Almost-everywhere convergence of Bochner-Riesz means on Heisenberg-type groups

Horwich, Adam Daniel (2019). Almost-everywhere convergence of Bochner-Riesz means on Heisenberg-type groups. University of Birmingham. Ph.D.

Text - Accepted Version
Available under License All rights reserved.

Download (1MB) | Preview


In this thesis, we prove a result regarding almost-everywhere convergence of Bochner–Riesz means on Heisenberg-type (H-type) groups, a class of 2-step nilpotent Lie groups that includes the Heisenberg groups \(H_{m}\). We broadly follow the method developed by Gorges and Müller [24] for the case of Heisenberg groups, which in turn extends techniques used by Carbery, Rubio de Francia and Vega [8] to prove a result regarding Bochner–Riesz means on Euclidean spaces. The implicit results in both papers, which reduce estimates for the maximal Bochner–Riesz operator from \(L_{p}\) to weighted \(L_{2}\) spaces and from the maximal operator to the non-maximal operator, have been stated as stand-alone results, as well as simplified and extended to all stratified Lie groups. We also develop formulae for integral operators for fractional integration on the dual of H-type groups corresponding to pure first and second layer weights on the group, which are used to develop ‘trace lemma’ type inequalities for H-type groups. Estimates for Jacobi polynomials with one parameter fixed, which are relevant to the application of the second layer fractional integration formula, are also given.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Licence: All rights reserved
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Mathematics
Funders: Engineering and Physical Sciences Research Council
Subjects: Q Science > QA Mathematics


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year