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Abstract

Neo-Darwinian evolution is an established natural inspiration for computational op-

timisation with a diverse range of forms. A particular feature of models such as

Genetic Algorithms (GA) [18, 12] is the incremental combination of partial solutions

distributed within a population of solutions. This mechanism in principle allows cer-

tain problems to be solved which would not be amenable to a simple local search.

Such problems require these partial solutions, generally known as building-blocks, to

be handled without disruption. The traditional means for this is a combination of

a suitable chromosome ordering with a sympathetic recombination operator. More

advanced algorithms attempt to adapt to accommodate these dependencies during

the search.

The recent approach of Estimation of Distribution Algorithms (EDA) aims to

directly infer a probabilistic model of a promising population distribution from a

sample of fitter solutions [23]. This model is then sampled to generate a new solution

set.

A symbiotic view of evolution is behind the recent development of the Com-

positional Search Evolutionary Algorithms (CSEA) [49, 19, 8] which build up an

incremental model of variable dependencies conditional on a series of tests. Building-

blocks are retained as explicit genetic structures and conditionally joined to form

higher-order structures. These have been shown to be effective on special classes of

hierarchical problems but are unproven on less tightly-structured problems.

We propose that there exists a simple yet powerful combination of the above

approaches: the persistent, adapting dependency model of a compositional pool with

the expressive and compact variable weighting of probabilistic models. We review



and deconstruct some of the key methods above for the purpose of determining their

individual drawbacks and their common principles. By this reasoned approach we

aim to arrive at a unifying framework that can adaptively scale to span a range of

problem structure classes.

This is implemented in a novel algorithm called the Transitional Evolutionary Al-

gorithm (TEA). This is empirically validated in an incremental manner, verifying the

various facets of the TEA and comparing it with related algorithms for an increasingly

structured series of benchmark problems. This prompts some refinements to result in

a simple and general algorithm that is nevertheless competitive with state-of-the-art

methods.
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Learn each small people’s genius, policies,
The ant’s republic, and the realm of bees;

How those in common all their wealth bestow,
And anarchy without confusion know;

And these for ever, though a monarch reign,
Their separate cells and properties maintain.
Mark what unvaried laws preserve each state,

Laws wise as Nature, and as fix’d as fate.

— Alexander Pope, Essay on Man.
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Chapter 1

Introduction and Background

1.1 Philosophical Preamble

E conchis omnia (everything from shells) was the motto that Erasmus Darwin added

to the family crest over 80 years before the publication of Origin of Species by his

grandson [3]. It reflected his original conviction that the incredible complexity of

living systems was rooted in simpler origins. The mechanism for this, based on selec-

tion over heritable variation, was left for Charles Darwin to describe. The classical

characterisation of Darwinian adaptation is of gradual change under natural selec-

tion. Fossil records show species adapting over time, shaped by the forces in their

particular environment. It is a generally accepted process; yet it may not be the

whole story.

A current biological school of thought suggests a further mechanism for increasing

adaptive complexity. This has previously independently replicating entities develop

a long-term and intractable association to protect and exploit a mutually-beneficial

interaction. The so-called major transitions in evolution, it is proposed, are the result

of pre-adapted entities coming together rather that a straightforward mutation [29].
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This phenomenon is compelling in its own right but also may have implications

for key areas where computational abstractions of evolutionary dynamics are charged

with finding solutions to complex problems which resist analytical solution. Natural

evolution has demonstrated a capacity to produce systems that continue to humble

our state-of-the-art models in terms of their adaptive complexity. Biological organ-

isms and ecosystems, as well as social, cultural and technological networks, exhibit a

nuanced and creative complexity that emerged without design. Even cognition may

have an evolutionary underpinning [9]. We would like a handle on how these complex

systems emerge so that we might wield the process for our own ends.

1.2 Adopting Evolution for Search

Search is a fundamental computational task with an accumulated arsenal of tech-

niques. The natural process of evolution inevitably inspired more techniques to add

to this list. The generic term of Evolutionary Algorithm (EA) is applied to all these.

Whereas many search algorithms are tailored to different domains with their own

particular characteristics EAs are widely touted as good, robust, all-round search

algorithms which are easily adapted to representing potential solutions for different

domains. Since it is generally rather easy to implement an EA (even without much

prior knowledge of the problem domain) they have been applied to very many diverse

domains. These include simple artificial life forms, game strategies — in fact wherever

there is a representation and a means to vary them then all that is required is a method

for differentiating them.

Naturally, some applications are more successful than others. These tend to be

ones where knowledge of the domain has been integrated into the algorithm. There-

fore, the success of any particular application still relies largely on the skill of the
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designer rather than being a straightforward application of engineering principles.

Such tweaks may reduce the search space or improve the quality of variants of fit

individuals. These are instances of the ‘stone soup’ effect1, where the benefits of an

approach lie more in its additional customisation rather than its intrinsic qualities.

In inexperienced hands, different EAs are applied to different problems often with

scant justification. Novel representations are often processed by operators which have

been adopted without a clear understanding of their intrinsic biases.

Whilst it can be impractical to do a formal analysis of algorithms beyond a certain

level of complexity, this does not exclude a principled approach to developing an

evolutionary algorithm. This is the ambition for this thesis which aims to produce a

framework with minimal arbitrariness and maximal justification.

1.3 Adaptive Complexity in Nature and EAs

One capacity that turns out to be central is the ability to adapt to complex networks

of interactions between the elements in the search [25]. In the biological domain,

these entities were originally regarded as individual organisms, competing, preying

and evading others but genes have also been considered as interacting entities [4] and,

via evolutionary transitions [30], entities scaling entirely from replicating molecules

to the most complex societies have been unified under a common model.

This prompts us to define complexity for the purposes of this thesis. In terms of

the problem (or environment) it refers to the number and structure of interactions

between a set of entities. A scale of complexity is given in section 1.4. Conversely, in

terms of solutions, we use complexity in referring to the number and structure of ge-

netic linkages in the gene pool. Adaptive complexity is the result of a correspondence

1Named by the author after the traditional folk story in which soup is promised from a magic
stone but is actually the product of additional, ad hoc ingredients.
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between the structures inherent in the problem and those produced in the search.

The term evolutionary transition from biology is applied to the process whereby

previously independent entities develop a mutually-beneficial interaction which then

becomes maintained by their binding into a higher-level entity, resulting in increasing

complexity [30]. Examples range from the formation of chromosomes, through the

emergence of multi-cellular organisms and right up to the appearance of societies and

language. This process has been started to really be considered from the perspective

of Evolutionary Computation only very recently [24, 39, 8] and still tends to be

considered within a biological context rather than a purely optimisational one.

An original mechanism similar in spirit to the evolutionary transition was proposed

in the building-block hypothesis which proposes that high-quality solutions may be

produced by repeatedly combining highly-fit partial solutions of an increasing order

[12]. This lies at the heart of standard EA theory yet the current method for carrying

this out is burdened with issues, described in section 2.1.2.

Given these apparent parallels between a theory for the emergence of biological

complexity and a requirement from optimisation, a further exploration into evolu-

tionary transitions models of optimisation seems promising. Before this, we need to

be somewhat clearer about the form for the problems which our prospective method

will address.

1.4 Definition of Problem Classes

The general class of problem addressed herein is of discrete combinatorial optimisa-

tion. Simply put, we have a repeatable outcome from a fixed set of choices and we are

trying to use this outcome to find the best decisions to make for our choices in future.

Moreover, we are limited in our number of tries and aim for as few as possible.
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Each choice is represented by a variable which may take a value from any discrete,

finite set, e.g. an integer range, symbol, bit, logical operator or colour. Moreover, each

variable may be drawn from a different set. For the purposes of this thesis we confine

ourselves to a conventional binary representation.

The term we will borrow from biology as a shorthand for a specific value assigned

to a particular variable is gene. We presume that the range of possible solutions,

the search space, resulting from the combinatorial nature of the problem makes an

exhaustive search unfeasible or undesirable.

We also note the following strict limitations on our initial knowledge of the problem

with the expectation of improvement after a number of evaluations. The aptness of

any particular search algorithm lies in how successfully it departs from this initial

state.

Value ignorance Any value is as likely to be optimal as any other for any particular

variable. There is no initial bias for one over another. Hence we generally start with

uniformally random solutions.

Neighbourhood ignorance Whilst some domains (such as continuous numerical

ones) tend to imply a bias in substituting one value over another in a variable, we

assume no such knowledge2. Our variables ‘mutate’ to values irrespective of their

current value.

Dependency ignorance We have no prior knowledge of which variables interact

with each other in determining the fitness. More specifically, we have no knowledge

of whether the optimality of a particular value is dependent on the presence of a par-

2For a purely binary representation, as we will be using, there is actually no scope for such
knowledge.
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ticular value for another variable. The setting of a variable is therefore irrespective

of the settings for other variables in a given solution.

These conditions are invoked later when considering the advantages of relevant algo-

rithms to ensure a hard but fair comparison. For example, dependency ignorance

effectively rules out the deliberate ordering of variables in the GA’s chromosome. For

simple EDAs there is no mechanism for tackling dependency ignorance at all.

The feedback is limited to a single, quantitative value measuring the quality of the

solution which, according to convention and in line with the evolutionary metaphor,

we call fitness and seek to maximise.

Formally, the fitness feedback f is a function of the set of decisions made for

the mandatory choices. Given that the significance and character of each choice is

unknown, we may for notational convenience index them for representation as a set

of variables, C, such that:

f(C) = f(c1, c2, ..., cl) (1.1)

Where there are l decisions to be made as we seek to maximise f(C). It is also

important to stress that, given dependency ignorance, there is no significance to the

ordering of the variables. This total absence of prior problem knowledge qualifies

this definition for the class of ‘black box’ optimisation. We have no prior information

about the relative quality of the values for ci, any relation between the options for ci

or between ci and cj (where i 6= j).

1.4.1 Value Substitution

Value ignorance asserts the lack of any prior knowledge of the relative quality of the

range of values for a variable. Clearly this must change as evaluations accumulate.
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Otherwise, each successive solution will be as likely as the first to be optimal.

Initially, when switching a choice, we have no bias toward any replacement (as per

the neighbourhood ignorance rule). As the search progresses, we have the opportunity

to adapt the value of any particular choice in light of fitness feedback and favour some

values for a variable over others, either probabilistically or systematically. This notion

is explored further in section 1.5.

1.4.2 Variable Dependencies

We now consider what sort of relation may exist between variables in a problem. For

the simplest problems, there is no interaction between the variables; an optimal value

is optimal regardless of the other variable settings. In such cases, each variable can

be optimised independently by fixing the values of the other variables and testing all

values for optimality. Since the global optima can be found by sequentially optimising

each variable, these problems can be easily solved in linear time via straightforward

enumeration.

Problems which are both more interesting and more relevant to real world appli-

cations tend to have unforeseen interactions between the variables, i.e. choices have

‘knock-on’ effects. These interactions are often termed epistatic dependencies. If any

dependency within a problem is limited to k variables then that problem is termed

k-bounded [19]. Clearly, the difficulty of a problem increases with k. In the extreme

cases, with k as 1 we have the univariate problem as before. Where k is equal to the

number of variables, we would require a complete enumeration of the search space

to guarantee finding a global optima. We refer to problems where 1 < k < l as

multivariate or modular problems.

Hierarchical problems were originally identified by Simon [42] and brought into
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EC via the Royal Road R2 function [32] and, in a stronger form by the H-IFF [50].

The Hierarchical Problem Generator [6] provides instances of this class. A problem

function has a hierarchical structure if dependencies exist between interdependent

sets. Finally, where a value (or set of values) may be incorporated in several ‘higher-

level’ sets, we adopt the term polyhierarchical.

Several of the following classes of dependency structures have been discussed else-

where, e.g. by Pelikan [35]. We identify each one next, with reference to figure 1.1

for illustration.

Figure 1.1: Classes of dependency structure. Adjacency of interacting variables is for
ease of visualisation. Variables are indexed from 0 to 4, left to right.

Linear (or univariate) problems involve no fitness interaction between variables, e.g

onemax. The fitness contribution, and therefore the optimal fitness, for any value is

constant, regardless of the presence of any other values.

f(x) = f 0(x0) + f 1(x1) + f 2(x2) + f 3(x3) + f 4(x4)

Modular problems contain variables which can only be evaluated as part of a set

of order up to k. It is said to have k-bounded dependencies [5]. The linear problem

may then be viewed as a modular problem where the modules are of order 1.

f(x) = f 1(x0, x1) + f 2(x2, x3, x4)
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Hierarchical problems contain modules that contain modules. They can have an

order up to k components where each component may be a variable or set of variables.

f(x) = f 2(f 1(x0, x1), x2) + f 3(x3, x4)

Polyhierarchical problems allow a variable or module to be part of multiple, alter-

native hierarchies. A well-known example is the Travelling Salesman Problem (TSP)

where a city can be included in several alternative sub-routes.

f(x) = f 1(x0, x1, x2) + f 3(x1, x2, f
2(x3, x4))

The structure of these dependencies determine the character and ultimately the dif-

ficulty of the problem. The problems above are listed in increasing difficulty which

naturally follows from their increasing generality. By the dependency ignorance rule,

we have no prior knowledge of these dependencies. Therefore they must be inferred

in some way from the evaluation of sampled solutions.

1.5 EA Motivations and Methods

We now give a high-level overview of the evolution-inspired approach to optimisation

and define some of the terms we will be using.

Heuristic techniques are applicable where a complete search of all possibilities is

out of the question. Either the space to be searched is unfeasibly large or the cost per

evaluation means we must be willing to accept a less than perfect solution. In any

case, the result is the same: we must restrict ourselves to considering only a subset

of the possible solutions. In the absence of problem knowledge, the selection of this
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subset is arbitrary. We have no information about where to start or where to go

after that. It is essentially an exhaustive search prematurely terminated. The only

advantage over a random search is in ensuring that no solution will be considered

more than once. For some problems (so-called ‘needle-in-the-haystack’ problems)

this is the best strategy that we can apply. For other problems, where we believe

that similar solutions are of a similar quality, we can have higher expectations. We

can generate variants of our best solutions and replace them if we find variants of a

higher quality. This process resonates strongly with the classical Darwinian theory of

adaptation by natural selection and the analogy is recognised in the search algorithms

thus inspired.

The group of heuristic approaches under the current umbrella term of Evolutionary

Computation has myriad roots. In adopting the evolutionary metaphor from nature,

we use (and sometimes abuse) various biological terms. We use the term individual

to refer to a candidate solution and the term population for a group of these, possibly

containing duplicates.

EC approaches can be divided into individual or population-based algorithms

as detailed below. We consider population-based algorithms to be not just about

concurrent lineages but also involving the genetic interaction of individuals.

1.5.1 Individual-based Algorithms

Evolution Strategies (ES) [40, 41] are based on maintaining a best individual and

replacing it with improved or equally fit variants of itself. It generates variants by

perturbing the values in an operation termed mutation. The search is therefore a

stochastic one with the mutation operator generating variants that have shared genes

with their parents. As such, it assumes a limited order of dependency between vari-
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ables such that small numbers of variables can be modified to achieve a fitness gain

and so ES are typically applied to real-valued domains where a degree of relatedness

can be assumed between values and the neighbourhood rule is mitigated.

The nature of variation requires some consideration here. Variants of an individual

must have some commonality with the source, the degree of which determines balance

between exploration and exploitation in the search. At one end of this range we have

random search, independent of past individuals, and at the other we have individuals

which are indistinguishable from their origins. The goal is to find an appropriate

degree of commonality (or even learn the common features for improved search).

A lineage is the historical trajectory of preceding variants of an individual. A

proposed benefit of maintaining a population is that multiple promising lineages may

be pursued concurrently and only terminated as they fail to compete with better

performing lineages. In this way, we save effort by having a heuristic for terminating

some lineages to expand on more promising ones. This effect is achieved independently

of any direct individual interaction such as recombination used in population-based

algorithms, discussed next. This means there can be an advantage for populations in

individual-based algorithms (which are still individual-based algorithms).

The source of the variants, the current population of best individuals, is used in

a way that distinguishes it from a systematically ordered search.

The search state for a population-based algorithm is the population, whereas in an

ordered search it is the current best individual and the last individual to be evaluated.

Any search can be terminated and continued at any time by restoring its respective

search state. Together with the search operators which determine which individuals

are going to be (or are likely to be) considered next, this comprises the search model.

If this is a stochastic process, it results in a probabilistic distribution over the search

space for future individuals which we will refer to as the search distribution.
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1.5.2 Population-Based Algorithms

Population-based search extends the search state to embody a set of interacting in-

dividuals. This offers several key advantages over the single-individual approach,

which stem from the additional high-level information that can be obtained from the

adapting population.

As noted above, for a run in which multiple individuals are being adapted concur-

rently, the fitness of any particular individual can be compared to its peers. Poorly

performing individuals can be removed via selection and replaced with variants of

more promising individuals. This can be viewed as terminating some lineages and

forking others. It gives a straight gain over a series of individual-based run in terms

of resources.

A more interesting possibility opened up by the maintenance of concurrent lineages

is for the transmission of values between individuals. This is a chief characteristic of

the Genetic Algorithm (GA) [18, 12] and many of its extensions. The canonical form

maintains a population of a fixed number of individuals and employs a recombination

(or crossover) operator to allow the transmission of structures between individuals.

They also employ mutation to maintain ‘diversity’ in the population.

The motivation behind the recombination operator mentioned earlier is to combine

parallel lineages, bringing together useful elements of parents into a single individual.

This makes the search distribution a function of the entire population rather than

individuals. Indeed, new individuals may have as few as half their values in com-

mon with any current individuals. The rationale behind this is rooted in Holland’s

building-block hypothesis where a building block is a set of genes implicitly represent-

ing a sub-solution. The hypothesis suggests that building-blocks of increasing order

can be combined to obtain an optimal solution. Recombination acts on an ordered
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representation of the variables; and so for the original 1-point (and later 2-point)

crossover operators a crossover point — and therefore disruption — is less likely to

occur within sets of values that are closer in the ordering. As such, experienced GA

practitioners take care over the ordering of the variables on the chromosome to max-

imise proximity between variables believed to interact under some fitness function.

This mix of recombination and representation is the means by which designers may

import prior knowledge regarding dependencies into the search. This ‘tight encoding’

between variables is part of the genetic linkage implicit in the GA. It also contravenes

our dependency ignorance condition and is a clear target for an improved algorithm.

We return to the central issue of supporting genetic linkage in due course.

The schema theorem [12] was presented in order to define the conditions under

which the building-block hypothesis is expected to operate. A schema in this case

is defined as a set of values for a subset of all the variables that constitute an indi-

vidual. The original conception of a building-block was of a set of values which were

correlated with a significant fitness contribution. For the original GA, these were

additionally required to have a short defining length to avoid disruption under posi-

tional recombination operators. One of the properties of the model to be presented

herein is a lifting of that problematic requirement.

The population property of convergence is used widely. It could mean adaptation

toward an optima or increasing homogeneity. The general understanding does not

distinguish except in the particular case of ‘premature convergence’ where the latter

occurs without the former. To avoid such conflation, we will only take the latter use.

We will use the term adaptation for the process giving incrementally better solutions.

The term diversity is seen as antagonistic to convergence. Either of these is the ex-

pected outcome of the competing forces of selection and variation. Selection tends

to homogenise the population and variation, usually in the form of a mutation oper-
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ator, is used to prevent total homogeneity into a sub-optimal solution. Maintaining

a productive balance of these is a non-trivial challenge for the algorithm designer,

particularly as the balance may change over time. Various population maintenance

strategies have been proposed in order to retain rich diversity in the face of strong se-

lective pressures. These range from elitism-based methods, where a fixed proportion

of individuals are retained, to niching methods such as deterministic crowding where

offspring may only replace their closest parent [28].

The ultimate aim is neither convergence nor diversity but the generation of an

optimal solution with the least expenditure. We argue this is an unnecessary conflict

once we deepen our understanding of the underlying processes of selection and muta-

tion. The positive feedback loop of multiple copies of individuals, building-blocks and

genes is the cause and effect of convergence. Deconstructing the interplay between

these is key to the development of an appropriately adaptive search strategy.

1.5.3 Probabilistic Models

A relatively recent technique within evolutionary optimisation replaces the genetic

variation operators with an explicit probabilistic distribution for existing individuals

which is then sampled to generate new individuals. Such algorithms are referred to

as Estimation of Distribution Algorithms (EDAs) [23].

The model may be derived from a population or even replace it entirely. If the

model is supplementary to the population then its derivation occurs alternately with

the sampling of a new population. The extraction of a search distribution from the

population necessarily entails a selective phase as we use fitness values to either select

an elite subset of the population to model, or weight a mapping of the population

distribution to a search distribution.
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The probabilistic model may be a simple one that is adapted toward new, fitter

individuals [1, 16]. More commonly, it is the result of a systematic search to find

a distribution that approximates the population to a required degree. These prob-

abilistic model-building approaches iteratively search for distributions that match a

population, select within it and then sample from that selection.

The search can be computationally expensive, ever more so as we increase the

complexity range of considered models. It also bears the problem of determining an

appropriate degree of fitting. A model that is too specific will not vary enough from

current population members. On the other hand, a model that is too general will

fail to capture important dependencies suggested by the population. Moreover, the

search for a model is likely to have to restart as the population changes significantly.

In almost all cases the model and (the large part of) the population are alternatively

discarded at each iteration3. This means wasted effort as the search for a model begins

anew each time and potentially useful individuals are lost from the population.

1.5.4 Comparing Population-Based Algorithms and EDAs

Both these approaches rely on a series of individual evaluations in order to progress

their search model. They both employ a fitness-based bias in order to focus on some

individuals above others, i.e. selection. The difference is that the population-based

approach takes the population itself as a model of a good search distribution and

processes its implicit statistics via the genetic operators. The EDA approach, on the

hand, takes the population distribution as a data set to be separately modelled.

The weakness of the population-based approach is that the genetic representa-

tion and operators need to be ‘tuned’ to ensure adaptability and this is a non-trivial

3The Estimation of Bayesian Networks Algorithm (EBNA) is an exception, since it takes the
current network as a starting point [10].
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problem. The EDA approach is more expressive and adaptive but adds a work over-

head in attempting to discern the underlying search distribution. Even if the class of

distribution is known, the specific structure needs to be revealed.

Both approaches have a degree of success which may well be compounded by a

model that combines probabilistic sampling with an adaptable population structure.

1.5.5 Symbiotic Algorithms

An alternative approach to both the population-based and the probability-model

approach is inspired from the biological phenomenon of symbiosis highlighted earlier.

One computational abstraction of the symbiotic mechanism is given in the com-

positional algorithms approach. First presented as the Symbiogenic Evolutionary

Algorithm Model (SEAM) [49] and later optimised into the Hierarchical Genetic Al-

gorithm (HGA)[19] these base their search on an adapting set of modules rather than

individuals. This contains only the most primitive modules, i.e. single bits, initially

and, conditional upon validation, these are incrementally and irreversibly joined to

explicitly construct new building-blocks.

Both SEAM and HGA validate candidate modules via a rigorous testing phase.

Following this, specific combinations of modules are removed from the pool, effectively

reducing the search space. If the test is unreliable due to an inadequate number of

test cases then global optima may be permanently excluded from the search. Despite

a history of evaluated individuals, candidate modules are selected either randomly

(SEAM) or in an arbitrary order (HGA). Furthermore, SEAM discards individuals

which have been used for validation testing. HGA retains and recycles a popula-

tion of individuals but does not use this to suggest modules which may be valid

building-blocks. Therefore, the compositional algorithms above do not fully exploit
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the information regarding likely building-blocks that may be present in a population.

Another very recent algorithm is the Evolutionary Transition Algorithm (ETA)

[8] which combines the principles of natural selection (implemented in a classical,

generational GA) with an interactional framework derived from transitional biological

theory. Heavily inspired by biological theory, it is concerned with developing the

link between evolutionary transitions and compositional models; and proposes the

term Compositional Search Evolutionary Algorithms (CSEA) for similarly inspired

algorithms.

1.6 Hypotheses

Our thesis is founded on the proposal that a selecto-transmutative process can incre-

mentally adapt a search model (as defined earlier) from the simplest to an appropriate

degree of complexity for highly-structured problems. This relies upon a series of de-

pendent hypotheses. Each of these will be explored and tested individually as far as

possible. Only then will we be able to delineate its limitations. Specifically, we will

be verifying the following:

1.6.1 Population as a Structured Sampling Model

Hypothesis An elitist population of solutions, composed from multivariable com-

ponents, can be sampled as an expressive and compact search model.

This concerns the adequacy of the search model and proposes it is capable of

representing appropriate search distributions for a wide range of structured problem

classes. If it is not able to model the structure of any of these problems then it would

be expected to be severely curtailed its ability to solve them. Sub-optimal fixation

is addressed by ensuring primitives have a baseline relative weighting. We can verify
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its accuracy in discerning problems with a known structure and comparing this with

the explicit resulting TEA model.

1.6.2 Transmutation for Structural Adaptation

Hypothesis Structural mutation acting at the individual level can, in principle,

adapt the search model to reflect the genetic interactions of a problem.

Having the capacity to represent an appropriate search distribution with the struc-

tured population model from the first hypothesis is of little value unless this can be

reached from the initial unstructured population. Our proposed operator for this is

structural mutation (which we refer to as transmutation) and is applied uniformly to

individuals in the population.

1.6.3 Structural Validation via Individual Selection

Hypothesis Selection can efficiently amplify and distinguish modules, in parallel,

which encapsulate valid building-blocks, and demote and remove invalid modules.

For structural adaptation to progress effectively will require not only genetic sub-

structures to be produced (as for the second hypothesis) but for these to be promoted

or discarded. We can employ the same selective dynamics that allow genes to compete

to allow modules to compete with their components.

1.6.4 Intersection of Compositional and Probabilistic Models

Hypothesis There exists a model which unifies the most significant elements of the

CSEAs with those of the EDAs to obtain key advantages over both of these.

Specifically, we are looking to combine the explicit representation of modules from

compositional algorithms with the explicit frequency modelling of EDAs. The result
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is expected to be a more general model that may be applicable to a broader range of

problem classes than these two approaches individually.

1.7 Contributions

Whilst the prior techniques described demonstrate various different strengths and

weaknesses, we propose the key advantages are not mutually exclusive and can be

unified in a straightforward and reasoned way.

Specifically, we suggest that it is not necessary to supplement the population

with a separate probabilistic model if the population itself is able to adapt its own

composition in terms of structure as well as frequency. Neither is it necessary to

perform a strong conditional test for incremental structure in models if we can subject

genetic structures to the same selective processes we use to compete individuals or

alleles.

Our method proposes to combine the explicit modules of the compositional repre-

sentation and explicit frequency over these, as per the EDAs, in a generalised scheme.

This is expected produce efficiency gains by removing the need to repeatedly search

for a separate probabilistic model whilst providing an effective bias toward testing

modules with a greater prospect of success. The specific contributions resulting from

this work are identified now.

1.7.1 Analysis of Overlap with GAs, CSEAs and EDAs

The theoretical contribution is in analysing the operation of compositional and prob-

abilistic models to highlight aspects which might be rationalised in order to overcome

their individual drawbacks.
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1.7.2 A Transitional Evolutionary Algorithm

The practical contribution is a novel algorithm from an interpretation of existing mod-

els that combines a symbiotic genetic representation of weighted, overlapping modules

with a method for adapting this incrementally. We argue that this more powerful rep-

resentation enables it to effectively discern and apply problem structure purely from

selective dynamics. This makes it effective on a broad range of problems classes,

from those with few variable dependencies to those with hierarchically-structured

dependencies.

1.7.3 Empirical Comparison of Relevant Algorithms

Empirical comparison of relevant algorithms on an range of problem classes ordered

by structural complexity. This not only directly compares algorithms which share a

problem niche but also identifies where the bounds of their competence lies.

1.8 Methodological Principles

Earlier designs for evolutionary algorithms were naturally a product of a particular

biological abstraction (crossover and mutation acting on chromosomes processed by

individual-level selection) and a particular computing environment (a fixed-size pop-

ulation of fixed-length, unstructured binary strings). As evolutionary paradigms and

computing environments increase in sophistication there is a tremendous scope for

correspondingly complex models. This does not necessarily imply that they are more

useful or illuminating; the opposite is likely to be true. We should resist being se-

duced by our own ingenuity and adhere to the more minimalist approach, extending

our model only when it proves inadequate.
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As far as possible, each design decision and extension needs to be justified within

the context of the algorithm without reference to hazy intuitions or Evolutionary

Computation lore. The benefits of adhering to this principle are multiple with the

most significant are listed here.

1. Comprehension. A simpler algorithm is easy to analyse — both formally and

informally — as well as implement and debug. The fact that the problem may

be a black box does not imply the algorithm needs to be likewise.

2. Adoption. Ease of comprehension removes a key barrier to widespread adop-

tion. Although there are many superior alternatives to the canonical GA, vari-

ants of it are often still applied because of its appealing and intuitive operation.

A real achievement for this work would be an algorithm which was similarly

intuitive yet surmounted key issues which beleaguer established algorithms.

3. Generality. When an algorithm has been extended only reluctantly, it is in

less danger of chasing improvements in a smaller class of problems. Simpler

algorithms are more general algorithms.

1.9 Summary

Neo-Darwinian evolution is an established paradigm for artificial optimisation tech-

niques but a mechanism for increasing adaptive complexity remains an active research

area. The biological theory of evolutionary transitions to produce adaptive complex-

ity via symbiosis [29, 30] is a possible contender to implement the principle of a

building-block process, long held in evolutionary algorithms.

We use a scale of black-box combinatorial optimisation problem classes in order to

classify degrees of structural complexity. Modular problems and hierarchical problems
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are of particular long-standing interest. Solving such problems clearly requires the

identification of the structure along with the values. Two recent approaches to this

are identified.

Compositional models, inspired by evolutionary transitions, explicitly seek and

encode this structure. These can efficiently solve hierarchical problems via a set of

strong assumptions regarding the composition of the pool and the limitations on its

complexity. Alternatively, probabilistic models aim to infer the genetic linkage from

the population as a sample of fit solutions. They work by substituting the genetic

operators with a more general sampling of an explicit probabilistic distribution.

We identified a shared weakness across these in how they used evaluations to

identify, represent and exploit problem dependencies. This led us to our hypotheses,

contributions and the methodological principles we will be following throughout this

work.

1.10 Dissertation Structure

In this chapter we have set out the background for our research. This starts with the

inspiration from biological concepts for the emergence of complexity and its relation

to the open and active issue of scalability in artificial optimisation. A description of

the problem domain follows along with an overview of previous work, connected to

the area of interest. The hypothesis and contributions conclude the chapter.

In chapter 2 we consider the inadequacy of recombination for performing a building-

block process and go into more depth regarding alternative methods to the GA. We

draw out the significant aspects of these to mark out the niche we will be attempting

to occupy.

For chapter 3, with the help of a visual notation, we delineate a limited unification
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of aspects of GAs, CSEAs and EDAs. Within this context we introduce our notion of

a virtual pool of components drawn from genetically structured individuals and the

genetic operator for adapting their structure.

In chapter 4 we formally describe the structures and methods of the TEA: a

simple, novel and efficient algorithm which implements the principles and methods

previously described. This is followed by comparison of the TEA to related algorithms

and concepts.

An empirical validation is carried out in chapter 5 traversing the scale of problem

structures. Related algorithms are compared to each other on instances of appropri-

ately structured problem classes as the various facets of TEA are tested and, where

indicated, revised.

Chapter 6 interprets the results of the experimental studies in light of the original

hypotheses, concludes on the contribution of the thesis and proposes future directions.
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Chapter 2

Background Review

In this chapter we review related work regarding their motivations and principles. We

identify commonalities between them, suggest their individual limitations and draw

out some themes in preparation for the development of a novel approach.

2.1 The Canonical Genetic Algorithm

The widespread adoption of the canonical GA is at least partially attributable to

the ease with which it can be understood and implemented. Although many more

sophisticated evolutionary algorithms have been developed, the simplicity of the GA

means that close variants of it continue to dominate in application. This is particularly

true outside the EA research community. We now inspect its main feature of interest:

the use of recombination to produce new solutions from the population.

2.1.1 Recombination Biases

The operation of the GA associates genes in two distinct ways. Firstly, crossover is

restricted to a pair of parents rather than combining genes from a larger subset of the
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population. This has the overall effect of increasing the probability that co-occuring

genes from an individual will remain together. The recombination operator itself

may apply a further, more nuanced, bias based on the ordering of genes. For the

original single-point (and later 2-point) dependent genes that span fewer variables

(their defining length) are less likely to be disrupted once they emerge. This has been

well studied in a detailed investigation by Spears [7] and is referred to as a positional

bias by Hinterding [17].

The uniform crossover operator [44] removes the positional bias by making crossover

at any point independent of any other, to occur with a probability of 50%. Hinter-

ding defines this as the distributional bias since half of the genes are expected to be

sampled from each of the two parents (though the genes may be the same). Spears

investigated generalising uniform crossover probability as an algorithmic parameter

and found that the optimal crossover rate varied over time [43].

We label recombination as a static operator because its bias does not change over

the course of an evolutionary run. Any set of variables from an individual have the

same probability of being crossed over as they start with. This is irrespective of the

values of those variables or the relative success of prior recombination operations.

The motivation to move from a static to an adaptive bias arises from the conditions

for a building-block process.

2.1.2 Supporting a Building-Block Process

Whilst there is some theoretical backing for the canonical GA supporting this process

in the schema theorem, there are also a number of hard caveats. We summarise here:

• Building blocks must be constructed. This requires active search within the

particular partition which could come from either mutation or crossover.
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• Building blocks must be preserved. This is rather contrary to the objective

above. The conventional heuristic is to attempt to ensure building blocks have

a short defining length, so that positional crossovers are less likely to disrupt

them.

• There must be a sufficiently rich pool of building blocks in the population. Not

only must building blocks not be disrupted, but they must persist long enough

in the population to enable mixing, i.e. the conjunction of higher-order modules.

Thierens, analysing the mixing issue [46], showed that the conditions for which that

can perform (the ‘sweet spot’) are rather constrained, required tightly-linked genes.

This issue was shown not to be resolved by elitism, niching or restricted mating. The

need to avoid disruption is especially problematic since it requires prior domain knowl-

edge and the capacity to translate this into the representation. Thierens concludes

that:

...competent, scalable genetic algorithm performance can only be ob-

tained when building block linkage information is already in the problem

encoding or is identified before or during the genetic algorithm’s search.

The scalability of genetic algorithms depends critically on the representa-

tion. Once the appropriate schemata are identified, the problem becomes

“mixing-easy”, and fast, reliable, scalable evolutionary computation can

be achieved.

By precluding prior dependency information1 we must discern it as the search pro-

gresses via a process known as linkage learning .

1Theirens refers to it as the ‘no-linkage information assumption’. It is synonymous with the
‘dependency ignorance’ rule in section 1.4.
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2.2 Linkage Learning Algorithms

In this section we briefly review a selection of linkage learning algorithms. This

class of self-adaptive evolutionary algorithms extend the search model provided by

the population with acquired information regarding the structure of the problem,

thereby avoiding the conventional GA necessity of an appropriately biased encoding

as outlined earlier. Instead, they are set up to identify variable dependencies during

the search and respect this genetic linkage via auxiliary structures. These may adapt

the structure of the individuals in some way, e.g. by re-ordering the variables or by

explicitly linking variables or values.

The Messy Genetic Algorithm (mGA) [13] was an early attempt to allow evolu-

tionary adaptation to find not only an optimal set of values but also to allow it to

order the variables on the chromosome. It aimed to do this during a ‘primordial’

phase via specialised operators such as inversion before combining building-blocks in

a juxtapositional phase. The anticipated effect of this was that individuals which had

grouped interdependent genes would be less susceptible to deleterious recombination

and would come to dominate the population. It had limited success being somewhat

brittle in its operation. This was extended into the Gene Expression Messy Genetic

Algorithm (GEMGA) [20] which was guided more by an inductive process.

The Linkage Learning Genetic Algorithm (LLGA) [14] was similarly inspired by

the mGA and extends it with several novel techniques to reconcile building-block

mixing with allele selection.

2.2.1 Compositional Models

The compositional approach actually performs a specific case of linkage learning in

that it identifies values for pairs of variables and not just the variables themselves.
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It is strongly based in a symbiotic view of evolution, first advocated by Margulis

[29]. It was formulated by Watson [49] in the Symbiogenic Evolutionary Algorithm

Model (SEAM) and later optimised by De Jong et al. [19] in the Hierarchical Genetic

Algorithm (HGA). The compositional algorithm has also been framed in terms of

complex dynamical systems [47].

A very recent work, the Evolutionary Transition Algorithm (ETA) [8] stays rela-

tively close to the biological metaphor of cooperative co-evolution and does not claim

to be competitive with other optimisation algorithms. Nevertheless, it demonstrated

competitive performance against SEAM on the H-IFF problem and effectiveness on

the Binary Contraints Satisfaction Problems (BINCSP) where SEAM was ineffec-

tive.

Definition of SEAM

SEAM was specifically developed to tackle the hierarchical class of problem, instanti-

ated by the recursively-structured IF-and-only-IF (H-IFF) problem which was shown

to be extremely challenging for existing evolutionary techniques [48]. The H-IFF

function was defined as:

F (B) =

{
1,

|B|+F (BL)+F (BR),
F (BL)+F (BR)

if |B| = 1
if |B|>1 and (∀i:bi=0 OR ∀i:bi=1)

otherwise.

Where B is the set of features, (b1, b2, ..., bk), |B| is the size of the set= k,

bi is the ith element of B, BL and BR are the left and right subsets of

B, i.e. BL = (b1, ..., bk/2), BR = (bk/2+1, ..., bk). The length of the string

evaluated must equal 2p where p is an integer (the number of hierarchical

levels.)
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Instead of a population of individuals, its search model comprised a set of modules or

partial solutions. This initially enumerated all the primitive modules; for the H-IFF

problem this meant all possible bits. Individuals are generated by adding modules

from the set until all variables had been assigned a value.

Rather than maintaining and adapting individuals, the search model represented

by the pool was adapted by performing irreversible joins on modules following a suc-

cessful testing phase. The test compares the candidate join with its independent

components in a number of contexts randomly generated from the remaining compo-

nents. Only if the join was shown to Pareto dominate the independent components2

was the join deemed to be ‘stable’ and made permanent. If this test failed then the

pool structure (and therefore the search model) remained unchanged. A pseudocode

description of SEAM is given in algorithm 2.1.

This testing can be viewed as performing the role that competitive selection might

otherwise be expected to carry out. If a module Pareto dominates its components,

this implies ongoing selection between the containing individuals would ultimately

cause the module to displace the independent components from this niche. This

notion is developed more fully later.

Definition of HGA

The HGA optimised SEAM in several key ways:

• It maintained a population of individuals specifically for the purpose of testing

the validity of candidate joins. In this way it was able to recycle individuals

rather than generate them ad hoc and thereby reduce the number of required

evaluations.

2The join would Pareto dominate the independent components if there was at least one context
in which it was fitter than either of the components and none where it was less fit.
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SEAM main()
initialise pool of single-value modules as M
repeat

uniformly sample modules a, b from M
if is stable(a, b) join a, b in new module

until terminating criterion met

// test whether join dominates component, i.e. is context optimal
// note: cx denotes the values of x superimposed onto c
is stable(a, b)

dominates = false
for i = 1 to n

c = sample context()
if f(ca) > f(cab) or f(cb) > f(cab) return false
if f(cab) > f(ca) or f(cab) > f(a) dominates = true

return dominates

// sample an individual for join test
sample context()

context = fully unspecified solution
M ′ = set of applicable modules initialised from M
while context still has unspecified variables

uniformly sample component m from M ′

remove from M ′ all modules that intersect m
add m to context

return context

Figure 2.1: Pseudocode for SEAM
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[note distinct use of term module as set of variables rather than values]
HGA main
k ← maximum order of module considered
M ← pool initialised with the set of single-variable modules
initialise pop
modified ← true
while modified

evolve pop
modified ← module formation
replace modules

evolve pop
do

fmax ←greatest fitness in population
remove all samples with fitness less than fmax − ε
new individuals ← false
while pop size < n

new individuals ← true
sample new individual

while new individuals

module formation
formed ←false
k′ ← 2
while k′ ≤ k and ¬formed

if k′ > |M | return false [insufficient modules for a join]
Mk′ = all k-order subsets of M
for each m ∈ Mk′

nrsettings ← number of possible settings for m
COsettings ← number of context-optimal settings for m
if COsettings < nrsettings

M ← m ∪M \ {c|c ∈ m}
formed ← true

increment k′

return formed

replace modules
for any module combination in the population that forms a composite module

if the composite modules is ε-optimal
replace the combination with the composite module

Figure 2.2: Pseudocode for HGA
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• It considered all the possible joins in a systematic order. Of course, given no

prior knowledge or applied feedback, this ordering is necessarily arbitrary. The

main benefit of this, we conclude, is to ensure that no module is considered

multiple times.

• It removed small numbers of settings frequently, rather than removing large

numbers more infrequently. Given the incremental nature of the search, this

was a significant optimisation.

The above points signal a subtle difference in the concept of a module between the

SEAM and the HGA. In the SEAM3, a module is a fixed set of values analogous to

a GA schema. The HGA has a module as a set of variables, akin to the partitioning

approach of ECGA [15] and GEMGA [20] where the search space is constrained

according to proposed dependencies.

Another fundamental difference in the approach between these two algorithms is

shown by their policy in constructing new modules. Whereas SEAM only allows the

construction of a module following stringent testing, the HGA assumes any considered

module to be valid unless its distribution in the population indicates otherwise. This

means that any module validated in SEAM is likely to represent an actual value

dependency whereas a module under HGA is a suggested variable dependency with

value dependencies yet to be discounted.

There are a number of strong issues with both these algorithms of the composi-

tional approach, largely based around the nature of the modularising operation.

Adequate sample size The join operation is irreversible and incrementally re-

stricts the search space. Therefore it is crucial that the process by which candidate

3Also in the earlier preliminary HGA framework [5].
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modules are tested is reliable. A sufficiently large number of testing samples is ad-

vised to ensure this although too many additional testing samples will clearly incur

an unnecessary overhead.

Primed pool Another issue concerns the initial composition of the set of primitive

modules. Each of these can only be used once and therefore makes the module set

a finite source of building-blocks. Defining the initial module set composition such

that the optimal solutions, and all their ancestors, are not artificially constrained is

what we call the ‘model-kit’ assumption.

Arbitrary module selection Both SEAM and HGA use the population solely to

test candidate modules. This ignores available statistics in the population which may

be used to suggest modules.

An approach of ‘soft’ joins was marked by Watson [49, p302] as a prospective line of

research. This was conceived as incorporating some kind of explicitly probabilistic

component4. However, this variation remains as yet untried.

2.3 Probabilistic Models (EDAs)

Although the algorithms up to this point clearly have a probabilistic aspect, e.g. in

the selection of individuals and crossover actions, we turn now to algorithms which

are entirely based on an explicit probability distribution to generate individuals.

We review them in a chronological order which roughly corresponds to an increas-

ing range of dependencies they are able to model. The earlier ones model allelic

4In personal communication.
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frequencies whilst the later are able to model population distributions where the

distribution of alleles is dependent on the other loci, known as linkage disequilibilium.

2.3.1 Unstructured Population Modelling

The most general probabilistic population model assumes no dependencies between

the variables. These univariate models simply sample each value from a vector of

independent distributions across each variable. This structure therefore models allele

frequencies but not linkage disequilibrium. Although their models are equivalent,

the process by which they are derived and adapted differ. We review these for the

purpose of mapping out the development of the early work. More detailed surveys

can be found in [52, 38].

The earliest of these models was Bit-based Simulated Crossover (BSC) [45] which

retains a population and samples values from it according to their fitness weighted

frequencies. This is effectively fitness-proportionate selection from within a set of

individuals; alleles are totally independent of each other. Earlier versions used muta-

tion but this was discontinued later. The Univariate Marginal Distribution Algorithm

(UMDA) [33] differs from the BSC algorithm in that the probability distribution over

each variable is derived from the relative frequency of its values within a subset of a

previous population sampling. The subset is obtained via tournament selection which

reduces premature convergence since large differences in fitness do not equate to a

proportional representation in the next generation.

The Population-Based Incremental Learning algorithm (PBIL) [1] frames the

adaptation of allelic frequencies as a type of incremental learning using a simple

update rule to move the population-modelling vector toward the best in each gen-

eration. The Compact Genetic Algorithm (CGA) takes a more nuanced approach,
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sampling a pair of individuals at a time and adjusting the vector in favour of the

fitter for each variable where the values differ [16].

2.3.2 Structured Population Modelling

The Bivariate Marginal Distribution Algorithm (BMDA) [36] is a direct extension to

the UMDA [33] which uses Pearson’s χ2 statistics to indicate pairwise dependencies

between variables.

The Bayesian Optimisation Algorithm (BOA) [34] aims to construct a Bayesian

network to model each generation then samples from this to produce the next gen-

eration. This is a powerful representation but does require the definition of a metric

to compare the quality of models, as well as a secondary search of the space of these.

A related algorithm is the Estimation of Bayesian Network Algorithm (EBNA) [10]

which differs in that it takes the previous network as a starting point for the successive

search.

The Hierarchical Bayesian Optimisation Algorithm (hBOA) extends the BOA us-

ing hierarchical local structures and a niching technique called Restricted Tournament

Replacement (RTR) [37]. Whilst this algorithm is powerful in application, it is more

of a careful application of existing complementary techniques than a novel design in

itself.

The Extended Compact Genetic Algorithm (ECGA) [15] is founded on the princi-

ple that the choice of a good probability distribution is equivalent to learning linkage.

It operates by repeatedly searching for a partitioning of the variables into sets which

appear to represent a compact model of the population5. Compactness here is equiv-

alent to Minimum Description Length (MDL). Following this, each combination of

values is temporarily treated as a module and the relative frequencies of each is ex-

5According to the Kullback-Liebler divergence [22].
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EDA main
initialise sampling distribution model
repeat

replace population with solutions sampled from model
derive new model of better solutions from population

until terminating criterion met

Figure 2.3: Pseudocode for EDA

tracted to complete the Marginal Product Model (MPM). The MPM is a probabilistic

model, like the model from its predecessor CGA[16], but it is selecting entities that

are larger and fewer than individual genes. The ECGA has since been extended from

its binary form to one with arbitrary cardinalities in the χ-ary ECGA [26].

2.4 Comparing CSEAs and PMBAs

The compositional approach and the structured EDA approach have unrelated ori-

gins. The former from biological theory for the emergence of complexity, the latter

from statistical machine learning. Despite this, there are various shared motivations,

principles and practices between them that can be illustrated with the forerunners of

the HGA and the ECGA.

In terms of representation, the MPM from the ECGA resembles the module pool

from the HGA in that it specifies partitions of the variables. However, the frequency-

derived graduated weighting of the MPM is more expressive than the compositional

pool which simply allows or discounts settings.

Both the ECGA and the HGA take a similar systematic, exhaustive, and greedy

approach to partitioning the variables to derive the modular structure of the popula-

tion. They consider all possible partition-pairs and retain them as partitions if they

pass specific criterion. In HGA, pairs of genes are discounted if they are absent in an
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elite subset of a sample population. A partition which contains less than a complete

set of configurations (i.e. possible value combinations) is considered a module. In

ECGA, the pairing which leads to the greatest decrease in complexity results in a

merger. This is repeated until the combined complexity can be reduced no further at

which point the final MPM is used to generate the next population.

Both techniques also place an emphasis on simpler models over more complex

ones. The HGA starts with the simplest possible model and builds up. The ECGA

directly favours lesser minimum description lengths.

The modules of HGA persist and incrementally merge throughout the run. It does

not have generations as such. The population sample is entirely conditional; individu-

als are only replaced within it when they become incompatible with the module pool.

The MPM, in contrast, produces a fresh dependency model for each generation and

discards the previous model. The HGA representation is therefore more efficient since

it builds on the structural model of value dependencies incrementally and irreversibly.

2.4.1 Summary of a Meta-EA

Having described the workings of the individual algorithms and made comparisons

between aspects of them we can envisage an abstract form which encompasses them.

With this view we aim to draw out their essential commonalities whilst highlighting

their significant differences. Figure 2.4 summarises this view. It takes each algorithm

as employing a solution set with some rule for replacing this. The solution set is

generated from a search model which may itself be relatively simple function of the

solution set or the result of a more sophisticated process.

The proposed algorithm, TEA, is included for easy comparison with a fuller in-

troduction to follow directly.
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Evolutionary State Comparison
Search Model Form and Derivation

SGA A population (i.e. the solution set) to which predefined genetic
operators (mutation and recombination) are applied.
EDA A probabilistic distribution which is generally derived at each it-
eration from the solution set.
CSEA A persistent set of unweighted solution components. Incremen-
tally joined conditional on the composition of the solution set.
TEA A persistent, adaptive structuring of the solution components that
form the solution set.

Solution Set Maintenance
SGA Some solution persistence in set possible via elitism.
EDA Set resampled from search model for each generation.
CSEA Set regenerated from model at each iteration (SEAM) or main-
tained according to model (HGA).
TEA Persistent set of unique solutions with specialised elitism.

Meta Evolutionary Algorithm
1. Initialise search model to simplest, unbiased distribution.
2. Sample number of solutions from model.

SGA applies genetic operators to produce solutions for next generation.
EDA samples new set of solutions according to model.
CSEA generates or maintains set of solutions from pool of modules.
TEA samples a candidate solution from the weighted components.

3. Derive new search model.
SGA applies selection to replace less fit solutions with new solutions.
EDA derives weighted, structured model from sampled solutions.
CSEA adds structure to model, conditional on the solutions set.
TEA adapts model structure and weighting via specialised selection.

4. Repeat from step 2 until terminating condition met.

Figure 2.4: Comparison of state and pseudocode for ‘meta-EA’, emphasising com-
monalities and differences between the Simple Genetic Algorithm (SGA), Estima-
tion of Distribution Algorithm (EDA), Compositional Search Evolutionary Algorithm
(CSEA) and the proposed Transitional Evolutionary Algorithm (TEA).
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2.5 Principles of Evolutionary Optimisation

2.5.1 Population Usage

We look at past solutions in order to suggest future ones and since we are interested

in generating solutions of higher fitness we tend to consider only a subset of previous

solutions. Retaining a set of high-quality individuals, a population, allows us to infer

more about the relative quality of particular values — and combinations of values —

than just a single champion individual. Furthermore, the more distinct individuals

we can refer to, the more information we have about the problem. However, some

individuals are more informative than others regarding prospective high-fitness indi-

viduals; these tend to be the ones with a higher fitness themselves and so we retain

these in the population and discard those less fit. From this point, the population

may be used in various ways:

Fitness function information Everything known about the problem is rooted in

the raw feedback contained in evaluated individuals. In this capacity, the population

may be viewed as a set of inputs which map via an unseen function to a range of

outputs. Our task is to produce a search distribution to maximise the final output.

EDAs generally pursue this by repeatedly modelling the structure of an elite subset

of each generation, or adapting the weights of a predefined structure.

Modelling Search Distribution Noting here that duplicate individuals contain

no more information than a single individual, convergence represents a particular loss

of information. Frequency only becomes useful if we intend to extend the population

into a complete search model. The canonical GA uses the implicit frequency infor-

mation of genes and schemata by allowing duplicates of individuals. This ensures the
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reinforcement required by the schema theorem. The selection probability of the fitter

individuals (and their containing schema) is increased in proportion to their frequency

which reflexively acts to increase the frequency. The end result is the allocation of

the finite population to the fitter schema.

Validating Building-Blocks The compositional algorithms retain a population to

judge the validity of any specific module as a building-block. The test is in the form

of a comparison between a specific module and other modules specifying the same

variables. New building-blocks are identified when a particular module is found to

dominate other combinations of components. This essentially anticipates the fixation

that schema processing might be hopefully expected to produce.

In fact the latter two usages are fundamentally the same: some schema (or modular

settings) are amplified at the expense of others following the consideration of a number

of solutions which contain them. Whereas GA models do this gradually and implicitly,

the compositional algorithms do explicit checking.

2.5.2 Processing Partial Solutions

A key feature posited of recombination-based EAs is the ability to combine structures

from different lineages. This is the so-called building-block hypothesis, yet it imposes

a number of highly taxing conditions in order to operate. Although a population is

able to implicitly hold individuals with genetic linkage and amplify them, the static

linkage from conventional crossover operators is generally disruptive for problem with

much structure. Mixing is therefore limited.

Self-adaptive linkage-learning algorithms aim to support mixing (i.e. reduce dis-

ruption) by adapting the action of recombination over time. Compositional algo-
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rithms essentially only perform mixing, with no predetermined bias on genetic linkage.

They are able to incrementally discard genetic substructures as an intrinsic part of

the search. Yet they lack the adapted bias of a selective weighting over the modules

and therefore select candidate modules regardless of the population.

EDAs support such a weighting, and more sophisticated ones are able to generalise

the modular structures represented by the compositional algorithms. However, unlike

the incremental compositional approach, the search for dependency structure must

be reset at each iteration. The structure does not persist with the lineage.

2.6 Gaps in the Literature to be Addressed

Both the GA approach, motivated by the building-block hypothesis and strongly ex-

pressed in the compositional algorithms, and the EDA approach appear to be distinct

alternatives, yet they share key facets. They both attempt to discern variable inter-

actions from a population and adapt the search distribution accordingly. In the next

chapter we go into more depth regarding how these methods actually intersect.

Interestingly, the point at which these methods meet is also where they diverge

from their evolutionary inspiration. The EDAs interleaves a model derivation with

each generation and the CSEAs attempts to modularise components. The CSEAs

have some basis for structural adaptation in evolutionary transitions yet this has not

been abstracted out of the biological metaphor into a generally applicable method

that addresses the core principles that motivate recombination in population-based

algorithms.

If the population is a model of a good search distribution, why do we have to

model the model? We would suggest that the need for a separate structural model

of the population arises purely from the fact that it conventionally contains only flat
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individual structures. Compositional algorithms do not require a separate model to

be constructed; the dynamic pool of sub-structures incrementally grows to order but

still only use individuals for testing. The compositional testing is a substitute for

repeated selection.

We would like to not have to perform structural search separately from the search

for values. We would prefer to define a richer population representation that allows

structure to be adapted concurrently with values.

2.7 Summary

We began this review by focussing on the distinguishing feature of recombination in

GAs and how it is poorly equipped to fulfil the requirements of the building-block

hypothesis. A selection of linkage learning algorithms were reviewed, culminating in

the compositional models which we critically examined.

The alternative approach of the probabilistic models was described for models of

increasing complexity before highlighting their commonalities and differences. We

pay particular attention to how they use the information within the population and

how partial solutions are processed and combined.

We conclude the review by marking the gap in the previous models that we aiming

to fill in successive chapters.
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Chapter 3

Towards a Transitional Model

In this chapter we draw out and develop ideas and motivations ear-marked in the

review to provide justification and lay the foundations for a transitional model.

We start by taking the perspective of selection with which to view the algorithms

of interest, where they deal with selectable entities at various scales. We go on

to describe how the same competitive pressures resulting from selective processes

might be used to validate genetic structures as modules competing directly with their

components.

A simple visual notation has been found to be helpful in illustrating the discussion.

This uses blocks of differing shades to represent alternative values1 for variables and

sets of variable. A bordered block, or set of blocks, represents an indivisible, selectable

entity or unit of selection, e.g. an individual or component. The relative size of a

block reflects its sampling probability. Blocks which overlap along the x-axis are

mutually exclusive in an individual.

For simplicity, we only use this visualisation for structures which span adjacent

variables.

1Limited to binary values for our purposes of this analysis.
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3.1 Selection and Sampling

Selection, the act of picking one structure rather than another to transmit into a

future population, is usually associated with the GA approach where the individ-

ual is the structure being transmitted. We will argue here that when it is applied

stochastically, as in fitness proportionate selection, the GA approach is distinguished

from probabilistic models only by the scale of the entities being selected. GAs apply

selection to individuals whereas probabilistic models apply selection to the entities

that constitute individuals. In selecting an individual, we are effectively sampling all

of the elements within it. Therefore the key to a coherent compound lies in fram-

ing GAs as simple probabilistic models where individuals are the aggregated entities

being sampled. This interpretation is illustrated in figure 3.10.

We now expand this by considering GA selection in isolation from genetic opera-

tors before we consider the GA operators of mutation and crossover specifically. Then

we turn to examine EDA sampling in isolation from the model search.

3.1.1 A Perspective in Competition

The following thought experiment may provide a valuable intuition for the abstract

interpretations which follow it.

Consider a group of individuals that are effectively genetically identical, i.e. a

species, denoted S. Assume a particular mutation within S which prevents breeding

with S but is still competing for the same niche. This constitutes a new species, S ′.

If there is a phenotypic difference which gives members of S ′ a fitness advantage over

those of S then it will be expected to eventually take over the niche.

Note that we have not detailed the nature of the mutation or the changed interac-

tion with the environment. Suffice to say that the species are genetically similar but
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distinct enough to constitute a different species which continues to compete within

the same niche.

The point is that from a species perspective, one is taking over from another.

However, from the perspective of the genes common to both species, there is nothing

of significance happening. It is only differing genes that are competing to persist

and replicate where change will occur. The relevance for this thesis is in terms of the

genetic structures we support within individuals.

3.1.2 Amplification from Selection (GA approach)

The role of selection in GA models is to adapt the frequency of competing individuals

rather than to generate novel ones. This is essential to raise the odds of building-

blocks being combined. Selection can be deterministic or stochastic occurring with

a probability that increases with fitness, either proportionately or according to some

other mapping, such as linear ranking or truncation selection.

This mapping, illustrated in figure 3.1, shows the selective probability of the in-

dividual as a function of its ranking within the fitness distribution for the entire

population. If a population can contain multiple copies of an individual then this

multiplies the selective probability for that individual. The resulting positive feed-

back loop is intended to amplify the difference in selective probability arising from

the difference in fitnesses and focus the processing on the more promising regions [18].

When this feedback from frequency is too strong then promising leads are lost and

premature convergence is said to occur. Selective pressure needs to be reduced in this

case.

At any point our best solution is that with the greatest fitness. Yet we also select

other individuals because there is a possibility that they could contribute to better
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solutions in the future. However, the best mechanism for achieving this is unclear. GA

selection does not in itself perform exploration whereas EDA selection, or sampling,

does. A comparative example of this is contained in figure 3.10.

Figure 3.1: Population selection amplifies individual frequencies.

3.1.3 Exploration from Selection (EDA Approach)

Within simple EDAs, we can consider the sampling of values from the variable prob-

ability distributions also to be a form of selection akin to the selection of individuals

within GAs. Values compete with other values that occupy the same variables and

co-evolve with other values for other variables.

In effect, we are selecting from within individuals, allowing us to explore novel

ones. The scale of the selected entity (allele rather than individual) is the difference

which fundamentally changes the role of selection as illustrated in figure 3.10. Whilst

it is still responsible for adapting the frequency of entities it is now also the operation

which produces new and novel solutions; it is responsible for exploration. This is how

it is able to assume the traditional role of recombination and mutation as genetic

operators.

For a set of alleles, A, the probability of sampling allele a at position i is given by ω:

p(xi = a) =
ωi(a)∑

a′∈A ωi(a′)

We currently limit our scope to A = {0, 1} and normalise ω, i.e.
∑

a∈A ωi(a) = 1.

47



Figure 3.2: Univariate model sampling defines a non-zero search distribution over 26

individuals (x3 and x7 have converged to a fixed value).

The probability of sampling x from this distribution is then:

p(x) =
n∏

i=1

ωi(x
i)

For the plot, the relative value of ωi(a) is then indicated by the relative height of the

corresponding bar in the ith column.

3.2 GA Operators as Sampling Operations

Our aim here is to show how a simple model based on probabilistic sampling can

subsume the essential functions of the GA genetic operators. The capacity to model

linkage is extended later.

3.2.1 Mutation as Sampling

The classic rationale behind the mutation operator is to provide ‘diversity’ to the

population, yet it does not take much probing to find the weaknesses in the standard

form. The most prominent of these is in its fixed level of disruption. As the search

48



state becomes more highly adapted, the action of mutation becomes increasingly

likely to be decremental. Certain adaptive variants have been proposed to reduce the

mutation rate over time linked either to time or fitness [17]. However, this feels like

a patch rather than a resolution.

A better approach becomes apparent if we consider mutation in terms of value

sampling. With this interpretation, mutation is simply sampling from a uniform set of

individuals with a fixed, low probability. Figure 3.3 shows a graphical representation

of this.

Figure 3.3: Simple mutation as sampling

It shows a random-replacement mutation operator acting with a per-locus proba-

bility of β. This gives our selective probabilities for our values as:

p(xi = 1) = ωi + β/2 and p(xi = 0) = 1− p(x1 = 1)

Where the weighting vector ω is simply set by the current individual which represents

the search state.

ωi =

{
1− β if xi = 1

0 otherwise

By further defining the replacement rule for the current individual we fully emulate

an ES-style search.

This problem is that, just as random search ignores the current best solution in

generating the next solution, simple mutation is ignoring information from the rest
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of the population in setting the variables. This is why it is so disruptive in well-

adapted individuals. The wider population may suggest that some values should be

more ‘mutable’ than others. Thus, a refinement presents itself: sample solutions from

the entire population, not just one solution with background sampling, i.e. allow

the distribution of values across each variable to determine the future distribution.

This should produce a more nuanced operation where the entire population biases

the ‘mutation’ rather than a single individual.

An illustration is given in figure 3.4 where we show an example model derivation

of this kind.

Figure 3.4: Population-biased sampling

This refinement of sampling to take in mutation results in a scheme which ap-

pears to operate in an equivalent way to uniform crossover with each solution in the

population being a contributing parent. This perspective is considered next now we

have subsumed mutation.

3.2.2 Recombination as Sampling

We now consider how crossover can also be represented as a straightforward sampling

operation. For this, we use the uniform crossover operator which places no significance

on the ordering of the variables but does associate values since the parentage is limited.

The action of uniform crossover on a pair of parents in terms of sampling dis-

tributions is shown in figure 3.5. This illustrates that, for the operations described,
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Figure 3.5: Crossover as sampling where α is the uniform crossover probability. For
α = 0.5 we have the standard crossover and a single distribution.

mutation is equivalent to low-level uniform crossover2 with a random individual, i.e.

when α = β. Also, if we expand to n parents with α = 1/n then we are using the

equivalent of a marginal model, i.e. we have completely dissociated the values. They

would no longer have any implied association with their peers in the individual.

This form of crossover is less disruptive than mutation for a population with any

degree of non-uniformity. However, the implicit genetic association that comes from

α < 1/n is merely incidental. We want a more specific form of association that

excludes incidental genetic association arising from limited parentage. We show how

this might be achieved shortly, allowing us to benefit from the input of the whole

population.

In fact, it is only the canonical GA which derives the search state purely from

the population. Other, self-adaptive, algorithms augment the state with knowledge

regarding the structure of the variable dependencies. This is in the form of a prob-

abilistic model or a decomposed representation. To varying degrees, these use the

population as a source of feedback regarding the problem, to be discarded as soon as

the persistent model has been adapted.

In GAs, selection is usually performed at the level of individuals according to a

2An investigation into parameterised recombination is given by Spears [43].
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probability distribution based on fitness3. Individuals are competing to persist in the

population. In simple, univariate EDAs, selection is performed on single values, also

competing to be expressed in the population. The difference between these is that

genes only compete with other genes which share the same loci. This represents their

niche. They are not concerned with other genes in the individual.

3.2.3 Defining Selection via Weighting

From both the approaches highlighted above we have drawn a common thread. This

can be summarised as the probabilistic selection between weighted entities where

selection is between entities from a mutually-exclusive set, e.g. individuals from a

population, alleles at a locus, or settings for a partition.

The simplest weighting derived from the frequency statistics of a fit population

would allow a search distribution to model the population. If there is a varying range

of fitnesses, then the weighting can also be a product of this, i.e. the sum of fitness

values of associated individuals rather than the frequency of those individuals.

The weighting itself can be either directly represented (as for the EDAs) or is

a product of fitness and frequency (as in GA fitness-proportionate selection). The

selective probability of an entity is its normalised weighting relative to its competitors,

the mutually-exclusive entities.

3.3 Role of the Population

As noted earlier, the population generally has a combined role. First and foremost,

it provides raw information regarding the composition of known likely optima in the

form of a set of evaluated sample solutions. It represents in a subset of previously

3Fitness sharing techniques excepted.
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evaluated individuals the entire state of the search, i.e. everything that is known

about the problem. Since this set has been selected via fitness, we can infer the

quality of genes and individuals by their presence and relative frequencies within it.

All optimisation algorithms are rooted to the population in this respect (even if they

maintain it only in a minor or transient way). Where algorithms differ is in how they

use this feedback to adapt the search distribution.

A common secondary role extends the population with accumulated knowledge to

adapt the search distribution. The simplest form of this is a particular feature of GA

models where multiple instances of an individual are allowed to bias the weighting of

that individual via increased frequency, as discussed in section 3.1.2. It acts via the

genetic operators (such as crossover and mutation) as the source of new solutions.

The resultant search distribution is a static function of the population distribution

with some selection mapping.

The selection mapping can be deterministic, e.g. truncation selection, or stochas-

tic, e.g. fitness-proportionate selection, ranked selection or tournament selection.

This linking of the roles via the genetic operators to merge the ‘input’ and ‘output’

of the iterative method is where the weakness of the GA lies. These hinder it in its

goal of fulfilling the building-block process. We have shown how the important actions

of crossover and mutation can be produced by sampling in a manner that equivalent

to a type of individual selection.

No new information is obtained simply by allowing exact duplicates into the pop-

ulation. This could even be decremental if they displace other individuals with novel

building-blocks. However, there is no reason why the frequency bias of multiple in-

stances cannot be extracted into an explicit associated value assigned to an individual.

Under such a scheme, which marks a departure from the traditional GA model,

our population would check for duplicates of newly-created individuals and only adds
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them if none are found. If they are already present then the frequency value would

be updated. This would eliminate the problem of duplicate individuals displacing

informative but less fit individuals as we would be maintaining a set of genetic ‘species’

4, rather than a population of individuals. By making individual frequencies explicit,

we are extracting search state information from the population, which can retained

purely as a selected sample of informative and unique solutions.

By assigning and maintaining a frequency value with unique individuals we are

able to obtain at least two clear advantages:

Compact Representation An arbitrarily large population can be simulated, al-

beit with a bounded diversity. This means that we only need specify the unique

individuals in the population rather than all individuals. Conversely, a minimum

diversity of individuals can be ensured.

Evaluation Efficiency The required process of checking for uniqueness of a new

individual gives us a straightforward means of caching fitness evaluations. This en-

ables us to perform the frequency adaptation at a reduced cost in evaluations. We

would use the frequency values wherever we need to select an individual within the

population, e.g. in order to modify or remove it.

3.4 Population Compression Via Partitions

By associating a frequency value with each unique individual in the population, we

can trivially produce a compressed but lossless model of the population. Combined

with fitness information, this can be selectively processed as before. Repeated se-

lection over this model would result in some individuals being amplified over others,

4The term ‘ecosystem’ might be appropriate for this set.
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Figure 3.6: Extreme degrees of population compression. The source population in the
centre can be compressed via individual frequencies below, or via genetic frequencies
above. In the first case we have no loss of information whereas in the second we lose
genetic association information.

eventually dominating the population, yet with no individuals being lost from the

population – and none found. This only reinforces the interpretation of GA selec-

tion as simply a sampling of large entities, i.e. sets of genes rather than individual

genes, as portrayed in figure 3.10. The bottom plot in figure 3.6 demonstrates this as

minimal compression of the raw population of the middle plot. The top plot shows

a compressed model where only frequency information for values is retained to give

maximal compression.
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The univariate EDAs assign a weighting to each value, if this simply reflects

the frequency of the value in the population then we have the maximal compression

illustrated in figure 3.6. The reason that such a statistical compression is not generally

carried down to the level of variables is that we generally cannot discount dependencies

between them. If we find we can impose independent partitions of the variables, i.e.

they are separable, then we can perform a frequency-based compression on each one.

The ECGA temporarily imposes such partitions between sets of variables which,

according to its criteria, appear to be independent. This defines a model with an

intermediate degree of compression, such as the example given in figure 3.7.

The univariate EDAs disregard any dependencies but if we partition the variables

into sets, as ECGA does, then we have competitive selection within the niche of each

partition.

Figure 3.7: Partitional model sampling defines a non-zero search distribution over 72
individuals (3× 2× 3× 4) rather than 28 = 256.

The imposition of any particular partitioning effectively determines a genetic link-

age pattern. Each unique set of values then constitutes a selectable entity (or a mod-

ule) with its frequency extracted from the population. Like alleles at a locus, their
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mutual exclusivity implies they must compete for presence within the limited confines

of the adapting population. The frequency weighting of any selectable entity can only

increase at the expense of the others which overlap with it and vice versa.

The compositional algorithms assign no such weighting to the explicit modules

they retain, referred to as configurations in the HGA, which are either discounted or

weighted uniformly.

3.5 Competing Overlapping Modules

The previous figures illustrate the operation of selection on GAs and partitioning

EDAs. A common constraint between these search models is that entities compet-

ing for selection specify identical sets of variables, be they individuals, partitions or

alleles. We believe it is worthwhile to relax this constraint such that entities which

merely overlap5 can compete, as demonstrated in figure 3.8 with another comparative

example in figure 3.10.

Figure 3.8: Overlapping sampling model.

This is a generalisation with significant consequences. It implies that such models

5That is, they specify values for a non-empty intersection of variables.
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produce individuals via a variable number of samplings; the result of a particular sam-

pling may determine whether other samplings are required. Specifically, if a module

specifying several variables is sampled then those variables need not be sampled inde-

pendently. Conversely, when a value is sampled then it precludes any modules being

sampled which also specify that variable. The motivation for this is to enable com-

petition between modules and their independent components, potentially performing

the same function as the module validation phase of the compositional algorithms.

Some additional definitions are needed from us at this point. With the variables

previously partitioned, we only had to define the relative weighting, or selective prob-

ability, for the set of mutually exclusive entities for each partition. Now, with a more

complex distribution, we have the consider how the weighting is distributed.

We need to ensure that for any model extended with additional structure, the

probability of sampling any of the genes concerned remains constant, that the differ-

ence is a merely structural one. This is important since the module is competing for

multiple variables against its components. It is simply achieved by weighting modules

proportionally to their genetic size. For the visual plot, this intuitively corresponds

to the area of the selectable entity.

This module entails the explicit representation of a genetic structure intermedi-

ate with alleles and individuals. The outcome from this extension is that we can

apply the same selective process to larger-scale genetic structures that we apply to

individual alleles. This revision replaces the implicit genetic linkage imposed by

positionally-biased operators and ordering, and restricted parentage with a unifying

linkage scheme.

Finally, we need a source of candidate structures. Just as mutation substitutes new

alleles in an individual, we propose a novel operator to perform structural mutations,

producing new selectable entities from existing ones.
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Figure 3.9: Example transmutation showing the reversible effect of modularisation
and demodularisation on a population and the derived pool model.

3.5.1 Structural Mutation: Transmutation

The transmutation operation constructs and deconstructs modular structures within

individuals. We distinguish it from the conventional mutation operator in that it

modifies the genetic association between values in a solution, rather than the values

themselves. An individual undergoing a transmutation operation evaluates identically

but may become more or less adaptive. A sample transmutation operation is shown

in figure 3.9.

This operator is similar to the join operation of the compositional algorithms but

acts at the local level of the individual rather than a global population level. This

means it does not completely replace its components in the pool but takes a propor-

tional share of their selective probability. As such, it can be applied provisionally, on

the basis of population instantiation.

Transmutation acts only on a single individual at a time. Selection then acts to

propagate or eliminate the new entities in the population. Our optimistic starting

point of maximal independence would place the initial model in the class of univariate
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EDAs. By adding genetic linkage support in the form of modules, transmutation can

move the pool out of this class via more complex joint distributions. Selection is then

able to amplify this weak association if the module is competitive. If they do so, then

they add adaptive complexity to the search distribution.

This operation creates the possibility for two individuals to arise which represent

the same solution but with differing genetic structures. To avoid ambiguity, we use

the term phenotype to refer to the information of the individual that contributes to its

evaluation, i.e. the variable assignments. This distinguishes it from the changed rep-

resentational structure that transmutation produces. Following transmutation, the

phenotype is unchanged but the genotypic representation is modified. This means

two individuals may be phenotypic clones, yet one may have a more adaptive repre-

sentation.

The genetic structures produced by transmutation specify values for a subset of

the variables that comprise a solution and, when present, set these in an individual.

In addition, they may retain the hierarchical modular structure resulting from their

historical groupings. This allows a demodularising transmutation to reverse a single

modularisation transmutation rather than a series of them. By restricting possible

modules to those actually instantiated in the population we are considering only

modules for which we already have information. This may or may not reduce the

space of possible modules but it does ensure we have feedback in a form with which

we might differentiate modules.

3.6 The Pool As Search Model

Our population contains a selected set of individuals constructed from components

of various possible scales. The method for generating new individuals is to construct
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them from components sampled according to their weighting relative to their com-

peting peers. We refer to this set of weighted components as the genetic pool.

The pool contains no extra information than is in the population. Rather, it

maintains simple statistics from the population in order to produce new individuals.

The resulting search distribution is then the probability distribution of individuals

resulting from the pool model.

In the first instance, we might be aiming to model the population with perfect

fidelity, i.e. to perform the minimal compression of figure 3.6. However, in order to

explore we need to assume there exist some independence between the variables; that

the individuals are, in fact, divisible. Where the population provides examples of fit

individuals, the challenge of the model is to use these to adapt a search distribution

which generates even fitter ones. This requires it to generalise the information in the

population; we want new individuals which follow the underlying distribution rather

than simply revisiting current population members.

The transitional pool is a more general model of the population than partitioning

EDAs (in that it can represent overlapping modules) and more expressive than the

compositional pool (in that it represents a range of weightings). It includes the

selectional aspects of GAs, where weighting is set by the selectional probability of a

specific selection scheme.

The key advantage is that, not only is this structure more expressive but it allows

us to naturally go from a simple model to a more complex one in a continuous way.

This raises the possibility of an approach which does not require the particular model

to be defined but can adapt to an appropriate level of complexity automatically. An

implementable description of this pool model is given in chapter 4.
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3.7 Component Weighting

We have outlined a general, frequency-based representation of a population which

can store, and be sampled for, an increased number of individuals without loss of

information or capability. We now address the weighting of components.

Individuals should not be allowed to contain overlapping modules even if these

concur on values. This is necessary to ensure competition. For the same reason,

the weighting of a module should be proportional to its genetic size. This would

ensure that its selective probability is balanced against all the smaller components

that would exclude it. The smallest modules, i.e. genes, need special consideration

for their weighting, due to the following situations:

Initial Sampling Before we have a population sample, we have no information

with which to weight the primitive modules, i.e. genes. A uniform weighting seems

obvious but a non-zero ongoing weighting is also suggested below.

Background Sampling If the population is particularly small or otherwise lacking

diversity for any variable then it may not contain a particular gene (the initial selection

can be considered an extreme case of this). In this case, if the weighting is a product of

the frequency, then the gene has no way to be reintroduced into the population. If this

gene is required for an optimal solution then the search would become permanently

trapped at a sub-optimal distribution.

The standard GA operator to avoid this type of situation is mutation but we have

already shown how this same effect can be produced. By introducing a suitably low

‘base weighting’6 for genes we can ensure that the search can avoid being permanently

constrained. The entire search space is raised above a zero probability. This also

6Shown as an even proportion of β in figure 3.3
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implicitly addresses the issue of the initial search distribution before any individuals

have been generated.

3.8 Summary

This chapter provides an analysis explore the common ground between individual

selection in population-based models and the sampling of EDA models.

3.8.1 Unification of Model Operations via Sampling

A visual notation of weighted, structured probability models is introduced and used

as a unifying device to encompass key operations from GA and probabilistic models.

The weighting of components at all levels allows search to be a product of the entire

population rather than just one or two individuals. A comparative overview is shown

in figure 3.10. In particular, we isolate the linkage-biasing aspects of GA search from

the frequency-biasing process to be supported, as below.

3.8.2 Extending Selection to Scaled Genetic Structures

By embedding explicit modular structures within solutions, we support a selection

process within individuals in an exploratory role and not just on them in an amplifying

role. This combines the compositional and the probabilistic approaches in a useful and

straightforward way. This means we can adapt the composition of the pool model

incrementally by making intersecting modules of various order compete with each

other for selection in a evolutionary manner. This may give us adaptive complexity via

an open-ended progression from simpler models to ones with more genetic structure

when it confers an adaptive advantage.
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Figure 3.10: Comparison of different search models of example population. Note that
module variables are adjacent for graphical convenience.
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Chapter 4

The Transitional Evolutionary

Algorithm (TEA)

In this chapter we bring together principles harvested from the earlier analysis and set

them in an implementable algorithm. This will allow us to empirically validate them

and highlight any issues which may have been overlooked up to this point. We now

define the methods and structures of TEA starting with an overview before moving

in to describe them in more detail.

4.1 Overview of Algorithm

The adaptive cycle of the algorithm is outlined in figure 4.1. A population of elite

individuals is maintained, with individuals only being discarded when their fitness no

longer qualifies them. New individuals then either expand the population or, if they

are fitter, reduce the population to include only themselves.

Individuals are constructed by sampling components from a pool which maintains

records of their frequency in the population. Transmutation is randomly applied
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to individuals to generate provisional genetic linkage. The resultant modules are

maintained in the pool as new components and are subject to selection acting on

their containing individuals.

Figure 4.1: Overview of TEA process.
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4.2 TEA Model Structure

The search model has multiple levels of structure. At the highest, we have a set of

unique solutions, i.e. phenotypes, which qualify by virtue of their fitness.

If we refer to any particular module, allele or individual as m then we denote the

fitness as f(m), the frequency as g(m), the number of genes |m| and the weighting

as ω(m).

Figure 4.2: Sample TEA model.

The simplest components, i.e. alleles, accumulate weighting from their containing

individuals on top of a fixed base weighting, as shown in figure 4.2. Composite

components do not benefit from this, relying entirely on their embodiment in the

population for weighting. Not shown in figure 4.2 are hierarchical modules resulting

from the grouping of composite modules.
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4.3 Structural Definitions

The definition of a gene as a value assignment to a variable is straightforward. It

represents the simplest genetic structure and, for our purposes, the most primitive

module. This means that only one instance of each possible gene is held in the pool

but associated with a frequency value and weighting.

Multiple genes may be grouped, via transmutation, to form a module. This mod-

ule may contain other modules recursively but clearly cannot contain itself, directly

or indirectly.

Any pair of modules are identical if they contain an identical set of components1

or they are identical genes. Two individuals are phenotypic clones if they contain

within their structures an identical set of genes.

The different levels of structure are characterised by the constraints on them.

• A gene specifies exactly one value for a single variable.

• Modules may contain a mixture of genes and other modules with the constraint

that no genes are contained which specify the same variable.

• An individual contains within its modular structure exactly gene for every prob-

lem variable.

• A population is a set of individuals with the constraint that no two specify the

same values for all the variables, i.e. each is a unique solution.

All the structures above have an associated frequency and weighting, except for

the population which we limit to a single, unweighted instance. The definition of

this structure gives us a means to encode genetic linkage and provides us with the

scaffolding for a feasible building-block process.

1The recursive definition means only the top level of components need be checked.
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4.4 Pool Initialisation and Sampling

The principle for generating a new individual in TEA is to construct it from compo-

nents sampled from the current population. Components may be values or groups of

values as above. However, no two components may specify the same variable, even if

they agree on the value.

The sampling pool refers to all the component modules from which new individuals

may be constructed. This auxiliary structure means we only need to store a single

instance of any module from the population which can be referenced by the embodying

individuals whose frequency we can associate with it. This makes it a significant

algorithmic optimisation.

The process for generating a new individual takes the form of a repeated selection

from a set of applicable components. Upon each selection, the selected component is

added to the individual and its competing (i.e. overlapping) components are removed

from the set. This continues until the new individual is fully specified with a value

for each of its variables. The process is described algorithmically in figure 4.3.

The selection of a component from a shrinking set of candidates occurs with a

probability proportional to each module’s relative weighting (given by ω(m)), i.e. for

a pool of modules M , the probability of any specific module m being selected is p(m)

where:

p(m) =
ω(m)∑

m′∈M ω(m′) (4.1)

This implies that, since components that specify common variables are mutually

exclusive in an individual, the selective probability of a module is determined by its

weighting relative to its competitors. This means modules can compete with other

modules of the same and higher order in an equivalent manner.
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i ← fully unspecified individual
c ← set of applicable components from pool
while i has unspecified variables

sample module m from c proportional to ω(m)
add m to i
remove all components from c which intersect m

end while
return i

Figure 4.3: Constructing an individual.

Having defined the structures used in TEA we now define how we determine the

weightings of these modules. In general, the weightings are assigned according to the

frequency of the components in the population and proportionally to their genetic

size. The primitive genes additionally have a base weighting β, required to initialise

an empty population and avoid suboptimal fixation. The weighting is therefore:

ω(m) =

{
g(m) + β iff |m| = 1,

g(m)|m| otherwise.
(4.2)

4.5 Transmutation Operation

The origin of new composite modules is the transmutation operation. The structure

the individual retains in addition to the set of genes is adapted via the two possible

transmutation operations of modularising and demodularising. Each is the inverse

operation of the other, as shown in figure 3.9.

Having selected an individual we still have a large number of possible modules

arising from the available components. Our first heuristic here is to modularise fewer

components. Aiming to embody high order building-blocks in a single step is far

harder and may be unnecessary if building blocks can be constructed incrementally.

This situation is analogous to mutation; a greater mutation rate may be able to
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i ← source individual
if uniform random(0, 1) < ψ then

modularise(i)
else

demodularise(i)

modularise(i) :
if i contains less than k components return i
m ← k random components from i
remove components of m from i
add m to i
return i

demodularise(i) :
if i contains no composite modules return i
m ← k random composite module from i
add components of m to i
remove m from i
return i

Figure 4.4: Transmutation pseudocode. ψ is modularisation bias, set to 0.5

take larger steps through the search space but the probability of it being a beneficial

adaptation shrinks accordingly.

The modularise operation groups a number of existing components into a new

component. The demodularise operation selects a modular component at random

and decomposes it to restore its components as selectable individual components. The

modularisation bias ψ determines the tendency of the model to increase in structural

complexity.

In adding a module to the pool we are potentially increasing the structural com-

plexity of the model. Whichever operation is performed, the pool statistics need to be

updated as component frequencies are either incremented or decremented as below.

If this is a modularisation operation then this decrements the frequency of the

components in the pool and increases the frequency of the module. A new reference

71



for this module is created if necessary. The weighting of the components attained

from the individual is redistributed to the module.

If this is a demodularisation operation then the inverse is performed. The module

is decremented and its components reinstated in the individual with a redistribution

of the share of the weighting from the module. This is why the structure of modules

is retained in the individual.

4.6 Population Maintenance

Before the new individual is evaluated, its phenotype is compared to the other indi-

viduals in the population. If there is already an individual which corresponds to that

phenotype then the individual is discarded.

Our population comprises a variable number of individuals. Each of these is

unique. A separate record of the weighting of each individual is kept. This set

of individuals is a subset of all the individuals generated thus far. Members are

added (and persist) based on their fitness. New members are included if they meet a

qualifying criterion and existing ones are removed if they do not. We conservatively

set the criterion to be for individuals to match the current maximum fitness in our

initial definition. Later on, we examine how and why this can be extended.

If an individual is removed then all its components are decremented in the pool.

4.7 Related Algorithms and Concepts

The algorithm to be presented has features which both associate and distinguish it

relative to other algorithms. A brief summary follows.
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4.7.1 Solution Generation

The process by which new solutions are constructed in TEA, via sampling of com-

ponents, is akin to the compositional and the probabilistic approaches as discussed

earlier.

TEA components are similar to the GA schema, SEAM modules and HGA module

settings in that they specify values for variables. They extend this with an explicit

weighting value to bias selection. This is one way that TEA aims to advance over the

compositional algorithms.

Other probabilistic modelling algorithms employ a variable weighting derived from

a population. However, this weighting is extracted from a particular structural model

of the population, e.g. a univariate or partitional model. This structure may constrain

the form of distributions that can be produced, particularly if the population is a

complex distribution. The use of the population is discussed further now.

4.7.2 Population Use

The TEA shares the frugal spirit of HGA with regard to the population in that indi-

viduals are retained while they still inform the algorithm on a good search distribu-

tion. However, whilst the HGA (along with the GA and most other population-based

algorithms) use a fixed-size population, the TEA allows the size of the population to

vary as an effect of the qualification criterion. This defines a strict form of elitism.

Also, the population members are immutable; there is no recombination or mutation

performed on the values of an individual.

Probabilistic models generally discard the population at each iteration, possibly

generating (and evaluating) an individual multiple times. GA models may employ a

degree of elitism, up to a steady-state level, but also expect to discard and recreate
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individuals.

4.7.3 Model Representation and adaptation

Both the ECGA and the HGA partition the solution into non-overlapping sets of

variables before extracting or adapting the selective probability of the modules within

these. The TEA supports these and also supports overlapping modules; in fact, it

requires them in order to allow modules to confirm their viability by competing with

their components. The frequencies are taken from the population in which they are

embodied. This embodiment of multi-level dependencies makes the population a more

expressive model than both the ECGA and the HGA, as figure 3.10 illustrates.

Structural adaptation, i.e. transmutation, in the TEA differs from the join opera-

tion of the compositional algorithms is various key respects. It acts locally, specific to

an individual, where the join operation is a global operation. Transmutation is pro-

visional with a minor effect and reversible where the compositional join is permanent

and with a major effect on the search space.

Whilst HGA and SEAM consider candidate modules in an arbitrary order or from

random selection respectively, TEA uses the relative frequencies of components and

their correlation in the population to bias their generation probability.

This formulation is expected to solve several of the issues of the compositional ap-

proach in a simple and evolutionary-inspired manner. The testing phase is essentially

ongoing as modules compete against their components for the niche of the variables.

There is no shortage of ‘substrate’ since components are not removed from the pool

on production of a module. Actual modules are those that persist and thrive over

time giving an increasing degree of confidence.
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4.7.4 Schema Theorem and Building-Block Hypothesis

The essence of TEA follows the motivation of the original building-block hypothesis:

the incremental construction and reuse of functional units for solutions of increasing

adaptive complexity. However, the recombinative approach hangs on an appropriate

encoding and a careful balance of the forces of selection and recombination. The

transitional approach seeks to moot these issues by manifesting possible building-

blocks as explicit entities under the influence on evolutionary selection. This means

these can be processed to avoid disruption without requiring a predefined ‘tight-

encoding’.

4.8 Summary

In this chapter we have defined the novel Transitional Evolutionary Algorithm (TEA)

to an implementable level of detail. This enshrines the principles put forward in the

development chapter. Where design decisions have been made, this has been noted

and justification has been given for the path taken.

Following this, the detail of the algorithm is also compared and contrasted with

related algorithms and concepts.
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Chapter 5

Experimental Study

We intend to validate the algorithm arising from the original hypotheses via a targeted

empirical examination of its various processes which not only compare the external

behaviour and performance of the TEA to related algorithms, but that also probe its

internal processes. These experiments are expected to be valuable in explaining the

differences in performance between complete algorithms competing head-to-head.

5.1 Overview

The overall strategy for validating the hypothesised method is an incremental one. We

introduce transmutation and structured individuals only as we reach the limits of an

algorithm without. The use of a population-biased search model with a specialised

population maintenance strategy is validated first. We refer to this as Population

Biased Sampling (PBS) and it can simply be thought of as TEA with transmutation

deactivated. This is intended to bring to light any theoretical flaws or practical

difficulties at the appropriate place. With this is mind, the key facets of PBS/TEA

are broken down into the following broad areas, related to underlying themes of this
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thesis.

5.1.1 adaptation from Population-Biased Sampling

To examine the principle of sampling structures from a population maintained under

specific criteria, we employ a general form for a linear problem as described in section

1.4. At this level, with no variable interactions to accommodate, this should be

in the realm of the univariate EDAs identified in section 2.3.1. We therefore take

the opportunity to obtain a benchmark comparison from these, casting them into a

unifying form to support a strong and fair comparison. This also includes a Random

Mutation Hill Climber (RMHC) and PBS.

We go on to test the principle of using an adaptively-sized population of elite

individuals rather than a population of a fixed size to set the sampling distribution.

5.1.2 Maintaining an Informative Population

A class of problem with variable interactions is defined and examined. We explore

the limits for a search that does not support genetic linkage. We follow this with a

consideration of the conditions for successful linkage identification, namely a diverse

distribution of building-blocks in the population. This is rooted in our discussion in

section 2.5.1 where we considered the role of the population.

5.1.3 Structural Selection

Having verified we can maintain a population which is sufficiently informative of the

problem optima structure, we extend our search model with genetic linkage to support

that structure. Transmutation generates candidate modules and thus provides the

mechanism for an adaptive representation as mooted in section 3.5.1. This allows us
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to test our hypothesis that modules that overlap but do not cover an identical set of

variables can compete in the same way as alleles above. This is crucial if building-

blocks are to be identified and amplified by the same selectional process as we propose

in section 3.5.

5.2 adaptation from Population-Biased Sampling

A scalable algorithm is one that is competitive on a range of problems, including

the simplest ones. Although non-taxing for existing algorithms they can be useful

in supporting some of the mechanisms which we will rely upon later. In particular,

we are maintaining the population solely as a representative sample of optima and

deriving from it a weighted model via frequency only, with no linkage bias.

For problems with no interactions between variables (and therefore no dependen-

cies to be discovered) it is only optimal values that need to be identified and not

structure. Bearing in mind that such problems can be solved in linear time1, we

evaluate the performance of population sampling against a background of the most

significant models for this kind of operation. This includes the univariate models

from section 2.3.1.

We investigate scalability in terms of the mean number of evaluations required to

find the optima for problems of increasing size. The outcome of these experiments

is an insight into, and verification of, the underlying sampling process that the TEA

uses, obtained within the context of a range of related algorithms. This lays the

foundation for the high-level dynamics of modelling dependencies.

1If the variables are truly independent then they can be optimised independently via enumeration.
For instance, binary encoded problems of l independent variables can be optimised in l+1 evaluations
simply by checking the alternative value for each variable in turn against a base solution.

78



5.2.1 The Linear Problem

This testing requires a problem for which any solution x has an optimal value for

each of its n variables xi, independent of the other variables. The general form for

such a function we take as:

f(x) =
l∑

i=1

f i(x) (5.1)

where f i(x) is a simple mapping via the variable xi in x to a fitness contribution

value. An instance for the well-known onemax problem2 where:

f i(x) =

{
1 if xi = 1,

0 otherwise
or f i(xi) = xi

This sum-of-functions form is used since it is easily extensible to the more complex

problems used later. The univariate form of the nk problem [21] (i.e. where k = 0)

is simply defined with f i(xi) assigned from a uniformly random distribution between

0 and 1. Although the difference in fitness contribution is less than onemax (and

therefore could take longer to distinguish) the structure is identical. For conventional

simplicity, we use onemax for this round of experimental validation.

5.2.2 Univariate Algorithm Comparison

A particular role for probabilistic models is to adapt the relative frequencies of com-

peting entities, whether they are individuals (e.g. GAs), alleles (e.g. univariate EDAs)

or modules (e.g. ECGA). These stochastic approaches represent the convergence of

each variable either implicitly by its relative frequency in a population (as per the

2By the conventional definition:

fonemax(x) =
n∑

i=1

xi
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Model Population Selection Sampling Vector
BSC n generational fitness prop. models fitness distribution
UMDA n generational tournament frequency modelling
PBIL n generational truncation adapt frequency modelling
cGA n = 2 generational none per-locus adaptation
RMHC n = 1 steady-state elitism individual modelling bias
EPBS n adaptive, steady-state adaptive elite models pop. distribution

Table 5.1: Univariate modelling algorithms compared.

GA approach) or by an explicit probabilistic distribution (as per the EDA approach).

The presentation of the univariate modelling EDAs in table 5.1 is intended to

emphasise their commonalities. They all generate new individuals via the sampling

of a probability vector (of length l) which is, in turn, defined from a population of n

prior individuals. By casting them into a common form, we strengthen the value of

a comparison between them. Having specific aspects of TEA expressed in the same

format allows us to directly infer the effect of these on performance for this restricted

case. We refer to this reduced form of the TEA as Elitist Population-Biased Sampling

(EPBS).

We describe and interpret all these experiments using a fixed base weighting we

denoted β which, relative to the weighting vector ω, defines the search distribution.

Defining RMHC in these terms clarifies our usage of it. An analysis of the results is

shown in figure 5.1 with the leading algorithms shown in greater detail in figure 5.2.

Predictably, the more recent algorithms show generally improved performance over

the earlier ones, the exception being the RMHC algorithm.

RMHC Random Mutation Hill Climber is an individual-based stochastic search

[11], equivalent to an ES type approach. Mutation can be fixed at exactly 1 bit or

performed on a per-locus basis with a probability of 1/l to give an expected mutation

rate of 1 bit from a binomial distribution. The current solution is replaced in the
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Figure 5.1: Scalability of univariate models (with parameters) on onemax problem.
Averaged over 100 trials with standard deviation shown by error bars.

offspring if as good. This becomes significant later where the problem structure

requires neutral drift. The weighting vector ω is simply set by the current individual

which represents the entire search state, i.e. ωi = xi. The inclusion of the base

weighting simulates a mutation operator3 with a per-locus probability of β to give

our selective probabilities for the next individual, x′:

p(x′i = 1) = β/2 + ωi(1− β) and p(x′i = 0) = 1− p(x′i = 1)

By further defining the replacement rule for the current individual, e.g. (1+1) or (1,

1) we fully emulate an ES-style search. We use this as a baseline from which to

advance our ideas about a better-informed definition of ω than above.

3Random substitution rather than bit-flip.
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BSC We derive a probability vector P from a population of solutions weighted by

fitness [45]. This is sampled to generate the replacement population of constant size.

Without mutation (β is effectively zero) this model easily becomes trapped as

the population converges. Trial and error allows a minimum population size to be

determined which reliably finds the optima. Unfortunately, the population tends

to be several times greater than the problem size and, since this is reevaluated for

each generation, it takes many more evaluations than the other algorithms tested. It

cannot usefully be put on the same scale as the others.

UMDA This selects a replacement population via tournament selection from which

it then derives a probability vector P [33]. This algorithm also requires a large

population to avoid convergence to a sub-optimal solution. However, its stronger

selective pressure allows it to converge faster, as shown.

PBIL This samples n population vectors (i.e. binary strings) from a probability

vector P before adjusting the distribution toward an elite subset [1] of M = 1 vectors

by the rate α = 0.15. Mutation occurs with a probability of 1/n and a step size of

0.05 and is essential for larger problem sizes to avoid homogeneity. This slows it down

but ensures it does not get stuck. It scales badly but this may be mitigated by its

resistance to getting trapped in local optima.

cGA This samples two solutions from its probability vector then compares each

corresponding variable [16]. If the values are different then the weighting for that

variable is shifted by a fixed amount 1/n toward the fitter. The single parameter n

represents the simulated population size of the model. There are no clear heuristics

how to do this aside from trial-and-error4. Setting this value too high results in an

4A method for automating this trial-and-error process has been previously presented [27].
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overly-slow rate of adaptation. Setting it too low results in the optimum not being

found as hitch-hiking non-optimal values are rapidly reinforced. A good compromise

was found to set n = 100.

EPBS This draws from TEA the features of interest at this level of testing. It

maintains a steady-state population of unique solutions which evaluate to the highest

current fitness and represent the current known optima. The weighting ω is simply

assigned the frequency of instantiating individuals, i.e. if we define a function m of a

value v at a locus i for a chromosome x such that:

m(x, i, v) =

{
1 if xi = v

0 otherwise

then the weighting vector ω is simply:

ωv
i =

∑
x∈P

m(x, i, v) (5.2)

This is in line the RMHC formulation given above where ω1 was used implicitly. Since

the base weighting β for EPBS is also set at 1/l it can be seen that if we restricted

the population to a single member then this is equivalent to the RMHC. Therefore

EPBS can be seen as a logical extension of ES.

Other Algorithms The canonical GA was also applied to this problem, with fitness

proportionate selection, uniform recombination and a mutation rate of 1/n (consistent

with algorithms above). It performed too poorly to be included on the same scale as

the above for this problem. Once the population converges, mutation becomes the

only effective operator.
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Interpreting RMHC gain over univariate EDAs

Even when the RMHC can be framed as a simple univariate EDA it outperforms

more sophisticated ones on the simplest linear problem. We suggest a combination

of reasons for this:

Adaptive Period There is a potential for the search state to be adapted after

each evaluation when it is represented by a single individual. This contrasts with the

generational approach (assuming no elitism) which only adapts after n evaluations.

Bias Strength The search distribution from mutation is generally far narrower

than that resulting from a population model, i.e. the range of successive solutions is

smaller. This is particularly true earlier on in the run when a population is far from

convergence.
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Non-Converging Distribution Relying purely on a model of the population in-

evitably leads to convergence via genetic drift. Either a larger population (to postpone

this) or mutation (to counter it) have been offered as remedies [46]. RMHC, having

a fixed variance, is immune to this problem, although it may still terminate in a local

optima on multi-modal landscapes.

This last point highlights an advantage for a population-based search model high-

lighted in section 2.5.1: to obtain more information than a single individual can pro-

vide. This can include more nuanced sampling probabilities and, later, information

regarding possible dependencies.

EPBS gain over RMHC

There are several factors which are likely to have produced the gain of EPBS over

RMHC, as well as the other univariate-modelling algorithms.

Firstly, it uses the bias from an elite set of samples rather than a single sample

or set of samples with varying fitness. Moreover, this set is not discarded at each

generation but is reused and potentially adapted with each new sampling. This pro-

duces significant gains, even before we start comparing new solutions to current ones.

Finally, the population maintains diversity via the base weighting with uniqueness

checking5. This allows alleles to compete for representation if there are distinct in-

dividuals with equal, or at least comparable, fitness. We aim to produce a similar

dynamic for modules later.

The uniqueness checking might be considered an unfair advantage that EPBS

has over the other algorithms. In fact, tests show the gain is relatively minor for

5This does not imply it cannot become effectively trapped in local optima; we consider problems
with such structure shortly.
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the additional computation. As we aim to demonstrate later, the real advantage of

the uniqueness checking, is in providing a distribution which consistently provides

information on epistatic dependencies — information that cannot be exploited by

univariate population models.

5.2.3 Comparing Population Maintenance Strategies

We now examine whether there is an optimal population size for PBS on this class of

problem, or whether the adaptive-sizing approach described in section 4.6 performs

better. This is significant since an adaptively-sized population is a characteristic not

shared by many population-based algorithms. The restriction to unique individuals

is also implicitly under scrutiny here. We might expect a population with a fixed

size to contain more information than one which might frequently reduce to a single

individual. However, we might also expect the influence of less fit individuals to slow

down the rate of adaptation.

Figure 5.3 shows the general effect of a fixed population size compared to an

adaptively-sized population for the onemax problem over a wide range of problem

sizes. Higher fixed population sizes do not show a significant difference with the

result for 2 and 3. EPBS does indicate a gain over these but with a degree of variance

overlap that makes a strong result impossible to draw.

Nevertheless, it indicates that an algorithm that supports an adaptively-sized

population may have an edge over fixed sizes, with a fixed population size of 2 being

closest. In any case, we show later a compelling case of why a strictly elitist population

strategy will prove inadequate for more taxing problem forms.
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trials.

5.2.4 Summary for Univariate Population Modelling

The principle of using a vector model of a population has been shown to be poorly

supported by a range of univariate EDA models on onemax ; they are reliably outper-

formed by a RMHC algorithm. Of the algorithms tested, only CGA and EPBS were

competitive with RMHC. This is shown in more detail in figure 5.2.

It may be that these algorithms are more successful on problems with a small de-

gree of structure, e.g. with a small number of pair-wise dependencies. However, since

there is no apparent representational feature for maintaining — let alone validating

— genetic linkage within these algorithms, we depart from them at this point.

We have demonstrated the general principle that a population-biased probabilistic

model can outperform an individual-biased RMHC6 via an elite population of unique

solutions. This is reasonable if PBS is viewed as a RMHC with a population size

61/n rather than 1-bit RMHC
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greater than one. The gain shows some indication of increase if we allow the popula-

tion size to be set purely by the current set of qualifying individuals, although this is

not clear-cut.

This supports our approach to maintaining the population for the simplest class

of combinatorial problem. The goal here was not to devise an optimal algorithm

for linear problems but to show how a probabilistic model of a population may be

most effectively integrated with the processing of that population. In order to gain

scalability, we now need to generalise our model to perform on more difficult problems,

i.e. those with interactions between the variables.

5.3 Maintaining an Informative Population

With the straightforward sampling of an elite population having proved efficient for

linear problems, we now expand our problem class to include those with interactions

between the variables (the modular problem class from section 1.4) and examine the

implications for the workings of our algorithm.

5.3.1 Representing Fitness Interactions

A fitness interaction [49] exists between variables when their resulting fitness contri-

bution cannot be expressed as an additive function (as in equation 5.1). Nevertheless,

the problem remains linear between modules despite the combinatorial search within

them. This means we can simply generalise the earlier additive fitness function to

additionally include specific subsets of the variables in x (the ‘chromosome’):

f(x) =

|I|∑
i=1

f i(x) (5.3)

88



Where i indexes each interaction from a set I which we refer to it as the interaction

network, in line with biological models [25]. The interaction network comprises the

fitness contribution not only for each genetic value, as before, but additionally for

specific sets of genes. The additive effect of a specific interaction — the fitness

contribution — is applied when specific genes co-occur. We denote these interacting

genes as vi and their corresponding fitness contribution as ei. The interaction function

is then defined by conditionally applying the effect ei if, and only if, the genome x

contains all the values of vi.

f i(x) =

{
ei iff x concurs with all values specified in vi,

0 otherwise
(5.4)

A building-block from this viewpoint is then an interaction set with a significant

positive fitness effect.

The definition of the interaction network determines the character of the problem.

The simplest interaction network we can define is a pairwise one, of which we may

specify up to n/2 interactions without overlapping, a constraint we apply at this stage.

The problem with n variables partitions them into a set I of n/2 interactions and

evaluates the fitness as the sum over these. Figure 5.4 includes sample interactions

taken from standard pairwise sub-functions in a form used by Watson [49].

Figure 5.4: Pairwise dependencies for binary variables x and y.

The onemax and step functions are qualitatively different from the trap and IFF

functions in that they have only a single optima. Onemax has a ‘gradient’ of possible
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adaptations to this optima whilst the step function requires the optima to be found

at a stroke. The trap function is deceptive in that the ‘gradient’ leads away from

the global optima toward the local optima, making it as least as taxing as the step

function. Finally, IFF has two global optima to be found. If the hierarchical form is

to be solved then these must both be found and also retained for further combining.

If the interaction reinforces the optimal values then the problem difficulty is un-

changed. The problem becomes more difficult where an interaction alters the relative

ranking in terms of the fitness of the solutions in the search space. It may do this by

changing the global optima or revising local optima. We consider this case later after

examining the effect of introduced neutrality.

5.3.2 Neutral Interactions and Population Bloat

Before we go on to apply linkage modelling to problems with variable interactions, it is

worth examining the effect of interactions on the population and resultant weighting

under the current adaptive-elitist strategy. This strategy allows any individual with a

fitness matching the greatest in the population to be included. For the linear problem

used earlier where competing genes were assigned differing fitness contributions, the

population rarely grew beyond a few individuals before the qualifying fitness was

raised and the population reduced to a single optima again.

The dynamics change if the problem involves a degree of neutrality, i.e. different

combinations of values (and later, modules) have identical fitness contributions. The

function with the most neutrality in figure 5.4 is the step function. This is a general

form of the simpler Royal Road function (R1) [31] where the problem variables are

partitioned into equal set, each adding a non-zero fitness contribution for only a single

set of values. The order of the partitions is denoted k. If we consider the function
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where k = 4, this implies three of the four possible combinations have equal fitness

and, all else being equal, there is room for three individuals in the population before

the optimal combination is found. Each additional neutral variation, either within

the partition or outside, increases this number exponentially.

The general effect on the resulting population size over time for various orders of k

is shown in figure 5.5. The strong effect of the increasing epistasis on the population

size for the adaptive-elitist population strategy is clearly indicated by the logarithmic

scale for population sizes.

The exploration of unique, neutral variants is not necessarily a detrimental path,

despite the overhead in maintaining the larger population. However, a serious is-

sue arises as a side-effect of this expansion. The base weighting become relatively

negligible compared to the weighting of the population and value sampling becomes
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increasingly determined by prior frequencies leading to rapid convergence to certainty

in a form of premature fixation. Inspection of the adapting population shows this

to be the case. The effect of this on performance is clearly demonstrated in figure

5.6 where, as an upper bound on the population size is increased, the performance

degrades from a RMHC level to nearly that of a random search. We appear to have

lost the advantage of an adaptive population size. The solution we apply requires us

to constrain the bias of the population as follows.

5.3.3 Normalising Population Bias

The solution we take, to restore the effectiveness of population sampling, is a further

feature from TEA. We ‘fix the mutation rate’ in terms of the base sampling rate
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relative to the population P (whose size is denoted |P |):

ωi =

∑
x∈P xi

|P | (5.5)

For a population of size 1, this is equivalent to equation 5.2. For a larger population,

we are effectively distributing the weighting that a single individual would receive

amongst all the individuals. We adopt this reasoning and will return to it as we

extend our model to incorporate genetic linkage.

We refer to this revision as PBS. Figures 5.7 through 5.10 show the gain from this

normalising of the population weighting with varying bounds on the population size.

We continue to use the step function for testing with a step size (k) of the speci-

fied order, either 8, 4, 2 or 1 (identical to onemax ) and is essentially a concatenation

of needle-in-the-haystack problems where each section only makes a fitness contri-

bution when all variables have their optimal setting. The sections define contiguous

partitions but they need not be since PBS samples values independently of locus.

The figures show a clear effect of increasing the population bound which is con-
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Figure 5.10: Effect of bounding EPBS population size on 64 bit step function, i.e. 8
concatenated 8 bit steps (k=8). Averaged over 500 trials.

sistent, albeit diminishing, for increasing step sizes k. For all values of k there is an

overall reduction in the number of evaluations required to find the optima when the

population is allowed to grow beyond more than a single individual. This reduction

is relatively greater for lower values of k. There is also a marked reduction in the

upper bounds of the ‘hitting times’ for larger populations.

We expect the larger epistasis from increased values for k to make a larger pop-

ulation more likely under our elitist strategy. For low epistasis the population does

not grow very far before a fitter individual is found and the population reduced to it.

For higher epistasis, where there are more equally-fit variants of an individual, the

population grows. The levelling-off of the results for increasing values of k indicates

that the artificial bounding is not coming into effect, i.e. the normalised population

weighting does not have the runaway effect on population size shown earlier.
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5.3.4 Complex Models on Easy Modular Problems

We have demonstrated a problem with variable interactions that can still be solved

effectively by an algorithm that does not explicitly model those interactions. It is

instructive to check the behaviour of advanced dependency-modelling algorithms on

this same problem.

Figure 5.11 shows the performance of both ECGA and SEAM against PBS on

the step function used earlier. The logarithmic scale emphasises the two order-of-

magnitude difference between the SEAM and the other two algorithms.

ECGA and PBS The ECGA is likely to require more evaluations than PBS due

to its generational approach which require a sampling of 1000 new solutions for each

iteration. After 1000 evaluations — and possible adaptations — PBS has all but

reached the optimal solution.
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SEAM We expected SEAM to under perform given the way it uses an ad hoc

population to reduce the search space with a series of occasional joins. A little analysis

can help quantify this by considering how many evaluations would be expected to be

required to make the first successful join within a 4 bit module of the 64 bit step

function.

A module is only created in SEAM if it is tested in a context in which it has a

higher fitness than either of its components. For a block of order k, there is only

one case for this: when all the other variables in the block are optimally set and the

variables in question are not. The probability of sampling such a context is 1/2k.

Since the probability of sampling an optimal pair of values (i.e. two ones) is 1/4 and

the probability of two variables being from the same k-order set of the n variables is

k−1
n−1

then the probability of actually finding the first module (prior to testing it) is:

p(initial find) =
k − 1

4(n− 1)

This means the probability of making the first join at any particular attempt, i.e.

finding a correct pair of genes and successfully testing them is the product of these

independent events:

p(initial join) =
k − 1

2k4(n− 1)

For the result shown, n = 64 and k = 4, the probability of finding the first module

from any sampling of the initial pool state is 1/1344. Having found the first mod-

ule, successive modules should be increasingly easier to find. However, the simpler

algorithm still tends to find the optima for all the variables in a little over 1200

evaluations. This marks a clear limitation for the range of competence of SEAM.
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5.4 The Requirement for Linkage Modelling

The PBS algorithm appears capable of effectively optimising solutions not just for

linear problems but for problems with a significant order of dependency between

variables. However, we have only applied this to problems where interaction between

variables do not introduce local optima (termed ‘easy’ epistasis by Watson [49]).

A key hypothesis to be tested in this section is that competing modules comprising

combinations of genes can be selectively processed in a population in the same way

as genes were successfully selected previously. For this, we must consider problems

far less amenable to our current strategy. This entails further examination of variable

interactions which, in turn, prompts a modification to our population maintenance

strategy to retain competing modules.

5.4.1 Deceptive Problem Testing

For the problems addressed thus far, where the problem variables can be partitioned

into independent subsets, there is still only a single optimum for each of these. This

is the set optimum and can, in principle, be reached by substituting a single variable

at a time with no decrease in fitness. The simple biased sampling schemes, along with

single hill-climbers, have been shown to be capable of optimising such problems in a

reasonable time.

A harder class of problem emerges if the set has multiple optima. Each has a basin

of attraction under selective forces and if the greatest optima has a relatively small

basin then the problem is termed deceptive. Some fitness interaction between genes

makes intermediary individuals less fit than the original ones. This interaction is not

merely non-linear (as for the step function) but actually creates alternative basins of

attraction.
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For any set of interacting variables, we can only guarantee optimal values via an

exhaustive search; since a fitness interaction may exist which makes any arbitrary

combination of values optimal. However, it is sufficient to find combinations which

lie within the deceptive basin of the set optima and can be adapted from there to the

set optima. For the trap function below, the set optima has a basin with a minimal

size:

f trap(xb) =

{
u(xb) if u(xb) < k

k + 1 if u(xb) = k
(5.6)

Where xb is a specific subset of k interacting variables and u(xb) is the frequency of

ones therein. This is trivially expressed in terms of the simple interaction equation

5.4.

Figure 5.12: The deceptiveness of a 4-bit trap function, normally concatenated.

In the absence of any prior knowledge, a uniform distribution of value combina-

tions would be appropriate. The density of these is an algorithmic parameter related

to the likely relative size of the basin for the set optima. Having established a solution

in each basin, we need to retain them long enough to allow them to attract solutions

to their respective optimum and we can obtain the global optimum.

The problems require multiple alternate modules to be retained for combining at a

higher level. Whereas the deceptive problems ultimately have only one global optima

which need be retained, hierarchical ones such as H-IFF have multiple optima which

can be combined in higher optima. This implies competition between sets of genes
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and thereby the role for a genetically-enforced association between them.

Test Setup and Algorithmic Configuration

The scalability of the algorithms of interest was tested by concatenating from 4 to 10

independent traps. A trap size of 4 bits was found to be sufficient to tax the different

algorithms without being needlessly intractable. The aim is to distinguish between

algorithms rather than foil them.

The population size for ECGA was set to 3000 after some preliminary testing.

Likewise, the number of contexts for SEAM was set to 120 and the base weighting

for PBS was set to 10.

Results for Trap Scaling
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Figure 5.13: Comparison of ECGA, PBS and SEAM scaling, in terms of mean hitting
time (with standard deviation) for concatenations of between 4 and 10 independent
4-bit traps. Averaged over 100 trials.
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Figure 5.14: Scaling of ECGA in terms of mean hitting time for concatenations of a
4-bit trap of various order (rescaling of figure 5.13). Averaged over 100 trials.

Results are largely as anticipated, shown in figure 5.13. The ECGA, designed

especially for this type of problem, scales best. Figure 5.14 shows this is more detail.

Where the population was of sufficient size, the ECGA converged on the global optima

in all cases.

The SEAM scales particularly poorly, for the same reasons as given for the step

problem earlier, to the point where it became impracticable to obtain results for 9

and 10 traps. The PBS scales relatively well, avoiding the premature convergence in

all cases, despite no mechanism — as yet — for learning linkage to avoid disruption.

5.4.2 Modifying the Population Maintenance Strategy

At this point, we discover an issue with the purely elitist population maintenance

strategy. We find that by restricting the bias to the fittest individuals, we often

exclude lesser individuals that nevertheless contain building-blocks. We suffer a loss
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of information for a small gain in fitness.

To retain optima for multiple sets of variables requires extending our population

maintenance strategy into one that is less exclusive. We wish firstly to acquire a

range of different building-blocks, then mix and combine them. We do this by setting

a minimum population size. As we asserted above, our initial distribution is uniformly

random. From there, we gradually shift the balance toward the bias of our current

optima whilst still maintaining an appropriately broad search distribution. It makes

sense for this balance to shift over time as we gain confidence that our current optima

are globally optimal.

The shift in balance is due to the changing frequency of components in a larger

population. The population can still be elitist by retaining individuals so long as they

are qualified by fitness. Qualification can also be dependent on the population size

such that a minimal set of unique individuals is maintained.

We start with a uniformly distributed, random population. A new individual

will then only replace one of the existing members with the lowest fitness if the new

individual is at least as fit. This is similar to a conventional, steady-state replacement

strategy but with the key difference that there is, as yet, no genetic linkage between

values. Conventional genetic operators result in much stronger convergence from

implicitly linking values within individuals. We are still only using frequency bias

to set values for the new individual and therefore can maintain a far broader and

exploratory search distribution.

5.4.3 Results of Population Refinement

The raw population for two typical runs with differing base weightings is shown

in figures 5.15 and 5.16 using multiple snapshots. Each row represents one of the

102



individuals sorted by descending fitness. Shaded cells have the value 1 and clear cells

have the value 0. The problem used is 4 concatenated 4-bit deceptive traps. The base

weighting of the population is set to 1.0 and then 10.0.

Interpretation of Results

These snapshots show our new population maintenance strategy maintaining a rich

distribution of building-blocks in the population without requiring any specialised

diversity-maintaining techniques. Just the enforcement of uniqueness in the popula-

tion can be adequate to retain a set of building-blocks in the population indefinitely,

once they have been found. This will be important for providing a basis for adapting

a linkage model.

The relative biasing between the population and base weighting determines the

tunable balance between a search distribution that is largely independent of the cur-

rent population and one that fully reflects its relative frequencies. For a problem

that is more deceptive, we would set the base weighting higher to increases the prob-

ability of sampling the optima for any set of interacting variables. Problems with

less deceptive interactions can be biased more toward the current known optima.

The population snapshots for two typical runs demonstrates the differing behaviour

resulting from low-level background sampling compared to high-level.

For a base rate of 1.0, shown in figure 5.15, the population quickly converges on

optima. Most of these are naturally deceptive but as set optima are discovered they

are amplified to fixation in the population. This continues until the optimal solution

is sampled.

A base rate of 10.0, shown in figure 5.16, makes sampling more ‘noisy’. There

is less bias toward early deceptive optima and optima for multiple interaction sets

appear in the population after just a few iterations. This is to be expected, since
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Iteration 0 Iteration 500 Iteration 1000 Iteration 2000

Iteration 3000 Iteration 4000 Iteration 5000 Iteration 6000

Iteration 7000 Iteration 8000

Figure 5.15: Sampling fixed solution set with base rate of 1.0

Iteration 0 Iteration 500 Iteration 1000 Iteration 2000

Iteration 3000 Iteration 4000 Iteration 5000 Iteration 6000

Iteration 7000 Iteration 8000 Iteration 9000

Figure 5.16: Sampling fixed solution set with base rate of 10.0
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the probability of a set optima appearing in a random sampling is 1/2k (1/16 in this

case). However, to shift the population bias sufficiently to exclude local optima and

sample the set optima together requires up to 10000 iterations. Within this time, the

ECGA would normally have inferred linkage to reduce disruption and bring together

building-blocks. In the worst case of deception, enumeration (or less efficiently, ran-

dom search7) are the only effective methods for finding optimal values for the set

of interacting variables. In conjunction with the population maintenance strategy

above, this allows us to build up a rich distribution of building-blocks. However, it

does not support their mixing. Independent sampling of the values from a hetero-

geneous population is overwhelmingly disruptive of the building-blocks preserved in

individuals. This leads to the testing of our proposed methods for identifying and

imposing genetic linkage.

5.4.4 Hierarchical Interaction Testing

In order to test TEA further we need to bridge the gap between modular and hierar-

chical problems. Although instances are abundant in the real-world domain, there is

no generally accepted standard benchmark abstraction of problems with hierarchical

dependencies.

A modular problem structure is extended into a hierarchical one by extending our

equation for simple interactions into one which allows complex ones. In fact, this is

shorthand: a hierarchical problem has at least one interaction set contained within

another.

An early candidate is the hierarchical Royal Road function (R2) [31] which takes

7The difference between random search and enumeration being enumeration never evaluates the
same solution twice. If we imposed the same condition on random search then it could be expected
to perform as well.

105



those fitness interactions of the R1 function8 and recursively forms new ones from

adjacent pairs of interaction sets. The effect is set to the order of the interaction set.

Since there is no local optima, the R2 is easily addressable by the prior algorithms

and is of limited use for our current interest.

Since the H-IFF defines fitness interactions for homogenous sets of values and R2

defines interactions only for sets of 1s, the interaction network for R2 is generally a

subset of that for H-IFF. The effect of the interaction for both functions is assigned

the number of values in the set. The key property of the H-IFF that is of interest

here is the complete set of competing modules at all levels which make the problem

intractable for most algorithms.

Although SEAM has just been shown to perform poorly on modular problems, it

was formulated in conjunction with the H-IFF and ought to excel on functions with

a very tight hierarchy. We quantify this now, performing a comparison with ECGA

and PBS on the H-IFF.

Test Setup and Algorithmic Configuration

We tested the algorithms on H-IFF problems from size 16 through 128 bits. This

corresponds to 4 through 7 hierarchical levels. We used the SEAM algorithm for

comparison where appropriate. We did not require both optima for the H-IFF to be

found, although this may have put SEAM at a further advantage.

The HGA is markedly effective for this problem (for which it has been optimised)

but it was not considered to be a useful algorithm for comparison given its limitations

demonstrated earlier.

8A concatenated step function where k = 4.
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pop. size mean evals. successful trials
5000 45000 6/100
10000 87600 25/100
20000 162000 10/10
30000 249000 10/10
40000 296000 10/10
50000 350000 10/10

Table 5.2: Effect of ECGA population size on capacity to solve HIFF-64 efficiently
and reliably, in terms of both number of evaluations and of run time.

SEAM operates by incrementally joining pairs of modules conditional on their per-

formance within n randomly generated contexts.

The SEAM was devised specifically to address the H-IFF problem [49]. Where

the problem is of a small scale, i.e. less or equal to 16 bits then SEAM offers little

advantage in terms of efficiency. In fact, it lags behind random search.

ECGA The setting of the population size for ECGA is somewhat trial-and-error.

Each problem size has a corresponding optimal population size to produce an optimal

solution with a given reliability.

We demonstrate this issue in table 5.2 with 64-bit H-IFF. There we illustrate how

a minimum population size is required to find the global optima with an acceptable

degree of reliability but going beyond this size adds surplus evaluations.

Figure 5.17 shows more clearly how an increasing population size in ECGA results

in a roughly proportional increase in mean hitting time. Smaller population sizes

potentially show increased efficiency but also entail a higher risk of convergence to

a sub-optimal solution. Of 100 trials, a global optimum was found in only 6 for a

population size of 5000. For a population size of 10000, this rose to 75.

Our methodology was therefore to increase population size by appropriate incre-

ments until all trials converged at an optimum.
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Figure 5.17: Mean hitting time (s.d.) for ECGA with varying population sizes on
64-bit H-IFF. Averaged over 100 trials, with error bars showing standard deviation.
Premature convergence occurred for sizes less than 20000 as detailed in table 5.2.

PBS The PBS algorithm was configured with a population of size 10 and a base

weighting of 1.0. These parameters were found by trial-and-error to be approximately

optimal for this problem.It was compared to SEAM for 16 and 32 bit H-IFF with

results shown in figures 5.21 and 5.20 respectively. Discussion follows in the next

section.

Hierarchical Scaling Results

ECGA As before, obtaining optimal performance from the ECGA relies on an

appropriate population size. An inadequate set of solutions resulted in convergence

to a sub-optimal solution. An overly large population size led not only to superfluous

evaluations and slower convergences but also hugely increases the work of the model

search. This is reflected in the mean actual run time for optimisation, shown in figure
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Figure 5.18: Mean convergence times for ECGA with varying population sizes on a
range of H-IFF problem lengths. Averaged over 10 trials.

5.18 with the logarithmic scale.

Figure 5.19 shows that, with a sufficiently large population, the number of H-IFF

evaluations scale linearly with the problem size. However, with an increasing problem

length, the space of MPMs for the ECGA to consider becomes significant and time

taken to search it becomes overwhelming.

Setting aside this additional computational effort, the ECGA is shown to have

more success with scaling for the hierarchical problem than SEAM does on the mod-

ular problem.

PBS PBS is far less successful on H-IFF than for the concatenated trap problem.

For 100 trials, PBS only found a global optimum in 26 cases within 300000 evaluations.

Figure 5.20 shows it rapidly converging to sub-optimal solutions compared to the

SEAM. Actually, convergence as a term needs to be qualified here since the population
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Figure 5.19: Comparison of SEAM against ECGA for scaling on the H-IFF. ECGA
tested with different population sizes. Points only plotted where algorithm find op-
tima in all 10 trials.

still maintains a set of unique individuals. Convergence here is restricted to subsets

of values rather than entire solutions.

The difficulty that PBS faces is in sampling appropriate values for building-blocks

above a certain size. PBS converges to a mean fitness of 160 which corresponds

to 5 (rather than the full 6) levels of the hierarchical 32 bit function. PBS is more

successful on the 16 bit H-IFF, achieving an optimal fitness within 100000 evaluations

for 79 of the 100 trials. Figure 5.21 shows this better relative performance against

SEAM, although it should be noted that the search space for 16 bits is only 65536

in size. This highlights the long-anticipated need for linkage-learning and marks the

limits for an algorithm with no linkage-learning capability.

Whilst linkage modelling has been shown not to be essential for solving deceptive

problems, hierarchical problems such as the H-IFF demand the retention of competing
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Figure 5.20: PBS convergence compared to SEAM on 32-bit H-IFF. Averaged over
100 trials.
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sets of genes. If we bias too strongly on early building-blocks then these will become

established in the population to the exclusion of others which compete with them.

This may prevent higher-order building-blocks emerging.

We therefore expect linkage support to be crucial where we have competing fitness

interactions and a degree of hierarchy. This lead into high-level mixing of potentially

competing groups of values motivates our final extension of PBS into the complete

TEA.

5.5 Validating Structural Selection

In supporting genetic linkage, we anticipate reducing the disruption caused by inde-

pendent sampling of interacting variables. Rather than sampling single alleles, we

will also allow specific groups of values to be sampled. If these groups, or modules,

comprise more optimal combinations of interacting values then we expect them to

increase in frequency within the population.

The principle behind this is that the mean fitness of individuals containing a

specific module with optimal settings is greater than that of individuals containing any

of the components independently9. Therefore the individual containing the building-

block is more likely to be added to the population.

The difference between our linkage and the limited parentage linkage of the GA

is of granularity. We do not assume a gene is linked to every one of the genes it

coexists with. For genetic linkage to have a beneficial impact, candidate interaction

sets need to be assessed and optimal allele sets amplified. We consider the selection

of candidate modules first before examining how they are weighted and used.

9This is similarly motivated to the schema theorem [12] and the relation is discussed later in
section 6.1.
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5.5.1 Testing Transmutation

Before being subject to the rigours of selection to be amplified or discarded, a mod-

ule must be instantiated for the first time. Transmutation, the source of candidate

modules, is a relatively straightforward matter. We apply transmutation uniformly to

individuals in the population. Having selected an individual, we can either modularise

or demodularise it10.

According to our hypothesis regarding structural selection, high-quality modules

are expected to propagate in the population via the advantaged individuals which

contain them. We now show why relying solely on individual selection to process

candidate modules might be naive.

Problem Configuration The problem configuration for testing the effect of trans-

mutation is designed to tax the capabilities of a search with no dependency support.

The problem is a concatenation of 8 deceptive traps, each of 4 bits. If each converges

to the sub-optima then it contributes a fitness of 4. The optima for each trap is 5. We

therefore would expect an algorithm that performs a largely local search to converge

to a solution of fitness 32. We have seen our population-biased method perform better

than this. Although the population may easily find and retain the optimal setting for

each trap, without some form of genetic linkage it is more difficult to sample these

into a single individual. The deceptive gradient of the function hinders the spread of

optima against sub-optima. We now examine the effect of adding candidate modules

from transmutation for individual selection to process.

10Modularisation would be inapplicable if there is an inadequate supply of components in an
individual. Conversely, demodularisation can only operate on an individual containing composite
modules.
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Figure 5.22: Comparison of PBS, ‘naive’ unconditional (with a modularisation prob-
ability of0.5) and conditional transmutation (with a modularising threshold of 3.0)
for concatenation of 8 × 4 bit traps. Dotted lines at 40 and 32 show global and local
fitness levels. Averaged over 10 trials.

Algorithmic Configuration All the algorithms used a population size, n = 20.

The PBS algorithm was assigned a base weight of 1.0. The ‘naive’ transmutation is

applied 10 times at each iteration with an even probability of being a modularisation

or demodularisation operation. The conditional transmutation, introduced shortly,

uses identical parameters where applicable.

Interpretation of Results The result of this comparison is given in figure 5.22. It

demonstrates that naive introduction of transmutation actually degrades performance

down when compared to PBS, i.e. no transmutation. Inspection of the adapting

population and pool supports the following interpretation and resolution.

Our population maintenance strategy is successful in building up a diverse set of

solutions. This diversity can be moderated by varying the population size and the base

weighting. However, since the population is designed to retain optimal individuals,

the rate at which individuals are replaced (the ‘turnover’) necessarily decreases over
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time. This is an issue as this turnover is the mechanism via which candidate genetic

linkage structures are amplified or discarded.

At this point, we come up against a key problem: that the adaptation of the

dependency model is limited by the adaptation of the population. The turnover of

individuals decreases as the population accumulates fitter individuals. This is despite

there being strong linkage disequilibrium information in the population ready to be

exploited. This produces a dilemma: whilst the fit but diverse population is retained,

it is increasingly difficult for new individuals to qualify. However, if we discard any

of the qualifying population then we risk losing information on set optima. Since

structural adaptation is dependent on population adaptation, it tends to stagnate as

the population settles.

The recombinative approach weakly supports the preservation of building-blocks

by restricting parentage to a pair of individuals, i.e. sampling from a small subset

of the population. This increases the probability of sampling values from a common

individual and thus potentially reducing disruption. However, it will inevitably link

values which are non-interacting in the same way. We still want a more finely-grained

linkage bias within a generally diverse search distribution. One possible resolution

of this issue involves removing this dependency such that structural adaptation can

occur within a relatively static population.

5.5.2 Inferring Fitness Interactions

We have shown it is not enough to simply allow selective forces work on the mod-

ules produced via transmutation; the transmutation itself must be directed via some

adaptive heuristic. The motivation is unchanged; we wish the search distribution to

approximate the optima distribution described by the population distribution. The

115



method for this modifies transmutation to apply it conditionally. A simple infer-

ence from population statistics can determine whether or not the modularisation or

demodularisation would make the search distribution better approximate the popula-

tion. This gives us a straightforward way to ensure dependency modelling continues

to adapt even as the population composition is static.

We therefore need a mechanism to infer interactions from the population which is

independent of adaptation in the population set. The interactions can still be trans-

lated into genetic structures via transmutation, which can be executed concurrently

with the population adaptation, but we need to make the operation selective. Fortu-

nately, it is a straightforward matter to define a precondition for transmutation based

on simple statistical measures.

Consider a pair of components, c0 and c1 from an individual x which may be

sampled independently, i.e. they are not genetically linked. We wish to know if they

co-occur in the population with a higher than expected frequency. If there is a positive

fitness interaction between them then population selection should instantiate them

together with a higher than expected frequency. The expected joint frequency must

take into account the frequency of genetic structures which are exclusive with the

independent sampling of the two components. We do this by excluding individuals

which contains a component that intersects with both c0 and c1.

Within this subset of the population, where the marginals of the components are

denoted O(cx) and the joint distribution O(c0, c1), a measure of their linkage is given

by:

δ(c0, c1) =
O(c0, c1)

O(c0)O(c1)
(5.7)

Where δ(co, c1) > 1 indicates a positive interaction. By setting an appropriate thresh-

old, θ, on δ we can filter modules to an arbitrary degree.
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Result of Filtering Transmutation The application of this condition (using a

threshold θ = 3) produces the desired effect, shown in figure 5.22. The modified

algorithm rapidly reaches the local optima as PBS and the naive algorithm do. It

then steadily discovers each of the trap optima significantly faster than the PBS or

naive algorithm. The refinement, in ensuring that unlikely modules are filtered out

of the selective process, strongly supports a healthy turnover of individuals. A conse-

quence of this is to make demodularisation effectively obsolete. Inaccurate modules

still occasionally enter the pool but are rapidly selected against as genuine ones are

amplified. This simplifies the algorithm another degree.

Determining an appropriate threshold for these experiments was based on obser-

vation of the pool. Setting θ too low had the effect of bloating the pool with spurious

modules akin to the behaviour of the unconditional transmutation. At the other ex-

treme, setting θ too high meant no modules were added to the pool, resulting in a

behaviour like the PBS. Run-time inspection of the pool showed that when a balance

was struck the pool would stabilise with a dynamic set of known building-blocks.

A setting of θ of between 1 and 4 appeared to produce a fairly smooth continuum

between these extremes. Whether this would hold for other problems is an open

question.

We now go on to compare the refined form of TEA with other algorithms of

interest.

5.5.3 Comparing TEA to Linkage-Modelling Algorithms

Having verified the mechanism of structural selection, we now perform a comparison

to the prior algorithms of interest to assess the relative performance and identify any

final limitations of the TEA.
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TEA configuration The TEA was configured with a static population size of 30

individuals with a base weighting of 1.0 and a transmutation threshold of 3.0. This

was found by trial and error to be adequate to maintain a diversity of optima in the

population and effectively filter modules. These setting were used across the range of

problem sizes below.

Behaviour of TEA on Concatenated Trap

The result of TEA applied to the concatenated trap problem is shown in figure 5.23.

Prior results for PBS and ECGA are shown for comparison. As TEA is essentially

PBS with transmutation deactivated11, the effectiveness of the operation on improving

performance for this problem is clearly demonstrated.

Inspection of the adapting population shows it quickly adapts toward the decep-

tive optima before finding the global optimum for each partition in turn via base

sampling.

When an interaction set is instantiated in a new individual and given a place in

the population then there is an increased marginal bias toward those values. Over

time these could exponentially increase in frequency. In the PBS, the concatenated

trap function is solved via this process. However, when these values are identified

as interacting by the TEA and transmutated into a new selectable entity, the pool

shows this new selectable unit is amplified far more rapidly by selection, usually to

fixation.

Behaviour of TEA on H-IFF

The result of the filtering modification is highly significant and is shown in figure 5.24

in the context of the earlier results. It shows a clear gain over the other algorithms

11This effect can be produced by setting the θ threshold prohibitively high.
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Figure 5.23: TEA scaling against PBS and ECGA on concatenated 4-bit trap func-
tion. Averaged over 10 trials.

for H-IFF problems at sizes 16 and 32 bits. At these scales, the problem can only

effectively be solved by adapting the representation, i.e. identifying building-blocks,

and run-time inspection of the pool confirms this.

Problems of a larger scale encounter an issue which prevents the optima being

found in all cases by TEA. Close examination of the pool at this stage suggests

that this is due to sets of independent variables fixed in the population which are

non-optimal in the context of the rest of the variables. An accurate and diverse

decomposition of the other optima invariably occurs but only base sampling is capable

of moving the population from this region of local optima. Since the fixed set belong

to an interaction of higher order (typically 8 bits) it becomes relatively improbable

for base sampling to provide this shift. The consequences of this are discussed in

section 6.4.1.
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Figure 5.24: TEA scaling against prior algorithms on H-IFF. Averaged over 10 trials.

5.6 A Polyhierarchical Problem

5.6.1 Motivation for a Polyhierarchical Function

There appears to be no reason why modules should be limited to competing with

their individual components. If a component can be part of multiple modules then

the model is capable of representing polyhierarchical dependencies rather than just

hierarchical ones. Overlapping modules are a feature of many real-world problems.

The ability to allow overlapping modules to compete is crucial if a wider range of

structured problems can be tackled which often have varying degrees of interaction

strength to boot. Approaches which partition solutions into strictly non-overlapping

modules are ill-equipped to tackle such problems.
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5.6.2 Defining a Polyhierarchical Function

The evaluation of a polyhierarchical problem is given by equation 5.4 as before, i.e. as

the accumulated fitness contributions from multiple interaction sets. In constructing

a polyhierarchical problem, as for the hierarchical problem, we will require that global

optima can only feasibly be obtained by successively combining sub-solutions. We

describe a simple concrete example of a polyhierachical problem within these terms

that is minimal yet hard.

Our problem is composed of two stages. The first step is to define overlapping

modules which need to be mutually exclusive in order for the problem to be genuinely

taxing. This is easily illustrated in figure 5.25 using the familiar schema notation [31]

where k = 2,m = 64 and l = 32.

00****************************** *11*****************************
**00**************************** ***11***************************
****00************************** *****11*************************
******00************************ *******11***********************
********00********************** *********11*********************
**********00******************** ***********11*******************
************00****************** *************11*****************
**************00**************** ***************11***************
****************00************** *****************11*************
******************00************ *******************11***********
********************00********** *********************11*********
**********************00******** ***********************11*******
************************00****** *************************11*****
**************************00**** ***************************11***
****************************00** *****************************11*
******************************00 1******************************1

Figure 5.25: Overlapping interactions produced by a single bit offset. 000...0 and
111...1 are the resultant optima.

Such a set of interactions clearly precludes a useful model which partitions the

variables into non-interacting sets, yet it is not generally hard. Since there are no

local optima, a local search strategy would be successful in finding one of the two
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global optima: 000...0 and 111...1. This has the effect of making any pair of variables

impossible to optimise in isolation; yet not requiring any interaction modelling, via modules,

beyond a pair-wise one.

Extending this modular structure into a hierarchical one could easily be performed by

adding interactions that combine homogeneous, adjacent pairs of the above interactions,

e.g. *11*****. . . and ***11*****. . . to add the interaction *1111***. . . . However, this

does not actually increase the difficulty of the problem structure since this does not add

any new optima. For this, we need to define interactions which create new global optima –

excluding the previous ones – via alternative combinations.

The second level combines a number of the lower-level interactions to create a set of

large-scale interactions which produce correspondingly large fitness effects. These large

interactions define new global optima which have a significant number of conflicting values

with the lower optima.

00*11*00*11*00*11*00*11*00*11***
**00*11*00*11*00*11*00*11*00*11*
*11*00*11*00*11*00*11*00*11*00**

Figure 5.26: High-level, high-order interactions. These each produce a fitness contri-
bution of 20.

The definition of the two levels of interaction are intended to separate the algorithm with

a polyhierarchy-modelling capability from the simple hill-climber. The first level optima, as

has been noted, can be obtained straightforwardly from single bit adaptations. The second

level optima requires a significant number of the lower-order modules to be found and then

combined. This is a non-trivial challenge that requires a specific assignment to 20 bits of

the 32.

Figure 5.27 demonstrates the RMHC search easily locating the lower optima for this

problem but never a high order optima. The performance of TEA is compared for a range

of population sizes with a base weighting equivalent to an average 1 bit mutation rate and

the threshold θ set to 3.
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Figure 5.27: TEA on minimal polyhierachical problem. RMHC included for compar-
ison. Averaged over 100 trials.

With a unit population size TEA emulates the RMHC to find the local optima. Increas-

ing the population size raises the potential for it to suggest candidate modules. However,

the high-level optima remain out of reach for TEA. Although a number of the lower-level

modules are identified — as for the hierarchical problem — not enough are maintained for

the higher-level optima to be found. Raising the base weighting of TEA results in a more

diverse population distribution and consequently more building-blocks identified. However,

the additional noise makes progress slow as the candidate modules have a reduced selection

probability.

To enable TEA to succeed on this problem it must be able to reliably build up an

adequately rich pool with a weighting that is sufficient to build higher-level structures.

Only this will enable them all to be sampled together in a single solution. Progress in this

direction is also expected to strengthen its capabilities on the hierarchical problems, if not

the simple modular ones.

123



5.7 Summary

The strategy for these studies were to incrementally validate the hypotheses from earlier

chapters, starting with simpler models and problems and building up in a reasoned progres-

sion to ones of greater complexity. The result of these studies was the systematic testing

and revision of the presented approach to the level where it was competitive with an ar-

ray of state-of-the-art algorithms on a broad range of problem classes. The course of the

experiments can be marked by the following results.

5.7.1 Univariate Model Comparison on Linear Problems

By casting the univariate-modelling EDAs into a common form, we obtained a strong and

fair comparison over them on a standard linear problem in section 5.2. This showed that

they under perform relative to a model equivalent to a RMHC algorithm. A population-

biasing extension to this, EPBS, incorporated features advocated earlier to produce a further

performance gain.

This empirically validated the principle of maintaining the population purely as an

informative sample from which to weight selectable components with no fitness interactions.

We next examined the case where fitness interactions exist.

5.7.2 Interactions Impact Population Strategy

The generalisation in section 5.3.1 of the problem class into one that included fitness in-

teractions revealed byproduct effects that necessitated the population weighting and the

maintenance strategy to be revised.

Experiments in section 5.3.2 showed problems with epistatic dependencies causing neu-

trality and a corresponding increase in population size. This is a consequence of simple

population-based sampling and elitist population inclusion.: a straightforward cumulative

weighting bias suffers a fixation of non-optimal values.
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This prompts the first revision of the weighting scheme in section 5.3.3 which successfully

addresses this issue and yields an insight into bounding the weighting bias to avoid undue

fixation. Our solution was to normalise the weighting given to the population relative to

the background sampling. In essence, this distributed the influence of a single individual

amongst a set of unique but equally-fit solutions. We noted that simply bounding the

population size was a less effective modification. Also that the problem is still amenable to

a univariate search at this stage.

5.7.3 Deceptive Interactions Require A Minimal Diversity

The introduction of deceptive interaction, or hard epistasis, in section 5.4.1 raised additional

challenges which were addressed in discussion. The required diversity in the population was

shown to be missing, precluding the identification of building-blocks. We showed that PBS

was able to solve easy epistatic problems.

We demonstrated the need to retain a population with a fixed minimal size if hard

epistatic problems are to be solved. A modified population maintenance strategy was pro-

posed in section 5.4.3 and verified as effective. This led us to the point where we were ready

to identify and process building-blocks.

5.7.4 Current Models are Highly Problem Specific

We found in 5.4.1 that the ECGA does not scale well on hierarchical problems in terms of

the time required to optimise them. This is a byproduct of the large populations required

for optimal convergence.

We also determined in section 5.3.4 that although the compositional algorithms are

ultimately capable of solving hierarchical problems that are difficult for other algorithms,

they severely under perform on less tightly structured problems, i.e. with larger interaction

sets.
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5.7.5 Transmutation Effective for Adaptive Search

We found in section 5.5.1 that selection in itself was inadequate for identifying building-

blocks from the candidate modules produced by random transmutation. We traced this

to the elitist population strategy producing a diminishing replacement rate as it becomes

better adapted, and failing to provide the constant turnover of individuals required for

effective discrimination between competing modules.

A simple condition was introduced in section 5.5.2 to validate prospective and ex-

isting modules, making pool adaptation independent of population-level selection. This

proved successful at identifying building-blocks given our informative population. Once the

building-blocks were identified they were rapidly exploited by selection, as hypothesised.

There remains an issue of maintaining adequate diversity across all variables for the most

highly structured problems.

5.7.6 Issues in Maintaining a Balanced Pool

In order to probe the limits of TEA a minimal instance of a polyhierarchical problem was

devised in section 5.6. In principle this problem should be equally amenable to the TEA

method. In practice it reiterated areas where TEA may need more analysis.

Although able to reliably identify some building-blocks, maintaining a large set of these

is not straightforward. This issue of balancing a base weighting with the population bias so

that a diverse population can be maintained without making the search too noisy is a top

candidate for future analysis and development.
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Chapter 6

Discussion and Conclusions

In this chapter we finally address the hypotheses in light of the experimental studies to

determine the contribution. This leads to comments on the problem form employed. The

conclusion summarises the contribution of the thesis before going on to propose future

directions.

6.1 Review of Motivation

Different algorithms draw their efficiency from making presumptions (informed or otherwise)

regarding the structure of a problem. Simple mutation-based searches have been shown to

work well on problems with a low degree of structure but falter where significant competing

dependent sets are required to be respected. Such problems, with a modular or hierarchical

structure, have motivated algorithms which aim to infer the dependency structure from a

set of solutions into an explicitly probabilistic model.

This disjointedness is unsatisfactory; we would like to carry our evolutionary inspiration

throughout. Yet we have seen the limitations of a model based purely upon mutation and

recombination in constructing and maintaining sets of values for dependent variables. The

schema theorem was presented to theoretically support the canonical GA’s capacity to
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execute the building-block hypothesis. From the discussion given in chapter 2 there are

various strong caveats inherent to this theorem, to wit, a static and favourable variable

linkage representation implicit to the ordering and set by the user from the outset.

Fortunately, another biological abstraction of adaptive complexity provides a prospec-

tive paradigm: the evolutionary transition. This has allowed us to present an approach

which makes no presumptions regarding the structure of a problem, but uses competitive

performance to validate candidate representations alongside the search for optimal solutions.

The principle of TEA, like the idealised GA, rests on the propagation of building-blocks

through the population. However, the population itself has a more specialised role: as

a persistent set of unique, well-adapted samples. More significant is the lack of implicit

linkage in TEA. Building blocks are explicitly encoded at run-time and processed as units

of selection. This effectively makes TEA a closer adherent to the building-block hypothesis

than the canonical GA.

Interesting commonalities can also be found with Learning Classifier Systems (LCS).

For a concrete example, we take the Michigan-style XCS [51] which is designed to produce

classifiers with increasing generality and accuracy.

In this system, a population of classifiers is maintained using a steady-state, niched GA.

Each classifier includes a condition part which will match inputs with a certain specification

for a subset of its variables. These classifiers are initialised with a high degree of specificity

which may then generalise to match more inputs and map out the problem structure.

Classifiers are assigned a fitness derived from the performance of the classifier relative to

classifiers with which it overlaps and therefore competes with. This may include the parents

of newly-generated classifiers.

The parallels between the idealised GA schema, LCS conditions and the modules of

TEA are clear. They embody, in a ternary form, entities competing for representation

within a limited medium. Their associated degree of weighting, either implicit or explicit,

influences their current selection and ongoing persistence.

128



There are also key differences, not least of which is the difference between the task of

classification and function optimisation.

Recent work has attempted to address the inadequacy of the standard GA operators

for constructing and mixing building-blocks by taking an EDA approach [2]. This work

investigates substituting mutation and recombination with adapted versions of the ECGA

and BOA for overlapping and hierarchical problems respectively.

6.2 Hypotheses and Contributions

In this section, we consider the validity of the original motivation and hypotheses in light

of the experimental studies. This allows us to confirm the key contributions from the thesis

which have both a practical and a theoretical part.

From a practical standpoint we address the originality, significance and applicability of

the TEA. For this, we recap on the novel combination of processes that TEA employs and

seek to explain how these suit it to the classes of problems laid out. For the theoretical part,

we outline possible lessons that can be learnt about an alternative paradigm for evolutionary

optimisation based on variable units of selection.

We now restate the original hypotheses, concluding each one and noting its contribution.

6.2.1 Population as a Structured Sampling Model

Hypothesis An elitist population of solutions, composed from multivariable components,

can be sampled as an expressive and compact search model.

Conclusions We investigated different strategies for population maintenance. Whilst a

purely elitist strategy was adequate for unimodal problems, maintaining a population with

a minimum size was required to ensure multiple optima could be retained indefinitely. A

simple form of this was shown to be effective. Other population maintenance strategies are

suggested in future work later in this chapter.
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Sampling an individual from a large, diverse population can be highly exploratory but

it can also be disruptive. We found that when the population has adapted to a set of

optima based on large-order interactions, it becomes increasingly difficult to sample new

viable individuals which preserve these. At this point, with relatively little turnover in the

population, we find that adaptation of the genetic structure cannot efficiently be performed

by individual selection.

Contribution The population comprises structured individuals as a self-contained model

of positive fitness interactions, as well as fit elements. The weighting it assigns to all se-

lectable components makes it capable of representing all ECGA distributions as well as

those of the SEAM. Furthermore, TEA is capable of representing the competition of over-

lapping (or polyhierarchical) functions. A valuable by-product of explicit linkage modelling

is that the resulting knowledge of the problem is in a form that is amenable for human

interpretation and possible exporting to more customised search algorithms.

6.2.2 Transmutation for Structural adaptation

Hypothesis Structural mutation acting at the individual level can, in principle, adapt

the search model to reflect the genetic interactions of a problem.

Conclusions By successfully adapting to represent the structure of modular problems

(with a significant order) and hierarchical problems with a significant number of levels, the

transmutation operator has shown itself to be capable of making the adaptations to the

complexity from an entirely unstructured population model to one which reflects that of

the problem. This is without any prior knowledge regarding the structure of the problem.

Contribution Adaptive representation has been identified as a requirement for scalable

evolution but existing models are hindered by either computational complexity, overspecial-

isation or sensitivity to parameters. Transmutation provides a simple, intuitive yet effective
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means for adapting the genetic structure when used in conjunction with the selective process

of the next hypothesis.

The presented algorithm shares motivation and features with various other works, no-

tably the weighted sampling with EDAs and the adapting pool of incremental partial solu-

tions from the CSEAs. Nevertheless, the approach is self-supporting.

6.2.3 Structural Validation via Individual Selection

Hypothesis Selection can efficiently amplify and distinguish modules, in parallel, which

encapsulate valid building-blocks, and demote and remove invalid modules.

Conclusions To be a reliable source of modules, an additional filter was required involv-

ing a simple statistical test; unconditional acceptance of transmutated modules was found

to be incompatible for selective processing.

Once we raised the likelihood of candidate modules being genuine building-blocks then

we found that we could accept modules with a relatively low degree of confidence and allow

selection to perform the final validation. The filtered supply of candidate modules meant

that individuals of a higher quality would be sampled and this maintained the turnover of

individuals in the population to ensured selective processes were able to efficiently amplify

or discard competing representations. The original demodularisation operation was found

to be superfluous once the selective process was refined; low-quality modules were effectively

selected against.

Contribution The extension of selection to entities within the individual is a powerful

one given the conditions for an effective individual turnover. It allows structures resulting

from transmutation to be reinforced and exploited in a straightforward way without the use

of complex statistical testing and model building techniques. Such techniques would likely

be able to enhance the algorithm further but they have been shown to be unnecessary for

the desired modelling capabilities.
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6.2.4 Intersection of Compositional and Probabilistic Models

Hypothesis There exists a model which unifies the most significant elements of the

CSEAs with those of the EDAs to obtain key advantages over both of these.

Conclusions In chapter 3 we described a view of GA and EDA models that could employ

explicit frequency and be extended to embody modular structures. A bridge is then built

to encompass compositional models with a unified ‘meta-algorithm’.

Staged testing in section 5.5 empirically supports generalised applicability of this algo-

rithm.

Contribution Arbitrary hybrids of existing algorithms are not difficult to manufacture.

The contribution of the TEA is in identifying the key properties required to solve the

target problems and bringing them together without extraneous elements. The result is an

algorithm that is simpler than its predecessors in many regards.

6.2.5 Notes on the Problem Form

The problem form that has been used is a general one, encompassing linear functions (e.g.

ones-max), modular (e.g. NK networks, Royal Road, concatenated trap), hierarchical func-

tions (e.g. H-IFF) and finally, a polyhierarchical function. We believe it to be a useful form

for characterising problems, particularly as it makes explicit the structure of the problem.

It follows that we can have a search algorithm that is more efficient than enumeration

when the fitness function can be decomposed to a set of independent sub-functions. Rather

than use a lookup table for each possible set of values, we can linearly combine functions

over subsets of the variables. This is the structure in the fitness function that allows us to

concurrently optimise independent sets of variables.

It is important to note that problems do not need to expressed in the form used here

in order to be tractable; they merely need to be implicitly expressible in such a form. We
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believe that many real-world problems do fit into this category.

The similarity between the proposed problem representation and the representation in

TEA is neither incidental nor restrictive. The framework is created to represent a difficult

class of real-world problem and TEA to tackle this. The problem form is general enough

to represent other problems and test other algorithms. Likewise, TEA is capable of solving

other problems. Both however are capable of representing polyhierarchical structures. TEA

has no special access to the structure of the dependencies within the black box function,

just as the form is not presented with the genetic linkage information of TEA solutions.

The challenge for TEA, as for all applicable algorithms, is to infer and exploit the problem

settings and interactions.

6.3 Conclusion

This work addresses a fundamental issue in evolutionary optimisation, that of scalability,

and presents a novel approach to tackling the issue in combinatorial optimisation problems.

Previous analysis has concluded that an adaptive representation is key to allowing scalable

adaptation in the form originally envisaged by the building-block hypothesis to proceed.

Inspiration for this work, which we aimed to apply to these classes of increasingly

complex problems, was the evolutionary transition. Although inspired by complex natural

systems and contemporary theories for their development and adaptation, the primary

motivation is practical optimisation and does not extend to claims that the search model

presented herein is an actual model of real adaptive systems. Nevertheless, the model is

a highly abstract one with no features that are irreconcilable with natural system. If it

therefore serves as a reciprocal inspiration to natural science models this would be a bonus.

Unlike other work which constructed the algorithm around a biologically-informed model

of this phenomenon, we aimed to show how this could be abstracted into a generally appli-

cable algorithm. This general model has aspects of probabilistic models with a frequency-
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biased weighting, and compositional algorithms in an explicit, adaptive modular representa-

tion. This enables this compound model to be effective on problems which do not necessarily

have a particular form.

The initial formation of a novel approach was guided by a reasoned set of principles

distilled from a critical analysis and comparison of the relevant algorithms and concepts.

This included a clear description of the type of problem we would address, considering

complexity from a natural inspiration to a form fit for optimisation. The Transitional

Evolutionary Algorithm then implemented the principle of frequency-biased selection of

units on varying complexity.

The pertinent elements of TEA were verified on appropriate problems against the stan-

dard algorithms. Various insights were gained and used to revise the TEA as it was applied

to state-of-the-art algorithms on their native problems. This structured set of experiments

delineated the range of competence for these algorithms. Chapter 5 shows a reasoned

and validated investigation from the simplest optimisation algorithm to one that addresses

classes of problems known to be challenging for state-of-the-art algorithms.

TEA proved to be not only able to reliably identify and process modules, but also to

do this efficiently enough to be competitive with the leading algorithms. This was without

requiring separate model-building or tight hierarchy. It therefore demonstrates a prospective

approach for adaptive scaling inspired by evolution.

Our search identifies not only sets of correlated variables but specific sets of values

for those which appear to produce a significant positive fitness interaction. We are not

interested in the distribution of non-optimal values or modules; the population is used solely

to map out known optima. Also, we are not attempting to infer conditional dependencies

but mutual positive associations.

The significance of this approach is broad. EAs are an established technique applied

across a range of problem domains. The underlying processes of mutation, recombination

with selection are taken as read for extended models of complex interactions, e.g. Artificial
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Life. The model here only concerns the genetic representation and is entirely independent

of any phenotypic expression. Therefore, any insight or refinement into these fundamental

processes have consequences for any application built on them.

GAs are often adopted for their simplicity and EDAs for their expressiveness. TEA is

significant in that it combines the advantage of both and is therefore valuable from a practi-

cal perspective. From a theoretical perspective, we have shown that the phenomenon of the

evolutionary transition is a more promising nature-inspired approach than recombination

across a range of optimisation problem types.

We now reflect on two questions, largely unaddressed in this thesis, which may be

appropriate for further development.

6.3.1 Incorporation of Prior Knowledge

We take some time in section 1.4 to identify various types of prior domain knowledge that

may exist for a problem function. Our reason for doing this is to ensure that they are not

implicitly introduced into the search. Rather, the biases of genetic frequency and linkage

are automatically acquired by the search as it progresses.

In actual applications, we may well have access to prior domain knowledge that we wish

to exploit. The TEA model makes this application straightforward and robust as the pool

can be primed with weightings and linkages. Modules embodying linkage could be added to

the initial pool to genetically encode known building-blocks. Non-uniform weightings can

be applied to these, along with with the initial set of alleles, according to their perceived

quality.

Significantly, these seeding entities are subject to the same selective scrutiny that vali-

dates the algorithm-generated ones. This means that even weakly-supported linkages can

be encoded and their viability directly tested by their persistence in the population. Despite

this, some general problem classes may not be naturally suited to the TEA approach and

are considered below.
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6.3.2 General Applicability of TEA

The population maintenance strategy of the TEA is intended to retain a diverse set of

the fittest solutions so far encountered. This is reliant on a relatively consistent fitness

evaluation of its members. A noisy function that samples the fitness of a solution from a

distribution might well invalidate this presumption. Likewise, a dynamic function, perhaps

arising from coevolutionary dynamics, may impact the performance of the TEA. In both

these case, some individuals can be accepted on the basis of a fortunate evaluation as others

are rejected via unfortunate ones. Generational population models are less prone to such

effects with their lower levels of persistence.

6.4 Future Work

There are several ways this model could be extended, many of which have already been

cursorily investigated. The algorithm described represents a base model which is simple to

understand, implement and apply and is ripe for further development. A number of the

more promising ones are outlined below.

6.4.1 Delineating Limitations of TEA

We encountered a possible pitfall with the TEA for higher order H-IFF problems where

some sets of interaction variables became fixated at non-context-optimal values. It is not

clear as yet whether a larger population size or alternative diversity-emphasising population

maintenance strategy would resolve this — although this is believed to be the case. Useful

further work would be to analyse the bounds of successful TEA operation in more detail

and possibly demonstrate way to extend them.
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6.4.2 Nature-Inspired Interaction Inference

Transmutation is currently conditional on a simple statistical test. The criterion for trans-

mutation is statistical but simple enough that a nature-inspired metaphor based on com-

petition could be conceived to perform the same role using a niching method.

6.4.3 Fitness-weighted Modelling

There is currently no effect of a fitness-based weighting and we straightforwardly model

the population frequencies. As an extension, we also consider alternative variations to the

population strategy. Specifically, if we allow a population with a range of fitness values

(rather than strict elitism) then we can weight via these and not solely on frequency.

6.4.4 Implementation Optimisations

The current implementation evolved to be flexible and general for easier inspection of al-

gorithmic variants and comparative tests with other algorithms. A fresh implementation,

written with efficiency as a priority, would be expected to be able to make significant gains

in that respect. This might include a caching of previously computed properties of the

population for periods where it is unchanged. The ECGA employs such a system as part

of its model-building phase and this is believed to be responsible making it an effective

algorithm.

The search model used here, being represented by a population of structured individuals,

is also highly amenable to being split across multiple systems and later merged. This would

be valuable for problems for which the population tends to converge to local optima.

6.4.5 Other Representations

We are in no way restricted to selecting bits or bitsets as entities. We could instead, for

example, be selecting subroutes (i.e. TSP). In fact, a particular rule for weighting update
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is believed to result in something like the ACO technique [52].

6.4.6 Other Interpretations

The motivation for this work has been scalable evolutionary optimisation and the inspiration

the evolutionary transition. However, the algorithm that has been shaped has, in many

respects, taken on the form of a dynamic probabilistic network model. A reinterpretation

of TEA, or something similar, exclusively in these terms might well prove worthwhile.
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[23] P. Larrañaga and J.A. Lozano. Estimation of Distribution Algorithms: A New Tool

for Evolutionary Computation. Kluwer Academic, Boston, MA, 2001.

[24] T. Lenaerts. Different Levels of Selection in Artificial Evolutionary Systems: Analysis

and Simulation of Selection Dynamics. PhD thesis, Department of Computer Science,

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, 2003.

[25] Richard Lewontin. The Triple Helix: Gene, Organism and Environment. Harvard

University Press, 2001.

141
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