Towards simultaneous electroencephalography and functional near-infrared spectroscopy for improving diagnostic accuracy in prolonged disorders of consciousness: a healthy cohort study

Rupawala, Mohammed Jujar (2021). Towards simultaneous electroencephalography and functional near-infrared spectroscopy for improving diagnostic accuracy in prolonged disorders of consciousness: a healthy cohort study. University of Birmingham. Ph.D.

[img]
Preview
Rupawala2021PhD.pdf
Text - Accepted Version
Available under License Creative Commons Attribution.

Download (5MB) | Preview

Abstract

Qualitative clinical assessments of the recovery of awareness after severe brain injury require an assessor to differentiate purposeful behaviour from spontaneous behaviour. As many such behaviours are minimal and inconsistent, behavioural assessments are susceptible to diagnostic errors. Advanced neuroimaging tools such as functional magnetic resonance imaging and electroencephalography (EEG) can bypass behavioural responsiveness and reveal evidence of covert awareness and cognition within the brains of some patients, thus providing a means for more accurate diagnoses, more accurate prognoses, and, in some instances, facilitated communication. As each individual neuroimaging method has its own advantages and disadvantages (e.g., signal resolution, accessibility, etc.), this thesis studies on healthy individuals a burgeoning technique of non-invasive electrical and optical neuroimaging—simultaneous EEG and functional near-infrared spectroscopy (fNIRS)—that can be applied at the bedside. Measuring reliable covert behaviours is correlated with participant engagement, instrumental sensitivity and the accurate localisation of responses, aspects which are further addressed over three studies. Experiment 1 quantifies the typical EEG changes in response to covert commands in the absence and presence of an object. This is investigated to determine whether a goal-directed task can yield greater EEG control accuracy over simple monotonous imagined single-joint actions. Experiment 2 characterises frequency domain NIRS changes in response to overt and covert hand movements. A method for reconstructing haemodynamics using the less frequently investigated phase parameter is outlined and the impact of noise contaminated NIRS measurements are discussed. Furthermore, classification performances between frequency-domain and continuous-wave-like signals are compared. Experiment 3 lastly applies these techniques to determine the potential of simultaneous EEG-fNIRS classification. Here a sparse channel montage that would ultimately favour clinical utility is used to demonstrate whether such a hybrid method containing rich spatial and temporal information can improve the classification of covert responses in comparison to unimodal classification of signals. The findings and discussions presented within this thesis identify a direction for future research in order to more accurately translate the brain state of patients with a prolonged disorder of consciousness.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Cruse, DamianUNSPECIFIEDUNSPECIFIED
Dehghani, HamidUNSPECIFIEDUNSPECIFIED
Lucas, SamuelUNSPECIFIEDUNSPECIFIED
Tino, PeterUNSPECIFIEDUNSPECIFIED
Licence: Creative Commons: Attribution 4.0
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Chemistry
Funders: Engineering and Physical Sciences Research Council
Subjects: B Philosophy. Psychology. Religion > BF Psychology
Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QC Physics
R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
URI: http://etheses.bham.ac.uk/id/eprint/11248

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year