Increased hydrogen uptake of zirconium based claddings at high burnup

Baris, Adrienn (2019). Increased hydrogen uptake of zirconium based claddings at high burnup. University of Birmingham. Ph.D.

Text - Accepted Version
Available under License All rights reserved.

Download (12MB) | Preview


In light water reactors the fuel is encapsulated in Zr-based claddings that withstand the harsh environment (neutron bombardment, high temperature and water under pressure); without absorbing too many neutrons to sustain the chain reaction in the reactor core. Relatively high corrosion resistance of Zr is achieved when alloyed (e.g. with Sn, Fe, Cr, Ni, or Nb). Some elements form second phase particles (SPPs) and provide protection against rapid corrosion. The cladding undergoes compositional and microstructural changes, such as irradiation induced SPP dissolution. Zr oxidizes at the metal-oxide interface by diffusion of the oxidizing species through the oxide layer. Therefore, a protective inner barrier oxide is essential to prevent the metal from fast reaction with different species. Hydrogen is released as a by-product of the oxidation, and by the radiolysis of the coolant. If H enters the metal it precipitates as brittle Zr-hydrides degrading the cladding’s mechanical properties. The H-uptake is a critical safety issue. Although, extensive literature is available on this topic, there are some aspects that need better understanding. Increasing H-uptake of certain cladding types at high burnups was reported. The causes are not yet fully understood.

To better understand the causes of increased H-uptake at high burnups, an extremely high burnup cladding (9 cycle LK3/L Zircaloy-2) from boiling water reactor provided the basis of the study. The same type of cladding after different service times was examined revealing the compositional and microstructural evolution. Two types of cladding from pressurized water reactor with medium burnup were studied to separate the reactor- and alloy-specific parameters from the generic ones.
FIB tomography was used for the 3D reconstructions of the microstructure; EPMA and ChemiSTEM for the micro- and nanometric chemical analysis.
It is revealed that regardless of alloy- and reactor-type, crack-free oxide and the absence of large hydrides in the vicinity of the metal-oxide interface; undulated interface; and presence of SPPs are among the essential factors for the cladding’s high performance.
It is demonstrated that the oxidation of the hydrides at the metal-oxide interface induces crack formation in the oxide, reducing its protectiveness.
High level of SPP dissolution, large hydride phases in the metal and high level of porosity in the oxide at the interface, straight metal-oxide interface, stoichiometric oxide, increased Ni concentration in the inner oxide, segregation of Fe, Ni, Sn and slightly Cr in the metal grain boundaries, Sn segregation at the interface oxide are identified as the causes of increased H-uptake of the LK3/L cladding at high burnups. Although all of these factors are present after 9 cycles, the cladding does not show extremely fast oxidation and H-uptake even beyond the designed service time.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Licence: All rights reserved
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Metallurgy and Materials
Funders: None/not applicable
Subjects: Q Science > QC Physics
Q Science > QD Chemistry


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year