Adaptive scaling of evolvable systems

Hammond, Simon P. (2007). Adaptive scaling of evolvable systems. University of Birmingham. Ph.D.

[img]
Preview
Hammond07PhD.pdf
PDF

Download (1MB)

Abstract

Neo-Darwinian evolution is an established natural inspiration for computational optimisation with a diverse range of forms. A particular feature of models such as Genetic Algorithms (GA) [18, 12] is the incremental combination of partial solutions distributed within a population of solutions. This mechanism in principle allows certain problems to be solved which would not be amenable to a simple local search. Such problems require these partial solutions, generally known as building-blocks, to be handled without disruption. The traditional means for this is a combination of a suitable chromosome ordering with a sympathetic recombination operator. More advanced algorithms attempt to adapt to accommodate these dependencies during the search. The recent approach of Estimation of Distribution Algorithms (EDA) aims to directly infer a probabilistic model of a promising population distribution from a sample of fitter solutions [23]. This model is then sampled to generate a new solution set. A symbiotic view of evolution is behind the recent development of the Compositional Search Evolutionary Algorithms (CSEA) [49, 19, 8] which build up an incremental model of variable dependencies conditional on a series of tests. Building-blocks are retained as explicit genetic structures and conditionally joined to form higher-order structures. These have been shown to be effective on special classes of hierarchical problems but are unproven on less tightly-structured problems. We propose that there exists a simple yet powerful combination of the above approaches: the persistent, adapting dependency model of a compositional pool with the expressive and compact variable weighting of probabilistic models. We review and deconstruct some of the key methods above for the purpose of determining their individual drawbacks and their common principles. By this reasoned approach we aim to arrive at a unifying framework that can adaptively scale to span a range of problem structure classes. This is implemented in a novel algorithm called the Transitional Evolutionary Algorithm (TEA). This is empirically validated in an incremental manner, verifying the various facets of the TEA and comparing it with related algorithms for an increasingly structured series of benchmark problems. This prompts some refinements to result in a simple and general algorithm that is nevertheless competitive with state-of-the-art methods.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Yao 1962-, XinUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Schools (1998 to 2008) > School of Computer Science
School or Department: School of Computer Science
Funders: None/not applicable
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
URI: http://etheses.bham.ac.uk/id/eprint/121

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year