Technical debt-aware elasticity management in cloud computing environments

Mera Gómez, Carlos Joseph ORCID: 0000-0002-7014-1138 (2019). Technical debt-aware elasticity management in cloud computing environments. University of Birmingham. Ph.D.

Text - Accepted Version
Available under License All rights reserved.

Download (3MB) | Preview


Elasticity is the characteristic of cloud computing that provides the underlying primitives to dynamically acquire and release shared computational resources on demand. Moreover, it unfolds the advantage of the economies of scale in the cloud, which refers to a drop in the average costs of these computing capacities as a result of the dynamic sharing capability. However, in practice, it is impossible to achieve elasticity adaptations that obtain perfect matches between resource supply and demand, which produces dynamic gaps at runtime. Moreover, elasticity is only a capability, and consequently it calls for a management process with far-sighted economics objectives to maximise the value of elasticity adaptations.

Within this context, we advocate the use of an economics-driven approach to guide elasticity managerial decisions. We draw inspiration from the technical debt metaphor in software engineering and we explore it in a dynamic setting to present a debt-aware elasticity management. In particular, we introduce a managerial approach that assesses the value of elasticity decisions to adapt the resource provisioning. Additionally, the approach pursues strategic decisions that value the potential utility produced by the unavoidable gaps between the ideal and actual resource provisioning over time. As part of experimentation, we built a proof of concept and the results indicate that value-oriented adaptations in elasticity management lead to a better economics performance in terms of lower operating costs and higher quality of service over time.

This thesis contributes (i) an economics-driven approach towards elasticity management; (ii) a technical debt-aware model to reason about elasticity adaptations; (iii) a debt-aware learning elasticity management approach; and (iv) a multi-agent elasticity management for multi-tenant applications hosted in the cloud.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Licence: All rights reserved
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Computer Science
Funders: None/not applicable
Subjects: T Technology > T Technology (General)


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year