean oil 

(solvent free), T= 100 °C, 
2Hp = 5 bar, N= 800 rpm. 

 

Table 4.8 Fitted parameter values using Equations 4-18 ~ 4-23 for Model 2. 

Adsorption constant, l.mol-1  
Rate constant, mol.g-1.h-1 

 
Hydrogen order 

C18:3 C18:2 C18:1 C18:0 H2   

K3 K2 K1 K0 KH  k ki k-i  γ δ 

5.51×106 3.68×106 1.84×106 0 42.66  4.08 3.09 1.68  2.24 0.11 

 

From the Model 2, the rate constants of the reversible cis-trans isomerisation under current 

reaction conditions (150 mg of 5wt%Pd/Al2O3, 150 ml of soybean oil, T= 100 °C; 
2Hp = 5 

bar; N= 800 rpm) were predicted to be 3.09 mol.g-1.h-1 for cis-isomer to react (forwards) and 

1.68 mol.g-1.h-1 for trans-isomer to react (backwards) respectively, which were both lower 

than the rate constant of the hydrogenation of carbon-carbon double bond (C=C), indicating a 
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slower rate of isomerisation than that of hydrogenation. The hydrogen orders in the present 

reaction system were found as 2.24 for cis-isomer to react and 0.11 for trans-isomer to react, 

suggesting a hydrogen-dependent cis-trans isomerisation mechanism. 

In summary, for the analysis of the experimental data collected at reaction times both of the 

resulting mathematical models are able to predict satisfactorily the concentrations of each 

species during the course of the selective hydrogenation of soybean oil in the current reaction 

system. 

4.3.1.2.3 Effect of Temperature and Activation Energy 

As explained by collision theory, conducting a reaction at a higher temperature delivers more 

energy into the system, and thus more of the colliding particles will have the necessary 

activation energy resulting in more successful collisions through breaking the pre-existing 

bonds between reactants and forming in new bonds. In order to obtain the activation energy 

in this reaction system, a series of reactions was carried out using 150 mg of 5wt%Pd/Al2O3 

in 150 ml of soybean oil, under a constant hydrogen pressure of 5 bar with a stirring speed of 

800 rpm at temperatures ranging from 50 °C, 75 °C, 100 °C to 125 °C.  

The temperature dependence of the reaction rate constants obeys the Arrhenius-type equation 

as: 

   
1

ln ln aE
k A

R T

 
   

 
                   4-25 

where k= reaction rate coefficient (mol.m-3.s-1), A= pre-exponential factor, Ea= activation 

energy (kJ.mol-1), R= gas constant (8.314 J.K-1.mol-1), and T= absolute temperature (K). 

According to Equation 4-25, when ln(k) is plotted against 1/T, the value of the intercept will 

correspond to ln(A), and the gradient of the line will be equal to -Ea/R, from which Ea can be 

easily estimated. Figure 4.15 shows the resulting Arrhenius plot for soybean oil 
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hydrogenation over 5wt%Pd/Al2O3 in this study, and the activation energy in the present 

reaction system was obtained as 37.8 kJ.mol-1. This was lower than the activation energy 

(75.5 kJ.mol-1) reported by Fillion et al. [120] in soybean oil hydrogenation over a Ni/Al2O3 

catalyst, which could be attributed to the difference in the nature of catalyst. Similarly, 

Belkacemi and Hamoudi [299] also reported that reaction using the palladium catalyst gave a 

lower activation energy than that using the nickel catalyst, which were 38.6 kJ.mol-1 for the 

palladium catalyst, 48.3 kJ.mol-1 for the nickel catalyst in sunflower hydrogenation and 40.1 

kJ.mol-1 for the palladium catalyst, 73.7 kJ.mol-1 for the nickel catalyst in canola oil 

hydrogenation. 

 

Figure 4.15 Arrhenius plot of ln(k) versus 1/T showing temperature dependence of soybean oil hydrogenation 

over a 5wt%Pd/Al2O3 catalyst. Reaction conditions were: 150 mg of 5wt%Pd/Al2O3, 150 ml of soybean oil 

(solvent free), 
2Hp = 5 bar, N= 800 rpm. 

 

As to the temperature effect on the product formation, Figure 4.16 shows that high 

temperature slightly enhanced the formation of fatty acid trans-isomers towards the end of 

the reaction (cis-C18:2 conversion> 50%), indicating a negative effect on the trans-C18:1 

formation from the temperature increase. Deliy et al. [283] suggested this effect was related 

to reduction of concentration of hydride modes on the catalyst surface that led to the growth 

of contribution of isomerisation. 
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Figure 4.16 Formation of trans-C18:1 versus cis-C18:2 conversion in soybean oil hydrogenation using 

5wt%Pd/Al2O3 under different reaction temperatures. Reaction conditions were: 150 mg of 5wt%Pd/Al2O3, 150 

ml of soybean oil (solvent free), 
2Hp = 5 bar, N= 800 rpm. 

 

After the delineation of mass transfer and reaction mechanisms using conventional Pd/Al2O3, 

the following section reports the catalytic testing of bio-Pd catalysts in the hydrogenation of 

soybean oil. 

4.3.2 Bio-Pd Catalyst 

For the purpose of comparing the catalytic performance of the bio-Pd with that of Pd/Al2O3, 

all the reactions were conducted in the same system with identical loading of 0.05 

mg(Pd).ml(oil)-1 under the set of optimised conditions (T= 100 °C, 
2Hp = 5 bar, and N= 800 

rpm). The 5wt%Pd/E. coli catalyst reported in §4.3.2.1 and §4.3.2.2 was manufactured 

following the specific procedure described in §3.3 and sampled from two separate 

preparations; the 5wt%Pd/D. desulfuricans catalyst (one preparation) reported in §4.3.2.3 was 

provided by Dr K. Deplanche from the School of Biosciences, University of Birmingham; 

and 5wt%Pd/E. coli catalysts prepared by H2-reduction and formate-reduction (one 

preparation) in §4.3.2.4 were provided by Dr I. Mikheenko from the School of Biosciences, 

University of Birmingham. 
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4.3.2.1 Comparison of Bio-Pd/E. coli with Pd/Al2O3 

The concentration profile of each component as a function of reaction time using 5wt%Pd/E. 

coli was displayed in Figure 4.17, showing the same product evolution but a much slower 

reaction rate as compared to the case of conventional catalyst 5wt%Pd/Al2O3 (Figure 4.5). 

After 5 hours’ reaction time a residual cis-C18:2 concentration of 0.97±0.1 mol.l-1 was 

retained (conversion of 45.52±5.61 %), in contrast a complete consumption within 2.5 hours 

occurred by using 5wt%Pd/Al2O3 under identical operating conditions in Figure 4.5. 

 

Figure 4.17 Concentration profiles as the function of reaction time in soybean oil hydrogenation using 

5wt%Pd/E. coli. Reaction conditions were: 150 mg of 5wt%Pd/E. coli, 150 ml of soybean oil (solvent free), T= 

100 °C, 
2Hp = 5 bar, N= 800 rpm. 

Table 4.9 A comparison of the component distribution in soybean oil hydrogenations using 5wt%Pd/E. coli and 

5wt%Pd/Al2O3, at the reaction time when the highest amount of preferable product cis-C18:1 was produced (~5 

hours for bio-Pd/E. coli and ~1 hour for Pd/Al2O3). Reaction conditions were: 150 mg of 5 wt%Pd catalysts, 150 

ml of soybean oil (solvent free), T= 100 °C, 
2Hp = 5 bar, N= 800 rpm. 

   Component concentration, mol.l-1 

   5wt%Pd/E. coli  5wt%Pd/Al2O3 

Products     

 cis-C18:1  1.03±0.04 (at ~5 hours)  1.07±0.02 (at ~1 hour) 

 trans-C18:1  0.26±0.03  0.52±0.02 

 C18:0  0.19±0.00  0.34±0.06 

Reactants     

 cis-C18:3  0.05±0.02 (78.36±6.10% conv.)  0.04±0.01 (83.15±3.39% conv.) 

 cis-C18:2  0.97±0.10 (45.52±5.61% conv.)  0.68±0.08 (61.49±4.28% conv.) 
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A comparison of the product distribution between the bio-Pd/E. coli and Pd/Al2O3 is shown in 

Table 4.9, at the reaction time when the highest amount of preferable product cis-C18:1 was 

produced. After 5 hours’ reaction time over 5wt%Pd/E. coli, cis-C18:1 production 

accumulated to the highest concentration of 1.03±0.04 mol.l-1. In the reaction over 

5wt%Pd/Al2O3, a maximum yield of cis-C18:1 was 1.07±0.02 mol.l-1 at ~1 hour, after which 

cis-C18:1 was consumed since the cis-trans isomerisation and further saturation of cis-C18:1 

became dominant. Despite the slower reaction using bio-Pd/E. coli, with the same amount of 

cis-C18:1 produced, bio-Pd/E. coli produced a 50% less production of trans-C18:1 than 

Pd/Al2O3, which were 0.26±0.03 mol.l-1 and 0.52±0.02 mol.l-1 respectively. As to the 

saturated fatty acid C18:0 (another unwanted by-product), a lower concentration was also 

obtained in the case of bio-Pd/E. coli than that in the case of Pd/Al2O3, which were 0.19±0.00 

mol.l-1 and 0.34±0.06 mol.l-1 respectively. Comparing the product formation at the same cis-

C18:2 conversion (Figure 4.18 a), bio-catalyst again exhibited the advantage of less 

production of trans-C18:1 meanwhile maintaining the same amount of cis-C18:1 at the 

corresponding cis-C18:2 conversion. For instance, when a similar amount of cis-C18:2 was 

converted (~33%, as marked by the vertical dashed line on Figure 4.18 a), 5wt%Pd/E. coli 

produced ~24% less of trans-C18:1 than 5wt%Pd/Al2O3. A less or similar amount of 

saturated C18:0 was produced in the case of 5wt%Pd/E. coli as compared to 5wt%Pd/Al2O3 

catalyst at the same cis-C18:2 conversion (Figure 4.18 b). It is apparent from both Figure 

4.18 a and b that the higher activity of the Pd/Al2O3 catalyst contributed to the formation of 

trans-isomer and the saturated C18:0 at the expense of cis-C18:1 at high conversion. In other 

words, the conventional Pd/Al2O3 catalyst presented a comparative lack of chemoselectivity 

and lack of control over the level of hydrogenation taking place (i.e. over hydrogenation). In 

contrast 5wt%Pd/E. coli appeared to have the capability of maintaining the production of cis-
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C18:1 and at the same time suppressing the formation of unwanted trans-C18:1 and C18:0, 

although a lower level of hydrogenation was achieved. 

 

 

Figure 4.18 Comparison of the formation of a) cis-/trans-C18:1 and b) C18:0 at the same cis-C18:2 conversion 

by using different Pd catalysts. Reaction conditions were: 150 mg of 5 wt%Pd catalysts, 150 ml of soybean oil 

(solvent free), T= 100 °C, 
2Hp = 5 bar, N= 800 rpm. 

 

It was suggested [300] that the hydrogenation of unsaturated fatty acids is sensitive to the 

shape, geometry, and size of the metal crystallites deposited on the support. Similar to the 

observation of a less production of trans-pentene using bio-Pd/E. coli in §4.2, a lower yield 

of trans-C18:1 in soybean oil hydrogenation over 5wt%Pd/E. coli can also be attributed to its 

smaller average size of Pd particles as compared to 5wt%Pd/Al2O3, which are 4.31 nm and 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100

ci
s-

/t
ra

n
s-

C
1

8
:1

 c
o

n
ce

n
tr

at
io

n
, 

m
o

l.
l-1

cis-C18:2 conversion, %

E.coli, trans

Al2O3, trans

E.coli, cis

Al2O3, cis

a)

E. coli, trans

Al2O3, trans

E. coli, cis

Al2O3, cis

0.0

0.4

0.8

1.2

1.6

0 20 40 60 80 100

C
1

8
:0

 c
o

n
ce

n
tr

at
io

n
, 

m
o

l.
l-1

cis-C18:2 conversion, %

E.coli

Al2O3

b)

E. coli

Al2O3



Chapter 4 Selective Hydrogenation Using Bio-Pd Catalyst 

126 

12.77 nm respectively (details to be presented in §6.4). Therefore owing to the advantage of 

forming small Pd particles, catalyst manufactured by using E. coli as support is a better 

compromise between the activity and capacity to produce trans-C18:1 and C18:0 than 

conventional Pd/Al2O3, which justifies the further examination of the biomaterial. 

4.3.2.2 Thermal Stability of Bio-Pd/E. coli in Hydrogenation 

As has been addressed earlier in Literature Review (§2.3.4) that, one limitation for the use of 

bio-catalyst would be its thermal stability, especially when it is used in advanced synthetic 

organic chemistry which is often performed at high temperature [47]. In order to verify the 

stability of bio-Pd catalyst in soybean oil hydrogenation, this section investigates the catalytic 

performance 5wt%bio-Pd/E. coli at an operating temperature of 150 C. The rest of the 

reaction conditions were retained the same as: 150 mg 5wt%Pd/E. coli, 150 ml of soybean oil 

(solvent free), 
2Hp = 5 bar, and N= 800 rpm. 

 

Figure 4.19 a) Comparisons of cis-C18:2 conversion versus reaction time in soybean oil hydrogenation using 

5wt%Pd/E. coli at different reaction temperatures. Other reaction conditions were: 150 mg of 5wt%Pd/E. coli, 

150 ml of soybean oil (solvent free), T= 100 °C, 
2Hp = 5 bar, N= 800 rpm. 
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Figure 4.19 continued. b) Comparisons of trans-C18:1 formation in soybean oil hydrogenation using 5wt%Pd/E. 

coli at different reaction temperatures. Other reaction conditions were: 150 mg of 5wt%Pd/E. coli, 150 ml of 

soybean oil (solvent free), T= 100 °C, 
2Hp = 5 bar, N= 800 rpm. 

 

Figure 4.19 a gives the comparison of cis-C18:2 conversion profiles under two different 

operating temperatures. In the case of 100 C, cis-C18:2 conversion maintained a stable rate 

throughout the reaction. A higher energy input by raising reaction temperature from 100 C 

to 150 C did not practically affect the rate of cis-C18:2 hydrogenation from the beginning. 

Very close cis-C18:2 conversions were obtained at both temperatures from the beginning up 

to 2 hours reaction time, which may imply a potential catalytic activity loss of the 5wt%Pd/E. 

coli. During the following 3 hours’ reaction time, cis-C18:2 conversion under 150 C 

developed at an obviously slower rate as compared to that under 100 C, which further 

indicates that the deactivation of 5wt%Pd/E. coli may occur under 150 C. As to the product 

formation, the higher temperature (150 C) did not affect the formation of trans-C18:1 in the 

present reaction sytstem (Figure 4.19 b). A further investigation on the thermal stability of 

bio-catalyst by using a characterisation technology (Thermogravimetric Analysis) is to be 

presented in §6.2. 
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4.3.2.3 Comparison of Bio-Pd/E. coli with Bio-Pd/D. desulfuricans 

A wide range of bacteria strains are able to deposit Pd nanoparticles for applications as bio-

catalysts. For the purpose of studying the effect of bacterial support on the catalytic activity 

in the partial hydrogenation of soybean oil, another bio-Pd catalyst supported on a different 

bacterial stain D. desulfuricans (Gram-negative) was selected and tested. It has been 

previously reported that 5wt%Pd/D. desulfuricans was catalytically active in the 

hydrogenation of itaconic acid [48] and 2-pentyne [24]. Another early study by Deplanche 

[23] highlighted homogeneous coverage of small (5~10 nm) Pd nanoparticles on the cell 

surface of both E. coli and D. desulfuricans cells at the same loading of 5 wt%Pd, with a 

similar activity in the Heck reaction obtained [23]. In addition, Macaskie et al. [301] reported 

at a high loading of 25 wt%Pd to biomass, small Pd particles were confirmed on D. 

desulfuricans while fewer, larger ones were visible on E. coli via Electron Microscopy; this 

led to 25wt%Pd/D. desulfuricans being the better catalyst in the reduction of Cr(VI) and in 

the hydrogenation of polychlorinated biphenyls than 25wt%Pd/E. coli. Therefore it is 

possible that although both D. desulfuricans and E. coli belong to the Gram-negative 

bacterial type, palladium may be deposited by different mechanisms involving different 

enzymes and/or biochemical support matrices. In this section, a comparison of catalytic 

performance was made between 5wt%Pd/E. coli and 5wt%Pd/D. desulfuricans in soybean oil 

hydrogenation under the same reaction conditions (T= 100 °C, 
2Hp = 5 bar, and N= 800 rpm). 
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Figure 4.20 Comparison of a) the reactant conversion after 5 hours; comparison of the formation of b) cis-C18:1 

and c) trans-C18:1 at the same cis-C18:2 conversion in soybean oil hydrogenation using bio-Pd/E. coli and bio-

Pd/D. desulfuricans. Reaction conditions were: 150 mg of 5 wt%bio-Pd, 150 ml of soybean oil (solvent free), 

T= 100 °C, 
2Hp = 5 bar, N= 800 rpm. 
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As shown in Figure 4.20 a, 5wt%Pd/E. coli gave similar conversions (or within error) of both 

cis-C18:3 and cis-C18:2 after 5 hours than 5wt%Pd/D. desulfuricans, suggesting a similar 

activity of these two bio-Pd catalysts in the present soybean oil hydrogenation. In terms of the 

formation of desired cis-C18:1, almost the same amount was produced at the comparable cis-

C18:2 conversion in both cases (Figure 4.20 b). Likewise, no difference was observed in the 

case of trans-C18:1 formation (Figure 4.20 c). It was discussed earlier in §4.3.2.1 that, 

5wt%Pd/E. coli produced comparable amount of cis-C18:1 and less amount of trans-C18:1 

than conventional 5wt%Pd/Al2O3, suggesting a better selectivity towards cis-isomer by using 

bio-Pd/E. coli. The maintained same levels of both cis-isomer formation and trans-isomer 

formation by using 5wt%Pd/E. coli and 5wt%Pd/D. desulfuricans (Figure 4.20 b and c) 

reveal the advantage of this type of biogenically produced palladium catalyst. 

Based on the above catalytic performance in soybean oil hydrogenation, a significant 

advantage could not be shown, overall, in the use of another bio-Pd catalyst. However, E. coli 

(facultative anaerobe) was suggested to be a potentially useful alternative to sulfate-reducing 

bacteria D. desulfuricans (anaerobic) since E. coli can be pre-grown aerobically to high 

density at scale and does not produce H2S (a catalyst poison) [301]. Hence, as concluded by 

Deplanche et al. [31] the choice between using E. coli and D. desulfuricans for 

manufacturing bio-Pd is governed by ease of biomass growth and economic considerations 

which are considered in Appendix 8.2. 

4.3.2.4 Comparison of H2-Reduction with Formate-Reduction for bio-Pd/E. coli 

Since Pd(0) catalyses the decomposition of formate MCOOH into H2 and CO2 via the 

generation of the highly active H· within the crystal structure of the Pd(0), it is possible that 

bio-Pd reduced from formate may show a better catalytic activity than one made from H2. In 

this section, two types of bio-Pd/E. coli catalysts were prepared by applying two reduction 

methods during the palladisation of cells, denoted as H2-reduced and formate-reduced. Here, 
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E. coli cells were harvested from a 4-litre fermentation bioreactor after 3 weeks of hydrogen 

production (for another study) [262]. The harvested cells were transferred into an anaerobic 

respiratory medium (NB no. 2 with 0.4% sodium fumarate (wt/vol) and 0.5% glycerol 

(vol/vol)) and left overnight at 30 °C to activate cells before palladisation as described in 

§3.3.1. The catalytic activities of these two resulting 5wt% bio-Pd catalysts were tested in 

soybean oil hydrogenation for 5 hours under the conditions: 150 mg of 5wt%Pd/E. coli 

catalyst; 150 ml of soybean oil, T= 100 °C, 
2Hp = 5 bar, and N= 800 rpm. 

 

 

Figure 4.21 a) Comparisons of cis-C18:2 conversion and cis-C18:3 conversion after 5 hours in soybean oil 

hydrogenation using 5wt%Pd/E. coli prepared by different reduction methods; b) the formation of cis-C18:1 as a 

function of cis-C18:2 conversion. Reaction conditions were: 150 mg of 5wt%Pd/E. coli, 150 ml of soybean oil 

(solvent free), T= 100 °C, 
2Hp = 5 bar, N= 800 rpm. 
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Figure 4.21 a compares conversions of cis-C18:3 and cis-C18:2 after 5 hours in soybean oil 

hydrogenation, showing an improvement by ~30% for formate-reduced 5wt%Pd/E. coli than 

H2-reduced 5wt%Pd/E. coli. In terms of the formation of cis-C18:1 when the same cis-C18:2 

was converted (Figure 4.22 b), the same behaviour was obtained for both formate-reduced 

and H2-reduced bio-Pd/E. coli. 

 

4.4 Conclusions 

In this chapter, a set of palladium catalysts, including both conventional Pd/Al2O3 and 

biomass supported bio-Pd, were investigated in two industrially important hydrogenations of 

2-pentyne and soybean oil. 

In 2-pentyne hydrogenation under identical operating conditions (T= 40 °C, 
2Hp = 2 bar, N= 

1000 rpm, with isopropanol as a solvent), 5wt%Pd/E. coli showed similar activity meanwhile 

a higher production of cis-2-pentene in comparison with 5wt%Pd/Al2O3. 

In the case of the more complicated solvent-free hydrogenation of soybean oil, the mass 

transfer and reaction mechanism was studied in detail by applying a set of operating 

conditions using 5wt%Pd/Al2O3. Under the reaction conditions of T= 100 °C, 
2Hp = 5 bar, 

and N= 800 rpm, the reaction system was confirmed in the absence of diffusion limitation. 

Two kinetic models were successfully established to fit the concentration profiles of the 

experimental data. The hydrogenation of soybean oil was found to be of half-order in the 

concentration of hydrogen, with the activation energy being 37.8 kJ.mol-1 over the 5 wt% 

Pd/Al2O3 catalyst. Palladium bioinorganic catalyst manufactured using E. coli was then tested 

under the selected reaction conditions (150 mg of 5wt%Pd/E. coli, 150 ml of soybean oil, T= 

100 °C, 
2Hp = 5 bar, N= 800 rpm) and its performance was compared with that of 

conventional 5wt%Pd/Al2O3 in terms of reactive activity and product formation. Bio-Pd/E. 
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coli showed a lower cis-C18:2 conversion than the corresponding conventional Pd/Al2O3. 

However the former catalyst showed an advantage of reducing the cis-trans isomerisation and 

complete hydrogenation to the unsaturated double bond on its active sites. A key finding was 

that by using formate as the electron donor for reduction of Pd(II) as compared to hydrogen, 

the conversion rates of both cis-C18:3 and cis-C18:2 in soybean oil were increased by ~30%. 

 

 



 

5 Chapter 5 

Aerobic Oxidation Using Bio-AuPd Catalyst 

5.1 Chapter Overview 

This chapter presents an investigation of biomass-supported AuPd bimetallic catalyst (bio-

AuPd) for the aerobic oxidation of a range of alcohols. The work was motivated by promising 

initial studies of Deplanche et al. [170], who preliminarily found a positive synergistic effect 

between gold and palladium for bacteria-supported catalysts in benzyl alcohol oxidation 

using oxygen. Their work reported an increased catalyst activity and selectivity towards 

benzaldehyde over bio-AuPd when compared to bio-Pd and bio-Au individually. 

This chapter further reports the in-depth evaluation of bio-AuPd catalysts in the solvent-free 

oxidation of various alcohols under compressed air (instead of pure oxygen) in a 100 ml Parr 

autoclave reactor (as described in §3.4.1). A range of alcohols were selected as oxidation 

substrates, with specific focus on benzyl alcohol (§5.2) as an aromatic alcohol. The first part 

of the work (§5.2.1) describes a number of modifications made to the original reactor and the 

optimisation of the reaction conditions based on the engineering aspects; the activation 

energy in the present solvent-free oxidation of benzyl alcohol over a 2.5wt%Au2.5wt%Pd/E. 

coli catalyst was estimated. A further aim of this study was to improve the catalytic 

performance of bio-AuPd in benzyl alcohol oxidation by altering the catalyst formulation 

(§5.2.2), such as the biomass strain, total AuPd metal loading, and Au:Pd metal ratio. 

Besides, different alcohols may present varied resistance to oxidation and therefore the study 

was extended to cover a range of different types of alcohols (§5.3). 

Finally conclusions were drawn in §5.4 to summarise the catalytic performance of bio-AuPd, 

as a novel heterogeneous catalyst, in the aerobic oxidation of alcohols in the absence of 

solvent. 
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5.2 Oxidation of Benzyl Alcohol 

For the oxidation reaction of benzyl alcohol, a comprehensive reaction network by which a 

number of products can be formed is depicted in Figure 5.1. Mechanistically, the oxidation of 

benzyl alcohol proceeds through a first oxidation step (denoted as R1 in Scheme 1) to form 

benzaldehyde, the desired product in this study, and through a second oxidation of aldehyde 

step (R2) to produce benzoic acid. Meanwhile other side reactions (denoted as SRi) 

accompany the main reaction. One pathway is a condensation reaction between the generated 

aldehyde and the initial alcohol (SR1 in Scheme 1). This generates a hemiacetal, which is a 

generally unstable compound. This hemiacetal could either be subsequently oxidised (SR11) 

to the corresponding ester or, following a successive condensation (SR12) with a further 

molecule of alcohol leading to the formation of the corresponding benzaldehyde dibenzyl 

acetal (BDBA). In addition, there is also the possibility of disproportionation of two 

molecules of benzyl alcohol (SR2 in Scheme 2) leading to equimolar amounts of toluene and 

benzaldehyde. Table 5.1 gives some properties of the major components presenting in the 

reaction system. 

A control experiment was firstly conducted using dry biomass of E. coli in benzyl alcohol 

oxidation and no benzyl alcohol was converted. The catalytic activity of the bimetallic bio-

AuPd catalyst was evaluated by estimating the conversion of benzyl alcohol, selectivity to 

desired product benzaldehyde, and turnover frequency (TOF, the converted moles of 

substrate per molar total metal in unit time), as calculated from the following equations: 

0

0

[alcohol] [alcohol]
alcohol conversion % 100%

[alcohol]

t
       5-1 

[target product]
product selectivity % 100%

[all product]

t

t

        5-2 
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moles of substrate converted
TOF=

moles of metal  time
        5-3 

where [alcohol]0 and [alcohol]t correspond to concentrations at initial time (t=0) and 

subsequent time (t) respectively, the same rule applies to the selectivity calculation. TOF was 

measured after first 0.5 hour of reaction. Results are all presented from at least triplicate 

experiments as mean ± standard error of mean, unless otherwise stated. Error bars are within 

the dimensions of the symbols if not shown. Each bio-AuPd catalyst sampled from the same 

preparation, unless otherwise stated. 
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Figure 5.1 Reaction schemes of aerobic benzyl alcohol oxidation [302,303]. 

 

Table 5.1 Properties of the major components presenting in benzyl alcohol oxidation. 

Component Formula Molar mass, g.mol-1 Boiling point, °C Physical appearance 

benzyl alcohol C7H8O 108.14 205.3 clear, colourless liquid 

benzaldehyde C7H6O 106.12 178.1 colourless or yellowish liquid, strongly refractive 

benzoic acid C7H6O2 122.12 249.2 white, needle-like crystals 

benzyl benzoate C14H12O2 212.24 323 clear, colourless liquid 

toluene C7H8 92.14 110.6 colourless liquid 

BDBA C21H20O2 304.38 531.3 * Information not available. 
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5.2.1 Experimental Condition Optimisation 

Initially the solvent-free benzyl alcohol oxidation was conducted using compressed air in a 

Parr autoclave with its original configuration of sample ports, sparging etc., in a dead-end 

mode (§5.2.1.1). Based on the results it was found that the reactor configuration caused some 

drawbacks for the reaction and therefore a number of modifications to the set up were made 

in subsequent experiments (§5.2.1.2). The effect of the pre-reduction to the ‘as-received’ bio-

AuPd was then investigated to verify whether the catalyst retained its original activity 

(§5.2.1.3). A mass transfer study was carried out to determine the resistances that occur in the 

modified reactor configuration (§5.2.1.4). After studies to minimise the mass-transfer 

limitation, the activation energy of the benzyl alcohol oxidation over the bio-AuPd catalyst in 

this particular system was estimated (§5.2.1.5). 

5.2.1.1 Dead-End Reaction under Compressed Air 

In a dead-end operation mode, solvent-free benzyl alcohol oxidation was carried out by 

keeping the inlet of reactant gas (compressed air) open. The pressure is maintained at a 

constant value and gas flows into the reactor to replace the equivalent amount consumed in 

the reaction (the standard operating procedure refers to §3.4.2). The reaction conditions were: 

25 mg of 2.5wt%Au2.5wt%Pd/E. coli, 40 ml of benzyl alcohol, T= 110 °C, pair= 5 bar, and 

N= 1200 rpm. 

Figure 5.2 (stage 1, 0~2.5 hours) shows the benzyl alcohol oxidation profile as a function of 

the reaction time. In the initial 15 mins, benzyl alcohol was consumed steadily with time, 

giving a consumption rate of 0.20±0.00 mol.l-1.h-1 at 15 mins. Thereafter the rate of benzyl 

alcohol disappearance gradually slowed down and was observed to follow an overall non-

linear function of benzyl alcohol concentration versus time in stage 1. At the end of stage 1 

(2.5 hours), the alcohol consumption rate decreased considerably by 85% to 0.03±0.00 mol.l-
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1.h-1 with the majority of the benzyl alcohol still residual in the system (96.8±0.1 wt% of the 

mixture, conversion of 3.15±0.08%). The major products detected were principally 

benzaldehyde (1.63±0.03 wt%), BDBA (1.29±0.02 wt%), and traces of benzyl benzoate 

(0.02±0.00 wt%) with no detection of benzoic acid. Furthermore, it was observed that the 

formation rate of benzaldehyde, which was produced through the reaction pathway with 

oxygen participating (R1 in Scheme 1, Figure 5.1), levelled off with the reaction time. This 

trend, in contrast, was less obvious in the case of BDBA (product of the formed 

benzaldehyde consecutively reacting with two benzyl alcohol molecules) which kept growing 

at a relatively steady rate. It is likely, based on the above observation, that the availability of 

oxygen plays a role in the present reaction system. It has been reported [66,71,231,232] that 

the reaction rate of benzyl alcohol oxidation over AuPd bimetallics is zero-order in oxygen in 

a pressure range 100~3000 kPa. However the observed levelling-off of the alcohol 

consumption rate in Figure 5.2 (under a still alcohol-rich environment) goes against the 

behaviour of a zero-order reaction with respect to oxygen, suggesting that the reaction under 

the given conditions may be limited by the oxygen availability from the air in the dead-space 

of the semi-batch reactor. The use of compressed air rather than pure oxygen could have led 

to an inconsistent partial pressure of oxygen inside the vessel, as oxygen from the air was 

consumed by the bulk liquid to leave gas in the headspace richer in nitrogen. Assuming that 

as the reaction proceeded and oxygen in air is consumed, this leads to a decrease in overall 

pressure and a supplement of the same volume of air from the cylinder, of which only ~20 

vol% is oxygen. Successively, oxygen from the headspace of the vessel would become 

depleted and the main residual gas inside of the reactor becomes predominantly inert 

nitrogen. Oxygen partial pressure decreases as a function of the reaction time, accordingly the 

dissolved oxygen concentration decreases in the bulk liquid, thus reaction is expected to slow 

down. 
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Figure 5.2 Concentration profiles from the benzyl alcohol oxidation in the original Parr autoclave reactor (dead-

end mode). Reaction conditions were: 25 mg 2.5wt%Au2.5wt%Pd/E. coli, 40 ml benzyl alcohol, T= 110 °C, 

pair= 5 bar, N= 1200 rpm. The reaction profile was divided into two stages at the reaction time of 2.5 hours 

(marked as stage 1 and stage 2, details see text). 

 

The above assumption was verified by the reaction profile of stage 2 shown in Figure 5.2. 

After 2.5 hours’ dead-end reaction in stage 1, the remaining gas in the vessel was manually 

released by carefully opening gas release valve V4 (Figure 3.3 in §3.4.1) followed by an 

immediate replenishment of fresh compressed air to the same pressure of 5 bar. 

Correspondingly on the benzyl alcohol concentration plot, a second stage of accelerated 

consumption rate at the subsequent 15 mins was observed while the same non-linear trend 

was replicated in the following 3 hours’ dead-end reaction. Likewise, the levelling-off of 

benzaldehyde formation and steady growth of BDBA were observed as the case in Stage 1. 

Besides, benzyl benzoate remained in a small amount with no detection of benzoic acid at the 

end of the Stage 2. 

5.2.1.2 Parr Autoclave Modification 

The ability to perform oxidation reactions in air, as an inexpensive and environmentally 

acceptable reagent, could be attractive for future industrial applications. The findings 

reported in §5.2.1.1 concerning the slowing down of reaction rate demonstrated that the 
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depletion of oxygen in the dead-end experimental system affected the oxygen availability 

which in turn limited the overall reaction performance. As ultimately the quantity of interest 

is the benzyl alcohol conversion with the reaction time, a modification to the reaction system 

was carried out to provide the system with a continuous feed of fresh air thus to maintain the 

oxygen partial pressure with the aim to increase the overall conversion of benzyl alcohol. 

Attempts were therefore made to change the operating procedure or physical set up of the 

autoclave reactor in order to achieve this constant through flow. The initial attempt was done 

by opening the gas release valve V4, creating a steady air flow, of which the flow rate 

through the outlet was measured by an air rotameter (200 ml.min-1, 1 atm), meanwhile a 

constant pressure (5 bar) inside the vessel was maintained and monitored by a pressure 

sensor. Due to the ‘open’ system and considering the volatility of the components (Table 

5.1), the overall mass balance was taken into account by weighing the material added into the 

vessel before and after the reaction. Thereafter the subsequent reactions in this ‘open’ system 

showed a continuing consumption of benzyl alcohol as a function of time, the conversion of 

which at 2 hours was increased by a factor of three in comparison with that in the dead-end 

system. However a record of overall mass balance indicated a significant 17.5% total mass 

lost at the end of the reaction (7 hours). This was thought to be due to excessive evaporation 

of reactants when using a through flow of air. 

In order to deal with this problem, a further modification was set up to establish a more 

reliable reaction system (Figure 5.3, Parr and Parr’ denote the reactors before and after 

modification). A double helix stainless steel condenser coupled with a sufficient water-ice 

cooling bath (C2 in Parr’) was designed and fixed in the gas outlet line, prior to the gas outlet 

valve V4. At the same time in the gas inlet line, a Hoke metering needle valve (V5 in Parr’) 

was installed to precisely adjust the gas inlet flow rate (calculation refers to Appendix 8.3), 

with the pressure gauge PG4 and the pressure sensor PE installed before and after the 
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Figure 5.3 Schematic profiles of oxidation reactor (Parr- original reactor, Parr’- reactor after modification). The working area was circled as shown in the left 

Parr and details of modification were magnified as the right Parr’. Symbols in Parr’ are denoted, symbol description in Parr refers to Figure 3.3 in §3.4.1 



Chapter 5 Aerobic Oxidation Using Bio-AuPd Catalyst 

143 

metering valve V5 for monitoring the pressure drop. In addition, some other modifications 

were made to improve the reactor performance, namely: the original needle valve V2 (in Parr, 

Figure 5.3) in the gas supply line for gas control was replaced by an on-off valve V2’ (in 

Parr’), for the purpose of a quick and efficient isolation between both pressurised gas cylinder 

and reactor (in case gas trapping happened for instance); a non-return valve V6 (in Parr’) was 

added immediately after the pressure sensor PE to avoid a reflux from the reactor when 

taking liquid samples, causing the damage to the pressure sensor PE. 

Figure 5.4 shows the benzyl alcohol concentration profiles in both the original Parr and 

modified Parr’ reactors, from which an improvement in the benzyl alcohol consumption rate 

in the flow-through system is observed as compared to that in the dead-end system. Benzyl 

alcohol in the flow-through system, Parr’, was consumed continuously with the reaction time 

owing to the constant fresh air flow. More importantly, although the modified reactor is a 

flow-through system, the measured loss of total material after 7 hours was significantly 

reduced to 1.19% when a condenser with efficient cooling bath (C2 in Parr’, Figure 5.3) was 

fitted, compared with the 17.5% loss in the flow-through system without condenser. 

 

Figure 5.4 Profiles of benzyl alcohol concentration versus reaction time in the original reactor (Parr) and the 

modified reactor (Parr’). Reaction conditions were: 25 mg 2.5wt%Au2.5wt%Pd/E. coli, 40 ml benzyl alcohol, 

T= 110 °C, pair= 5 bar, N= 1200 rpm. 
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In terms of the product formation in the modified configuration Parr’, the majority of the 

products based on the aforementioned reaction schemes in Figure 5.1 were identified. In 

Figure 5.5 a, the concentration profile of the desired benzaldehyde kept increasing with time 

and achieved 31.00±0.35 wt% (3.50±0.04 mol.l-1) after 7 hours. Other products like toluene, 

benzoic acid and benzyl benzoate also kept increasing, but were retained in minor amounts, 

the estimated concentrations of these being less than 3 wt% of the total mixture. Another 

major by-product in this reaction system was benzaldehyde dibenzyl acetal (BDBA). As 

described in Scheme 1 (SR12 Figure 5.1), BDBA was formed by one molecule of aldehyde 

successively reacting with two molecules of alcohol, which was reported as a reversible 

oxidative degradation of benzyl alcohol [304,305]. The monitored concentration of BDBA 

increased in the time period of 0~5 hours (reaching a maximum 5.80±0.17 wt%), at a lower 

rate than that of benzaldehyde but faster than those of toluene, acid and benzyl benzoate. The 

decrease of the BDBA concentration after 5 hours reaction time indicates that the BDBA was 

being converted to other products. It is well accepted that acetals are stable to neutral and 

basic reaction conditions but susceptible to hydrolysis in the presence of acid which, in this 

study, could have been catalysed by benzoic acid starting to form. The reversible reaction of 

BDBA led to other products, including benzaldehyde [231,302]. This, as a result, led to an 

increase of the final selectivity towards benzaldehyde. The reversible relation between 

benzaldehyde and BDBA was confirmed by the mirror trends in Figure 5.5 b in terms of 

selectivity. In other words the formation of BDBA in the early stage caused an initial 

decrease of selectivity to aldehyde (from 75.9±2.5% to 61.5±0.1%), which was observed to 

recover once BDBA started to be hydrolysed. 
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Figure 5.5 a) Product profiles as a function of reaction time in benzyl alcohol oxidation; b) Selectivities to 

different products versus benzyl alcohol conversion. Reaction conditions were: 25 mg 2.5wt%Au2.5wt%Pd/E. 

coli, 40 ml benzyl alcohol, T= 110 °C, pair= 5 bar, N= 1200 rpm. 

 

A further comparison of product formation was made between the reactor before (Parr) and 

after (Parr’) modification during the first 2 hours reaction time (Figure 5.6), the only reaction 

condition difference being the air flow of 0 ml.min-1 for Parr and 200 ml.min-1 for Parr’ 

respectively. 
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Figure 5.6 Comparison of results from the original reactor (Parr) and the modified reactor (Parr’) based on a) 

product distributions at 2 hours; b) benzaldehyde selectivity versus benzyl alcohol conversion; c) toluene 

selectivity versus benzyl alcohol conversion. 
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Figure 5.6 continued. d) Comparison of BDBA selectivity versus benzyl alcohol conversion in the original 

reactor (Parr) and the modified reactor (Parr’). Reaction conditions were: 25 mg 2.5wt%Au2.5wt%Pd/E. coli, 40 

ml benzyl alcohol, T= 110 °C, pair= 5 bar, N= 1200 rpm. 

 

As shown in Figure 5.6 a, a considerable improvement in the formation of each product was 

obtained after reactor modification due to the higher alcohol conversion contributed by the 

constant air feeding (an improved the oxygen availability). Meanwhile in terms of the desired 

product benzaldehye (Figure 5.6 b), a higher selectivity was obtained in Parr’ than in Parr 

when the same amount of benzyl alcohol was converted, suggesting conditions that 

maximised the availability of oxygen on the catalyst surface favour the synthesis of 

benzaldehyde. In contrast the selectivities to the rest of the by-products (toluene in Figure 5.6 

c and BDBA in Figure 5.6 d), were higher in the original Parr reactor than in the modified 

Parr’ rector. As was previously verified, the availability of oxygen in the dead-end Parr 
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towards the side reactions which do not involve oxygen. This could lead either towards the 
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BDBA is rather stable and not susceptible to hydrolysis. As a result, the BDBA selectivity 

was further enhanced with a steep increase in rate (Figure 5.6 d), corresponding to a fast 

decrease of benzaldehyde selectivity in Figure 5.6 b). 

On the basis of the above investigation, the following oxidation reactions were all operated in 

the modified flow-through reaction system, Parr’. 

5.2.1.3 Stability Investigation of Bio-AuPd Catalyst 

The ‘as-received’ bio-AuPd catalyst (provided by Dr K. Deplanche, School of Biosciences, 

University of Birmingham) was kept in a sealed glass vial under normal atmospheric 

environment, and was air-stored for over one year. Catalyst after long-term storage may be 

covered with impurities such as moisture or adsorbed oxygen or become otherwise oxidised 

[65], for example Mallat et al. [111] reported that a noble metal catalyst stored in air has a 

potential close to its oxygen rest potential. Similarly, in a related study of benzyl alcohol 

oxidation using inorganic AuPd catalyst by a previous group member Mounzer [79], the ‘as-

received’ AuPd/TiO2 was found to be in an oxidised state which, as a result of the poor 

availability of active sites, gave a rather low alcohol conversion (less than 20% after 5 hours) 

while catalyst in a predominantly reduced state considerably increased the conversion, by 

more than three-fold to nearly 60% [79]. 

In order to check whether the catalytic activity of the ‘as-received’ bio-catalyst becomes aged 

during long-term storage, a portion of the sample of bio-AuPd/E. coli catalyst was taken and 

pre-reduced ex-situ under hydrogen (details refer to §3.4.2). Both the ex-situ reduced and 

untreated bio-AuPd catalysts were then tested for the oxidation of benzyl alcohol under 

identical conditions: 7 mg of 2.5wt%Au2.5wt%Pd/E. coli, 40 ml of benzyl alcohol, T= 100 

°C, pair= 5 bar, Fair= 100 ml.min-1, and N= 1200 rpm. After 7 hours reaction time bio-

AuPd/E. coli ‘as-received’ and ‘pre-reduced’ showed very similar catalytic behaviours, 
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giving an average benzyl alcohol conversion of 3.15±0.12% with similar product selectivities 

(Table 5.2). This indicates that the long-term storage of ‘as-received’ 2.5wt%Au2.5wt%Pd/E. 

coli catalyst under normal atmosphere environment did not bring affect to its catalytic 

activity. 

Table 5.2 Comparison of the product selectivities in benzyl alcohol oxidation over ‘as-received’ and ‘pre-

reduced’ 2.5wt%Au2.5wt%Pd/E. coli. Reaction conditions were: 7 mg of 2.5wt%Au2.5wt%Pd/E. coli, 40 ml of 

benzyl alcohol, T= 100 °C, pair= 5 bar, Fair= 100 ml.min-1, N= 1200 rpm; reaction time= 7 hours. Benzoic acid 

was not included for it was not detected in the products under the given conditions. 

Catalyst status 
 Product selectivities, % 

 toluene benzyl aldehyde benzoic acid benzyl benzoate BDBA 

‘as-received’  3.01±0.16 50.55±0.93 0.00±0.00 3.64±0.03 42.31±0.60 

‘pre-reduced’  2.79±0.06 46.86±0.25 0.00±0.00 3.68±0.00 46.28±0.08 

 

Another factor that must be considered for the heterogeneous catalysts operating in a three-

phase system is the possibility that active metals (palladium and gold herein) can leach into 

the reaction mixture, leading to catalyst deactivation, or to the formation of an active 

homogeneous catalyst. Therefore, the final reaction solutions were centrifuged (7000 rpm, 4 

°C, 10 min) and the supernatants were analysed by atomic absorption spectroscopy to 

determine if the metal was leached (see assays of Pd(II) and Au (III) in §3.3.3). Negligible 

metals constituting the active phase were detected in the supernatants (<0.01 wt% of Au(III) 

and 0.28 wt% of Pd(II)). These results imply that bio-AuPd catalyst was well maintained in 

an active condition under the normal storage, as air-dried, ground material. 

5.2.1.4 Mixing and Mass Transfer 

In this section, investigations of hydrodynamics and mass transfer resistances in the present 

agitated slurry reactor are reported. First of all, an approximate value of the minimum 

agitation speed (Nm) required for a complete catalyst particle suspension (i.e. 

2.5wt%Au2.5wt%Pd/E. coli in benzyl alcohol) was calculated as 293.7 rpm using a 

correlation proposed by Zwietering et al. [246] (Equation 2-1 in §2.5.2.1). The parameters for 
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the calculation involve geometries of the Parr autoclave reactor, properties of the catalyst and 

benzyl alcohol (Table 5.3). A stirring speed of 1200 rpm was employed in all the oxidation 

reactions, the highest possible value with the Parr autoclave reactor used and far above the 

calculated value of Nm, thus perfect mixing was assumed to occur. All the oxidation reactions 

in this chapter were then stirred at this speed. 

Table 5.3 Parameters used for the calculation of the minimum stirring speed (Nm) in the case of solvent-free 

benzyl alcohol oxidation over a 2.5wt%Au2.5wt%Pd/E. coli catalyst in Parr autoclave reactor. 

 Parameter Value  Description 

System geometries  

 dT 3.30 cm reactor inside diameter 

 dI 2.06 cm stirrer diameter 

 β a 3.74 constant 

Catalyst properties (2.5wt%Au2.5wt%Pd/E. coli)  

 w’ 0.017 g(catalyst).100g(solution)-1 percentage catalyst loading 

 dp b 6.3×10-3 cm mean diameter of catalyst particles 

 ρp c 1.4952 g.cm-3 catalyst density 

Benzyl alcohol properties d  

 µL 0.05474 g.cm-1.s-1 liquid viscosity 

 ρL 1.044 g.cm-3 liquid density 

Others   

 g 981 cm.s-2 gravitational acceleration 

a estimated using Equation 2-2; b approximated by sieve; c measured by Micromeritics Accupyc II 1340 

Pycnometer; d values at 298 K. 

 

In terms of the mass transport resistances, if as here the catalyst is immersed in solvent-free 

benzyl alcohol, the intra-particle diffusion of liquid substrate molecules can be neglected. 

This is a valid assumption, since the liquid concentrations are always much higher than the 

oxygen concentration and vary very little from one position to another in the slurry, being 

virtually equal to the bulk concentration throughout. For the evaluation of oxygen transport in 

the current system, it is not practicable in this study to predict the oxygen reaction rate 
2Or  

during the course of the reaction based on two reasons: i) No suitable device was available to 

determine the solubility of oxygen during the course of the reaction thus the oxygen mass 
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balance in transfer and reaction step cannot be established properly; ii) The overall complex 

reaction pathways whereupon oxygen participates in several different reactions (i.e. R1, R2 

and SR11 in Figure 5.1), and the corresponding products (i.e. benzaldehyde, benzoic acid, 

ester and BDBA) also react further in other side reactions (i.e. SR12 and SR2). Therefore 

neither the alcohol consumption rate nor the aldehyde generation rate is reliable to predict the 

reaction rate of oxygen during the course of the reaction. However, since low benzyl alcohol 

conversion was usually observed in the initial half an hour, the estimation of initial oxygen 

reaction rate based on benzyl alcohol reaction rate is still acceptable. 

Given the intrinsically zero-order kinetics with respect to oxygen in the benzyl alcohol 

oxidation over AuPd bimetallic catalyst [66,71,231,232], the rate is suggested to be 

independent of the concentration of oxygen as long as the concentration is finite everywhere 

inside the catalyst [306,307]. However a concept of oxygen critical concentration must be 

introduced (§5.2.1.4.1) as proposed by Chaudhari et al. [306] for zero-order reactions with 

respect to the gas-phase reactant in a catalytic slurry reactor. Furthermore, due to the 

application of the dilute gas reactant, special care needs to be taken to maintain the oxygen 

partial pressure inside the autoclave, which may be influenced by air flow rate (§5.2.1.4.2) 

and catalyst concentration (§5.2.1.4.3). 

5.2.1.4.1 Critical Concentration of Oxygen in Benzyl Alcohol Oxidation 

Based on the Henry’s law, the amount of a given gas that dissolves in a given type and 

volume of liquid at a constant temperature, is directly proportional to the partial pressure of 

gas in equilibrium with the liquid. Chaudhari et al. [306] suggested for zero-order reactions 

with respect to the gas-phase reactant (G) in a catalytic slurry reactor, a critical concentration 

of G at catalyst surface [Gs]crit, corresponding to a [Gl]crit in bulk liquid and a pG,crit in the gas 

phase, exists for given operating conditions. Below this value, the reaction rate becomes a 

function of concentration and beyond the critical value any further increase in concentration 
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will not improve the rate. Accordingly, in benzyl alcohol oxidation, if 
2 2[ ] [ ]s s

critO O  

(correspondingly, 
2 2[ ] [ ]l l

critO O  and 
2 2 ,O O critp p ), the concentration of oxygen does not 

become zero at any point within the catalyst and rate of reaction is independent of 

concentration and mass transfer rates. When 
2 2[ ] [ ]s s

critO O , the concentration of oxygen may 

drop to zero at some radius λ within the catalyst (Figure 2.9 in §2.5.2.2). Then only the zone λ 

to R in the catalyst is effective for reaction. In the region 0 to λ, no reaction can take place 

because of oxygen starvation. The overall rate of reaction would then be less than that for a 

purely kinetically controlled case and would also be affected by mass transfer parameters. 

In this study, the benzyl alcohol oxidation operated in the dead-end mode was observed to 

suffer from the reaction slowing down over the course of the experiment (Parr, §5.2.1.1). 

From the above considerations it can be deduced that the plateau in Figure 5.2 started when 

the dissolved oxygen concentration dropped below the critical concentration, which may 

result from the decreasing of oxygen partial pressure caused by the depletion of oxygen in the 

gas phase. This experiment in dead-end mode may be considered as an extreme case of 

oxidation under a stagnant air flow rate (i.e. ~ 0 ml.min-1), with the effect being less severe in 

the flow-through experiment in the modified Parr’ operation (§5.2.1.2). It appeared that an air 

flow of 200 ml.min-1 contributed to maintain a higher oxygen partial pressure (leading to a 

higher dissolved oxygen concentration) thus promoted higher rate of oxidation of benzyl 

alcohol. Thereafter a series of reactions were carried out in order to study the effect of air 

flow rate on the oxygen partial pressure in the current system. 

5.2.1.4.2 Effect of Air Flow Rate on the Oxygen Partial Pressure 

Experiments were conducted by changing the air flow rate from 100 ml.min-1, 200 ml.min-1 

to 350 ml.min-1, with the other reaction conditions maintained as: 7 mg of 

2.5wt%Au2.5wt%Pd/E. coli, 40 ml of solvent-free benzyl alcohol, pair= 5 bar, T= 100 °C, and 
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N= 1200 rpm. The reactor contents were weighed before and after reaction and percentage 

loss of material was calculated for each reaction. 

 

 

Figure 5.7 a) Benzyl alcohol concentration profiles under different flow rates (symbols of 200 ml.min-1 and 350 

ml.min-1 are overlapped on the plot); b) Effect of the air flow rate on the benzyl alcohol consumption rate. 

Reaction conditions were: 7 mg 2.5wt%Au2.5wt%Pd/E. coli, 40 ml solvent-free benzyl alcohol, T= 100 °C, 

pair= 5 bar, N= 1200 rpm. 

 

Figure 5.7 a shows the evolution of benzyl alcohol concentration during the course of 

reaction under different flow rates. It was observed that alcohol consumption rate under 100 

ml.min-1 air flow was slower than the rates under the other two flow rates (200 and 350 

ml.min-1), which were almost the same. Figure 5.7 b displays the alcohol consumption rates 

at different reaction times. Similar initial alcohol consumption rates at 0.5 h were observed 

9.0

9.2

9.4

9.6

9.8

10.0

0 2 4 6 8

B
en

zy
l 

al
co

h
o

l 
co

n
ce

n
tr

at
io

n
, 

m
o

l.
l-1

Time, h

100-exp

200-exp

350-exp

100 ml.min-1

200 ml.min-1

300 ml.min-1

a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100 200 300 400

A
lc

o
h
o

l 
co

n
su

m
p

ti
o

n
 r

at
e,

 m
o

l.
l-1

.h
-1

Air flow rate, ml.min-1

0.5 hour

7 hour

b)



Chapter 5 Aerobic Oxidation Using Bio-AuPd Catalyst 

154 

under all flowrates of air (0.096±0.002 mol.l-1.h-1 under 100 ml.min-1, 0.093±0.001 mol.l-1.h-1 

under 200 ml.min-1 and 0.095±0.001 mol.l-1.h-1 under 350 ml.min-1). After 7 hours reaction 

time, the reactions under 200 ml.min-1 and 350 ml.min-1 air consistently maintained almost 

the same rates as the initial values. However, at the lowest air flow rate of 100 ml.min-1 the 

rate dropped considerably to 0.041±0.001 mol.l-1.h-1, suggesting oxygen being the limiting 

reactant. In other words, benzyl alcohol oxidation under an air flow rate of 100 ml.min-1 

became oxygen mass transfer controlled at the reaction time of 7 hour as compared to the 

reactions under 200 ml.min-1 and 350 ml.min-1. It was thought that the air flow rate was likely 

to play a role on the oxygen partial pressure (the equilibrium oxygen concentration in 

solution) in the system under the given conditions. 

A plot in Figure 5.8 can be envisaged to illustrate the changing of oxygen partial pressure 

versus time at different air flowrates in the modified ‘open-end’ autoclave reactor (Parr’); it 

must be stated here that the lines in the graph only demonstrate a general trend rather than 

any actual physical recording. Initially, reactions all started with the same initial oxygen 

partial pressure for identical air pressure (5 bar) applied. The similar benzyl alcohol 

consumption rates in the early time period (~1 hour, Figure 5.7 a) under all three flows rates 

implies initial value of oxygen partial pressure 
2 ,initialOp  was above the critical value 

2 ,critOp . 

For the use of dilute gas reactant in benzyl alcohol oxidation, oxygen partial pressure in the 

gas phase is thought to decrease with the reaction time in each case, the rate of which varies 

with the air flow rate. In the case of dead-end operation (Parr, dashed trend line in Figure 5.8) 

oxygen partial pressure was expected to drop to the critical value at the fastest rate within the 

time period of t0. When applying an air flow rate, the time for oxygen partial pressure 

decreasing from 
2 ,initialOp  to 

2 ,critOp  was prolonged to ti (ti>t0; i=1, 2, and 3 for 100, 200, and 

350 ml.min-1 respectively as shown in Figure 5.8). During the time period of 0~ti (i= 0, 1, 2, 

and 3), oxygen partial pressure was above 
2 ,critOp , the reaction was expected to be 
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independent of the oxygen concentration. When oxygen partial pressure reduced below 

2 ,critOp  (after ti), an oxygen mass-transfer-controlled regime would occur; in the case of 100 

ml.min-1, t1 appeared to be ~1 hour. In contrast, the observed invariant and stable benzyl 

alcohol consumption rates under both 200 ml.min-1 and 350 ml.min-1 within the 7 hours’ 

reaction time (Figure 5.7) implies that both t2 and t3 were beyond the reaction end time of 7 

hour (the reaction time for each benzyl alcohol oxidation test, indicated as the vertical dashed 

line in Figure 5.8), and reactions were in a kinetic control regime in dependent of mass 

transfer rates. 

 

Figure 5.8 An illustration on the oxygen partial pressure changing with reaction time under different air flow 

rates in the modified autoclave reactor. The pointed out 7 hour is the total reaction time in this study. Reaction 

conditions: 7 mg of 2.5wt%Au2.5wt%Pd/E. coli, 40 ml of benzyl alcohol, T= 100 °C, pair= 5 bar, N= 1200 rpm. 

The straight lines are only for the general trends; they do not represent any experimental meanings. 

 

In terms of product formation, similar product distributions were observed at flow rates of 

200 and 350 ml.min-1. Both benzaldehyde and BDBA were detected as the major products, 

giving yields of 2.90±0.03 wt% for aldehyde and 3.25±0.12 wt% for BDBA at a flow rate of 

200 ml.min-1 after 7 hours. The even higher production of BDBA than the target product 

benzaldehyde resulted in the low aldehyde selectivity being 40%~50%. Only a minor amount 
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of toluene (0.15±0.01 wt%) and benzyl benzoate (0.20±0.00 wt%) were formed as by-

products, and no benzoic acid was detected in the present system. 

The catalytic performance of bioinorganic 2.5wt%Au2.5wt%Pd/E. coli in this study was 

compared with the chemical 2.5wt%Au2.5wt%Pd/TiO2 reported by Enache et al. [231] in a 

very similar system. The main difference between the reaction conditions in these two studies 

were the support of catalyst and the purity of gas reactant employed, being E. coli, air in this 

work and TiO2, oxygen in Enache’s work respectively. The turnover frequency (TOF) for the 

oxidation by bio-AuPd catalyst was estimated as an average of 1423±20 turnovers per hour 

under the air flow rates above 200 ml.min-1. This was approximately one quarter of the TOF 

reported by Enache et al. [231] with the use of AuPd/TiO2 under 1 bar of pure oxygen at the 

same temperature (6190 hr-1). The difference in TOF can be ascribed to the activity of the 

catalyst itself, for example the nature of support and the metal (Au and Pd) configuration. In 

terms of the configuration of the gold and palladium on E. coli, it was shown in a relevant 

work to his work that the nanocrystals were made up of an Au-rich core with a Pd-rich shell 

[161], which is in agreement with the case of AuPd/TiO2 in Enache’s work. On the other 

hand inorganic catalyst support like titanium dioxides for precious metal catalysts have 

gained interest due to the high surface area [308]; while the biomass employed in this study 

possesses completely different physical properties and chemical compositions (§2.3.1). For 

the catalytic tests of 2.5wt%Au2.5wt%Pd/E. coli reported here, due to some inaccessible 

intracellular located metal particles (see later the characterisation work in §6.3.2), the actual 

amount of the active metal exposed at the outer membrane of the cell for reaction to take 

place is less than the total palladium loading, which can explain the obtained lower TOF. 

Although an increased air flow rate was found to improve oxygen availability in the present 

benzyl alcohol oxidation system, it could also lead to increased loss by evaporation of some 
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low boiling point components (e.g. toluene or benzaldehyde). Thus, 200 ml.min-1 of air flow 

was chosen as optimum operating flow rate in the following study. 

5.2.1.4.3 Effect of Catalyst Concentration on the Oxygen Partial Pressure 

In this section benzyl alcohol oxidation was carried out by varying the mass (mc) of 

2.5wt%Au2.5wt%Pd/E. coli (7 mg, 14 mg, 25 mg, 70 mg and 100 mg) under the same 

reaction conditions (40 ml of benzyl alcohol, pair= 5 bar, Fair= 200 ml.min-1, T= 110 °C, and 

N= 1200 rpm). Performing reactions with different catalyst masses can be used to deduce 

information about the upper-use amount of catalyst in current reaction system without mass 

transfer resistances. 

Intuitively, increasing the mass of catalyst would lead to the promotion of the overall reaction 

performance, as more active sites per volume of slurry are available for reactant molecules to 

adsorb upon for the subsequent reaction. As shown in Figure 5.9 a, a proportionate increase 

in the observed initial rate of benzyl alcohol disappearance (estimated up to 30 mins) was 

found by increasing the catalyst amount. This indicates a linear dependence of the rate on the 

weight of catalyst and hence on the number of catalytic sites. Similar conclusions were 

reported in the aerobic oxidation of benzyl alcohol over Ru/Al2O3 by Yamaguchi and Mizuno 

[241] and AuPd/TiO2 by Meenakshisundaram et al. [66]. 
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Figure 5.9 a) Evolution of the initial benzyl alcohol reaction rate by changing the catalyst loading of bio-AuPd 

in benzyl alcohol oxidation; b) Benzyl alcohol concentration profiles using different masses of bio-AuPd; c) A 

demonstration on the partial pressure changing with the reaction time when using different masses of bio-AuPd 

in the modified autoclave. Reaction conditions: use of 2.5wt%Au2.5wt%Pd/E. coli catalyst in 40 ml benzyl 

alcohol, T= 110 °C, pair= 5 bar, Fair= 200 ml.min-1, N= 1200 rpm. 
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Figure 5.9 b shows the benzyl alcohol concentration profiles as a function of reaction time 

using different catalyst masses. It was noted that the highest catalyst loading of 100 mg 

displayed the fastest initial benzyl alcohol consumption rate (Figure 5.9 a) but the conversion 

rate decelerated and levelled off after 3 hours at ~42.72±0.64% of benzyl alcohol conversion. 

The benzyl alcohol concentration curves for the bio-AuPd masses of 70 mg and 100 mg were 

observed to cross over each other, with eventually higher conversion being attained for 70 mg 

(67.87±1.00%) than that of 100 mg (48.28±1.66%) after 7 hours. It is considered that due to 

the increased number of active surface sites per unit mass of slurry, the accelerated 

consumption rate of oxygen would speed up the decreasing rate of oxygen partial pressure. 

As illustrated in Figure 5.9 c, at the 100 mg loading of bio-AuPd/E. coli, the time (t5) for 

oxygen partial pressure to decrease from the initial value (
2 ,initialOp ) to the critical value (

2 ,critOp ) occurred before 7 hour, as a result the benzyl alcohol oxidation after t5 (i.e. ~3 hours) 

was again limited by oxygen mass transfer. 

From the above considerations it is suggested that in the Parr’ system under the tested 

reaction conditions, the catalyst amount should be below 100 mg to ensure the reaction being 

predominantly in the kinetic regime. 

5.2.1.5 Effect of Temperature and Activation Energy 

The following work reports the estimation of the activation energy in current reaction system 

by performing the benzyl alcohol oxidation under a range of temperatures from 100 °C, 110 

°C, 120 °C to 140 °C. The rest of the reaction conditions were: 7 mg of 

2.5wt%Au2.5wt%Pd/E. coli, 40 ml of benzyl alcohol, pair= 5 bar, Fair= 200 ml.min-1, and N= 

1200 rpm. 

Firstly, the effect of reaction temperature upon rate is observed in the alcohol concentration 

profile as a function of reaction time in Figure 5.10 a. Considerable improvement in the final 
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conversion of benzyl alcohol was obtained at the end of the reaction at higher temperatures. 

As shown in Table 5.4, the corresponding TOF increased significantly with the temperature. 

While comparing with the work reported in the literature (Table 5.4), the TOF in this study 

was still lower at the corresponding reaction temperature, which has been discussed above in 

§5.2.1.4. 

Table 5.4 Comparison of the reaction conditions and the catalytic activity in benzyl alcohol oxidation in this 

study with those in literature. Catalyst loadings were consistent as 2.1 ×10-5mol.l-1 for Au and 3.9 ×10-5mol.l-1 

for Pd. The air flow rate of ml.min-1 was an optimised flow rate. TOF was measured after first 0.5 hour of 

reaction. Benzyl alcohol conversion was determined after 7 hours in this study. 

Catalyst Reaction conditions 
TOF 

hr-1 

Conversion 

% 

Activation 

energy 

kJ.mol-1 

Reference 
Metal loading Support 

T 

k 

P 

bar 

Flow 

ml.min-1 

2.5wt%Au 

2.5wt%Pd 

E. coli 

373 5, air 200 1383 6.0±0.2 

71.8 This study 
383 5, air 200 2881 11.7±0.5 

393 5, air 200 4337 22.0±0.6 

413 5, air 200 16818 50.4±0.1 

TiO2 

373 1, O2 NA 6190 NG 

45.8 
Enache et al. 

[65] 
383 1, O2 NA 14270 NG 

393 1, O2 NA 26400 NG 

NA: not applicable; NG: not given. 

 

The influence of temperature on the rates of chemical reactions is described by the Arrhenius 

equation as follows: 

   
1

ln ln aE
k A

R T

 
   

 
         5-4 

where k= reaction rate coefficient (mol.m-3.s-1), A= pre-exponential factor, Ea= activation 

energy (kJ.mol-1), R= gas constant (8.314 J.K-1.mol-1), and T= absolute temperature (K). 

The reaction rates (over 30 mins) at different temperatures were calculated from the slope of 

the concentration-time lines in Figure 5.10 a and these rates were used to construct an 

Arrhenius plot of ln(k) versus 1/T. The resulting Arrhenius plot based on this system is 

displayed in Figure 5.10 b, from which the activation energy was estimated as 71.8 kJ.mol-1 
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for benzyl alcohol oxidation over the 2.5wt%Au2.5wt%Pd/E. coli under 5 bar of air. In 

comparison with the lower activation energy reported by Enache et al. [231], 45.8 kJ.mol-1 in 

Table 5.4, the higher activation energy in this study indicates the reaction is kinetically 

limited. By contrast, a low value of activation energy is related to mass transfer effects 

masking the true activation energy. 

 

 

Figure 5.10 a) Benzyl alcohol concentration profiles under different reaction temperatures; b) Arrhenius plot of 

ln(k) versus 1/T showing temperature dependence of benzyl alcohol oxidation over a 2.5wt%Au2.5wt%Pd/E. 

coli catalyst. Reaction conditions: 7 mg of 2.5wt%Au2.5wt%Pd/E. coli, 40 ml of benzyl alcohol, pair= 5 bar, 

Fair= 200 ml.min-1, N= 1200 rpm. 

 

The effect of reaction temperature on the product distribution was also investigated. At all 

temperatures studied, benzaldehyde was maintained as the major product with minor amounts 
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of consecutive products such as benzoic acid and benzyl benzoate, as shown in the product 

concentration profiles in Figure 5.11 a for 110 °C and b for 140 °C. At a reaction temperature 

of 110 °C, less than 11.7±0.5% of benzyl alcohol conversion was obtained after 7 hours, 

producing 6.6±0.5 wt% of benzaldehyde and 4.5±0.3 wt% of BDBA as the major products. It 

was also noted that high temperature (140 °C) considerably increased the yield of toluene, 

reaching a concentration of 13.2±0.4 wt% after 7 hours. In terms of the selectivity to toluene 

displayed in Figure 5.11 c, it was observed that raising the reaction temperature dramatically 

increased the selectivity to this by-product at the same benzyl alcohol conversion. As 

described in reaction scheme 2 (Figure 5.1), toluene can be formed by the disproportionation 

of benzyl alcohol in the absence of oxygen. Li et al. [303] also concluded that this reaction is 

favoured by high temperature and low partial pressure of O2. Therefore at the higher 

temperature of 140 °C, a reduced concentration of dissolved oxygen leads to increased 

toluene formation. Meanwhile with the finding of higher toluene formation in the original 

reactor (Parr) than that in the reactor after modification (Parr’), it is evident that the 

availability of dissolved O2 in the solution has the key influence upon the toluene formation. 

Considering the formation of other side products, for the concentration profile at a relatively 

low temperature of 110 °C in Figure 5.11 a, the concentration of generated BDBA was only 

slightly lower than that of target product of benzyl aldehyde. However the BDBA production 

varied significantly with the temperature (100 °C, 110 °C and 120 °C in Figure 5.11 d). 

When the temperature was increased to 140 °C, an increase of BDBA concentration to a 

maximum (4.4±0.1 wt% after 2 hours) followed by its decrease (0.9±0.3 wt% after 7 hours) 

was observed. As shown in Figure 5.11 e, benzoic acid started to form at a considerable rate 

under more severe conditions (i.e. temperature of 140 °C); a significant promotion of acid 

production was observed when increasing the temperature from 120 °C to 140 °C. The 

accelerated formation of acid in the reaction at 140 °C led to the decomposition of BDBA. 
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Figure 5.11 Product concentration as a function of benzyl alcohol conversion at temperature of a) 110 °C and b) 

140 °C; c) Comparison of selectivity to toluene under different reaction temperatures. Reaction conditions: 7 mg 

2.5wt%Au2.5wt%Pd/E. coli, 40 ml benzyl alcohol, pair= 5 bar, Fair= 200 ml.min-1, N= 1200 rpm. 
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Figure 5.11 continued. Comparison of d) BDBA formation and e) benzoic acid formation under different 

reaction temperatures. Reaction conditions were: 7 mg 2.5wt%Au2.5wt%Pd/E. coli, 40 ml benzyl alcohol, pair= 

5 bar, Fair= 200 ml.min-1, N= 1200 rpm. 

 

In summary, the activation energy of benzyl alcohol oxidation over the 

2.5wt%Au2.5wt%Pd/E. coli catalyst in the present system was found to be 71.8 kJ.mol-1. 

Although much higher benzyl alcohol conversion and less BDBA were obtained under high 

temperature, a substantial level of toluene was formed as by-product under oxygen limited 

conditions due to the lower oxygen solubility at the raised temperatures. Therefore, a trade-

off exists between reaction rate and by-product selectivity in current benzyl alcohol oxidation 
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system, an intermediate temperature of 110 °C was finally selected as the optimum 

temperature for the following reactions. 

5.2.2 Bio-AuPd Catalyst Formulation 

For bimetallic catalyst bio-AuPd, the catalytic performance can be affected by the catalyst 

formulation, e.g. the biomass strain, total metal loading, and metal ratio (Au:Pd). The first 

objective of this study is to compare the biofabrication of AuPd catalyst by four different 

biomass strains which may deposit active metal by different mechanisms, the influence of the 

supporting biological matrix on the catalytic specificity of the resulting bio-AuPd is discussed 

(§5.2.2.1). The optimal type of bacterial strain was then selected based on the catalytic 

performance of its bio-AuPd in benzyl alcohol oxidation, and this strain was tested in the 

following work by adjusting the total metal loading at the same metal ratio (§5.2.2.2) and 

metal ratio at the same total metal loading (§5.2.2.3) to optimise the AuPd loading. 

5.2.2.1 Effect of Biomass Strain 

As introduced in §2.3, different bacterial strains possess different metal ion sorption and 

reduction abilities, which would affect the final patterning and size distribution of the cell-

bound metal nanoparticles and hence potentially the catalytic activity of the resulting bio-

catalysts. In addition to Gram-negative E. coli (-) being the focus throughout this study, this 

section investigates the catalytic activities of bio-AuPd nanoparticles on Gram-negative R. 

sphaeroides (-), Gram-positive A. oxydans (+), and Gram-positive M. luteus (+) in benzyl 

alcohol oxidation. These strains were selected for their known high metal tolerance and/or 

hydrogenase activity; some characters of these strains were listed earlier in Table 2.7. In each 

bio-AuPd preparation the metal loading was set identically as 2.5wt%Au2.5wt%Pd for the 

purpose of comparison. The optimal benzyl alcohol oxidation conditions determined from the 
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previously reported work (§5.2.1), were applied as: 7 mg of bio-2.5wt%Au2.5wt%Pd, 40 ml 

of benzyl alcohol, pair= 5 bar, Fair= 200 ml.min-1, N= 1200 rpm, and T= 110 °C. 

 

Figure 5.12 Benzyl alcohol conversion profiles using bio-AuPd catalysts supported on different strains of 

bacteria. Reaction conditions: 7 mg bio-2.5wt%Au2.5wt%Pd catalysts, 40 ml benzyl alcohol (solvent free), T= 

110 °C, pair= 5 bar, Fair= 200 ml.min-1, and N= 1200 rpm. 

 

Figure 5.12 shows the benzyl alcohol conversion profiles as a function of reaction time, from 

which the specificity of the above four bio-AuPd preparations in terms of the resulting 

catalytic behaviours can be observed. The Gram-negative bacteria (R. sphaeroides and E. 

coli) prepared bio-AuPd catalysts showed significantly higher catalytic activity than Gram-

positive (A. oxydans and M. luteus) supported ones. An analogous finding was reported in the 

case of bio-Pd in Cr(VI) reduction [23], in which bio-Pd catalysts manufactured from Gram-

negative bacteria gave better conversion to the ones from Gram-positive bacteria. In the 

present benzyl alcohol oxidation, bio-AuPd/M. luteus gave the lowest benzyl alcohol 

conversion, which was only ~2.8% after 7 hours. A slightly better performance was achieved 

by using bio-AuPd/A. oxydans, showing a final ~5.0% of benzyl alcohol conversion. The 

highest benzyl alcohol conversion after 7 hours was observed in the case of bio-AuPd/E. coli, 

achieving 11.7±0.5% at a steady benzyl alcohol consumption rate of ~0.16 mol.l-1.hr-1. As to 

the other Gram-negative biomass supported catalyst bio-AuPd/R. sphaeroides, a much higher 
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alcohol conversion than that over bio-AuPd/E. coli was observed during the initial 2 hours, 

after which the reaction rate gradually tailed off and the conversion curves crossed over as 

shown in Figure 5.12. By the end of the reaction (7 hours), benzyl alcohol conversion using 

bio-AuPd/R. sphaeroides was 32.5% lower than that using bio-AuPd/E. coli. Nonetheless the 

reason for the conversion tailing-off in Figure 5.12 when using 7 mg of bio-AuPd/R. 

sphaeroides has to be distinguished from the early case over 100 mg of bio-AuPd/E. coli in 

§5.2.1.4.3, in which it was concluded that reaction became oxygen-limited after ~3 hours 

(conversions of 42.7±0.6% after 3 hours and 45.9±1.0% after 7 hours). This reason is less 

likely to occur for the reaction using 7 mg of bio-AuPd/R. sphaeroides, where a much slower 

reaction was observed with the alcohol conversions of only 5.6±0.1% after 3 hours and 

7.9±0.1% after 7 hours. Therefore it is unlikely that oxygen transfer limitation caused the 

reduction of reaction rate in the latter stage (3 hour onwards) in the reaction system over bio-

AuPd/R. sphaeroides. In fact the performance could be explained by the weak thermal 

stability of this strain of bacterium as the later comparison of thermogravimetric analysis 

(TGA) analysis of bio-AuPd/R. sphaeroides and bio-AuPd/E. coli in Figure 6.2 in §6.2. The 

mass loss profile as a function of the temperature suggested that the catalyst started to 

decompose considerably at temperatures ~125 C in the case of bio-AuPd/R. sphaeroides, 

while 2.5wt%Au2.5wt%Pd/E. coli was stable up to ~175 C (details to see in §6.2). Thus in 

the operating reaction temperature of 110 C for continuous 7 hours, the bio-AuPd/R. 

sphaeroides catalyst may gradually undergo deactivation with time due to its weak resistance 

towards heating, which may even be accelerated by the attrition caused by the high-speed 

mechanical stirring. As a result, the tailing of benzyl alcohol conversion after around 3 hours 

was observed in Figure 5.12. However, it must be stressed that these tests were made (in 

triplicate) using single catalyst preparation and that these data require verification using 

second, independent preparation. 
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Examination of the catalysts supported upon different bacterial strains reveals the strain-

specific size of AuPd nanoparticles (NPs) in the backscattered-SEM (BSE) images reported 

in Figure 6.5 b~d (in §6.3.1). It is worth stating here in brief that at the same loading of 

2.5wt%Au2.5wt%Pd, the BSE images display spherical-shaped M. luteus (+) with the poorly 

dispersed large metal clusters (~100 nm), which is similar to the case of rod-shaped A. 

oxydans (+). In contrast, the metal particles are relatively evenly deposited on the rod-shaped 

bacteria E. coli (-) meanwhile showing smaller metal particles. In accordance with the 

individual catalytic performance in the benzyl alcohol oxidation, it is suggested that the 

reaction is sensitive to the size of the active component. It is much likely that the larger 

clusters induced smaller surface area, as a result less active sites for reaction to take place. 

In terms of product formation, bio-AuPd/A. oxydans, the more active bio-AuPd within the 

two Gram-positive bacteria-supported catalysts, showed the lowest selectivity to the desired 

product benzylaldehyde (Figure 5.13 a) accompanied by the highest selectivity to BDBA 

(Figure 5.13 b) and toluene (Figure 5.13 c). Bio-AuPd/E. coli maintained the highest 

benzaldehyde selectivity at higher alcohol conversion in the later stage. Although bio-

AuPd/R. sphaeroides produced the least toluene, it gave the highest selectivities towards both 

benzoic acid (Figure 5.13 d) and benzyl benzoate (Figure 5.13 e). 
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Figure 5.13 Profiles of selectivity to a) benzaldehyde and b) BDBA as a function of benzyl alcohol conversion 

in the reactions using bio-AuPd catalysts supported on different strains of bacteria. Reaction conditions: 7 mg 

bio-2.5wt%Au2.5wt%Pd, 40 ml benzyl alcohol (solvent free), pair= 5 bar, Fair= 200 ml.min-1, N= 1200 rpm. 
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Figure 5.13 continued. Profiles of selectivity to c) toluene, d) benzoic acid, and e) benzyl benzoate as a function 

of benzyl alcohol conversion in the reactions using bio-AuPd catalysts supported on different strains of bacteria. 

Reaction conditions: 7 mg bio-2.5wt%Au2.5wt%Pd, 40 ml benzyl alcohol (solvent free), pair= 5 bar, Fair= 200 

ml.min-1, N= 1200 rpm. 
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In summary, bio-AuPd catalysts on Gram-positive bacteria (A. oxydans and M. luteus) gave 

lower catalytic activities in benzyl alcohol oxidation as compared those on Gram-negative 

bacteria (R. sphaeroides and E. coli), which was attributed to the larger and unevenly 

distributed metal particles in the former. A critical role of the biological support matrix in the 

preparation of catalytically active AuPd nanoparticles is suggested. Among the four catalysts, 

bio-AuPd/E. coli showed superior catalytic performance in benzyl alcohol oxidation. The 

alcohol was consumed steadily with a higher selectivity to benzaldehyde in comparison with 

the rest of the bio-AuPd catalysts. Hence E. coli bacterium was selected as the catalyst 

support for the subsequent studies. 

5.2.2.2 Effect of Total Metal Loading 

In this section, the preparation and testing of bio-AuPd catalyst on E. coli with different total 

metal loadings at a constant Au:Pd ratio as 1:1 by weight (Table 5.5) is reported. In each 

benzyl alcohol oxidation reaction, the catalyst mass was adjusted to keep the same mole ratio 

of substrate/total metal. At the lower total loadings (i.e. 0.5wt%Au0.5wt%Pd, 

1wt%Au1wt%Pd, and 2.5wt%Au2.5wt%Pd), comparisons were made at an alcohol/AuPd 

mole ratio of 152,000 which requires 7 mg mass of 2.5wt%Au2.5wt%Pd/E. coli. However a 

mass of 0.7 mg catalyst required for the highest loading of 25wt%Au25wt%Pd/E. coli to 

maintain the above ratio is difficult to precisely weigh out in practice. Thus a lower 

alcohol/AuPd molar ratio of 15,200 was applied in another separate comparison between 

25wt%Au25wt%Pd/E. coli and 2.5wt%Pd2.5%wtAu/E. coli, corresponding to a catalyst mass 

of 7 mg and 70 mg respectively. Other reaction conditions were: 40 ml of benzyl alcohol, T= 

110 °C, pair= 5 bar, Fair = 200 ml.min-1, and N= 1200 rpm. 
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Table 5.5 Details of catalyst amount used for catalytic activity comparison 

Metal loading on E. coli, % 
Mole ratio of substrate/total metal 

Au Pd 

0.5 0.5 152,000 - 

1 1 152,000 - 

2.5 2.5 152,000 15,200 

25 25 - 15,200 

 

Figure 5.14 a shows the benzyl alcohol conversions using lower AuPd-loaded bio-catalysts 

(0.5wt%Au0.5wt%Pd, 1wt%Au1wt%Pd, 2.5wt%Au2.5wt%Pd), from which it was observed 

that the reaction rate improved with the increase of AuPd total loading. For similar reasons 

suggested in the discussion of the metal particle growth in bio-Pd/E. coli from 2 wt% to 5 

wt% in §4.2, it is possible that at lower loading of AuPd, the eruption of metal particles on 

the cell surface was restricted. The gradual increase of the metal loading promotes the growth 

of particles to be exposed to the outer-surface of the cell wall, as a result providing more 

active sites available for reaction to take place. However with a further increase of AuPd 

loading from 2.5wt%Au2.5wt%Pd to 25wt%Au25wt%Pd, a considerable decrease of the 

reaction rate based on the benzyl alcohol conversion was observed (Figure 5.14 b). After 7 

hours 66.5±1.0% of benzyl alcohol conversion was achieved by using 70 mg of 

2.5wt%Au2.5wt%Pd/E. coli, revealing an increase of more than 2-folds of the conversion 

(~31.0%) when using 7 mg of 25wt%Au25wt%Pd/E. coli. This decrease in catalyst activity 

could be rationalised by the possibility that a higher catalyst loading contained larger clusters 

of metal, with poor dispersion of active metals providing limited accessible active sites for 

reaction. The AuPd particle growth corresponding to the increase of the metal loading was 

confirmed by observations recorded under examination by both SEM and TEM which is 

reported in §6.3. 
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Figure 5.14 a) and b) Comparisons of benzyl alcohol conversions over bio-AuPd/E. coli catalysts with different 

total loadings. Reaction conditions were: 40 ml benzyl alcohol (solvent free), pair= 5 bar, Fair= 200 ml.min-1, N= 

1200 rpm, and T= 110 °C. 
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Figure 5.14 continued. c) Comparison of the selectivity to toluene over bio-AuPd/E. coli catalysts with loadings 

of 0.5wt%Au0.5wt%Pd, 1wt%Au1wt%Pd, and 2.5wt%Au2.5wt%Pd; d) Comparisons of the selectivity to 

benzyl aldehyde and e) Comparisons of the selectivity to BDBA formation using 2.5wt%Au2.5wt%Pd/E. coli 

and 25wt%Au 25wt%Pd/E. coli. Reaction conditions were: 40 ml benzyl alcohol (solvent free), pair= 5 bar, Fair= 

200 ml.min-1, N= 1200 rpm, T= 110 °C. 
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In terms of the product distribution at lower AuPd-loadings (0.5wt%Au0.5wt%Pd, 

1wt%Au1wt%Pd, 2.5wt%Au2.5wt%Pd), similar selectivity towards benzaldehyde was 

obtained, giving an average aldehyde selectivity of ~51.3%. However, it is worthy of note 

that the selectivity to toluene changed considerably with these three total metal loadings 

(Figure 5.14 c). A very minor amount of toluene was formed over the lowest loading of 

0.5wt%Au0.5wt%Pd on E. coli, with 0.7% of the selectivity at 5.5% benzyl alcohol 

conversion; however this number increased by 3.5-fold over 1wt%Au1wt%Pd/E. coli and 5-

fold over bio-2.5wt%Au2.5wt%Pd/E. coli at a comparable level of benzyl alcohol 

conversion. Therefore it was concluded that the formation of toluene is sensitive to the 

increase of the exposed metal surface area. In addition, in the comparison between 

2.5wt%Au2.5wt%Pd/E. coli and 25wt%Au25wt%Pd/E. coli, a much lower selectivity to the 

target product of benzaldehyde was observed for 25wt%Au25wt%Pd/E. coli than 

2.5wt%Au2.5wt%Pd/E. coli (Figure 5.14 d), meanwhile a correspondingly higher formation 

of BDBA (Figure 5.14 e). 

From the above discussion it is evident that AuPd total loading (equal weight ratio of Au:Pd) 

on the bacteria E. coli is an important factor influencing the performance of the catalysts due 

to the particle size of the AuPd alloy and its availability onto the bacteria surface. Increasing 

the metal loading from 0.5wt%Au0.5wt%Pd to 2.5wt%Au2.5wt%Pd provides more exposed 

active metal nanoparticles upon the cell surface which, as a result, appears to be associated 

with the improved catalytic performance. While catalyst with a very high loading of 

25wt%Au25wt%Pd on E. coli is thought to have exhibited large metal clusters which gave a 

poor catalytic activity in benzyl alcohol oxidation (lower benzyl alcohol conversion and 

benzaldehyde selectivity). Under the current experimental conditions, among the examined 

four bio-AuPd/E. coli preparations with varied metal loadings, the 2.5wt%Au2.5wt%Pd on E. 

coli demonstrated a good dispersion of metal nanoparticles with the best catalytic activity. 
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5.2.2.3 Effect of Au:Pd Mass Ratio 

After investigating the total AuPd loading on biomass E. coli, a study was carried out to 

examine the effect of the Au:Pd mass ratio. A range of bio-AuPd catalysts was then prepared 

with identical 5 wt% total AuPd weight loading, while different mass ratios of 

1wt%Au4wt%Pd, 2.5wt%Au2.5wt%Pd and 4wt%Au1wt%Pd on E. coli were utilised for the 

different samples. The mass of catalyst was adjusted to maintain the same substrate/total 

metal mole ratio of 152,000. All the oxidation reactions were operated under the same 

conditions: 40 ml of benzyl alcohol, T= 110 °C, pair= 5 bar, Fair = 200 ml.min-1, and N= 1200 

rpm. 

Figure 5.15 a shows the order of catalytic activity as: 4wt%Au1wt%Pd< 1wt%Au4wt%Pd< 

2.5wt%Au2.5wt%Pd. Under the same reaction conditions, 2.5wt%Au2.5wt%Pd/E. coli was 

found to retain its advantage in catalytic activity when compared with the other two bio-AuPd 

catalysts, showing a higher benzyl alcohol conversion. In another published work by 

Deplanche et al. [161], the Au-rich core with Pd-rich shell configuration was found to occur 

on AuPd/E. coli with equal Au:Pd mass ratio, more specifically the bimetallic biogenic 

particle was developed where surface-exposed Pd atoms decorate a core of Au atoms. 

Meanwhile, it is suggested that the active site for dissociative adsorption of the alcohol and β-

hydride elimination (details refer to §2.4.2.2) is considered to be the reduced metal Pd(0) 

[103,230]. Au plays a role to isolate Pd sites within bimetallic systems [166] thus acting as a 

promoter to reduce the deactivation of Pd in oxidation reactions (details refer to §2.2.5.2). In 

addition, it is known that Au particles are easily grown to bigger sizes than Pd particles under 

the same conditions [153,309], which is confirmed in this study by the XRD analysis 

presented in §6.4.3. Thus at a higher content of Au in 4wt%Au1wt%Pd/E. coli, changes to 

the metal configuration may lead to the Pd active sites becoming covered by Au atoms, 

resulting in a decreased activity in the benzyl alcohol oxidation. The benzyl alcohol 
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conversion (after 7 hours) was obtained as 11.7±0.5% using 2.5wt%Au2.5wt%Pd/E. coli, 

however only half of the conversion was achieved by the 4wt%Au1wt%Pd/E. coli giving 

6.6±0.1% after 7 hours. 

On the other hand, adjusting the Pd proportion from 2.5wt%Au2.5wt%Pd to 

1wt%Au4wt%Pd also resulted in a reduction in the activity of the catalyst. After 7 hours, 

benzyl alcohol conversion using 1wt%Au4wt%Pd/E. coli reached to 10.3±0.1%, which was 

about 88% of the conversion using 2.5wt%Au2.5wt%Pd/E. coli. This finding implicates that 

the larger content of Pd sites, which are responsible to be the active sites for the oxidation, 

are not required to secure high catalytic performance. Prati et al. [71] suggested that the 

catalytic activity of supported bimetallic catalyst depends on the geometric effect and the 

electronic interactions between the two metals. In addition, all three bio-AuPd/E. coli 

presented similar selectivities towards bezaldehyde (Figure 5.15 b) and toluene (Figure 5.15 

c). 

Based on the above discussion, 2.5wt%Au2.5wt%Pd/E. coli was determined to be the optimal 

ratio for synergistic effect between Au and Pd in the present benzyl alcohol oxidation. 
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Figure 5.15 a) Benzyl alcohol conversion profiles, b) selectivity towards benaldehyde, and c) selectivity to 

toluene over bio-AuPd catalyst prepared by different Au:Pd mass ratios. Reaction conditions: 40 ml of benzyl 

alcohol, T= 110 °C, pair= 5 bar, Fair = 200 ml.min-1, and N= 1200 rpm. 
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5.3 Oxidation of Other Alcohols 

For a potential use in fine chemicals synthesis it is important that a catalyst preparation 

method is broad in scope, such that the catalysts are effective with a broad range of alcohols 

that often contain other functional groups. The catalytic activity of the optimised bio-AuPd 

(2.5wt%Au2.5wt%Pd/E. coli) was investigated with a range of other alcohols as oxidation 

substrates, including 1-phenylethanol (secondary, benzylic), 1-octanol (primary, straight 

chain), 2-octanol (secondary, straight chain) and 1,4-butanediol (diol, straight chain) as 

reported in this section. These substrates contrast with the earlier studies of benzyl alcohol as 

a model for aromatic activated alcohol (primary benzylic). 

Table 5.6 Oxidation of different alcohols over 2.5wt%Au2.5wt%Pd/E. coli. 

Substrate Structure 

Reaction condition Conversion 

after 5 

hours, % 
T 

°C 

P 

bar 

F 

ml.min-1 

N 

rpm 

Benzyl alcohol 
 

primary,  

benzylic 
140 5, air 200 1200 35.8±0.8 

1-phenylethanol 

 

secondary, 

benzylic 
160 5, air 200 1200 14.9±0.1 

1-octanol  
primary, 

straight chain 
160 5, air 200 1200 65.5±1.1 

2-octanol 
 

secondary, 

straight chain 
160 5, air 200 1200 19.8±0.1 

1,4-butanediol  
diol 

straight chain 
160 5, air 200 1200 49.1±0.7 

 

Table 5.6 summarises the alcohols examined over the 2.5wt%Au2.5wt%Pd/E. coli catalyst, 

along with the corresponding reaction conditions and the resulting reaction performance. The 

reaction temperatures were selected based on the reference to the work by Enache et al. 

[231]. As expected, different substrates exhibited quite different reactivities. Compared with 

the performance in benzyl alcohol oxidation, the bio-AuPd/E. coli showed a low activity in 

the reaction of secondary benzylic alcohol, 1-phenyethanol, with only 14.9±0.1% of the 

conversion being achieved after 5 hours under an even higher temperature of 160 °C. In 

http://en.wikipedia.org/wiki/File:Alkohol_benzylowy.svg
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terms of the oxidation of alkanols, 2.5wt%Au2.5wt%Pd/E. coli demonstrated a total 

conversion of 65.5±1.1% in 1-octanol oxidation after 5 hours, while much worse 

performance was achieved in 2-octanol showing only 19.8±0.1% conversion. Thus, a general 

conclusion could be made that secondary alcohols are less reactive than the primary alcohols 

but this requires confirmation using additional bio-AuPd preparations. In addition, in the 

oxidation of 1,4-butanediol, a conversion of 49.1±0.7% was obtained at the end of the 

reaction. The difference in the above observed catalytic performance using the same bioAuPd 

catalyst may be due to the interaction of the substrate with the active site. 

 

5.4 Conclusions 

In this chapter a reliable reaction system was designed for oxidation of alcohols using 

compressed air as a gas reactant in a solvent-free environment. This included modifying a 

reactor to allow for continuous air flow with condensation of volatile products. Reaction 

conditions were optimised in benzyl alcohol oxidation using bio-AuPd catalysts. Under the 

optimised reaction conditions (5 bar of air, 200 ml.min-1 of air flow rate, and a stirring speed 

of 1200 rpm), the activation energy of solvent-free oxidation of benzyl alcohol over 

2.5wt%Au2.5wt%Pd/E. coli was evaluated as 71.8 kJ.mol-1. 

In order to improve the catalytic performance of bio-catalysts, bio-AuPd/E. coli samples were 

manufactured using different biomass strains and with various total AuPd loading as well as 

Au:Pd mass ratio, of which the catalytic behaviours were investigated in benzyl alcohol 

oxidation. Bacterial strain of E. coli was demonstrated to be the best biomass strain to 

manufacture the AuPd bimetallic bioinorganic catalyst. From the investigation of total metal 

loading and Pd/Au weight ratio effects, bio-AuPd/E. coli with the Au:Pd mass ratio of 1:1 

and metal AuPd loading content of 5 wt% showed to be the most active bio-catalyst in the 
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benzyl alcohol oxidation in this study. 2.5wt%Au2.5wt%Pd/E. coli also demonstrated certain 

catalytic activity in a range of other alcohols. 

 



 

6 Chapter 6 

Characterisation of Catalyst 

6.1 Chapter Overview 

This chapter presents the results and discussion focusing on the characteristic properties of 

bionanomaterials (bio-catalyst) by a range of characterisation techniques. 

To investigate the thermal stability of the bio-catalyst manufactured using bacterial biomass 

from various strains as supports, ThermoGravimetric Analysis (TGA) was performed with 

results interpreted in §6.2. This was followed by examination of bio-catalysts under the 

electron microscope (§6.3). Surface morphologies were revealed by Scanning Electron 

Microscopy (SEM) and the deposited elemental components were confirmed by 

Backscattered-SEM (BSE) accompanied by Energy Dispersive X-ray spectroscopy (EDS). In 

addition, the metal deposition on different strains of bacteria was characterised by 

Transmission Electron Microscopy (TEM). For the estimation of metal particle size, three 

approaches were employed in this study (§6.4) based on CO chemisorption analysis, TEM 

imaging, and X-ray Diffraction (XRD) analysis. 

Finally conclusions are drawn in §6.5 based on the properties of the bio-catalysts. 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Thermogravimetric_analysis
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6.2 Thermal Stability of Bio-catalyst 

The reaction results in both §4.3.2.2 (bio-Pd/E. coli in hydrogenation; 150 C) and §5.2.2.1 

(bio-AuPd/R. sphaeroides in oxidation; 110 C) suggested that one consideration when using 

bio-catalysts is their thermal stability under the operating temperature due to the nature of 

biomass (see §2.3.1), particularly the polymeric organic material components which support 

the NPs. For example, the decomposition of carbohydrates in biomass was shown to occur at 

temperature between 200 C and 270 C [267]. The strain-specific composition, structure, 

and organisation of the components could account for the overall stability of the bacterial 

biomass during heating. This section covers TGA analysis on bio-Pd catalysts used for partial 

hydrogenations (5wt%Pd on E. coli and D. desulfuricans) and bio-AuPd catalysts used in 

aerobic oxidations (2.5wt%Au2.5wt%Pd on E. coli, R. sphaeroides, A. oxydans, and M. 

luteus). Triplicate TGA analyses were performed for each bio-catalyst, sampled from one 

single preparation, unless otherwise stated. 

Typical weight loss curves as a function of the temperature ramp from 25 C to 1000 C at 10 

C/min from 5wt%Pd/D. desulfuricans and 5wt%Pd/E. coli catalyst samples are compared in 

Figure 6.1 a. It is noted here that the temperature region of interest for this study is between 

25 C and 375 C (indicated by vertical solid lines in Figure 6.1), which was responsible for 

the decomposition of polymeric organic material and covered the highest-used reaction 

operating temperature in the present work (160 C). Only a very small difference between the 

two TG curves of 5wt%Pd/D. desulfuricans and 5wt%Pd/E. coli was shown between 25 C 

and 375 C, suggesting similar thermal behaviours of these two biomaterials in this 

temperature range. Furthermore, the following conclusions can be drawn, relating to the 

decomposition observed: i) at temperature ~100 C, the mass changes of the samples can be 

attributed to predominantly the evaporation of residual moisture attached to the surfaces of 
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the samples, being 3.42 wt% and 6.52 wt% for 5wt%Pd/D. desulfuricans and 5wt%Pd/E. coli 

respectively; ii) a second phase of minimal mass loss occurs between a temperature range of 

100~175 C (indicated by the dashed lines in Figure 6.1) for both bio-Pd catalysts, suggesting 

that these two catalysts are thermally stable within this temperature interval; iii) at a 

temperature exceeding 175 C, catalyst mass decreases substantially in both samples, 

indicating the starting of decomposition of the biomass. It is therefore concluded that bio-

catalyst samples of 5wt%Pd/D. desulfuricans and 5wt%Pd/E. coli can be used without 

decomposition at reaction temperatures up to 175 C. A comparison was also made between 

two E. coli supported bio-catalysts, i.e. E. coli cells loaded with 5wt%Pd and 

2.5wt%Au2.5wt%Pd, with the corresponding weight loss curves shown in Figure 6.1 b. In the 

temperature range of 25 C~375 C, 5wt%Pd/E. coli and 2.5wt%Au2.5wt%Pd/E. coli gave 

very close TG curves, indicating that a change of metal composition from 5wt%Pd to 

2.5wt%Au2.5wt%Pd on the same strain of bacterial (E. coli) had almost no effect on the 

overall thermal behaviour of the resulting bio-catalysts in this temperature range. 

 

Figure 6.1 a) Weight loss curves for 5wt%Pd/E. coli and 5wt%Pd/D. desulfuricans. TGA was performed in air 

at a heating rate of 10 C/min from 25 C to 1000 C. 

a) 
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Figure 6.1 continued. b) Weight loss curves for 5wt%Pd/E. coli and 2.5wt%Au2.5wt%Pd/E. coli. TGA was 

performed in air at a heating rate of 10 C/min from 25 C to 1000 C. 

 

As to the four bio-2.5wt%Au2.5wt%Pd catalysts tested in benzyl alcohol oxidation 

(§5.2.2.1), the same TGA analysis was conducted with a comparison of the corresponding 

TG curves presented in Figure 6.2. As a common feature in terms of the thermal behaviour 

between these four bio-AuPd catalysts, after the initial moisture evolution (~100 C), the 

major part of catalyst mass decreased in a multi-stage manner. The stepwise feature indicates 

the progressive decomposition of the various biomass components (e.g. polysaccharides, 

lipids, and protein [267]) in order of their individual thermal stability, which could be 

confirmed by subjecting each component fraction to TGA analysis under the same 

temperature program however this was not examined further in this study. In addition, it 

appears that different decomposition characteristics could exist between different types of 

bacterial biomass. Among the four bio-AuPd catalysts in Figure 6.2, bio-AuPd catalysts on E. 

coli, A. oxydans, and M. luteus showed small differences between 25~375 C (indicated by 

solid line) with major differences at temperatures above 500 C (indicated by the dashed 

line). However bio-AuPd/R. sphaeroides gives an anomalous TG curve from the other three 

b) 
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bio-AuPd catalysts in the temperature range of interest (25 C~375 C). Although 

polysaccharides, lipids, protein, and nucleotides are four fundamental types of components 

that occur in all forms of cells (§2.3.1), it was suggested [310] that the composition, chemical 

structure, and degree of polymerisation of the individual component all play roles in 

determining the overall thermal stability characteristics of biomass between different strains. 

 

Figure 6.2 Weight loss curves for 2.5wt%Au2.5wt%Pd bio-catalysts supported on different strains of bacteria at 

heating rates of 10 C/min from 25 C to 1000 C. 

 

A higher conversion was observed in benzyl alcohol oxidation (at 110 C) using 

2.5wt%Au2.5wt%Pd/R. sphaeroides and 2.5wt%Au2.5wt%Pd/E. coli than the other two bio-

AuPd catalysts, however early deactivation of bio-AuPd/R. sphaeroides occurred after ~3 

hours (§5.2.2.1). Hence the TG curves from bio-AuPd on E. coli and R. sphaeroides as 

catalysts of higher activity were selected for further comparison, as shown in Figure 6.3 a and 

Figure 6.3 b respectively. 
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Figure 6.3 Detailed TGA analysis of a) 2.5wt%Au2.5wt%Pd/E. coli, and b) 2.5wt%Au2.5wt%Pd/R. 

sphaeroides at heating rates of 10 C/min from 25 C to 1000 C. 

 

The Differential TGA curves (DTG) are presented in Figure 6.3 as dashed curves with 

inverted peaks, providing the rate of mass loss (%.min-1) versus temperature. The first DTG 

peak in Figure 6.3 a shows a similar rate with that in Figure 6.3 b (-1.04 %.min-1 for bio-

AuPd/E. coli and -1.30 %.min-1 for bio-AuPd/R. sphaeroides), representing the loss of 

moisture in both cases. The onset of decomposition for bio-AuPd/E. coli is seen prominently 

b) 

a) 
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after ~175 C, with a much lower temperature of ~125 C in the case of bio-AuPd/R. 

sphaeroides. Thereafter, two extensive DTG peaks were obtained in both cases during the 

main decomposition period (25 C~575 C, indicated) however each showing strain-specific 

features. The narrower and sharper peaks in Figure 6.3 b than Figure 6.3 a clearly indicate 

that the decomposition of organic components in bio-AuPd/R. sphaeroides occurred much 

faster than that in bio-AuPd/E. coli. The observed lower decomposition onset temperature 

(~125 C) and the subsequent higher rate of mass loss of bio-AuPd/R. sphaeroides than those 

of bio-AuPd/E. coli could explain the thermal deactivation of the former catalyst in benzyl 

alcohol oxidation (at 110 C, after ~3hours). Although the oxidation reaction temperature of 

110 C was ~15 C lower than the TGA determined upper-use temperature of bio-AuPd/R. 

sphaeroides, it was likely that its deactivation was accelerated by some other factors, e.g. the 

attrition caused by high-speed agitation. 

 

6.3 Examination of Bio-Catalyst by Electron Microscopy 

This section reports an investigation of the morphology of the bio-catalyst and metal particle 

deposition on the biomass under the electron microscope. 

6.3.1 Surface Morphology and Element Confirmation (SEM/BSE-EDS) 

The bio-catalyst material comprises black powder containing cells which are killed by the 

metallisation process; the dead bacteria act as a carbon-based support for metal nanoparticles, 

providing a similar function to conventional catalyst supports such as various forms of 

carbons, Al2O3 or TiO2. Typical SEM surface images of the dry powder of bio-catalysts are 

given in Figure 6.4 a and b. It is observed that the ensembles of bacteria are overlapping each 

other, while showing the individual bacteria with well-maintained original shapes. The shape 
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of the cells varies depending on the strain of the bacteria, e.g. rod-shape for E. coli (Figure 

6.4 a) while spherical-shape for M. luteus (Figure 6.4 b). 

In general, the SEM analysis of the cells can hardly distinguish the presence of the metal 

depositions on the bacteria. With the detection of backscattered electrons, e.g. BSE image of 

E. coli-supported bio-catalyst in Figure 6.4 c, the presence of well-dispersed metal NPs is 

clearly evidenced by the bright dots. To identify the metal element, the acquired BSE image 

from the bio-catalyst was processed by EDS analysis, by which the identification of the 

palladium element in bio-Pd catalyst was confirmed, e.g. 25wt%Pd/E. coli in Figure 6.4 d. 

Similarly, for the bimetallic catalyst (bio-AuPd) used in the oxidation reaction, the existence 

of both palladium and gold elements were confirmed by the EDS spectrum from the 

corresponding BSE image of 25wt%Au25wt%Pd/E. coli (Figure 6.4 e). It is noted here that 

the above two high metal loaded bio-catalysts (25wt%Pd and 25wt%Au25wt%Pd) were 

selected as examples for the convenient observation of palladium and gold peaks from the 

EDS spectra, since the EDS method is relatively insensitive at low metal concentrations. 
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Figure 6.4 a) SEM image of E. coli-supported bio-catalyst powder, showing rod-shaped E. coli cells; b) SEM 

image of M. luteus-supported bio-catalyst powder, showing spherical-shaped M. luteus cells; c) SEM image of 

one E. coli-supported bio-catalyst powder, inset corresponding BSE image of the selected area; d) BSE image 

from dry powder of 25wt%Pd/E. coli catalyst with the corresponding EDS spectrum; and e) BSE image from 

dry powder of 25wt%Au25wt%Pd/E. coli catalyst with the corresponding EDS spectrum. 

a) b) 

c) 

d) 

e) 



Chapter 6 Characterisation of Catalyst 

191 

In addition to the detection of metal types, a variation of the size of deposited metal particles 

can be observed in BSE images. Metal particles for 1wt%Au1wt%Pd/E. coli (Figure 6.5 a) 

are smaller than those in Figure 6.5 b for 2.5wt%Au2.5wt%Pd/E. coli, indicating the particle 

growth with the increase of AuPd loading as compared to the formation of additional metal-

loaded sites. At an identical loading of 2.5wt%Au2.5wt%Pd, discriminations between the 

different strain-supported AuPd NPs can also be revealed by the BSE images from these 

samples. For example the 2.5wt%Au2.5wt%Pd preparations on E. coli, M. luteus, and A. 

oxydans in Figure 6.5 b~d clearly show strain-specific features of AuPd NPs. 

As described in §3.3.2, the manufacturing procedure of bio-AuPd catalyst involves a 

sequential reduction of Pd(II) and Au(III) salts onto the biomass support with H2 as electron 

donor. The resulting bio-Pd(0) NPs from the first step of palladisation on Gram-positive 

biomass were observed to be consistently larger than the ones on Gram-negative biomass 

[23,25]. Therefore it was deduced that the subsequent addition of Au(III) to bio-Pd(0), as the 

seed for the formation of Au NPs from the Au(III) solution to form bio-AuPd, would result in 

larger AuPd clusters on Gram-positive strains than on Gram-negative strains as is suggested 

in Figure 6.5 c and d. A study by Redwood et al. [176] suggested that the outer membrane of 

Gram-negative bacteria may help to tether and hold the Pd(0) NPs, thus could prevent the 

aggregation of small particles. If this is correct, Gram-positive strains, lacking an outer 

membrane, would not benefit from this and accordingly, they may possess fewer and larger 

metal clusters. Indeed, large electron bright aggregates were observed in Figure 6.5 c and d, 

the BSE images for 2.5wt%Au2.5wt%Pd on M. luteus (Gram-positive) and A. oxydans 

(Gram-positive). The particle distribution on a single M. luteus cell tended to be one very 

large metal cluster accompanied by very few scattered small particles. In the case of A. 

oxydans, metal particles tended to form either isolated large clusters (arrowed) or strips of 

‘cloud’ (circled). The typical size range of the observed large AuPd particles in the image is 
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estimated as 100~200 nm on both M. luteus and A. oxydans (sizes indicated were measured 

using the Image J program). In contrast, the 2.5wt%Au2.5wt%Pd/E. coli in Figure 6.5 b) 

shows relatively evenly located metal particles with smaller sizes. 

 

Figure 6.5 BSE images of bio-catalyst powders of a) 1wt%Au1wt%Pd/E. coli; b) 2.5wt%Au2.5wt%Pd/E. coli; 

c) 2.5wt%Au2.5wt%Pd/M. luteus; and d) 2.5wt%Au2.5wt%Pd/A. oxydans. 

 

Comparing the images of Gram-negative and Gram-positive bacteria, it appears that the outer 

membrane layer which is only present upon the Gram-negative bacteria, may act as a support 

for the finely dispersed nanoparticles. However the above images do not give conclusive 

proof since the two cell types differ in other surface features also. Thus further examinations 

using ultra-thin sections of bio-catalyst were carried out. 

6.3.2 Metal Deposition on the Bacteria (TEM) 

Transmission Electron Microscopy (TEM) enables the visualisation of the cell-bound metals 

in cell sections. Figure 6.6 a shows a TEM image of an ultra-thin section of the native E. coli 

cell (Gram-negative) before metallisation, displaying an overall indistinct cell surface region 

a) b) 

c) d) 
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in the absence of osmium or uranium staining. The layers of the E. coli cell surface are 

denoted, following the direction of the arrow being the outer membrane (o), the inner 

(cytoplasmic) membrane (i), and the periplasmic space between these two membrane layers. 

Figure 6.6 b shows a TEM image of palladised E. coli cell section (5 wt%Pd), also not treated 

with any stain during the specimen preparation process. In contrast to the native cell section, 

some small discrete electron-opaque Pd(0) deposits (black dots indicated) were clearly 

observed, resolvable to individual particles. More specifically, most of the palladium 

nanoparticles(NPs) (arrowed) were held as discrete NPs beneath the outermost cell layers and 

bounded by the Gram-negative double membrane structure. The majority of NPs exhibited 

monodispersity (Figure 6.6 c, 5wt%Pd/E. coli from a separate preparation), although some 

large clusters were observed, apparently indicating agglomerations of smaller NPs in some 

cases (arrowed). 

For bio-catalysts on Gram-negative bacteria, hydrogenases are believed to be responsible for 

the location of metal particles [177,181], i.e. hydrogenases supply electrons from the splitting 

of hydrogen to promote reduction of Pd(II) to Pd(0) and act as nucleation sites for the 

formation of Pd(0) NPs. For instance, Mikheenko et al. [181] investigated Desulfovibrio 

fructosovorans (Gram-negative) which has four hydrogenases (two periplasmic and two 

bound within the inner membrane), and found that removal by mutation of the major 

periplasmic hydrogenase resulted in relocation of the Pd(0) nanoparticles (NPs) from the 

periplasm to the inner cytoplasmic membrane. In addition, the size of bio-Pd NPs on Gram-

negative bacteria has been reported at 3~5 nm [25] at a loading of 5 wt%. The observation 

that the larger metallic NPs appeared as clusters in some cases (Figure 6.6 c) suggests 

possibly more than one nucleation focus at a given cell surface location. It was suggested that 

the polymeric nature of the intertwined cell surface layers (see §2.3.1) could offer support to 

the growing palladium NPs and hold them as stable entities [21]. 
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For the demonstration of metal particle deposition on Gram-positive bacteria, preparation of 

5wt%(AuPd)/M. luteus was chosen as the example (Figure 6.6 d and e) since no 5 wt%Pd 

preparation on Gram-positive bacteria was available in this study. The TEM image in Figure 

6.6 d shows two metallised M. luteus whole cells (specimen made by dropping the catalyst 

powder in water solution onto the TEM grids, no sectioning). It is illustrated that the cell 

surface was unevenly covered by a small amount of large palladium particles, meanwhile one 

over-sized Pd cluster (arrowed) was observed at the joint of the cell-chain suggesting an 

overall poor Pd distribution on this bacteria strain. When looking at the cell section of the 

bio-AuPd/M. luteus in Figure 6.6 e, one large metal cluster was exposed at the outer surface 

(arrowed) while several larger metal clusters are visible beneath the surface layers (arrowed). 

No obvious metal particles within the cell wall (a thick layer of peptidoglycan) can be seen in 

Figure 6.6 e. This may be in accordance with the hypothesis that a M. luteus cell (as Gram-

positive bacterium) has no hydrogenases within its cell wall structure for metal particle 

nucleation. It is also likely that metal particles aggregate due to the surface layer of M. luteus 

lacking an outer membrane which may help to tether and hold separate the Pd(0) 

nanoparticles. 
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Figure 6.6 a) TEM image of an ultra-thin section of native E. coli cell (image courtesy of Dr I. Mikheenko), o 

indicates outer membrane and i indicates inner membrane; b) TEM image of an ultra-thin section of 5 wt% 

palladium loaded E. coli cells showing the cell wall structure after palladisation, sectioned specimen without 

osmium or uranyl acetate/lead citrate stain; c) TEM image of 5 wt% palladium loaded E. coli cells from another 

separate preparation, sectioned specimen without osmium or uranyl acetate/lead citrate stain; d) TEM image of 

M. luteus whole cells loaded with 2.5wt%Au2.5wt%Pd, specimen prepared by dropping the catalyst powder in 

water solution onto the TEM grid; e) TEM image of 2.5wt%Au2.5wt%Pd/M. luteus section (photo courtesy of 

Dr K. Deplanche). All sectioned specimens in this figure were made from freshly metallised cells. 

 

For the purpose of observing the metal particle growth on Gram-negative bacteria, Figure 6.7 

a~d display TEM images of bio-AuPd/E. coli catalysts (whole cells) with different loadings 

(0.5wt%Au0.5%wtPd, 1wt%Au1%wtPd, 2.5wt%Au2.5%wtPd, and 25wt%Au25%wtPd) for 

a) b) 

c) 

d) e) 
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comparison. These specimens were all prepared by dropping the bio-AuPd catalyst powders 

in water solution onto the TEM grids (no sectioning), thus images in Figure 6.7 represent the 

whole cells. For the lowest loading of 0.5wt%Au0.5wt%Pd on E. coli (Figure 6.7 a), the inset 

image from a portion of the cell shows that metal NPs were located beneath the cell surface. 

The 1wt%Au1wt%Pd/E. coli demonstrates some metal NPs occurrence beyond the cell 

surface but still in association with it (inset in Figure 6.7 b, arrowed). Further increasing the 

loading to 2.5wt%Au2.5wt%Pd, particle eruption through the cell membrane becomes 

apparent (Figure 6.7 c, arrowed), providing more active metal NPs exposed upon the cell 

surface. It appears that upon increasing the loading, metal particles grow into larger metal 

clusters from the initial nuclei, causing the particles to protrude beyond the outer membrane 

thus becoming exposed at the surface. The preparation with a very high loading of 

25wt%Au25wt%Pd on E. coli resulted in excessive growth into very large metal clusters 

protruding beyond the cell (as shown in Figure 6.7 d). In this case increased loading does not 

lead to the formation of more particles but rather a number of larger particles causing a 

reduced overall active surface area. 
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Figure 6.7 TEM images of whole cells (unsectioned) a) 0.5wt%Au0.5wt%Pd/E. coli; b) 1wt%Au1wt%Pd/E. 

coli; c) 2.5wt%Au2.5wt%Pd/E. coli; and d) 25wt%Au25wt%Pd/E. coli. Specimens prepared by dropping the 

catalyst powder in water solution onto the TEM grids. 

 

Another consideration for characterising the bimetallic bio-AuPd catalyst is the determination 

of the metal configuration (e.g. AuPd randomly alloyed, or Au(core)-Pd(shell), or Au(shell)-

Pd(core)), which could impact upon its catalytic activity in the chemical reaction. For 

example in solvent-free benzyl alcohol oxidation (§5.2.2), 2.5wt%Au2.5wt%Pd/E. coli 

showed the best performance among all the different formulated bio-AuPd/E. coli catalysts 

(bio-1wt%Au4wt%Pd and bio-4wt%Au1wt%Pd in this study). However, this was not further 

investigated using electron microscopy. Previous work has shown [161] that the bimetallic 

NPs (Au:Pd mass ratio of 1:1) on E. coli have a Au(core)-Pd(shell) configuration. 

6.4 Estimation of Particle Size 

It is important to estimate the size of the active metal particle, since this is well known to 

influence the catalytic performance. Indeed, the change of reaction performance observed in 

a) b) 

c) d) 
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hydrogenation and oxidation while altering the formulation of either Pd or AuPd loading on 

bacterial biomass, implies the change of the resulting metal nanoparticle (NP) size. For this 

reason, this section presents three different methodologies for estimating the metal NP sizes, 

these being CO chemisorption analysis to determine active particle diameter, TEM imaging 

with image processing software to get average grain size, and XRD analysis to estimate 

crystallite size. 

6.4.1 CO Pulse Chemisorption Analysis 

A CO Pulse Chemisorption analysis was initially carried out using the conventional 

5wt%Pd/Al2O3 catalyst following the procedure as described in §3.6.2. Figure 6.8 a shows 

the corresponding Thermal Conductivity Detector (TCD) response to successive and 

consistent in volume of carbon monoxide pulses. CO chemisorbs on palladium according to 

the stoichiometry (F) CO/Pd= 1. 

The first peak (corresponding to the 7th injection of CO gas) in Figure 6.8 a appeared at ~25 

mins, representing the concentration of unconsumed CO molecules from the 7th injection as 

the sorption sites approached saturation. This also indicates the initial 6 injections of CO gas 

were totally chemically reacted with each active site thus no change in TCD signal from the 

detector (0~24 mins in Figure 6.8 a) was recorded. After chemisorption was complete, each 

of the discretely injected gas volumes emerged from the sample tube unchanged thus the 

detected peaks were constant in area (> 28 mins in Figure 6.8 a). The programme terminated 

after 5 times recording of equal-sized TCD peaks (12 injections in total within 50 mins in 

Figure 6.8 a). The quantity of CO molecules chemisorbed was determined by subtracting the 

total amount of CO injected and the sum amount that did not react with the active sites of the 

sample as measured by the detector. The calculations were performed by the instrument 

software. Table 6.1 presents the parameters used for the evaluation of pulse chemisorption 
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data together with the repeatable characterisation results for the conventional 5 wt% Pd/Al2O3 

catalyst. 

 

Figure 6.8 TCD signal versus time for a) 5wt%Pd/Al2O3, and b) 5wt%Pd/E. coli. 

 

 

a) 

b) 
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Table 6.1 Parameters for CO Pulse Chemisorption and the resulting data on 5wt%Pd/Al2O3 catalyst. 

Element 
% Sample 

atomic weight 

Stochiometric 

factor, F 

Atomic cross-sectional 

area, cA  (nm²) 
Atomic weight 

(g.mol-1) 

Density, ρ 

(g.cm-3) 

Palladium 5.0 1.0 0.0787 106.4 12.02 

      

Sample 

weight 

Active loop 

volume at 

110.5 °C 

Cumulative 

volume a 

Metal 

dispersion 
Metallic surface area 

Active 

particle 

diameter 

g cm3 cm3.g-1 % m2.g(sample)-1 m2.g(metal)-1 nm 

0.5249 0.38367 1.02953 9.7745 2.1173 43.5405 11.4633 

0.5202 0.38368 0.80878 7.6786 1.7104 34.2080 14.5921 

0.5291 0.38369 0.94255 8.9486 1.9933 39.8659 12.5212 

0.5350 0.38420 0.92344 8.7672 1.9529 39.0576 12.7803 

0.5408 0.38365 0.94372 8.9597 1.9958 39.9155 12.5056 

Average±SEM b 0.93±0.03 8.82±0.30 1.95±0.06 39.32±1.34 12.77±0.45 

a measured at Standard Temperature Pressure (STP) conditions (273.13K and 760 mmHg). b SEM: Standard 

Error of the Mean. 

 

Applying the same CO pulse chemisorption analysis to the 2wt%Pd/Al2O3 catalyst, an 

average active particle diameter of 8.63 nm was obtained, being smaller than the diameter of 

12.77 nm for 5wt%Pd/Al2O3 catalyst. Meanwhile the metal dispersion at the former lower 

palladium loading was estimated to be higher (12.98% at 2wt%Pd/Al2O3) than that at the 

higher loading (8.82% at 5wt%Pd/Al2O3). Similarly, Babu et al. [311] characterised a series 

of alumina-supported Pd catalyst with metal loadings between 0.5 wt% and 5 wt% and 

reported that the catalysts with metal loadings up to 2 wt% demonstrated higher dispersion 

with homogeneous distribution of active species and predominance of metal-support 

interaction, while at a loading beyond 2 wt% bulk Pd particles may be formed due to the 

reduced interaction with the support. Based on the CO chemisorption results, the observed 

better activity of 2wt%Pd/Al2O3 than that of 5wt%Pd/Al2O3 in 2-pentyne hydrogenation (see 

Figure 4.3 in §4.2) under the same reaction conditions can be attributed to the smaller 

palladium diameter and higher metal dispersion of the former catalyst. 
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Bio-Pd catalysts (5 wt%Pd and 25 wt%Pd on both E. coli and D. desulfuricans) were also 

subjected to the same CO pulse chemisorption analysis. The diagram of TCD signal versus 

time is shown in Figure 6.8 b using a 5wt%Pd/E. coli catalyst as an example. The TCD peak 

appeared from the first injection of CO gas, and the analysis terminated after 6 times 

recording of equal-sized TCD peaks (7 injections in total within 20 mins in Figure 6.8 b). The 

size of the first peak was shown only slightly smaller than the following 6 equal-sized TCD 

peaks, indicating very small amount of CO gas was consumed by 5wt%Pd/E. coli catalyst 

throughout the analysis. The calculated results from the CO pulse chemisorption are 

summarised in Table 6.2. By CO chemisorption, much larger active particle diameters for the 

bio-catalysts were estimated (149.06 nm for Pd/D. desulfuricans and 64.51 nm for Pd/E. 

coli), than that for Pd/Al2O3 (12.77 nm) at the equivalent 5 wt%Pd loading. For the bio-Pd/D. 

desulfuricans, previously published studies using magnetic measurements and extended X-

ray Absorption Fine Structure (EXAFS) analysis reported the Pd particles on D. 

desulfuricans at 5 wt% loading to have diameters in the range of 2~5 nm [30], which is far 

smaller than the size of 149.06 nm by CO chemisorption in this study. Meanwhile a similar 

Pd particle diameter of 145.95 nm was determined by CO chemisorption in the case of 

25wt%Pd/D. desulfuricans, which is in clear conflict with the Electron Microscopy which 

shows large particles at high but not low metal loadings. 

The 5-fold larger Pd particle diameter on 5wt%Pd/E. coli than that on 5wt%Pd/Al2O3 appears 

to be contradictory with the observed better catalytic activity by 5wt%Pd/E. coli than that by 

5wt%Pd/Al2O3 in the 2-pentyne hydrogenation (see Figure 4.3 in §4.2). On the other hand in 

the TEM image for 5wt%Pd/E. coli in Figure 6.6 c, where the nanoparticulate-palladium has 

been visually confirmed (1.0~2.0 µm length for E. coli cell), one typical large metal cluster 

was estimated to be 14.1 nm and only a rare cluster exceeding a size of 64.51 nm was 

observed. By the CO chemisorption method, the even smaller Pd particle diameter of 
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25wt%Pd/E. coli (47.80 nm) than that of 5wt%Pd/E. coli (64.51 nm) furthermore implies that 

CO chemisorption is not a reliable technology to determine the active metal particle size on 

biomass, due, probably, to its high content of iron and also trace amounts of copper, 

manganese and zinc, for example, as components of enzymes. 

Table 6.2 Summary of the characterisation data on different catalysts using different technologies. 

Support Metal loading Surface area a Metal dispersion a Metal particle size, nm 

 Pd, wt% m2.g(metal)-1 % d1
a d2

b d3
c d4

d 

Al2O3       

 2.0 57.85 12.98 8.63 - -  

 5.0 39.32 8.82 12.77 - -  

D. desulfuricans       

 5.0 3.35 0.75 149.06 4.71  - 2~5 [30] 

 25.0 3.42 0.77 145.95 - -  

E. coli       

 5.0 7.74 1.74 64.51 4.31 4.12  

 25.0 10.44 2.34 47.80 - 28.74  

a d1: Active particle diameter measured by CO chemisorption. At least triplicate analyses were repeated for each 

catalyst. Each catalyst sample was from one single preparation; b d2: Average metal grain size estimated by 

TEM measurements and image analysis software Image J (details to follow in §6.4.2); c d3: Crystallite size 

estimated by XRD technique (details to follow in §6.4.26.4.3). d Particle size value obtained from the literature. 

 

The reason for the big difference between the active particle diameter by CO chemisorption 

report and average grain size by TEM image observation can also be explained by the 

methodology that the former technology applies to calculate the active particle diameter. The 

equation calculating the active particle diameter has been introduced in §3.6.2 (Equation 3-2), 

which shows the sorptive particle diameter to be proportional to the reciprocal of the CO 

volume adsorbed (Vs, cm3 at STP). Given that most Pd particles were enclosed beneath the 

cell outer membrane (see discussion in §6.3.2) at a low loading such as 5wt%Pd/E. coli, the 

actual amount of the palladium metal exposed at the surface layer is much less than the initial 

formulated palladium loading causing CO uptake in pulse chemisorption to be reduced due to 

the fewer active sites available. As a result, the calculated active particle diameter tends to be 

overestimated. However it is not known to what extent the CO penetrated throughout the 
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biomass. Cellular reactions involving molecular O2 are all intracellular, as are some reactions 

involving H2 while plant cells fix CO2. It must be assumed, therefore, that the biomass 

surface is not a barrier to gas transport and that CO was able to permeate freely. 

6.4.2 TEM Method 

Based on the results presented in §6.3.2, TEM images were then processed using appropriate 

software (Image J) with the aim to estimate the average metal grain size for the bio-catalysts. 

Figure 6.9 presents the TEM images used for particle acquisition and the corresponding 

particle size distribution plots of two bio-Pd catalysts (5 wt%Pd on D. desulfuricans and E. 

coli). It is noted here TEM images of 5wt%Pd/D. desulfuricans (Figure 6.9 a-1 and a-2) were 

acquired from sectioned specimens made using the corresponding dried catalyst powder (one 

single batch), while those of 5wt%Pd/E. coli (Figure 6.9 b-1~b-4) were from sectioned 

specimens made using freshly metallised E. coli cells (two separate preparations). Details of 

cell wall structure are not seen from the former preparation (Figure 6.9 a), which however is 

sufficient to observe the discrete palladium NPs around the perimeter of the D. desulfuricans 

cells. For each catalyst at least 100 individual metal particles around the cell surface were 

examined, the corresponding mean grain sizes of these two bio-Pd catalysts are listed in 

Table 6.2. 

By applying the TEM method, the palladium particle size on D. desulfuricans (5 wt%) is 

estimated to be an average of 4.71 nm, which is in good agreement with the diameter range of 

2~5 nm reported by Creamer et al. [30]. The metal particle size of 5wt%Pd/E. coli was 

comparable at 4.31 nm. The nanoparticle size distribution on E. coli was narrow, with the 

majority of NPs within the size range 3~5nm while the nanoparticles on D. desulfuricans 

were more broadly distributed between 3~7 nm. 
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Figure 6.9 a) TEM images of ultra-thin sections made from the 5wt%Pd/D. desulfuricans catalyst powder, two images shown were used for the acquisition of particles 

representing two different areas from one single catalyst preparation, 155 surface particles were estimated with the inset particle size distribution; b) TEM images of ultra-thin 

sections made from two separate batches of freshly palladised 5wt%Pd/E. coli cells, sectioned specimen without osmium or uranyl acetate/lead citrate stain, four images 

shown represent four different areas, 240 surface particles were estimated with the inset particle size distribution. 

a)-1 a)-2 
a)-3 

b)-1 b)-2 

b)-3 b)-4 

b)-5 
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6.4.3 X-ray Diffraction Technique 

Firstly, the X-ray powder patterns of bio-Pd/E. coli catalysts with different palladium 

loadings (2 wt%Pd, 5 wt%Pd, and 25 wt%Pd) are shown in Figure 6.10 a~c, from which it 

was observed an enhancement of the peak signal in the order from 2 wt%Pd to 25 wt%Pd. No 

defined peaks were visible at a loading of 2 wt%Pd. When increasing the palladium loading 

to 5 wt%, broad peaks started to appear in the XRD pattern. At a palladium loading of 25 

wt%, the XRD pattern showed intense sharp peaks matching the bulk Pd(0) found in the 

Crystallography Open Database (COD 96-900-8479) (indicated by the dashed lines). Since 

the peak width from XRD patterns varies inversely with crystallite size (i.e. as the crystallite 

size gets bigger, the peak gets sharper and narrower), Figure 6.10 a~c give a clear indication 

of particle growth from the palladium loading of 2wt%, 5wt% to 25wt%. The crystallite sizes 

of the cell-bound Pd(0) of 5 wt%Pd and 25 wt%Pd on E. coli cells were estimated using 

Scherrer’s equation [269] to be 4.12 nm and 28.74nm. The former size is in a good agreement 

with the average particle size determined by the TEM method (Table 6.2). 

Different bimetallic AuPd/E. coli catalysts (25wt%Au25wt%Pd, 2.5wt%Au2.5wt%Pd, 

4wt%Au1wt%Pd, and 1wt%Au4wt%Pd) were also subjected to the same XRD analysis with 

X-ray diffraction patterns shown in Figure 6.10 d~g, in which the peaks representing gold 

were confirmed by matching those in the measured pattern with the bulk Au(0) found in the 

Crystallography Open Database (COD 96-900-8464) (indicated by the solid lines). The 

intensity of the peaks varied with the changes of the AuPd loading formulations, showing 

strong Au peaks accompanied by weak Pd peaks at a loading of 25wt%Au25wt%Pd, the 

main presences of the Au peaks being in the cases of 2.5wt%Au2.5wt%Pd and 

4wt%Au1wt%Pd. Overall the broadest XRD peaks attributable to Au(0) were observed at a 

loading of 1wt%Au4wt%Pd. 
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Figure 6.10 X-ray powder diffraction (XRD) analysis of monometallic Pd and bimetallic AuPd NPs formed by 

E. coli: a) 2wt%Pd/E. coli, b) 5wt%Pd/E. coli, c) 25wt%Pd/E. coli, d) 25wt%Au25wt%Pd/E. coli, e) 

2.5wt%Au2.5wt%Pd/E. coli, f) 4wt%Au1wt%Pd/E. coli, and g) 1wt%Au4wt%Pd/E. coli. The pattern obtained 

experimentally matches the pattern found in the Crystallography Open Database (COD), COD-96-900-8479 for 

Pd(0) and COD-96-900-8464 for Au(0). 

 

When comparing Figure 6.10 c with d, the loss of bulk Pd diffraction peaks was observed in 

the XRD spectrum after adding Au to 25wt%Pd/E. coli to form bimetallic 

25wt%Au25wt%Pd/E. coli catalyst. This phenomenon was also observed in Figure 6.10 b for 

5wt%Pd and Figure 6.10 g for 1wt%Au4wt%Pd, the disappearance of Pd peaks in the 

spectrum of the latter suggesting that just a small amount of Au (20% of the total metal mass) 

is sufficient to destroy the crystallinity of the Pd. The appearance of the intense Au peaks 

while weak Pd signals in the all bio-AuPd/E. coli preparations implies that most palladium in 

the bimetallic sample tended to form smaller particles than gold. This is explained by the 

migration of Pd from the pre-formed Pd(0) NPs and the subsequent formation of more 
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dispersed Pd atoms [161]. More specifically, the synthesis procedure involves a successive 

reduction of Pd(II) and Au(III) onto the bacteria cells, Pd(II) ions were firstly reduced 

enzymatically from a precursor using H2 as an electron donor [177]. The resulting fine layer 

of Pd(0) seeds reduce the subsequent Au(III) to generate Pd(II) ions which then relocate 

around Au(0) NPs and are reduced to Pd(0) via H2 on the Au-NP surface to produce a 

Au(core)-Pd(shell) configuration [161].The above observation further suggests Au occupied 

the bulk sites with the absence of large, discrete Pd NPs in all cases. 

 

6.5 Conclusions 

In this chapter, characterisation work on the biomass-supported bio-Pd and bio-AuPd 

catalysts were presented and discussed. The ThermoGravimetric Analysis (TGA) revealed 

that different strains of bacteria could have unique thermal stability characteristics, by virtue 

of the specific proportion, structure or degree of polymerisation of the components within 

them. This is an important criterion to be considered for any catalytic application of biomass-

supported catalyst in the reaction process design with respect to temperature. Within the 

strains examined in this study, R. sphaeroides gave a relatively lower level of thermal 

stability, and an upper temperature for utilisation is around 125 C, beyond which the 

material will begin to degrade. The other bio-catalysts involved in the present catalytic testing 

show broadly similar thermal stabilities up to 175 C. Given that some extra factors may 

accelerate the damage to bio-catalysts during application, such as the potential attrition 

caused by stirring in an agitated reactor, it is recommended that the actual reaction 

temperature for using bio-catalysts should not be close to its upper-use temperature 

determined by TGA analysis. 
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In terms of the examination of metal particle deposition on the bacteria, electron microscopy 

showed the Gram-negative bacteria to accommodate more evenly distributed and smaller 

metal particles in comparison with the Gram-positive bacteria. In order to estimate the metal 

particle size, CO chemisorption, TEM method, and XRD were employed. CO chemisorption 

was unsuitable for bio-derived materials. A good agreement was achieved on the average 

particle size of Pd by the TEM measurments and the crystallite size of Pd by XRD 

technology, giving the particle size of ~4 nm for the 5 wt%Pd on the strain of E. coli. 

 

 



 

7 Chapter 7 

Conclusions and Future Work Recommendations 

7.1 Conclusions 

A biological method was successfully applied to manufacture biomass-supported 

monometallic Pd or bimetallic AuPd nanoparticles with controllable particle size. Current 

work has demonstrated certain catalytic activities of bio-catalysts in three-phase 

hydrogenation and oxidation reactions, along with some of the key strengths and some 

weaknesses, which are listed as follows: 

2-pentyne Hydrogenation Using Bio-Pd Catalysts 

 Under optimum conditions (4 ml of 2-pentyne in 150 ml of isopropanol as solvent, 

catalyst loading of 0.375 mg(Pd).ml(2-pentyne)-1, T= 40 °C, 
2Hp = 2 bar, N= 1000 

rpm) [270], complete hydrogenation of 2-pentyne was achieved within 40 mins using 

a 2wt%Pd/E. coli catalyst. The observed maximum yield of the major product cis-2-

pentene was 18.1±0.4 ×10-2 mol.l-1 after ~30 mins, followed by its further 

isomerisation to trans-2-pentene or hydrogenation to pentane. 

 The catalytic performance of bio-Pd/E. coli was compared with that of conventional 

Pd/Al2O3 under identical operating conditions (T= 40 °C, 
2Hp = 2 bar, N= 1000 rpm). 

The 2-pentyne consumption rate decreased in the order of catalysts: 5wt%Pd/E. coli > 

2wt%Pd/Al2O3 > 2wt%Pd/E. coli close to 5wt%Pd/Al2O3. At 100% conversion of 2-

pentyne, bio-Pd/E. coli catalysts selectively produced higher amounts of cis-2-pentene 

and lower yields of trans-2-pentene than Pd/Al2O3 catalysts at equal Pd loadings. 
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 A kinetic model of 2-pentyne hydrogenation was established based on the Langmuir-

Hinshelwood type relationship and the cis-trans isomerisation following the Horiuti-

Polanyi mechanism. The irreversible reaction of 2-pentyne to give cis-2-pentene is 

assumed to be the surface reaction control. All the model parameters were 

simultaneously estimated using a Solver function of MS Excel software, obtaining a 

good fit between the experimental and predicted concentration profiles. 

 The model-estimated rate constants indicated a 7.6-fold faster hydrogenation of a 

carbon-carbon triple bond (C≡C) than that of a double bond (C=C) in 2-pentyne 

hydrogenation, being 22.3×10-3 mol.g-1.s-1 and 2.9×10-3 mol.g-1.s-1 respectively. The 

predicted adsorption coefficients were 28.48×10-3 m3.mol-1 for 2-pentyne and 

12.20×10-3 m3.mol-1 for 2-pentene. This suggests a much stronger adsorption of 

alkyne compared to that of alkene on palladium active sites. In other words, the 

presence of 2-pentyne could prevent the re-adsorption of the product 2-pentene, which 

would be further hydrogenated to pentane or converted to its trans-isomer. 

Soybean Oil Hydrogenation Using Pd/Al2O3 Catalyst 

 Using 150 mg 5wt%Pd/Al2O3 catalyst in 150 ml soybean oil (solvent-free) at a 

temperature of 100 °C and hydrogen pressure of 5 bar with a stirring speed of 800 

rpm, cis-C18:3 was completely depleted within 1.5 hours; cis-C18:2 showed a 

conversion of 96.80±1.31% after 2 hours; the observed maximum yield of cis-C18:1 

was 1.02±0.02 mol.l-1 after ~1 hour. 

 The minimum stirring speed (Nm) for complete particle suspension was found to be 

279.0 rpm for a catalyst (5wt%Pd/Al2O3) loading of 0.001 g(catalyst).ml(oil)-1 in the 

present Baskerville autoclave reactor at 100 °C. 
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 Mass transfer limitation studies revealed that the reaction was not mass transfer 

controlled with a stirring rate of 800 rpm and above (other conditions: 150 ml soybean 

oil solvent-free, catalyst loading of 0.05 mg(Pd).ml(oil)-1, T= 100 °C, 
2Hp = 5 bar), 

thus a chemically-controlled regime is assured. 

 A simplified mechanistic kinetic Model 1 (by lumping isomers of the same chemical 

formula as one product) was proposed based on a Langmuir-Hinshelwood type 

relation. Model 1 predicted the trends of trienic (C18:3), dienic (C18:2), monoenic 

(C18:1) and saturated (C18:0) fatty acids distribution closely as a function of the 

reaction time. 

 In Model 2, a reversible cis-trans isomerisation was considered following the Horiuti-

Polanyi mechanism and a good fit was obtained between the experimental and 

predicted concentration profiles. A hydrogen reaction order of 2.24 and rate constant 

of 3.09 mol.g-1.h-1 were predicted for the cis-isomer to react (forwards), and 0.11 and 

1.68 mol.g-1.h-1 for the trans-isomer to react (backwards). The hydrogen order and 

rate constant for the hydrogenation of the carbon-carbon double bond (C=C) were 

estimated as 0.5 and 4.80 mol.g-1.h-1 respectively. 

 The activation energy of soybean oil hydrogenation in the present system was found 

to be 37.8 kJ.mol-1 over a 5wt%Pd/Al2O3 catalyst under 5 bar of hydrogen. 

Soybean Oil Hydrogenation Using Bio-Pd Catalysts 

 Under the same operating conditions (catalyst loading of 0.05 mg(Pd).ml(oil)-1, 

solvent free, T= 100 °C, 
2Hp = 5 bar, N= 800 rpm), soybean oil hydrogenation using 

5wt%Pd/E. coli was slower than that using 5wt%Pd/Al2O3, achieving a cis-C18:2 

conversion of ~45.52% after 5 hours and within 1 hour respectively. 
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 The lower catalytic activity of bio-Pd catalyst, compared with Pd/Al2O3, was 

attributed to a lower availability of palladium active sites. It is postulated that only 

those Pd particles that erupted onto the cell membrane through particle growth were 

able to contribute active sites for the reaction; Pd particles beneath the cell wall and 

occluded intracellular Pd depositions were clearly observed by TEM. 

 Bio-Pd catalyst has the property of suppressing the formation of undesired trans-

C18:1 and C18:0 at an equal production of cis-C18:1 compared with Pd/Al2O3. At a 

cis-C18:1 yield of 1.03±0.04 mol.l-1, 5wt%Pd/E. coli produced trans-C18:1 of 

0.26±0.03 mol.l-1 and C18:0 of 0.19±0.00 mol.l-1. In contrast, along with a maximum 

cis-C18:1 yield of 1.07±0.02 mol.l-1, 5wt%Pd/Al2O3 gave trans-C18:1 of 0.52±0.02 

mol.l-1 and C18:0 of 0.34±0.06 mol.l-1. 

 The lower yield of trans-C18:1 and saturated C18:0 using bio-Pd catalyst, compared 

with Pd/Al2O3, can be attributed to the formed smaller palladium particle size on E. 

coli. TEM measurements revealed that a loading of 5 wt%Pd on E. coli gave an 

average Pd particle size of 4.31 nm, while a Pd crystallite size of 4.12 nm was 

estimated using Scherrer’s equation from obtained X-ray powder diffraction data. An 

active particle diameter of 12.77 nm for 5wt%Pd/Al2O3 was determined by CO pulse 

chemisorption analysis. 

 The decay of catalytic activity of 5wt%Pd/E. coli catalyst in soybean oil 

hydrogenation at 150 C implied the possibility of catalyst deactivation. TGA analysis 

revealed the onset of 5wt%Pd/E. coli catalyst decomposition at ~175 C. A stirring 

speed of 800 rpm in current reactor is suggested to cause potential attrition which 

further accelerates the damage to the bio-catalyst at an operating temperature close to 

its decomposition temperature. 
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 5wt%Pd/E. coli showed a similar catalytic activity to 5wt%Pd/D. desulfuricans in 

soybean oil hydrogenation under the same conditions. The choice between using E. 

coli and D. desulfuricans for manufacturing bio-Pd is then governed by ease of 

biomass growth and economic considerations, which is easier and cheaper for E. coli. 

 The conversion rates of both cis-C18:3 and cis-C18:2 were increased by ~30% by 

using formate-reduced 5wt%Pd/E. coli as compared to H2-reduced 5wt%Pd/E. coli in 

soybean oil hydrogenation under the same conditions (T= 100 °C, 
2Hp = 5 bar, N= 

800 rpm), with no difference shown in terms of the formation of cis-C18:1. 

Bio-AuPd in Aerobic Oxidation of Benzyl Alcohol 

 Under a dead-end operating mode using an original Parr autoclave, the reaction rate of 

benzyl alcohol oxidation using compressed air over a 2.5wt%Au2.5wt%Pd/E. coli 

catalyst was found to level off quickly attributed to limited oxygen availability 

(mcatalyst= 25 mg, Valcohol= 40 ml, solvent-free, T= 110 °C, pair= 5 bar, N= 1200 rpm). 

 Reactor modifications were established to supply the reaction system with a 

continuous air flow. In comparison with the original dead-end system, the modified 

flow-through system showed a higher benzyl alcohol consumption rate along with a 

higher selectivity to the desired product benzaldehye. 

 A portion of AuPd/E. coli catalyst was pre-reduced ex-situ under hydrogen at 393 K. 

Similar activities were observed in oxidation of benzyl alcohol under identical 

conditions (mcatalyst= 7 mg, Valcohol= 40 ml, solvent-free, T= 100 °C, pair= 5 bar, Fair= 

100 ml.min-1, N= 1200 rpm) over the ex-situ reduced and untreated AuPd/E. coli. This 

implied that bio-AuPd catalyst was well maintained in an active condition under the 

normal storage, as air-dried, ground material, with no need for re-activation prior to 

use. 
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 The reaction rate of benzyl alcohol oxidation over bio-AuPd catalyst was found to be 

zero order in oxygen when above a critical oxygen concentration, being independent 

of concentration and mass transfer rates. Within the set reaction of 7 hours in this 

study, reactions with 200 ml.min-1 and 350 ml.min-1 were not mass-transfer controlled. 

An average of 1423±20 turnovers per hour under the air flow rates above 200 ml.min-

1 was obtained. 

 The amount of 2.5wt%Au2.5wt%Pd/E. coli catalyst should be below 100 mg to 

ensure the reaction being predominantly in the kinetic regime under the tested 

reaction conditions (Valcohol= 40 ml, solvent-free, T= 110 °C, pair= 5 bar, Fair= 200 

ml.min-1, N= 1200 rpm). 

 The activation energy was estimated as 71.8 kJ.mol-1 for benzyl alcohol oxidation 

over a 2.5wt%Au2.5wt%Pd/E. coli catalyst under 5 bar of air. 

 Comparing bio-2.5wt%Au2.5wt%Pd catalysts on different bacterial biomass 

(Arthrobacter oxydans, Escherichia coli, Micrococcus luteus, and Rhodobacter 

sphaeroides) in benzyl alcohol oxidation under the same reaction conditions, the 

Gram-negative bacteria (R. sphaeroides, E. coli) prepared bio-catalysts showed 

significantly higher catalytic activity than Gram-positive (A. oxydans, M. luteus) 

supported ones. The highest benzyl alcohol conversion after 7 hours was observed in 

the case of 2.5wt%Au2.5wt%Pd/E. coli, achieving 11.7±0.5% at a steady benzyl 

alcohol consumption rate of 0.16±0.01 mol.l-1.hr-1. 

 2.5wt%Au2.5wt%Pd/R. sphaeroides gave a higher alcohol consumption rate than 

2.5wt%Au2.5wt%Pd/E. coli during the initial 2 hours, but the rate of the former 

gradually tailed off. This implied the potential deactivation of AuPd/R. sphaeroides 

catalyst (continuous 7 hours at 110 C and high-speed mechanical stirring of 1200 
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rpm). The upper-use temperature of AuPd/R. sphaeroides catalyst should not exceed 

125 C (by TGA analysis) and its deactivation is suggested to be accelerated by the 

high-speed agitation at an operating temperature close to its decomposition 

temperature. 

 Increasing the metal loading from 0.5wt%Au0.5wt%Pd, 1wt%Au1wt%Pd to 

2.5wt%Au2.5wt%Pd on E. coli provides increased availability of active AuPd alloy 

on the cell surface though particle growth which, as a result, appears to be associated 

with the improved catalytic performance. Catalyst with a high loading of 

25wt%Au25wt%Pd on E. coli was shown by TEM to have large metal clusters which 

gave a poor catalytic activity in benzyl alcohol oxidation (lower benzyl alcohol 

conversion and benzaldehyde selectivity). 

 Altering the weight ratios to form 1wt%Au4wt%Pd, 2.5wt%Au2.5wt%Pd and 

4wt%Au1wt%Pd on E. coli, the catalytic activity in benzyl alcohol oxidation was 

found in the order as: 4wt%Au1wt%Pd < 1wt%Au4wt%Pd < 2.5wt%Au2.5wt%Pd. 

XRD patterns suggested smaller crystallite sizes of Pd than Au, and the crystallinity 

of the Pd was destroyed by the addition of a small amount of Au (20% of the total 

metal mass). 

 2.5wt%Au2.5wt%Pd/E. coli demonstrated catalytic activities in the oxidation of other 

alcohols (e.g. 1-phenylethanol, 1-octanol, 2-octanol, and 1,4-butanediol), and was 

shown to be less active for the oxidation of secondary alcohols than primary alcohols. 

 

 



Chapter 7 Conclusions and Future Work Recommendations 

216 

7.2 Future Work Recommendations 

This study has clearly demonstrated that biogenic metallic nanoparticles possess specific 

catalytic properties in both partial hydrogenation and aerobic oxidation reactions. Due to 

financial, equipment and time constraint, several experiments/analysis could not be 

performed in the scope of this work and hence are recommended as future work. They are as 

follows: 

 Where the reaction and characterisation results have been produced by bio-catalyst 

from one single preparation, at least one more separate bio-catalyst preparation needs 

to be done and tested in the reaction to validate the reproducibility of bio-catalysts in 

a statistical manner. In the present study key results are shown using two independent 

preparations and percentage variations between them are stated. 

 Bio-Pd/E. coli catalyst showed a lower level of cis-trans isomerisation and saturation 

than a conventional Pd/Al2O3 catalyst in soybean oil hydrogenation attributed to the 

advantage of smaller Pd particles on E. coli, but a lower activity due to the limited 

availability of active sites. The palladium loading on bio-catalyst could carefully be 

altered (e.g. 8 wt%, 10 wt%, 15 wt%, or 20 wt%) with the aim to find a trade-off 

between cis-trans production and overall catalytic activity. 

 Further modifications can be done to the oxidation reaction system for improvements, 

such as replacing the metering valve with mass flow controller for more accurate flow 

rate control. A probe to measure oxygen concentration in the liquid could be useful to 

monitor oxygen consumption thus to understand oxygen mass transfer during the 

oxidation reactions and obtain accurate concentrations for kinetic modelling studies. 
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 Based on the conversion rates obtained in preliminary oxidation experiments using 

different alcohols, further investigations into the catalytic behaviour of biogenic 

Au/Pd NPs should be explored in the oxidation of other alcohols. 

 Further developments of the bio-catalysts will seek to improve the catalyst 

reproducibility, lifetime (e.g. stability against heating and mechanical attrition), and 

up-scaling of the production process. If these conditions are fulfilled, an economically 

feasible and effective full scale technology can be developed. 

 Having established the utility of biogenic NPs the economic scaled-up production 

needs to be addressed. The utility of biorecycled Pd NPs in catalysis is shown in 

Appendix 8.5 and the utility of using bacteria sourced from another process in 

Appendix 8.2. Large quantities of waste bacteria are produced industrially and future 

studies would look to the study of pre-commercial strains used for example a primary 

protein or antibiotics production for utility for ‘second life’ in manufacturing catalytic 

nanoparticles. 
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Additional information not covered elsewhere in the thesis, and parts of work not yet ready 

for publication, or prepared jointly with others, are presented as a series of Appendices. 
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8.1 Kinetic Models of Hydrogenation Reactions 

For the establishment of the rate expressions in this study, the application of Langmuir-

Hinshelwood-Hougen-Watson (LHHW) kinetics is a fundamental approach, which consists 

of a rate-determining reaction step (usually a surface reaction step, i.e. the insertion of 

hydrogen atoms in hydrogenation) combined with Langmuir adsorption of reactants and 

products [312]. 

8.1.1 Rate Equation Derivation of 2-Pentyne Hydrogenation 

 

Figure 8.1 The overall integral reaction network of 2-pentyne hydrogenation. 

 

As has been introduced in §4.2, Figure 8.1 depicts the overall integral reaction pathways in 

the 2-pentyne hydrogenation. Accordingly the elementary steps on the catalyst surface were 

described as follows: 
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where Py, cis-Pe, trans-Pe, and Pa denote 2-pentyne, cis-2-pentene, trans-2-pentene, and 

pentane correspondingly. 

To derive the rate equations, the following assumptions are applied: 

i) Adsorption at equilibrium: 

The dissociative adsorption of hydrogen on the catalyst surface (Step 1) was assumed, i.e. 

molecular hydrogen is adsorbed onto the catalyst surface and split into two adsorbed 

hydrogen atoms. At the dissociative equilibrium hydrogen adsorption, there is: 

2 2

2[H ]H H Hk k     

H 2 H 2[H ] [H ]H

H

k
K

k
    



     

θH denotes the surface fraction of the adsorption site bonded to H atom, with the according 

concentration as [H2]. θ* is the fraction of vacant active sites. kH and k-H are the adsorption 

rate constant and desorption rate constant, correspondingly KH (equals to the fraction of kH/k-

H) denotes the adsorption coefficient of the hydrogen adsorption step. 

Likewise, the adsorption of the other component reaches the equilibrium, in which the 

adsorption constants for cis- and trans- double bonds in pentene are considered to be equal 

(i.e. Kcis-Pe=Ktrans-Pe=KPe) [313,314]. The following equation can be derived (taking step 3 as 

an example, a full list is provided in Table 8.1): 

3 3 -Pe[ -Pe] cisk cis k     

3
-Pe Pe

3

[ -Pe] [ -Pe]cis

k
cis K cis

k
    



   

The mass balance of the mole fractions of all components at the surface (Σθi=1) thus read: 

Py -Pe -Pe Pa H 1cis trans                 



Chapter 8 Appendices 

239 

by substituting Equation 8-1 ~ 8-5 in Table 8.1, the above equation becomes, 

Py Pe Pe Pa H 2

1

[Py] [ -Pe] [ -Pe] [Pa] [H ] 1K K cis K trans K K
 

    
 

The starting material for 2-pentyne hydrogenation was 4 ml 2-pentyne in 150 ml 2-propanol, 

giving an initial 2-pentyne concentration [Py]0 equal to 0.2707 kmol.m-3. While the dissolved 

concentration of hydrogen in bulk 2-propanol was assumed to approach its value at saturation 

(under the optimum condition in the absence of gas-liquid limitations) and estimated to be 

0.0084 kmol.m-3 as reported by Wood et al. [278], taking also into consideration a weak 

hydrogen adsorption on Pt group metals [315], that is, KH[H2]<<1 and can be neglected in the 

denominator of θ*, the above equation may be simplified as: 

Py Pe Pe Pa

1

[Py] [ -Pe] [ -Pe] [Pa] 1K K cis K trans K
 

   
 

ii) Surface reaction steps: 

The irreversible reaction of 2-pentyne to give cis-2-pentene is assumed to be the surface 

reaction control [24], thus the relevant rate equation is derived below: 

2 2 ' 3

6 6 Py 6 Py 2 Py Py[Py] [ ] [Py]H Hr k k K K H k K           

It is suggested that both cis- and trans-isomers are equally hydrogenated during the 

hydrogenation [120,313,316], in other words, equal hydrogenation rate constants of cis-

pentene (Step 8) and trans-pentene (Step 9) k8=k9. Taking Step 8 as an example, 

2 2 ' 3

8 8 -Pe 8 Pe 2 Pe Pe[ -Pe] [ ] [ -Pe]cis H Hr k k K cis K H k K cis           

likewise, ' 3

9 Pe Pe[ -Pe]r k K trans   
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The rate constants '

Pek  and 
'

Pyk  in the above equations incorporate hydrogen concentration KH 

and adsorption coefficient [H2], k7 and k-7 represent the reversible rate constants of cis-trans 

isomerisation in step 7 (Figure 8.1); Ki denotes the adsorption coefficient of each component. 

Table 8.1 Elementary reaction steps and rate equations in the 2-pentyne hydrogenation. 

Step Elementary reaction Equations No. 

1 1

2H 2 2H    
H H 2[H ]K     

8-1 

2 2
Py Py   Py Py[Py]K    8-2 

3 3
-Pe -Pecis cis   -Pe Pe[ -Pe]cis K cis     8-3 

4 4
-Pe -Petrans trans   -Pe Pe[ -Pe]trans K trans     8-4 

5 5
Pa Pa   Pa Pa[Pa]K     8-5 

6 6Py 2H -Pe 2cis     
' 3

6 Py Py[Py]r k K   
8-6 

7 7-Pe -Pecis trans    7 7 Pe 7 Pe[ -Pe] [ -Pe]r k K cis k K trans     
8-7 

8 8-Pe 2H Pa 2cis      ' 3

8 Pe Pe[ -Pe]r k K cis   8-8 

9 9-Pe 2H Pa 2trans      ' 3

9 Pe Pe[ -Pe]r k K trans   8-9 

 

The reaction scheme in Figure 4.1 clearly shows that apart from the case of the initial reactant 

2-pentyne, the observed reaction rates of all the other compositions are composed of the 

contributions of several reaction paths respectively. Accordingly, the overall reaction rate of 

the key component during the course of the 2-pentyne hydrogenation was expressed 

individually as follows (numbered as Equations 4-2 ~ 4-5 in Chapter 4): 

' 3

6 Py Py

Py
( ) [Py]m r mk K

t



   


 

  

6 7 8

' 3 ' 3

Py Py 7 Pe 7 Pe Pe Pe

-Pe
( )

            [Py] [ -Pe] [ -Pe] [ -Pe]

cis
m r r r

t

m k K k K cis k K trans k K cis     


  



   

 

  ' 3

7 9 Pe 7 7 Pe

-Pe
( ) [ -Pe] [ -Pe] [ -Pe]

trans
m r r mK k cis k trans k trans

t
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' 3
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
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8.1.2 Kinetics Models of Soybean Oil Hydrogenation 

Model 1 

 
Figure 8.2 The reaction scheme of soybean oil hydrogenation based on Model 1 [298]. 

 

Accordingly, the elementary steps are presented below: 
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A Langmuir-Hinshelwood based adsorption kinetic relation was used to determine the 

reaction rate along with the following assumptions: 

i) Non-competitive adsorption between H2 and fatty acids molecules, in other words 

dissociated hydrogen atoms and fatty acid double bonds are independently adsorbed on 

different catalyst sites [13,313,314,317,318]. In the liquid phase, the fatty acids are present in 

large excess and, because of the steric effects with the fatty acid owing to the large molecular 

size, they cannot completely cover the surface and bare palladium sites are available for 

dissociative chemisorption of small hydrogen [317]. However the fatty acids are assumed to 

compete for the same sites. The mass balances of the mole fractions of hydrogen and fatty 

acids respectively at the surface (Σθi=1) thus read: 

'

18:3 18:2 18:1 18:0

1 

1

H

C C C C

 

    





 

    
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Thereafter, the hydrogen fraction at the surface when dissociative equilibrium hydrogen 

adsorption is: 

2

H

2

[ ]

1 [ ]

H

H

K H

K H
 


 

On the other hand, for the equilibrium adsorption constants of the fatty acids Ki (i=0, 1, 2, 3, 

corresponding to C18:0, C18:1, C18:2, and C18:3), a ratio of K3:K2:K1=3:2:1 was assumed 

corresponding to the adsorption probabilities of trienic, dienic, and monoenic fatty acids, and 

these adsorption constants are hardly affected by temperature in the range examined [13,120]. 

When the fatty acids reach adsorption equilibrium, there is: 

3 2 1 0

1

1 [ 18 :3] [ 18 : 2] [ 18 :1] [ 18 : 0]K C K C K C K C
 

   
 

ii) The hydrogenation of double bonds of polyenes can be described by the same rate 

equation equations expressed for monenes, i.e. hydrogenation rate constants of the double 

bond are independent of the degree of saturation (all denote as k). The observed different 

reactivity of polyenes stems from the corresponding adsorption difference, e.g. greater 

reactivity of the C18:3 than C18:2 stems from the strong adsorption of C18:3 relative to 

C18:2 only [203]. 

iii) As is discussed in §2.4.1, the addition of hydrogen atoms to the unsaturated bond (C=C) 

is considered as a two-step addition, which is well-known as the Horiuti-Polanyi mechanism 

[213]. The first hydrogen insertion to form a half-hydrogenated surface intermediate is 

assumed to be the rate-determining step, however difference need to be noted between the 

hydrogenation of polyenic and monoenic (C18:1) fatty acids [297]. The half-hydrogenated 

surface intermediate after the first hydrogen insertion to polyenic (C18:3H* for C18:3 and 

C18:2H* for C18:2) is tied to the catalyst by the residual double bond and awaits the second 

addition of a hydrogen atom. Therefore this rate is proportional to θH. However, the half-
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hydrogenated surface intermediate from the monoene reacting with an adsorbed hydrogen 

atom (C18:1H* for C18:1) lacks a residual double bond and therefore readily dissociates and 

leaves again, which leading to an equilibrium in which the concentration of the this 

intermediate (C18:1H*) is proportional to the concentrations of the reagents forming this 

intermediate (C18:1* and H*). Its saturation rate is proportional to its concentration (θC18:1*) 

and the hydrogen atom concentration (θH) and since C18:1H* itself is proportional to θH, the 

rate of monoene saturation is therefore proportional to θH
2. Accordingly, there the rate 

equations for step 6~8: 

6 3 H[C18:3]r kK   , 7 2 H[C18:2]r kK    

while 2

8 1 H[C18:1]r kK    

From these assumptions, a full list of the elementary reaction steps and the corresponding rate 

equations is presented in Table 8.2. 

Table 8.2 Elementary reaction steps and rate equations in the soybean hydrogenation for Model 1. 

Step Elementary reaction Equations No. 

1 
1

2H 2 2H    
2

H

2

[ ]

1 [ ]

H

H

K H

K H
 


 8-10 

2 2
C18:3 C18:3   C18:3 3[C18:3]K    8-11 

3 3
C18:2 C18:2   C18:2 2[C18:2]K    8-12 

4 4
C18:1 C18:1   C18:1 1[C18:1]K    8-13 

5 
5

C18:0 C18:0   C18:0 0[C18:0]K    8-14 

6 6C18:3 2H C18:2 2     6 3 H[C18:3]r kK    8-15 

7 7C18:2 2H C18:1 2     7 2 H[C18:2]r kK    8-16 

8 8C18:1 2H C18:0 2     
2

8 1 H[C18:1]r kK    8-17 

 

Thereafter the following partial differential equation for each composition in Model 1 can be 

derived (numbered as 4-15 ~ 4.18 in Chapter 4): 
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Model 2 

 

Figure 8.3 The reaction scheme of soybean oil hydrogenation based on Model 2. 

 

For the soybean oil contains only small amount of cis-C18:3 which being quickly reacted, its 

cis-trans isomerisation was not counted in the reaction network. Likewise, the elementary 

steps of soybean oil hydrogenation on the catalyst surface based on Model 2 were described 

as follows: 

1

2

2

3

4

5

6

7

H 2 2H

-C18:3 -C18:3

-C18:2 -C18:2

-C18:2 -C18:2

-C18:1 -C18:1

-C18:1 -C18:1

C18:0 C18:0

cis cis

cis cis

trans cis

cis cis

trans cis

  

 

 

 

 

 

 

 

8-C18:3 2H -C18:2 2cis cis     

9

10

11

-C18:2 2H -C18:1 2

-C18:2 -C18:2

-C18:2 2H -C18:1 2

cis cis

cis trans

trans cis

   

 

   
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12

13

14

-C18:1 2H C18:0 2

-C18:1 -C18:1

-C18:1 2H C18:0 2

cis

cis trans

trans

   

 

   

 

For the establishment of the rate equations, all the assumptions in Model 1 were applied in 

Model 2 along with the additional assumptions below: 

i) In this Model 2, the cis-trans isomerisation results from the easy rotation of the single bond 

remaining in the half-hydrogenated surface intermediate which is formed after the insertion 

of first hydrogen atom to the unsaturated double bond, based on the well-known Horiuti-

Polanyi mechanism [297]. The surface occupation of the half-hydrogenated intermediate is 

negligible compared to that of bulk components in the (competitive) adsorption for vacant 

surface sites [319-321], due to the high reactivity. Thus in deriving LHHW-type rate 

equations, surface intermediates are neglected [312]. On the other hand, both cis and trans 

fatty acids of the same degree of saturation are adsorbed identically on the catalyst surface 

[313,314], e.g. K1 represents the adsorption constant of both the cis- and trans-isomer of 

monoene. 

ii) It is assumed the formation of the half hydrogenated surface intermediate, i.e. the first 

hydrogen insertion, as the rate-determining step. Both cis and trans, and that the adsorbed 

double bond could isomerise at the catalyst surface [314]. Furthermore, although hydrogen is 

not consumed in isomerisation, the hydrogen concentration affects the cis-trans formation 

[322]. The hydrogen orders for the isomerisation reactions are assumed to be different, 

presented as γ for cis-isomer to react (forwards) and δ for trans-isomer to react (backwards), 

correspondingly ki and k-i as the isomerisation rate constants. 

From these assumptions, the transformation rate equations of the elementary reaction steps in 

Model 2 are derived and listed in Table 8.3. 
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Table 8.3 Elementary reaction steps and rate equations in the soybean hydrogenation for Model 2. 

Step Elementary reaction Equations No. 

1 1

2H 2 2H    2

H

2

[ ]

1 [ ]

H

H

K H

K H
 


 

8-10 

2 2
-C18:3 -C18:3cis cis   -C18:3 3[ -C18:3]cis K cis    8-18 

3 3
-C18:2 -C18:2cis cis   -C18:2 2[ -C18:2]cis K cis    8-19 

4 4
-C18:2 -C18:2trans trans   -C18:2 2[ -C18:2]trans K trans    8-20 

5 5
-C18:1 -C18:1cis cis   -C18:1 1[ -C18:1]cis K cis    8-21 

6 6
-C18:1 -C18:1trans trans   -C18:1 1[ -C18:1]trans K trans    8-22 

7 7
C18:0 C18:0   C18:0 0[C18:0]K    8-23 

8 8-C18:3 2H -C18:2 2cis cis     
8 3 H[ -C18:3]r kK cis    8-24 

9 9-C18:2 2H -C18:1 2cis cis     
9 2 H[ -C18:2]r kK cis    8-25 

10 10-C18:2 -C18:2cis trans    10 2 H[ -C18:2] [ -C18:2]i ir k cis k trans K      8-26 

11 11-C18:2 2H -C18:1 2trans cis     
11 2 H[ -C18:2]r kK trans    8-27 

12 12-C18:1 2H C18:0 2cis      2

12 1 H[ -C18:1]r kK cis    8-28 

13 13-C18:1 -C18:1cis trans    13 1 H[ -C18:1] [ -C18:1]i ir k cis k trans K      8-29 

14 14-C18:1 2H C18:0 2trans      2

14 1 H[ -C18:1]r kK trans    8-30 

 

The mass balance for each component is given by the following differential equations 

(numbered as 4-19 ~ 4-24 in Chapter 4): 
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8.2 Towards Economic Bio-Catalyst Production 

The economic feasibility is one determining factor for bio-catalyst applications in pilot-scale 

and full-scale. Several costs need to be taken into account during the manufacturing of bio-

catalysts, e.g. the costs of precious metal salts, culturing the bacteria, and the hydrogen as the 

reducing agent. This section presents some preliminary findings and perspectives based on 

the above three types of costs, for designing a cost-effective technology to manufacture 

precious metal nanoparticles with catalytic activity. 

8.2.1 Production of Catalyst from ‘Surrogate’ and Real Wastes 

Conventional supported precious metal catalysts are usually prepared using metal salts as 

precursors, of which the cost can be approximately £90,000 kg-1, as listed in Table 8.4 the 

current market prices of some precious metal salts. The limited abundance of precious metals 

coupled with the increasing demand in industry applications (see literature review §2.2) 

brings about their volatile prices (Figure 8.4), while arousing research interests on the 

recovery and recycling of these metals. 

Table 8.4 Commercial prices of some precious metal salts. a 

Commercial precious metal salt CAS b Price (£) c Supplier 

palladium(II) sodium chloride (Na2PdCl4) 13820-53-6 79.8 (1 g) Sigma-Aldrich 

110.0 (1 g) 

409.0 (5 g) 

Alfa Aesar 

potassium platinum(II) chloride (K2PtCl4) 10025-99-7 94.9 (1 g) 

331.0 (5 g) 

Sigma-Aldrich 

91.7 (1 g) 

374.0 (5 g) 

Alfa Aesar 

gold(III) chloride hydrate (HAuCl4·nH2O) 27988-77-8 97.1 (500 mg) 

440.0 (5 g) 

Sigma-Aldrich 

83.6 (1 g) 

312.0 (5 g) 

Alfa Aesar 

a all 99.99% trace metals basis. b CAS: Chemical Abstracts Service number. c Price unit: Great Britain Pounds. 
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Figure 8.4 Price chat of platinum and palladium showing monthly averages (US$ per troy oz, 1 $= ~0.61 £) 

between January 2000 and December 2013. (Online source from Johnson Matthey Base [323]) 

 

Following a pioneering study by Mabbett et al. (below) that proved the catalytic efficacy of 

bio-Pd made from a waste source, it was suggested that if the Pd, for example, is recovered 

from a Pd(II) containing waste stream or leachate, the cost of palladium catalyst preparation 

can be 70% lower than by using a pure palladium salt [47]. Studies have shown the extended 

application of the recovered metals. For instance, Mabbett et al. [29] produced bioinorganic 

catalyst by single-step reduction of platinum group metals (PGM) from industrial waste 

solution onto biomass of Desulfovibrio desulfuricans; such bio-recycled catalyst was shown 

to have good catalytic activity in reducing Cr(VI) to Cr(III). While Yong et al. [324] showed 

that a fuel cell anode constructed from waste precious metals produced more power than an 

anode fabricated from bio-Pd alone. Another two-step approach has been developed using E. 

coli cells to recover precious metals from model solutions (containing 2 mM Pd(II) and 

Pt(IV)) and then subsequently real leachates into effective catalyst and the work is accepted 

for publication (Appendix 8.4). As the first step, the resting E. coli cells were palladised with 

a Pd loading of 2 wt% following the procedure described in §3.3.2. The pre-metallised cells 
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(i.e. 2wt%Pd/E. coli) then functioned as chemical catalysts in the reductive recovery of 

precious metals from acidic solutions of 2 mM Pd(II) and Pt(IV), forming 16wt%PdPt/E. 

coli. The catalytic performance of biofabricated PdPt catalyst was examined in the 

hydrogenation of 2-pentyne (T= 40 °C, 
2Hp = 2 bar, N= 1000 rpm) and compared with a 

conventional Pd/Al2O3 catalyst, the former showing comparable activity and more than 3-fold 

enhanced selectivity towards the desired cis-pentene product. It is concluded that the 

biorefining of waste precious metals into new catalysts has high potential. 

8.2.2 Production of Catalyst Using ‘Second-Life’ Bacteria 

Another cost consideration is highlighted in the culturing of the bacteria, for example the 

market price of nutrient broth no.2 used for E. coli growth in the present laboratory is £61.0 

kg-1 (Sigma-Aldrich, UK). On the other hand today’s industry produces large amounts of 

waste bacteria from the production of pharmaceuticals, proteins, antibiotics and 

biochemicals. Disposal of such waste carries financial burdens, e.g. the landfill tax in UK is 

currently £72 per tonne and there is a trend to increase (Table 8.5). Transporting waste to 

landfill incurs additional costs (diesel, CO2 emissions etc.), while methane production from 

landfills is a significant addition to atmospheric greenhouse gases. It was suggested that the 

overall cost of culturing and subsequent handlings of the bacteria can amount to £840 kg-1 

cell dry weight [47] which is clearly unfeasible for a process; a more realistic cost is £40 kg-1 

cell dry weight (J. Clipsham; Catalytic Technologies Management Ltd.; personal 

communication to Prof L.E. Macaskie). 
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Table 8.5 Changes to landfill tax rates (Online source from HM Revenue and Customs [325]). 

Date of change Standard rate (£ per tonne) 

01.10.96 7 

01.04.99 10 

01.04.00 11 

01.04.01 12 

01.04.02 13 

01.04.03 14 

01.04.04 15 

01.04.05 18 

01.04.06 21 

01.04.07 24 

01.04.08 32 

01.04.09 40 

01.04.10 48 

01.04.11 56 

01.04.12 64 

01.04.13 72 

 

If waste biomass (‘second-life’ bacteria) can be used as nanocatalyst support [262,326], this 

would mitigate against the costs of culturing of bacteria, biomass waste disposal and hence 

the overall cost. Accordingly, attempts were carried to manufacture bio-Pd catalyst using 

‘second-life’ E. coli cells harvested from a 4-litre fermentation bioreactor after 3 weeks of 

hydrogen production [262]. The harvested cells were divided for two different treatments 

(noted as A and B) to active cells before palladisation as described in §3.3.1. The Pd catalysts 

were made by the H2-promoted reduction of appropriate amounts of Pd(II) from Na2PdCl4 to 

give final loadings of 5 wt% palladium on biomass as described in §3.3.2. 



Chapter 8 Appendices 

252 

 

Figure 8.5 2-pentyne conversion profiles versus reaction time over different catalysts. Reaction conditions were: 

30 mg of 5 wt% bio-Pd; 4 ml of 2-pentyne in 150 ml of isopropanol as solvent; T= 40 °C; 
2Hp = 2 bar; N= 

1000 rpm. Open symbol: specially-grown E. coli. Filled symbols: ‘second-life’ E. coli treated by method A or B 

(see §3.3.1).Where error bars are shown these were calculated as mean ± standard error of the mean from at 

least three experiments, bio-Pd catalysts were from two separate preparations. Where no error bars are shown 

the data were averaged from two experiments with a reproducibility of within 10%, catalyst was from one single 

preparation. 

 

The resulting bio-Pd catalysts, noted as 5 wt%Pd/E. coli(A) and 5 wt%Pd/E. coli(B) were 

tested in the hydrogenation of 2-pentyne (T= 40 °C, 
2Hp = 2 bar, N= 1000 rpm) and 

compared with the 5 wt% bio-Pd using specially-grown E. coli cells. Figure 8.5 compares the 

2-penyne conversion as a function of reaction time over these 3 bio-Pd catalysts. It is clearly 

observed that the two bio-Pd catalysts from fermenting E. coli cells (A and B) gave very 

similar 2-pentyne conversions but the rate of 2-pentyne conversion was ~ 6-fold lower than 

the bio-Pd catalyst from specially-grown E. coli cells. The reason behind this may attribute to 

various hypotheses, e.g. that the matrix of E. coli cells may change after the fermentation 

process or the proportions of hydrogenases, or their precise localisations or indeed an 

unknown factor(s), which could bring an effect on the localisations and size of the Pd 

nanoparticles and ultimately their  catalytic performance in 2-pentyne hydrogenation. The 

difference between palladium depositions on specially-grown and ‘second-life’ E. coli cells 
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can be examined using characterisation techniques such as electron microscopy and XRD; 

however this is not covered in this study due to time constraints. 

In addition to the above factors, the cost of the hydrogen donor for reducing the metal ions 

(e.g. Pd(II) to Pd(0), Pt(IV) to Pt(0), and Au(III) to Au(0) onto the biomass) also needs to be 

included. There are several well-established technologies for producing or extracting 

hydrogen, such as steam reforming and electrolysis. Reducing the cost of these production 

technologies is the primary challenge for hydrogen production to make the resulting 

hydrogen cost competitive with conventional transportation fuels [8]. Instead of using an 

external hydrogen supply, a less expensive alternative could potentially use fermentative 

bacteria to produce H2 in situ [47] during the manufacturing process of bio-Pd catalyst, thus 

the cost of H2 can be omitted. Making use of biohydrogen and also the bacteria that produced 

it carries a ‘penalty’ of lower activity of the bio-Pd (above) but a greater range of target 

reactions should be examined. 
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8.3 Calculations 

8.3.1 Agitator Reynolds Number and Power Consumption 

The agitator Reynolds number (Re) was estimated using the following expression (Equation 

8-31), with the corresponding parameters listed in Table 8.6. 

2

Re I L

L

Nd 


                      8-31 

Table 8.6 Parameters used for the calculation of the agitator Renyolds number (Re) in this study. 

 Hydrogenation in Baskerville  Oxidation in Parr 

substrate 2-pentyne (in isopropanol) soybean oil  benzyl alcohol 

stirrer diameter (dI, cm) 5.84 5.84  2.06 

stirring speed (N, s-1) 16.67 8.33~20  20 

density (ρL, g.cm-3) 0.786 0.865  1.044 

viscosity (µL, g.cm-1.s-1) 0.018 0.067  0.055 

 

A gas-free luquid was considered for hydrogenation reactions in Baskerwille autoclave under 

dead-end operation, power consumption for agitation per unit mass (P) was eistamated using 

the expression below [206]: 

3 5

P I LN N d
P

m


                     8-32 

For the oxidation reactions under a constant air flow in Parr autoclave, a correction factor (ѱ) 

[206] for power consumption was applied in the presence of gas bubbles, thus power 

consumption per unit mass was estimated as: 

3 5

P I LN N d
P

m


                     8-33 
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8.3.2 Air Flow Rate Calculation in Parr Autoclave 

In order to precisely monitor the introducing air flow rate in the alcohol oxidation, a metering 

valve from HOKE Incorporated (Series no. 1335G4Y, Figure 8.6 a) was installed as part of 

the air flow controlling set up in the modified Parr autoclave. The fine metering control is 

achieved by the 18-turn displacement of stem (1 °), of which the flow coefficient Cv is 

obtained from the reference flow curve determined by the manufacture (Figure 8.6 b). 

Meanwhile the micrometering vernier handle provides visual control and repeatable stem 

settings; in addition the 316 stainless steel material allows the operating temperature range 

from -54 °C to 232 °C and maximum operating pressure of 345 bar at 21 °C. 

 

Figure 8.6 a) Image of the Hoke metering valve (Series no. 1335G4Y) for adjusting air flow rate in this study. b) 

Reference flow curve of Cv vs. handle turns for Hoke metering valve (Series no. 1335G4Y). 

a) 

b) 
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The flow chart of the flow rate controlling set up in the modified Par autoclave is 

demonstrated in Figure 8.7. Symbols used in the flow chat are: q= flow rate, Cv= flow 

coefficient, p1= inlet pressure, psia, p2= outlet pressure, psia. 

 

Figure 8.7 Flow chat of the air flow rate controlling set up in the modified Parr autoclave system. 

 

To determine the flow of a gas @ 70 °F (21 °C), the following formula obtained from the 

manufacturer’s brochure was applied: 

   

   
1

1360
460 . .

V

p p
SCFH C

T S G





                  8-34 

where: Δp= pressure drop (p1- p2), SCFH= flow in standard cubic feet per hour, T= 

temperature in °F, and S.G.= specific gravity of gas where air= 1.0 @ 70 °F (21 °C) and 14.7 

psia. 

Under successful control of this metering valve, the air flow rates examined in the alcohol 

oxidation reaction were 100 ml.min-1, 200 ml.min-1, and 350 ml.min-1 at room temperature of 

70 °F (21 °C) and reaction pressure of 5 bar. The corresponding parameters were fully listed 

in Table 8.7. 

Table 8.7 Air flow rates examined in this study and the corresponding parameters appeared for the calculation 

using Equation 8-34. 

Air flow rate, ml.min-1 Turns * Flow coefficient, Cv Temperature, °F Pressure drop Δp, psia 

100 6.22 0.0026 

70 
p1= 88.94 

p2=88.20 
200 10.84 0.0056 

350 16.17 0.0091 

* Turns were read accurately from the from the micrometer vernier handle. 
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8.4 Conferences and Additional Publications 

Conference Posters 

 Poster: Application of Novel Bio-Pd Catalyst in Hydrogenation Reactions. 

Conference: ISCRE 22: 22nd International Symposium on Chemical Reaction 

Engineering. 

Maastricht, The Netherlands, September 2012. 

 Poster: Hydrogenation of Soybean Oil Using Bio-Pd Catalyst. a 

Conference: Hybrid Materials 2011: 2nd International Conference on Multifunctional, 

Hybrid & Nanomaterials. 

Strasbourg, France, March 2011. 

a This poster was also presented in ‘The 17th Joint Annual Conference of CSCST & 

SCI-CS, Oxford University, UK, 2010’. (Awarded with the third prize) 

Conference Presentation 

 Talk: Selective Oxidation of Benzyl Alcohol Using Novel Au/Pd Bioinorganic 

Catalyst. 

Conference: The 18th Joint Annual Conference of CSCST-SCI. 

University of Cambridge, United Kingdom, September 2011. 

Additional Publications 

 A.J. Murry, S.M. Taylor, J. Zhu, J. Wood, and L.E. Macaskie, A Novel biorefinery: 

Biorecovery of precious metals from spent automotive catalyst leachates into new 

catalysts effective in metal reduction and in the hydrogenation of 2‐pentyne, Minerals 

Engineering (manuscript accepted for publication). 
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J. Zhu, I.P. Jones, G.A. Attard, J. Wood, S. Selenska-Pobell, and L.E. Macaskie, 

Microbial synthesis of core/shell gold/palladium nanoparticles for applications in 

green chemistry, Journal of the Royal Society Interface, 9 (2012) 1705-1712. 

 


