Formulation and development of ceramic mould materials for investment casting

Downloads

Downloads per month over past year

Tarrant, Luke (2012). Formulation and development of ceramic mould materials for investment casting. University of Birmingham. Eng.D.

[img]
Preview
Tarrant12EngD.pdf
PDF - Accepted Version

Download (14MB)

Abstract

The relationship between the formulation of ceramic mould materials for investment casting and their mechanical properties was investigated. A number of different ceramic materials were employed throughout the investigation including alumina, zirconia, mullite and colloidal silica. Ceramic shell specimens were investigated by measuring mechanical strength using flexural and compressive testing with the former being conducted at both room and elevated temperatures. Samples were further investigated by thermal expansion measurement and Archimedes porosity measurement.
It was determined that the incorporation of unstabilised zirconia as both a stucco and filler material was effective in terms of reducing the fired strength of investment casting ceramics. Structural observations of samples under SEM revealed that the weakened samples featured significant cracking in the fired condition due to the occurrence of the zirconia phase transition. Thermal expansion measurements confirmed both the presence of the phase transition and the extent of the disruption caused.
It was observed for slurries containing silica and alumina, that variation of the proportions of either had a significant effect on the properties of the final shell material. It was also shown that the size of the ceramic particles within the slurry had a significant effect on the final properties of the ceramic body.

Type of Work: Thesis (Doctorates > Eng.D.)
Award Type: Doctorates > Eng.D.
Supervisor(s):
Supervisor(s)EmailORCID
Blackburn, StuartUNSPECIFIEDUNSPECIFIED
Greenwood, RichardUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Chemical Engineering
Funders: Engineering and Physical Sciences Research Council
Subjects: T Technology > TP Chemical technology
URI: http://etheses.bham.ac.uk/id/eprint/3399

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year