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ABSTRACT 

This research focuses on human interaction with the IoT, not only from the perspective of 

the user, but also considering the requirements that smart objects should meet to support human 

activities.  

It analyses how the IoT was originally conceived from a technology and data driven 

approach, and why there is a need to provide an IoT framework that considers humans’ tasks and 

goals. As such, the nature of the actions and interactions found in a human-based IoT are 

discussed in the context of social-like collaborations, where actors are in pursue of a common 

goal.  

This thesis reframes Human-IoT interaction as a social, collaborative system, described in 

terms of its capacity to support the activities of the involved social actors in pursuit of a common 

goal. An structure is proposed to describe the nature of these interactions, and a methodology to 

model user behaviour based on the tasks and goals supporting a theme is proposed. The 

methodology is used to analyse the requirements of a domestic IoT system, leading to the 

implementation of a demonstrator system, and a study to validate the method. 

This research posits that user experience should inform IoT system design to prevent 

misunderstanding of its purpose.
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HTTP POST: An HTTP request to publish information to a linked resource. 

IoT: Internet of Things. 

IP: Internet Protocol. 

MQQT: Message Queuing Telemetry Transport, a message based protocol for low 

bandwidth communications.  

NAT: Network Address Translation 

RFID: Radio Frequency Identification 

SPC: Sensing, Processing and Communications, the enabling characteristics for the IoT 
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1 Introduction 

The number of things embedded with electronics, software, sensors, actuators and 

network connectivity has distinctly increased in recent years. These items can connect to with 

each other and exchange data, including mobile phones, vehicles, home appliances, health kits, 

industrial devices and city infrastructure to name a few, which are now collectively known as the 

Internet of Things (IoT). 

The Internet of Things has gained interest from the industrial, commercial and research 

sectors. Examples are found in applications ranging from industrial automation, city 

infrastructure monitoring and management, to healthcare and consumer electronics. In the latter, 

human interaction becomes a predominant feature. Specifically, home automation presents 

challenges for research in terms of how humans interact with these systems, and this thesis 

focuses in the ‘Domestic’ Internet of Things, to frame its research questions. 

For Human-IoT Interaction (HII), Stankovic (2014) defined three main challenges: 

• Understanding how humans can exert control in the IoT 
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• Identifying models of human behaviour 

• Determining how to introduce human behaviour into control methodologies 

In this regard, this thesis aims to explore aspects of humans integrating into a system with the IoT 

in pursue of common goals. 

1.1 Research Questions 

IoT research has been framed under a technology-centred approach in which data and 

communication strategies take the forefront. This paradigm often leaves human users in a second 

plane, even in those applications that are closely related to their human users, such as domestic 

applications.  As such, this thesis looks to answer the following research questions: 

 Why is there a requirement for a human based view of the IoT over a ‘tech-centred’ 

paradigm? 

 What is the nature of the Human-IoT Interactions (HII)? 

 How humans make sense of interactions with the IoT? 

 How can the IoT be characterised to support human activities? 

 How are activities described in the IoT? 

 Can Interaction design strategies be applied to model and develop a human-

centred IoT? 

A commonly accepted definition of the IoT establishes it as a “network of devices with 

sensing and processing capabilities” (Atzori et al., 2010). Nodes in a network share information, 

infrastructure and resources, which as will be discussed in the following chapters, allow objects 

to possess autonomic behaviour.  
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The IoT autonomous paradigm described above, assumes that things1 are organized into 

networks that can perform tasks to allow humans to offload some activities to the system 

(Kortuem et al., 2010), to improve quality of life (Wilson et al., 2015). This implies that the IoT 

requires interaction with human users in order to establish specific goals (Gaglio, 2014). As such, 

one can envisage exchanges between users and things which have social-like attributes (Atzori et 

al., 2014), to imbue this interactions with meaning (Barthel et al., 2010).  

From this perspective this relationship between humans and things becomes a ‘socio-

technical assembly’ which things become meaningful to their users through their functionality or 

their relatedness (Barthel et al., 2010). Farooq and Grudin (2016) argue that a symbiotic 

relationship exists between users and objects, moving forward from interaction to integration into 

a system in terms of their relationships, implying that meaning is built upon negotiation of 

activities between each humans and things. As such, the design and development of IoT systems 

should consider agency of things and humans, to understand “interdependence of human and 

non-human actors, and crafting meaningful interactions between the relevant actors in a 

context” (Cila et al., 2017). It is plausible, in this context, that ‘agency’ is not simply a matter of 

the human being in control and the things following the orders from the human, but rather than 

different stages of the interaction will see either human or things taking the lead. This means that, 

in new designs for IoT, “product designers are faced with new forms of material affordances” 

(Cila et al., 2017), and these affordances are often distributed across platforms and technologies. 

Moreover, these new affordances will go beyond their original conception (Baber, 2018). As such 

                                                 

 

1 In this thesis, things is italicised when referring to an object part of the Internet of Things. 
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“the designer is also responsible for considering the multiple overlapping relationships with 

other products and contexts while giving form and ascribing behaviour to a product” (Cila et al., 

2017).  

In The Design of Future Things, Norman (2007) argues that “as we start giving objects 

around us more initiative, more intelligence and more emotion and personality, we now have to 

worry about how we interact with our machines”, highlighting a requirement for the definition of 

new design patterns for Human-Computer Interaction.  

Arguably, many IoT applications have been developed with a heavier focus on the 

business case they aim to support, and less so on human factors. In a paradigm in which the IoT 

enables ‘smart’ objects, failure to consider people’s expectations and experience in their design 

creates misunderstandings about the object’s purpose, which potentially affects adoption.  

For example, IoT devices such as a smart salt grinder (Figure 1.1), arguably fall flat due 

to being unnecessarily smart. Such devices might be interesting conceits, but they might not 

address a real problem that requires a technological solution or do not make their functionality 

completely transparent to the user. According to its marketing literature, the designers of the 

device aimed to conceal a digital hub centred on a dining table in a connected salt shaker, 

hypothesising that the salt shaker’s ubiquity would aid in its adoption to fulfil a secondary goal. 

In this case, to be able to control different aspects of the household, such as lighting or ambient 

music. As such, it could be argued that, as intended by its designers, the device’s and user’s goals 

might differ. 
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Figure 1.1 A 'smart' salt shaker (source: mysmalt.com) 

 

1.2 The Internet of Things 

The term ‘Internet of Things’ (IoT) is widely attributed to Kevin Ashton (Ashton, 2009; 

Sarma et al., 2000), a founder of the Auto-ID Center in the Massachusetts Institute of Technology 

(MIT). The purpose of this research centre was to establish a way of tracking objects in the 

supply chain of retail and manufacturing industries, with the primary aid of radio-frequency 

identification (RFID) technology (Auto ID Labs, 2014). Since then, we have transitioned from 

simple, passive sensors that could track a device’s status, to active devices that can both receive 

and transmit data pertaining their location, status and environment, and take action to achieve a 

goal.  

Zanella et al. (2014) describes the IoT as a: 

“recent communication paradigm that envisions a near future, in which the objects of 

everyday life will be equipped with microcontrollers, transceivers for digital communication, and 

suitable protocol stacks that will make them able to communicate with one another and with the 

users, becoming an integral part of the Internet”. 
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Ultimately, the IoT will involve billions of devices are networked to collect and process 

information to provide insight and intelligence for its stakeholders (Rose et al., 2015). Today 

these devices include, for example, thermostats (Nest Labs, 2014); health monitoring scales 

(Withings, 2017) and light bulbs (Philips, 2014). It has been adopted in fields ranging from 

manufacturing (Bi et al., 2014); health (Islam et al., 2015); the home (Jie et al., 2013), and cities 

(Zanella et al., 2014) to name a few. 

Gartner, a market research firm, has stated that: 

“The Internet of Things, which excludes PCs, tablets and smartphones, will grow to 26 

billion units installed in 2020, and will generate incremental revenue exceeding $300 billion” 

(Gartner Inc, 2013). 

ARM Ltd., market leader and provider of the CPU cores running on 95% of smartphone 

devices and those found in close to 40% of IoT devices in 2016, forecasts that by 2035, over 1 

trillion devices, will power the IoT  (Sparks, 2017). 

Moreover, the Internet of Things field has rapidly grown to encompass different areas 

interacting with each other, creating opportunities and challenges not only for technology, but 

also on how users interact and adopt IoT enabled devices.  

This represents a rapidly expanding number of connected devices and use cases. Arguably 

the principal beneficiaries of the services provided by these networks have been the enterprises 

who are promoting these technologies as part of their business models (Fleisch, 2010; Makinen, 

2014; Regalado, 2014). In this regard this field could be considered an attempt to create a new 

necessity to drive and increase the market dominance of the biggest Internet companies aiming to 

create new business models and revenue streams by providing new ways of gathering data and 

monitoring processes in real-time (Sterling, 2014; Butler, 2016). 
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1.3 IoT paradigms 

From a research point of view, the IoT is not a novel concept, but a reorganisation and 

reutilisation of concepts in stablished areas of research including: embedded systems, wireless 

sensor networks, mobile, pervasive and ubiquitous computing, (Stankovic, 2014). Moreover, 

Bijker (2014) suggests that technology analysis can be framed within four units of study: the 

singular artefact, the technological system, the sociotechnical ensemble, and the technological 

culture. As such, we could derive different visions for the IoT, depending on the application and 

scope. From raw sensor data to the more complex interaction of devices, networks and users in 

these environments. Bijker framework posits that research on these units goes from the specific 

technological aspects (singular artefact), how they interact with others (technological systems), 

how they impact normative and cultural aspects (technological culture) and how they influence 

society (sociotechnical assembly). The latter vision focusing on the relationship between 

technology and users. As such, in contrast to the definition that considers the technical 

implementation aspects of the IoT Atzori et al., (2010) define three converging visions that also 

considers three types of interactions in the Internet of Things in terms of: the objects (‘things’), 

the network (‘internet’) and the semantics that give meaning to the interconnection of networked 

devices in this environment to their human users. Thus, a broader view of the IoT should consider 

both the underlying technologies that drive it, the context of operation, the relationships amongst 

devices and users, and the purpose of these communication exchanges. This thesis focuses not 

only on the technical system, but on the ‘ensemble’ formed when humans interact with the IoT, as 

will be discussed in the following chapter. 
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1.3.1 Humans in the loop 

This thesis considers IoT systems in which humans are the main stakeholders, and focuses 

in the human-computer aspects of the interactions between system, objects and human users. 

Miorandi et al. (2012) argue that device interoperability is required for a system to be able 

to ‘reason’, postulating that ‘reasoning’ is a result of the distributed cooperation between the 

“system’s resources and the user’s needs and expectations”. 

In contrast to development in Industrial or Infrastructure IoT applications, the number of 

IoT systems that require direct human intervention has increased over time with the development 

of applications addressing the consumer electronics, health care and home automation areas 

(Stankovic, 2014). In some cases, these applications expect some kind of user input and in others, 

the human becomes the beneficiary of its services. Thus, the human becomes part of the IoT 

system, and could be considered as another node in the network (Nunes et al., 2015). As 

mentioned in later chapters, one characteristic of an intelligent agent is defined by their ability to 

interact with other agents to reach their delegated goals. Atzori et al. (2011) suggests that the 

interactions of human and things in the IoT could be considered a social organisation, producing 

mutually beneficial relations of agents that collectively create a ‘society of smart objects’. 

Analogous to Minsky’s (1988) definition of a ‘society of mind’, where agents interact with 

others, performing actions that could be described as cognitive, the interaction of ‘things’ and 

their users establish a relationship that gains meaning primarily through this collaboration. In this 

regard, when objects support user’s activities in a proactive and positive manner, users attribute 

value and purpose to the device (Norman, 1993a). 

In his research Grey Walter (1950) focuses on how a simple robot with a limited set of 

sensors and actuators could attain its goal and appeared to possess intelligence.  Moreover, 
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(Brooks, 1991) described how intelligence is built incrementally, upon the aggregation of 

different activities and by delegating perception to different elements in the system. The net 

effect, according to Brooks, is that the representation of models is decentralised to the various 

components of the society of objects, each enacting their own particular role. 

Hence, in a system in which humans and users collaborate, it is worthwhile not only to 

analyse what the machine’s roles are, but also what do the humans expect and as a consequence, 

the human’s own roles in the system. 

When taking into account applications that are aimed to human users, the notion of 

interaction between the IoT and these users becomes an important consideration in the system’s 

functionality. For example, an automatic thermostat requires its user to provide a temperature set 

point in order to achieve its purpose of temperature control, and the human requires of the 

thermostat to achieve its desired comfort level. Actors take part of a collaborative endeavour to 

accomplish their tasks. Moreover, in the IoT there is an expectation of a degree of decision 

making or ‘smartness’ from its devices and platforms.  

Current trends in technical development have enabled the Internet of Things (IoT) to shift 

from passive objects (Smith and Konsynski, 2003), to things that actively engage with their 

environment, other things, and human users (Kortuem et al., 2010). From the simple Radio 

Frequency Identification (RFID) enabled objects used in the IoT’s origins, things have evolved 

into complex objects imbued with agency, intelligence and autonomy (Fortino, 2016). 

Commercial and enterprise marketing promises that between the IoT and the mobile Apps 

ecosystem, objects would be connected to each other, allowing for seamless service composition, 

effectively creating a ‘blanket of smartness’ that would make common activities easier for the 
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users (Bojanova et al., 2014). Market leaders, such as Intel, have promised ecosystems that would 

improve efficiency, safety, providing a richer experience to users, so that, devices  

“will become smart enough to function on their own, making real-time decisions, learning 

from their environment, and using that learning to improve performance” (Intel, 2017).  

Gartner Research (Gartner Inc., 2014) identifies a ‘hype cycle’ curve to characterise how 

technology is generally adopted and utilized (Figure 1.2).  

 

Figure 1.2 Gartner's hype cycle (Gartner Inc., 2014) 

Although this hype cycle is not generally accepted as a rigorous, scientific methodology, 

it provides a reference frame to put technology expectations and requirements in perspective. The 

research firm puts the IoT on peak phase of the cycle, and arguably for IoT with humans in the 

loop, the involvement of the user often influences their adoption and engagement. Kuniavsky 

(2010) argues that a system’s chances of getting through its hype phase is determined by how 

useful and meaningful its services are to its users. 
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1.3.2 Domestic IoT 

One common area of application of IoT technologies is that of home automation or ‘smart 

home’, with devices ranging from automatic temperature controllers, connected refrigerators, and 

automatic kettles and coffee makers to name a few. According to market research firm Parks 

Associates, in the U.S., user’s intention to purchase at least one ‘smart home device’ has 

increased from less than 25% of households in 2014 to almost 50% by the end of 2017 (Parks 

Associates, 2018). Notwithstanding their adoption in consumer electronics, it is also found that 

the percentage of consumers that experience some kind of problem with their ‘smart home 

devices’ is close to 35%, with problems ranging from connectivity and energy management, but 

primarily to “unresponsive or overly sensitive devices that create false alarms”(Connected 

Thinking, 2017). 

There are a number of established IoT commercial applications such as automatic 

thermostats and lighting that provide a range of opportunities to analyse how human users react 

to automation technologies, and on the other hand how these systems are implemented and how 

they are expected to support user’s activities (Wilson et al., 2015). Moreover, home automation 

aims to provide “better living experiences” (Gračanin et al., 2011), and as suggested by 

Mennicken et al. (2014) provide “peace of mind”, enabling social and environmental ‘good’ 

behaviour. In terms of complexity, domestic IoT provides multi-user environments such that 

different perspectives could be considered. Finally, domestic IoT provides a framework for 

emerging automation possibilities, as the tasks and activities that occur within the home 

environment are well defined, and in some cases, such as those tasks requiring extra effort or are 

tedious to the user (i.e. cleaning up), would be welcomed as candidates for automation, 

promoting adoption and meaningful experiences.  
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Rode et al., (2004) suggest that when using programmable home appliances (such as a 

heating system), the decisions on how and when to set them, is not done in isolation, but by 

considering the context of the appliance within the household dynamics. Takayama et al. (2012) 

found that satisfaction levels within home automation technologies were higher in systems that 

allow for clear and ‘organic’ connections to the home and to family members. Similarly, 

Bourgeois et al.(2014) proactively inform users of the impact of their washing machine routines 

and the best times to perform these activities to encourage engagement and participation. These 

studies suggest that users tend to think of the consequences of their decisions when interacting 

with these ‘smart’ appliances. Additionally, users consider them a collection of interconnected 

devices that affect each other. Providing information relating to the outcome of their goals also 

leads to a better understanding and engagement on these systems (Yang and Newman, 2013; 

Revell and Stanton, 2017). This thesis focuses on applications that fall within this domestic 

category, as it relates to a context in which humans are closer beneficiaries of the IoT’s outcomes. 

1.4 User’s expectation of the IoT 

The intelligent IoT vision is not a novel concept. Mark Weiser (1991) explored the 

scenario of ubiquitous computing available across all physical spaces, intermingling invisibly 

with our everyday activities, automating the most tedious, such as making coffee or toast, and 

supporting the more complex such as driving. 

In this context Stankovic et al. (2005) extended the notion of ubiquitous computing to 

consider the inclusion of sensors and actuators integrated into real-world scenarios and devices 

providing the capability to focus on the “physical, real time, and embedded aspects” identifying 

the notion as physical computing. Moreover, Rajkumar et al. (2010) extend the notion as cyber-

physical systems to consider the computing capabilities that “transform how humans interact and 
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control the physical world around us”. As such, this paradigm provides a foundation for a smart 

Internet of Things that suggests a networked organisation of agents performing automated tasks 

allowing humans to offload some activities to the system (Kortuem et al., 2010) to improve their 

quality of life (Wilson et al., 2015; Stankovic et al., 2005). 

Like Weiser’s, these definitions are focused on expectation’s placed upon the system, and 

less so on considering aspects of the interaction with the objects and environments from the 

user’s perspective and their role in completing goals. This thesis posits that users’ requirements 

are to be considered as an aspect for IoT design that promotes proactive behaviour both from 

users and devices, as will be discussed in further chapters. 

Norman (2014) observed that we have many things that make us smart, from writing to 

calculators and computers. However just because the technology allows for their ‘smartification’ 

through embedded sensing, processing and communication capabilities, it shouldn’t necessarily 

imply that an object would benefit from it, nor that having the object do the thinking for us would 

make life easier for people. The problem might well be that intelligence without understanding 

can be frustrating to the user. 

Norman (1993) argues that some technology has developed almost by accident, without 

much planning, allowing for an emergence of a machine centred view of technology, relegating 

users to a second plane and forcing them to behave in a machine-centred manner. 

The disassociation between a system’s and user’s goals has been analysed from the point 

of view of common appliances such as smart thermostats in which users fail to understand the 

system’s behaviour (Yang and Newman, 2013). Or in home automation in which systems often 

provide interfaces primarily aimed to technology early adopters, and less so to the ‘common’ user 

(Takayama et al., 2012). 
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In some applications it has been observed that the notion of ‘smartness’ is not necessarily 

used in the right context, nor completely well interpreted. Corporate marketing materials often 

make incorrect assumptions, such as the prevailing idea that  

“…its smart because you can control it from your mobile”.(Nest Labs, 2017) 

Similar quotes are usually found in advertising for internet enabled devices: smart coffee 

makers (Mr. Coffee, 2017), smart scales (Withings, 2017), or smart fitness trackers (Fitbit, 2015), 

just to name a few. In some cases, the devices add extra functionality by providing information 

such as the amount of water or coffee required to prepare a cup. However, relying on a software 

application on a smartphone as the main user interface, arguably moves any notion of intelligence 

from the thing to the mobile app. From an operational standpoint these systems could be 

considered devices with remotely accessed features with no autonomy that qualifies them as 

smart.  

The current iteration and roadmap established for the development of autonomous cars, 

provides a vision of ‘smart systems’ closer to what is generally expected from the IoT. In 

autonomous vehicles development five stages of automation are defined, ranging from the most 

basic at level 1 to a fully autonomous operation at level 5 (Litman, 2014). Level 1 enables vehicle 

features such as cruise control, that is, only the speed of the vehicle is automatically controlled, 

whilst the operation of the vehicle is the driver’s responsibility. At level 5, full decision making 

of the vehicle is expected in all possible terrain and driving conditions, with no user input in 

regards to vehicle operation. Parameters such as energy management and engine integrity are 

optimised, providing the system with a notion of self-well-being in order to maintain adequate 

operational standards. On the other hand, from a user’s perspective it is expected that benefits 
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such as safety, comfort and convenience are increased as a result of the device’s autonomous 

operation (Atzori et al., 2014b; Chi et al., 2007). 

Although the analysis of commercial applications is not the focus of this work, in order to 

provide a framework for a user centric IoT, it is important to consider how commercially 

available IoT solutions influence the perception that users have towards IoT systems. In this 

regard, Norman (1993) coins Grudin’s law as “When those who benefit are not those who do the 

work, then the technology is likely to fail or, at least, be subverted”, highlighting the problem that 

arises when the persons who design technology are not the same who use it. 

In contrast to what the consumer electronics market suggests, a formal definition of 

intelligent systems implies that in order to consider that they have a degree of ‘smartness’ they 

must possess operational mechanisms that allow them to take the appropriate actions, given the 

right conditions, in order to achieve a goal (Sheth, 2016a). Humans expectation of autonomous 

systems has been identified in different research initiatives, characterising it as: reliable (Lee, 

2008), transparent and understandable (Bellotti and Edwards, 2001), personalised and aware of 

their context (Perera et al., 2014) and will provide help when required (Augusto, 2007). 

According to Chilana et al. (2015) user experience in HCI influences system adoption, 

highlighting the requirement for providing system design and evaluation that “goes beyond-the-

user market adoption”. When considering ‘smart’ objects, the question would be how usability 

promotes the notion of smartness. As discussed in Chapter 2, agents pursue their goals. As such, 

there is an opportunity to reframe development of IoT systems in the context of human 

involvement, considering machine’s goals that relate or support the users’. 

This thesis posits that the user’s expectations and requirements should be at the forefront 

of IoT design, and that for it to be considered ‘smart’ there is a consideration to be made to 
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approach it from the perspective of a human-centred vision. This would support the definition of 

design requirements for the IoT, by identifying relationships amongst its nodes, both human and 

machine. In chapter 4 this thesis explores a means of conceptualizing the interaction of humans 

and things in the IoT in a social context in terms of the notion of IoT conversations (in which 

humans and objects cooperate to pursue specific topics in terms of common themes). 

1.5 Motivation for research 

For the different stakeholder groups involved in IoT development, the focus of research 

generally shifts from ‘things’ to ‘internet’, to data analytics, depending on what they are 

expecting to gain (Atzori et al., 2010). It has been claimed that from a purely business model 

perspective, data which can be analysed to gain insight into consumer habits becomes valuable, 

and thus these technologies have been mainly driven by market forces relating to data harvesting 

(Sterling, 2014).  

In (Aazam et al., 2014; Atzori et al., 2010; Gubbi et al., 2013; Ortiz et al., 2014; 

Stankovic, 2014) the principal challenges for the development and fulfilment of the IoT are: 

“1. Standardisation and interoperability between networks 

2. Data integrity 

3. Privacy, security, trust and Quality of Service 

4. Architectures 

5. Accessibility (openness and decentralisation) 

6. Energy and fault tolerance management  

7. Human in the loop, interaction and interfaces 

8. Thing and service discovery 

9. Semantics and context management” 
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All these foci present opportunities for research and development.  

Nonetheless, it has been argued that the main beneficiary of IoT systems ought to be the 

human user (Atzori et al., 2014a), who benefits from the insights the system provides. 

Notwithstanding, this is not always the case, as the focus of research and development has been 

on the technical aspects of the IoT such as communication protocols and frameworks, data 

collection and analysis and the application of these data in the context of machine learning 

solutions aimed to provide insights into aspects of the IoT solutions. Thus, this thesis focuses on 

Human-IoT interaction (HII) (Guo et al., 2012b), identifying how humans perceive and interact 

with ‘smart’ objects, and in how these things are able to convey their purpose. Given both their 

physical and data-centred characteristics, human interaction is defined and affected by these 

properties.  

The IoT provides an opportunity for creating objects and environments that can be 

considered smart. If these objects have characteristics that allow them to behave in an intelligent 

fashion, by providing purposeful information to the user, a more transparent and meaningful user 

interaction could be achieved. As such, the research of a methodology for the creation of 

intelligent things could enable new opportunities towards creating the vision of the IoT in which 

the devices are intelligent enough to provide answers to questions that users require. 

Current commercial IoT development usually follows the design and development route 

of data first then product, or product then data (Manyika et al., 2015). That is, development often 

aims to use data collected from a certain process or use an established product to collect data. 

Although this approach has produced successful systems, it can fail to consider the main goal of 

the product and what human activity is it supporting. In the case of human centred products and 

services, this approach often disregards user requirements over commercial functionality and data 
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harvesting processes (Sterling, 2014). Thus, one of the fundamental aspects of things would be 

their ability to support and extend human activities. In this regard, this thesis aims to analyse how 

these activities are characterised in terms of the goals human users aim to achieve, and whether 

smart objects are capable of complementing these activities. 

1.6 Contributions 

This thesis will address challenges faced by humans interacting with an Internet of 

Things, its functionality and its implications on user’s expectations. By framing the interactions 

as a collaborative endeavour, the relationship between IoT devices and their human users is 

explored by establishing a social-like communication, in which a common objective is expected, 

and how a negotiation occurs in this collaboration in terms of information exchange, akin to a 

conversation. By using this framework, a modelling methodology for meaningful interactions is 

developed and applied to demonstrator systems. 

As such, this thesis presents the following contributions: 

a) A vision of the Internet of Things in which humans are the main beneficiaries of 

the services it provides, and as a consequence, they are considered nodes in the 

network alongside things. 

b) An exploration of the relationships found amongst actors in the IoT, analysing the 

system as a social-like infrastructure, in which nodes collaborate according to their 

own role towards the fulfilment of the system’s purpose.  

c) A reassessment of the interactions amongst IoT nodes as theme-framed 

conversations between social actors (that is, entities which can be described 

through their social-like characteristics such as their relationships and 

trustworthiness). 
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d) A method for analysis of interaction and design for a human-centred Internet of 

Things, leading to the repurposing of goal and task based methodology, showing 

how it is applied to the design of an IoT system, providing the basis for device and 

system augmentation in terms of its sensing, processing and communication 

capabilities. 

1.7 Thesis outline 

This thesis is comprised of ten chapters, including the introduction chapter and a 

discussion chapter. The following is intended to provide an overview of the organisation of this 

document. 

Chapter 2 A Techno-centric IoT, presents the background and literature review on the 

fundamental concepts on which the Internet of Things its based, and the applications it enables. 

From a technology perspective, the actors involved in these networks are introduced. A vision of 

‘smart’ systems is presented from the perspective of its enabling technologies and the notion of 

agency.  

Chapter 3 Humans Interacting with IoT, showcases challenges faced in Human-IoT 

interaction and usability focusing on how the IoT presents its features in terms of its physical 

attributes and its data-enabled characteristics. This chapter provides a background in sense 

making and the mental models required to interact with devices in an IoT network, and the 

affordances they present to their users. The functionality of the IoT is described in terms of the 

tasks and goals, and how they are aligned to the user’s expectations. 

 

Chapter 4. A Social Internet of Things, explores the implications of analysing Human-

IoT interactions with the aim of bringing together user requirements and the technology-centric 
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IoT, grounded by a common purpose or goal. By analysing the concept of purpose in terms of the 

system’s goals and how they are achieved, this chapter establishes meaning in terms of the 

relationships and interactions between humans and things. The notion of a conversation is 

proposed as a paradigm for information exchange amongst participants in the IoT system,  

 

Chapter 5. Designing for a Human-Centred IoT, focuses on proposing a framework to 

model Human-IoT interactions in the context of the previously defined social-like and 

collaborative environment. A modelling methodology that promotes a user-centred approach is 

presented, highlighting user requirements and goal support by analysing human tasks and 

machine actions. 

 

Chapter 6. Understanding Topics and Themes in the IoT, aims to analyse the 

challenge that actors in an IoT system face in making sense of their interactions to achieve the 

expected goals. To conceptualise and explore these notions, an experiment was developed to 

study how humans understand and interact with a simple ‘smart environment’. 

 

Chapter 7. Modelling an experimental testbed, presents an application of the modelling 

methodology proposed in Chapter 6, providing an analysis of the tasks and goals in a controlled 

environment. 

 

Chapter 8. Implementing an experimental testbed. Following the application of the 

modelling methodology, this chapters shows how an IoT system is developed based on 
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requirements defined through the methodology, and the connectivity and middleware platform 

requirements.  

 

Chapter 9. People using the experimental testbed, focuses on analysis of data collected 

with the demonstrator system and a group of participants. Results of this analysis are presented in 

terms of the statistical tools, and their relation to the previously discussed concepts of a theme-

based collaborative IoT. 

 

Chapter 10 Discussion, presents a summary of the thesis contributions and reframes the 

research questions in terms of the outcomes of the work presented, and finally, future work that 

this research could enable.



 
 

2 A Techno-Centric Internet of Things 

2.1 Introduction 

The IoT has been primarily aimed to commercial, industrial and infrastructure 

applications, in which human participation is minimal. This chapter provides an overview of the 

Internet of Things technology context to analyse its development and requirements definition 

with the aim of identifying the underlying technologies of the IoT. By applying a technology-

centred vision of the IoT, that is, exclusively focusing on its enabling technologies, this chapter 

analyses how the IoT has been adopted to provide solutions that support activities ranging from 

infrastructure, manufacturing and health. In the context of this thesis research questions, in order 

to be able to acknowledge a human based vision of the IoT, a discussion of the underlying 

technologies of the IoT is required to highlight their influence on how humans interact with these 

systems.  

2.2 A data-centric approach in the IoT 

Some parts of this section are taken from the paper “Towards Theme Discovery Paradigm 

in the Internet of Things” by Cervantes-Solis, J. W., & Baber, C. (2016), published in the 

proceedings of the Contemporary Ergonomics and Human Factors 2016 conference. The author 

of this thesis developed the concepts presented in the work, conducted the research and wrote the 

paper with the support of Prof Baber. 

Arguably, current commercial and industrial deployments of IoT systems are interested in 

the collection of data towards the fulfilment of specific business models (Sterling, 2014). 

Accordingly, it is not unusual for communication exchanges between things to occur at the data 

level, and for a digital representation of the object to be the main point of contact with the user, 
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rather than the physical thing itself. In the Industrial IoT the concept of ‘digital twin’ has been 

adopted to express its data sharing properties through the use of APIs in contrast to interacting 

with the physical objects (Schroeder et al., 2016). Hence, things become extended digitised 

versions of themselves (Shin, 2014), presenting their features not only in terms of their physical 

attributes but also in of the data they collect and process, i.e., barometric pressure, temperature, 

power consumption; or by describing their function, i.e., altimeter, thermometer, electricity meter. 

As objects become smarter, so their functions become increasingly abstract (e.g., rather than 

monitoring temperature a digital thermostat might be making decisions about paying for 

electricity or saving energy). Thus, in a data-centric level of abstraction, where physical objects 

could disassociate from their data properties, information exchange might not be completely clear 

and straightforward to the user, leading to confusion and misunderstanding of the intended usage 

or expected outcome of the interactions (Yang & Newman, 2013). 

In terms of research efforts and enterprise applications is a drive for Things to become 

smarter (Singh et al., 2014), more aware of their environment and to have the means of engaging 

in interactions with other things, and their human users, to provide services for the latter.  

These devices are being increasingly adopted by humans into their everyday activities 

(Swan, 2012), for example as wearable health trackers (Figure 2.1) or in home automation 

(Figure 2.2). 
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Figure 2.1 Fitbit wearable health tracker (source: fitbit.com) 

 

Figure 2.2 Nest Hello smart doorbell (Source: www.nest.com). 

2.3 Things 

Things in an Internet of Things environment are the most basic entity in these systems 

(Kortuem et al., 2010), and it is through their interactions with other things and their users that 

the IoT fulfils its purpose. 

The International Telecommunications Union describes the Internet of Things as: 
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“a system comprised of devices with the capability of being able to communicate with 

other devices, in any given environment and regardless of its temporal situation” (Peña-López, 

2005). These capabilities would be implemented through technologies that enables them to be 

tracked, always connected and to possess a degree of autonomy. Focusing on the prevailing 

concepts of ubiquitous and next generation networks, the ITU based its definition on the 

availability of enabling technologies that allow devices to exist within the three dimensions as 

shown in Figure 2.3. 

The most basic representations of the IoT adhere to the possibility of everything 

connected into the internet, enabling the notion of immediate data sharing, communications 

protocols and relationships between nodes involved. Things in the IoT are defined by the IEEE as 

any physical object that is connected to the Internet, and capable of interacting with the physical 

world (Minerva et al., 2015). Thus, the concept of thing has been adopted to consider any 

physical object that can be networked, from kettles, plant pot monitors, toasters, and weight 

scales to industrial robots, cars and traffic lights.  

Sterling (2005) extended the ITU definition by introducing an object’s capacity of being 

tracked through space, defining the physical object as:  

“…the protagonist of a documented process. It is an historical entity with an accessible, 

precise trajectory through space and time”. 

Sterling named this concept, SPIME, a contraction of ‘space’ and ‘time’. Furthermore, 

Atzori et al. (2010) imbues this objects with a ‘visibility’ property, allowing them to be identified 

and addressed in the network, enabling the “traceability and awareness of [their] status”. 
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Figure 2.3 The ITU vision for the IoT (Strategy and Unit, 2005), considering three main dimensions for 
devices to exist: in any time, place and with other things. 

As per the definitions, objects would be able to communicate with other similar objects, 

and keep a record of their activities. Notwithstanding, these descriptions fall short of defining the 

possibility of the things themselves being capable of tracking their own status, or in the context of 

the vision of a ‘smart’ IoT, to possess a degree of autonomy that allows them to make their own 

decisions to act upon their environment. In terms of computing, these traits are fulfilled when 

considering the possibility of embedding processors onto the objects to support state machine 

behaviours. 

These definitions focus on analysing networked objects in terms of their functionality and 

how they connect to other objects, and less so on their relatedness to human activity. As posed by 
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the research questions, the aim of this thesis is to frame things in terms of how they relate to 

humans, creating a social assembly. 

2.4 Sensors, processors, and communications: enabling autonomous behaviour 

The attributes that functionally define a thing, are implemented with embedded sensors, 

processors and communications. 

Current technology capabilities in silicon development and manufacturing provide for 

technology ecosystems that facilitate the notion of ‘embedded intelligence’ for potentially any 

physical object, as mentioned in chapter 1. Thus, a kettle could conceivable become a ‘smart 

kettle’ that knows when it is used, decides when it is the best moment to be descaled, and 

communicates its goals and expectations to its user or manufacturer.  

As with any modern computing device, embedding processors and effectors (sensors and 

actuators) enable the opportunity for the implementation of objects that follow a sequential state 

machine behaviour. This provides a system with a view of itself and the environment, represented 

through a set of states and its sequences, the conditions produce changes of state, and the actions 

that the system could take (Wagner et al., 2006). In contrast to combinatorial systems in which 

outputs are a direct and immediate result of the inputs, a sequential system has memory that 

allows it to keep track of previous and future states, in terms of the status of the internal inputs 

(instructions or conditions) and outputs (Mano, 2012) as shown in Figure 2.4.  
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Figure 2.4 A Sequential Digital System 

Providing a mechanism to determine states as per the internal and external conditions of 

the system, allows for behavioural modelling through the use of state diagrams, that highlight the 

state transitions, inputs and outputs. This state-based paradigm allows for the representation and 

implementation of systems that are capable of following algorithms and taking decisions on their 

own in order to attain their purpose, as observed in modern computing devices. Thus, state 

diagrams are commonly used to model the behaviour of event-driven computing and software 

systems in terms of its status as characterised by its inputs and outputs (Mano, 2012). 

These computing capabilities found in things, allows them to make decisions according to 

external and internal stimuli, making them capable of reacting to other things. The scenario of 

interaction with other similar devices allows a ‘technological system’ analysis, based on the 

devices’ technical capabilities, such as those characterised by data-centric applications as 

discussed at the beginning of this chapter. 
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Clark et al. (1991) analyse human communication in terms of coordinated collaboration, 

taking place in turns, influenced by context and regulated by commonalities. As such, we could 

envision a ‘sociotechnical’ frame for the IoT in which things and humans could operate in a 

collaborative environment, as will be discussed in the following chapter. 

2.5 Smart objects 

The vision of the IoT is considered to allow for the creation of ‘smart’ environments 

where users benefit from systems that, by collecting, processing and sharing data from different 

sources, can learn and infer their actions and activities (Kortuem et al., 2010). It is generally 

considered that by the process of instrumenting objects, this imbues them with ‘smartness’. As 

such, the concept gave rise to the adoption of terms such as ‘smart manufacturing’ or ‘smart 

cities’ (Miorandi et al., 2012). Arguably, the concept inherits a confusing connotation in the sense 

that it becomes a marketing term, in contrast to the system’s real functionality. Other applications 

have also incorrectly applied the concept to devices that have some form of connectivity to a 

smart phone. 

Modern IoT applications, such as those that enable the Smart Cities ecosystems (Ganchev 

and O’Droma, 2014) strive to provide a form of ‘blanket’ intelligence, with the ability to cover a 

multitude of aspects and in turn provide a sort of omnipresent intelligence derived from the 

collective intelligence of different IoT nodes (Anantharam et al., 2013). 

Smart systems have been analysed through the notions of context aware computing 

(Schilit et al., 1994), pervasive systems (Satyanarayanan, 2001) and ambient intelligence 

(Augusto, 2007). These fields consider scenarios in which the system effectively is aware of 

user’s requirements, depending on their context and needs and thus provide a more complete 

notion of what constitutes as intelligent.  
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2.5.1 Agents 

As mentioned in section 2.4, the notion of silicon embedded into physical objects, not 

only provides the framework for the creation of ‘augmented’ versions of themselves through 

Sensing, Processing and Communication (SPC) capabilities, but could be considered to have 

some decision making abilities, and interact with the environment accordingly.  

For Wooldridge (2009) an agent is an entity “acting autonomously, in an environment to 

achieve its delegated goals”, operating continuously in a sense-decide-act loop, and becomes 

intelligent when extended with “reactivity, proactiveness, and social ability” traits. Hence, 

intelligence in these entities would require them to act upon dynamic environments responding to 

its changes; working in a “goal directed behaviour” that is systematically working to achieve 

their goals recognising opportunities; in cooperation and coordination with other agents, often 

requiring to negotiate diverging goals. The notion of agency provides a framework in which 

objects are imbued with the required properties to enable their capacity to capacity to act, 

physically and cognitively.  

Kelly (2017) applies the term ‘cognification’ to devices when they are imbued with 

sensing, processing and communication capabilities (SPC). As suggested Wooldridge, this 

implies that ‘cognified’ could be considered to provide the attributes necessary to consider things 

as agents. Moreover, improvements on SPC characteristics enable technological properties that 

lead to more complex and richer data that allow for machine learning and AI solutions that 

arguably embed higher degrees of intelligence and decision making (Sezer et al., 2018) 

In commercial applications it is often the case that IoT devices are referred to as ‘smart’ 

as a general description of their functionality. However, it is common to find that these objects’ 

capabilities rely on their connectivity to a third party, such as an app or hub that provides a 
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service such as data analytics, monitoring or control. That is, whatever notion of ‘intelligence’ the 

device possesses, it is provided by an intermediary platform known as middleware as discussed in 

section 2.9. 

2.5.2 Goals 

A system’s goal is defined by what it needs to achieve and the processes and actions it 

takes to do so. Norman (2002) characterises a goal as a final state, reached by a set of actions, 

and suggests an analysis of the environment (or world) before and after the actions were taken. 

As such, this interpretation involves an understanding of the actions, the world’s states, and a 

consideration of whether the expected goal was achieved by evaluating the changes in the world.  

Consequently a notion of goal completion must be addressed. ‘Utility’ in agency literature 

refers to a metric representing how ‘good’ is the state in which the system is at any given moment 

(Wooldridge, 2009). It is used to provide a function to measure of how close the agent is to 

completing its delegated goal. Accordingly, an agent looks to optimise this function given its 

environment, its parameters, and other agents to complete its goals. If a utility function leans 

towards the expected value, it is said not only that it’s reaching its goal, but also, that by acting 

according to its goal, it is providing a service of value to a user or other agent.  

2.5.3 Multiagent systems in the IoT 

Wooldridge (2009) considers intelligent agents when they can be “reactive to respond to 

the environment in a timely fashion”;“proactive, to take initiative to realise its goals”; and show 

social traits such as “cooperation and negotiation to satisfy these goals”. 

When considering networks of things, it is desirable to approach the problem of 

interaction and intelligence in the IoT from the perspective of how networked agents act in 

unison, and the processes by which they reach agreement.  
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Olfati-Saber et al. (2007) argue that a consensus protocol, or algorithm is required to 

provide the framework in which agents exchange information in order to reach agreement on 

what they are doing. In multiagent systems a utility function (Wooldridge, 2009) measures and 

ranks alternatives for the system and its agents, providing stopping parameters to determine that a 

goal has been reached, and no further action should be expected. 

Jha and Lehnhoff (2014) posit how ‘smart’ devices can engage in a conversation with 

each other and learn from others, arguing that such a framework is required for the IoT. The 

authors stablish a set of challenges for the realisation of an ‘intelligent’ IoT that supports such 

conversations. Among those are:  

 Realising an architecture for heterogeneous IoT, allowing for the cross communication 

of different devices under different protocols. 

 Adaptive systems, allowing for reconfiguration of devices at a hardware and software 

level 

 Network bandwidth 

 Scalability 

 Security 

 Autonomy 

2.6 Networks 

Things in the IoT were originally conceived such that they were able to connect to each 

other using established internet protocols and infrastructure. Thus, for example, protocols like 

TCP/IP (Transmission Control Protocol/Internet Protocol) were used for data routing and device 

addressing, and Wi-Fi for wireless physical connectivity (Gubbi et al., 2013). As their 
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development and adoption increased, these protocols evolved into specialized versions focusing 

on energy consumption, data bandwidth and signal range, such as 6LowPAN (Internet Protocol 

Version 6 over Low Power Personal Area Network) to name a few (Gaglio, 2014). Although these 

protocols address how devices connect to each other, they rely on a data-centric vision, and often 

don not provide a description of the nature of the connections. That is, how devices connect to 

each other in similar groups or clusters, where they connect, the context of the connection, and 

how tight or loose the connections. In the context of this thesis, network properties relating to the 

connections take precedence over their technical implementation. As will be discussed with more 

detail in chapter 3, the human-things system forms the basis of analysis of interaction in the IoT, 

and thus, this research considers the networking capabilities in its more broad sense, providing 

descriptions in terms of the IoT system’s nodes, topology and links. Thus networks can be 

characterised by features such as the cliques they form or the structure of their data and 

connections, and measured by metrics such as their centrality (their distance from the centre of 

the network) or degree of membership (how tight or loose are nodes from the network) 

(Newman, 2010).  

These metrics show how ‘network-enabled’ characteristics can be applied such as, 

homophily (a node’s tendency to network with other similar nodes), membership or clique 

association or propinquity (a node’s tendency to form networks with geographically close nodes) 

(Scott, 2012). Analysing the IoT from the point of view of these attributes support the view of the 

IoT as a collaborative endeavour amongst its nodes, as will be discussed with more detail in 

chapter 3. 
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2.7 Distributed systems 

Van Steen and Tanenbaum (2016) have defined a distributed system as “a collection of 

autonomous computing elements that appears to its users as a single coherent system”. Nodes in 

the system connect to each other to form networks, each node acting autonomously, but 

collaborating to attain a common goal as a collective. Moreover, nodes are usually not limited in 

size, scope, complexity, topology and their hardware and software implementations. As defined 

in section 2.9 , in these networks a layer on top of devices is in charge of organising and 

managing nodes in the form of middleware applications. Nodes collaborate exchanging messages 

to coordinate and synchronise, and to manage group membership, authentication and security.  

Distributed systems allow for service composition (Ikram et al., 2015; van Steen and 

Tanenbaum, 2016) that can be distributed across different nodes, regardless of their physical 

location. Given their complexity, distributed system design often adheres to the following 

principles (Coulouris et al., 2005):  

 resource sharing to take advantage of each device’s capabilities in a networked 

environment;  

 distribution transparency to appear to the end user as a single, coherent system; 

 openness, to allow for interoperability, portability and extensibility, 

 scalability, addressing size, communications, resource distribution, and 

replication.  

Distributed computing has been applied to high performance computing, information 

systems, and pervasive systems, of which the IoT is a derivation. In IoT ecosystems, computing 

and physical resources (sensors and actuators, as introduced in chapter 1 for cyber-physical 
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systems) are distributed across the environment in pursuit of a common goal (Tracey and 

Sreenan, 2013). 

As mentioned above, Internet of Things development has benefited from the guidelines 

found in distributed system development. Notwithstanding, in terms of resource allocation not 

much has been explored, as many applications focus on providing a single, rigid service (Colistra 

et al., 2014). As such, nodes remain fixed on their same task contributing to a larger application.  

Colistra et al. (2014) analyse the problem of resource allocation in the IoT, exploring the 

possibilities for opportunistic networking, enabling new services and applications through the 

redistribution of idle resources. In this context Colistra et al. introduce the notion of ‘task groups’ 

in which different things perform similar tasks, and a server manages their allocation and 

functionality. These things would be identified in the server in terms of their digital counterparts, 

or virtual objects (VO). As such, if a particular signal needs to be measured (i.e. barometric 

pressure) and more than one node can provide such data, the server would issue a command to 

the relevant node, in the appropriate location and ‘task group” as shown in Figure 2.5. More 

importantly, the middleware layer provided by the server must negotiate how and which of the 

nodes are used to make sure that the system goal is achieved. This concept posits the possibility 

of defining an object’s purpose in terms of what is capable of doing (tasks) in contribution to the 

completion of a purpose (goal), as will be explored in the following sections.  
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Figure 2.5 'Task groups' reference model (Colistra et al., 2014). 

2.8 Centralised and decentralised topologies 

In some cases the nodes within the same network might not be aware of the functionality 

provided by members of the same system and due to a highly heterogeneous IoT development in 

terms of protocols an technologies, different networks (and nodes) exist without being aware of 

each other (Khalil et al., 2014). 

Moreover, these devices would collect data about their environment or their users without 

the latter being aware of it. This creates a notion of an invisible and opaque system that might be 

following its own agenda, without the user’s participation, preventing them from building the 

required mental models to properly engage with the IoT system (Schmitt et al., 2011). 

In the context a single solution IoT applications, such as smart fitness trackers, it is 

common that their main interface is through a built-for-purpose app, usually within a mobile 
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device. The use of mobile apps as one of the main methods for UI in the IoT has been attributed 

to: 

 The market penetration of mobile devices (Kleiner et al.,  2015), 

 Technology adoption cycles (early adopters as drivers of technology) (Kleiner et al., 

2015; Gartner Inc., 2014), 

 The availability of sensors on board mobile devices (Mayer et al., 2014; Carlson & 

Pagel, 2014). 

The effect is that current IoT architectures are often considered isolated solutions (Atzori 

et al., 2014b) that fulfil one particular use case aligning to a company’s value chain or business 

model. In some cases, the network has a communications hub in charge of ensuring the 

interoperability of its sensors and actuators (nodes). For example, the nodes in such a topology 

could be implemented with Zigbee or BLE (Blueetooth Low Energy) standards, whilst the main 

user interface could be implemented as a smartphone application, as illustrated in Figure 2.6. 

Additionally, to provide access to other Internet enabled services such as data storage or data 

analytics, an IP (Internet Protocol) interface is required. In applications that rely on mobile phone 

applications as user interfaces, it is common that a centralised node acting as a hub is required to 

handle communications with nodes and when required, to the Internet.  



CHAPTER 2  

43 
 

 

Figure 2.6 A common architecture for the IoT. 

An example of such a system is the Philips Hue lighting solution (Wang, 2013; Philips, 

2014), a wireless lighting system, comprised of connected lightbulbs and a smartphone-based 

controller app. Both lightbulbs and application connect to each other through a hub in charge of 

connectivity, and receiving and issuing commands. Other commercially available products exist 

that use a similar approach, including health (Withings,2014; iHealth, 2015), home automation 
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(Nest Labs, 2014; Apple, 2015), retail (OnyxBeacon, 2015), and logistics (Welbourne et al., 

2009). The centralised topology illustrated by Figure 2.6 has been previously analysed (Jara et 

al., 2011; Ur et al., 2013; Mennicken et al., 2014; Xu et al., 2010; Zanella & Bui, 2014). This 

approach facilitates connectivity by means of  well tested technologies, such as IP (Mainetti et al., 

2011) and therefore, allows the realisation of the combined technologies that comprise the IoT, 

providing an interface to middleware solutions that manage interactions within the network. 

However, the technical interpretation of the IoT often leaves users out of the development 

process, disregarding their own goals and expectations from the system, diverting from the notion 

of a collaborative environment (Yang and Newman, 2013). Moreover ecosystem fragmentation is 

preponderant, and it seems that for every new IoT related product or services, the common 

approach is to build  its own architectures and interfaces, maintaining the trend of isolation 

amongst IoT systems (McKinsey & Company, 2015). 

In terms of ‘smart’ objects, the central node arrangement seems to contradict the notion of 

autonomous objects that perform ‘smart’ activities on their own accord, relegating them to 

passive entities that fulfil their functions as assigned by another object, or central node (Ding and 

Jin, 2013). Figure 2.7 shows a an IoT in which a central node has the responsibilities of enforcing 

rules, collect data from IoT devices, issue commands to the system’s actuators, and interfaces 

with the user. Arguably, this arrangement places a barrier between users and devices, which often 

creates a disassociation of the object’s functionality from the user’s perspective. 
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Figure 2.7 A centralised node architecture for the IoT (Cervantes-Solis et al. 2015). 

Moreover, these centralised topologies rely on the existence of things that are in charge of 

processing data, but one drawback of centralised networks is the possibility of bottleneck 

problems in terms of data, and it has been shown that switching data processing to other parts of 

the network provides advantages in terms of resource utilization, communication overheads (Yue 

et al., 2012) and offloading of processing power (Satyanarayanan, 2014) , whilst communicating 

only what is more relevant to the application at hand. For this research the perspective of 

approaching the IoT at a device level as opposed to a system wide vision, allows for the 
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consideration of more direct relationship of users and automation, without an intermediary such 

as hub. 

Shifting data processing from the centre of the network (data centres or hubs) to the Edge 

of the Network, with the addition of making the data available to all individuals, would open very 

interesting interaction and behaviour opportunities (Shi et al., 2016). For example, sensors which 

might be in an inactive state or idle, could activate to pursue the system’s utility function. In this 

fashion, a node could be repurposed according to the particular task.  

These challenges have been analysed in terms of Task Allocation and how consensus is 

reached (Colistra et al., 2014), by means of the semantics involved in message and action 

communication. However, it is still dependant on the particular function and technical 

implementation of each node, and this model is not fully realised in current IoT systems.  

The concept of an IoT system capable to provide meaning, not from the centre of the 

network, but by partially shifting this process to the node, enables the notion of systems in which 

humans could interact with this nodes to obtain knowledge from the system, whilst minimising 

the obfuscation present in current systems due data communication channels invisible to the user. 

As such, a decentralised IoT topology can be proposed, where the system’s function 

would be distributed amongst nodes in order to accomplish the network´s main goal, enabling a 

direct relationship with users (Figure 2.8). 
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Figure 2.8 A Decentralised architecture for the IoT. 

This model could be extended to pursue the investigation of scenarios in which each 

individual of the network enforces their own rules and the system’s according to the application’s 

context, and its overarching purpose.  

To illustrate this concept, let us consider three different example IoT systems: 

 A fully instrumented coffee mug, fitted with a 3-axis accelerometer and a force 

sensitive sensor. Thus, it is able to detect when it’s lifted, how it’s lifted, and whether 

it’s full or empty. 

 Room ambient monitoring. Fitted with light, temperature and humidity sensors, and 

connected to the heating system to determine and act upon optimal living conditions 

 A sleep monitoring system made up of accelerometer and gyroscope sensors attached 

to the user’s pillow. 

Each of these systems would only be focused on solving a particular need, but if their 

services could be unified, new functionality could emerge, such as: 
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 Correlate coffee consumption to sleep patterns 

 Correlate sleep patterns to a room’s ambient conditions 

 Modify heating or lighting conditions when its user is about to wake up 

 Using the mug´s accelerometer to detect its user propensity to motor diseases 

 Using the ambient monitoring system´s humidity and temperatures sensor to infer on 

the room’s occupancy status 

In effect, the individual sensors and actuators, with their corresponding data and actions 

could be combined and correlated for new meanings and purposes. 

As observed in Figure 2.7 and Figure 2.8, the relationships between the system’s 

participants can be characterised in terms of type of interaction expected and information shared. 

This semantical characterisation will be explored with more detail in Chapter 3, however it posits 

how roles are defined in terms of interactions, and how are those roles allocated to determine 

what each of the participants ‘responsibilities’. 

In terms of distributed architectures such as the one found in the IoT, Tracey and Sreenan, 

(2013) propose a data model aiming to provide service level abstractions, highlighting the nature 

of the data exchange provided by each node. Thus, nodes have roles according to their resources. 

For example, some nodes are capable of sending their own sensor data, whilst others have the 

function of relaying or storing those data. Nodes with more advanced computing resources could 

provide results from data processing or aggregation.  

Moreover, (Colistra et al., 2014) present a semantic description aimed to provide a 

mechanism for resource allocation, making a differentiation between sensor parameters, 

resources and services, and introduces them as modules supported by the application’s 
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middleware. Thus, node roles are characterised in terms of their capabilities and their 

involvement in fulfilling the system’s purpose, which can be described as the tasks required to 

complete goals. 

2.9 Middleware 

Often, things in the same physical or logical networks belong to the same application, 

forming an ecosystem (Fortino, 2016). Accordingly, infrastructure to support this Ecosystem of 

Things (EoT) needs to be in implemented (Mineraud et al., 2016). Usually known as 

‘middleware’ or ‘IoT Platform’ this refers to the collection of software and hardware used to 

manage all elements of an EoT. Network topology tends to be heterogeneous, with devices 

distributed across different domains, or even physical locations. Thus, Razzaque et al. (2016) 

define middleware as the platform that provides “common or generic services to different 

application domains”, providing a software layer easing development through common 

programing interfaces such as APIs (Application Programming Interface). Although this allows 

for organised and well-defined interpretation of interactions (Fersi, 2015), the concept implies a 

rigid approach network activity by hardcoding the interaction of devices or platforms, arguably 

hindering the possibilities for agentic behaviour from the IoT.  

To provide more flexibility on application development and insights from IoT data, 

middleware platforms have been developed to provide an ‘intelligent’ approach, in which data 

interactions would be able to provide insights on user or device behaviour. As such, machine 

learning, semantic and cognitive based platforms (Perera et al., 2014; Sheth, 2016b; Sabou et al., 

2005) provide a ‘smart’ approach to the IoT, a notion that will be explored in the following 

section. 
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Aazam et al. (2014) propose different layers in an IoT architecture differentiating between 

the ‘perception’ layer (where sensors, or things, reside), to the ‘Network and Middleware’ layers 

that manage and connect devices. This identifies both the infrastructure required to communicate 

and gather “knowledge” from the things or technical implementations of the Data Link, Network, 

and Transport layers of the Open Systems Interconnection (OSI) model; and the control structures 

to mediate and process the collected data (OSI model’s Application layer) (Tanenbaum, 2002). 

From a human centric perspective, middleware applications have focused on how the information 

obtained through these networks could provide ‘smarter’ applications that support the association 

of information to enable decision making capabilities (Gyrard et al., 2016).  

Nevertheless, middleware often focus on providing infrastructure services for the EoT in a 

‘technical system’ framework as defined by Bijker (2014), at best enabling data-driven user 

interfaces that provide information to users, but do not address usability issues.  

2.9.1 Messaging 

In order for distributed system to coordinate and manage its resources, messaging 

strategies are required. Data frames are passed between devices and routed sources to the 

appropriate destinations by a managing module (van Steen and Tanenbaum, 2016). A common 

messaging architecture is that of ‘publish-subscribe’ in which objects are only messaged if the 

subscribe to a particular type of data stream.  

MQQT (Message Queuing Telemetry Platform) (MQTT.org, 2017) is a messaging 

protocol commonly used for the IoT, and it uses the concept of ‘topic’ to identify messages that 

are available to objects’ according to their subscription status. In this way, objects can only 

acknowledge and respond to messages belonging to their subscribed topics. Moreover, the 

protocol ensures that messages are delivered by queuing incoming messages in a buffer, handling 
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possible connectivity issues. As will be discussed in following chapters the notion of topics to 

communicate commonly agreed messages provides the basis for a collaborative IoT. 

2.9.2 Flow based programming 

As discussed, middleware platforms are in charge not only of managing devices, but also 

on coordinating distributed resources across physical and virtual locations. The status of these 

resources provide a description on the network’s state, linking objects and their services. 

Data flow platforms have been used to model the connections in network’s resources 

(Blackstock and Lea, 2014). Originally developed to handle programming logic for parallel 

processors (Johnston et al., 2004), they provide a graphical approach to represent “data inputs, 

outputs and functions…connected with arcs that define the data flow between components” 

(Blackstock and Lea, 2014). 

This paradigm supports a simple and intuitive approach to programming multi-resource 

systems, modelling these systems as a series of asynchronous processes that react to events, 

providing. As such, this vision provides a state-based system description of inputs and outputs, 

and the event driven processes that describe their behaviour (Johnston, 2004). 

For the IoT, the Web of Things Kit (WoTKit) (Blackstock and Lea, 2012) and IBM’s 

Node-RED (O’Leary and Conway-Jones, 2017) have been developed to provide connectivity 

between hardware based devices and software APIs in a simple web based, graphical drag-and-

drop interface. Building blocks are known as ‘nodes’, the connections are ‘wires’ and the 

algorithm is referred to as a ‘flow’. Thus, components and their relationships are clearly 

identified in the system in terms of nodes and wires, and the graphical flow diagrams can be 

converted into code by an appropriate parser describing the list of objects and their connections. 
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Both WoTKit and Node-RED are built on javascript engines, and provide system descriptions as 

JSON (JavaScript Object Notation) objects. 

Figure 2.9 shows a generalised view of a flow based program. Input nodes are able to 

gather data coming from different sources such as devices (including sensor and actuators) or 

services through their APIs. These data could be processed by functionality provided by a 

separate node. Finally, a system control logic node aggregates and process data from the different 

sources through using the system’s rules and control logic, providing system services through 

output nodes. This final node is often used as the input for the system user interface in IoT things, 

or to provide API connectivity to other software applications.  

 

Figure 2.9 A generalised view of a data-flow program. 

Although flow-based program structure seems to emulate a sequential process, as noted 

earlier in this section, different nodes often operate concurrently, distributing tasks and processes 

in terms of passing data to the appropriate devices (both internal and external to the flow). 

2.10 Service discovery 

Parts of this section were adapted from the paper “Towards Theme Discovery Paradigm in 

the Internet of Things” by, Cervantes-Solis, J. W., & Baber, C. (2016), presented in the 

Contemporary Ergonomics and Human Factors 2016 conference. The author of this thesis 
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developed the concepts presented in the work, conducted the research and wrote the paper with 

the support of Prof Baber. 

Things are able to share aspects on where they are situated, status of their surroundings, 

and how or when they were used. As such, these devices generate data that can be broadly 

categorized by three types: location, environmental and social. In the context of HCI, Jara et al. 

(2014) argue that the “cyber social integration is being promoted through the evolution of the 

communication mediums and the new capabilities to retrieve and discover knowledge”. By 

introducing human users, Human-IoT Interaction falls within the realm of social data, where 

associations between objects and humans are heavily influenced by the user’s requirement to 

obtain a purposeful result (Nunes et al., 2015), while negotiating their role in this association. 

Much like any other relationship, the users’ expectations are to obtain some benefit from it. 

Particularly in the case of the human user, the anticipation would be to obtain services from the 

‘smart’ device, allowing users to offload physical and cognitive tasks, and procuring knowledge 

and insights related to their use (such as calories burnt in a wearable fitness tracker, or energy 

consumed in a smart electric meter) (Nunes et al., 2015).  

Nitti et al. (2016) propose that Service Discovery is one of the challenges faced by IoT 

development, allowing devices to register their services to the network and make their resources 

available to nodes. In the semantic web, Service Discovery has been categorised by (Fayyad et 

al., 2005) as “the process of locating web services that can be used to request a service that fulfils 

a user’s needs”. To do so, the ‘user’s needs’ must be defined in terms of goals, and the IoT’s 

functionality aligned to those goals. 

Human-thing interactions imply that there is a common interest in reaching such goals, 

analogous to a mutually beneficial social relationship. It has been suggested that these 
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conversations are required in order to establish a collaborative sense-making process (Preece et 

al., 2015), and that these ‘IoT actors’ participate towards common aims and achieving rules 

through an emphasis and understanding of the system’s purpose, as opposed to hard-coded rules 

(Cervantes-Solis et al., 2015a). Moreover, it has been argued that in order for physical objects to 

have any value or meaning to users, they must hold an instance of social data attached to them 

(Speed, 2011). This implies that objects must be used and appropriated in order to become 

meaningful for a person. In fact, it has been argued that the most important requirement for 

interaction is not the ability to use an object, but the engagement they support with the user 

(Golightly, 1996).  

Chapter 5 will explore the concept of Theme Discovery, where the service an IoT system 

provides is achieved through cooperation of its nodes, including the human user included. The 

concept of Theme Discovery is proposed as a mean of interpreting the outcomes or goals of the 

system, and assumes that, in any given collaboration, it can be framed as a conversation with 

exists a central guiding. Thus, a theme provides a means for grounding a conversation, as 

described in section 4.7.3 Akin to the development of the Semantic Web (Berners-Lee et al., 

2001), these approaches look to establish semantics (Manat, 2014) and ontologies (Wang et al., 

2012) that describe Human-IoT interactions in a conversation like exchange. The conversational 

IoT approach enables the opportunity to support modelling and design methodologies that are 

characterised by states, transitions, turn-based and contextual, as will be discussed in chapter 5. 

2.11 Conclusion 

The literature review points to a lack of IoT system models that include the experience 

that people have when interacting with things. Devices such as those found in the IoT often rely 
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on data exchanges between the objects and supporting applications, usually through 

communication channels undisclosed to the user. 

In this regard, this chapter has provided an overview of the underlying technologies found 

in the IoT in order to frame the requirements to analyse how the IoT would need to be addressed 

in order to accommodate human users.  

Data are commonly used by IoT objects to achieve the purpose defined by their makers or 

by the company that wants to mine the data they produce, and in some cases baffling users, 

hindering their engagement with the system. A well-researched example is that of the smart 

thermostat, which commonly has the basic goal of controlling temperature settings within a 

household. However, they often also provide energy optimisation by analysing patterns on room 

occupancy, comfort settings, energy tariffs, energy consumption, etc., whilst collecting data from 

many households to profile energy usage. When setting a temperature level, someone would 

expect an immediate reaction by the system but they might receive no apparent response because 

the system is optimising for a parameter of which they are unaware, so the system appears to be 

malfunctioning.  

As such, the technological approaches described in this chapter provide a frame of 

reference of how the IoT operates, and how users relate to its components. For example, as has 

been discussed middleware platforms have been developed to provide a way of managing things 

in the IoT. However, as will be discussed in chapter 3, human could take the role of managing 

these objects, not necessarily to be in charge of controlling or operating them, but in the sense 

that some things require set points to be configured by the human users. Correspondently, this 

posits the question of whether a human user could be capable of handling interacting with the 

diverse number of things in a network. As such, this allows the consideration of an IoT in which 



CHAPTER 2  

56 
 

the number of devices is not at the forefront of the system requirements, but that it supports 

user’s expectations and needs. 

For these reasons, a human factors-based analysis of how to identify and support user’s 

requirements should be considered. The following chapter will aim to provide a human-based 

overview of how the IoT has been used to approach the issue of combining their physical and 

digital traits, and how users identify and react to things’ features.



 
 

3 Humans interacting with the IoT 

3.1 Introduction 

As discussed in the previous chapter, in a techno-centric IoT the focus of research lies on 

the data or function of the collection of things that constitute the network. For human users, this 

could create problems in the separation of the digital form of the things from their physical form, 

influencing the nature of Human-IoT interactions and how humans make sense of the IoT. One 

assumption might be that the presentation of the collected data, or parameters being managed 

ought to be sufficient to allow the user to guess what the things are seeking to achieve. In terms 

of the smart objects found in the IoT, their ‘agency’ arises from their sensing and processing 

ability. In other words, one might assume that these objects have a purpose because they have 

been programmed to perform in a specific manner, but it is not always easy for the human 

participant in an IoT to discern what purpose the things (or network of things) are seeking to 

achieve. This misses the more fundamental issue that we tend to ascribe agency on the basis of 

the ongoing behaviour of objects. As, for example, Malafouris, (2013) points out “agency is the 

relational and emergent product of material engagement” by which physical interaction (material 

engagement) between people and things leads to the recognition of ‘agency’ . Thus, as users 

interact with things, they recognise when they are in charge, and vice versa, shaping their actions. 

Baber (2014) illustrates this with the work of Michotte (1963), in which people were asked to 

describe what they saw when a moving object (a ‘launcher’) hit a stationary object (a ‘target’) 

which then started moving. If the target moved in the same direction and with the same velocity 

as the launcher, people spoke of the launcher causing the target to move (providing the time 

between contact and motion was negligible). This launcher effect suggests that people interpret 
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the behaviour of objects as if they were capable of autonomy and as if they possessed sufficient 

agency to act. The explanations do not seem to involve predictive theories of causality so much 

as ad hoc responses to changes in state in which objects cause events to occur. This suggests that 

indicating the state of an object (or network of objects) might not support people’s understanding 

of the operation of that object, but a description in terms of ‘intentions’ or ‘personality traits’ that 

the things are assumed to possess. The question then is not simply how to present data or 

parameters to the users of IoT but also how best to help them make and understand valid 

inferences about agency. 

3.2 Human Computer Interaction with the IoT 

One of Human-Computer Interaction’s (HCI) main research topics is to examine how 

humans interact with computers with the objective of providing novel and potentially better 

forms of collaboration between computer systems and users (Dix et al., 2004). 

HCI evaluates a system from the perspective not only of its own goals, but also places the 

human user at the forefront of those goals as its main beneficiary. By doing so, HCI aims to 

provide the means for a harmonious relationship between the computing system and its user. As 

such, HCI’s objects of study focus on the cognitive models of the interactions, its socio-technical 

issues, models of communication and collaboration, task analysis, and system modelling and 

design (Dix et al., 2004). 

The implication of an IoT that has been developed from different technologies (Stankovic, 

2014), presents a shift of HCI analysis, ranging from the purely technical operation of the IoT 

such as hardware specifications and protocols, to the observation of meaning and knowledge-

based interactions (Atzori et al., 2010). Once ordinary objects become cognified, they can be 

considered to possess agentic behaviour, with their own goals and utility functions, interacting 
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with human users accordingly (Jia et al., 2012). Ma (2011) suggests that the pervasive and 

cognified nature of things working alongside other things, enables an autonomous information 

flow that is considered intelligent in terms of the services it enables. 

It is common for ‘smart’ objects to interact not only with their users, but also with other 

objects, each possessing their own goals, and even co-dependent goals between some devices. 

Referring back to the previously discussed heating example, modern automatic systems 

usually require users to set the desired temperature, but will also consider optimal operating 

times, according to variable energy rates (Scott et al., 2011). For example, the NEST thermostat 

is comprised of not only temperature sensors, but also detects movement, humidity and proximity 

(Hernandez et al., 2014). By learning user’s operating habits, and the ambient conditions, the 

thermostat’s functionality adapts to operate under the best possible conditions (Nest Labs, 2014). 

However, a human user could supersede the device’s control logic, resulting in conflicting goals 

between machine and human. When considering goals that are shared between things, we could 

posit on the nature of human’s role in the interactions, as will be discussed in section 3.3. 

Arguably, the purpose of IoT systems would be to offload activities from the user. Users 

should be aware of the system’s intentions and behaviour with limited interfaces, and how they 

become part of the operation loop. 

Often devices look to fulfil their own goals, sometimes relegating the user’s to a 

secondary position, and obfuscating what it is trying to achieve, as analysed by Yang and 

Newman (2013) in the context of smart heating, where the system’s goals are not necessarily 

aligned to users expectations. 
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3.2.1 Affordances in the IoT 

As discussed in the Introduction, for simple, non-cognified objects, the notion of 

affordances has been applied in regards to an object’s “fundamental properties that determine 

how it could be used” (Norman, 2002). Baber (2018) extends this notion to the properties that 

allow for an interpretation of “the object's functions in terms of specific features, and linking this 

interpretation to a goal that one wishes to achieve”. As such, this characterisation not only 

relates to how the object can be used in terms of its physical affordances, but also to what it can 

be used for in the context of the user’s needs and expectations. 

Objects commonly have a designed purpose characterised by their physical attributes, 

defined by their supported tasks in context of their state (Kolios et al., 2016). For instance, the 

physical attributes of a mug affords a series of tasks dependant on the context of operation, and 

the object’s state. That is, a mug full of water could be lifted and drunk from, whilst an empty 

mug could be stored in a cupboard. When objects are cognified, they are augmented, and their 

properties can be characterised beyond the physical aspect (Barthel et al., 2010), e.g., an 

augmented mug could show if its empty or full, or the temperature of its contents. In physical-

computing and cyber-physical systems, such as the the IoT, things’ status are defined by both 

their physical and digital features. 

Giaccardi et al. (2014) posit that “the relationship between the virtual object and the 

actual object is not always symmetrical”, arguing that data modifies the value of the physical 

object as perceived by the user. Giaccardi et al. point that not only data extends an object’s 

nature, but it is also modified by their embedded computer code and algorithms that determine 

their behaviours. 
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Smart’ objects often present limited user interfaces (UI), where user’s perception and 

understanding of things is sometimes narrow and even inaccurate (Nazari Shirehjini and Semsar, 

2017; Kortuem et al., 2010). Bellotti et al. (2002) note that “without visible affordances users can 

unintentionally interact or fail to interact”. 

Norman (2007) notes that information related to an object can be conveyed by cues as 

provided by their own affordances, through “implicit communications, sounds, events, calm, 

sensible signals, and the exploitation of natural mappings between display devices and our 

interpretations of the world”. That is, implicit communication cues allow for their understanding 

without any “specific learning or training, or transmission” from the user’s part, enabling 

information exchange “without interruption, annoyance, or even the need for conscious 

attention”. An example can be found in voice conversations in which a silence can be implicitly 

signal the listening party’s turn to speak. Explicit affordances contrast to an implicit 

communication in the sense that these have to be specifically designed. Using the previous 

example, such an interface might consider the implementation of visual cue to make the listening 

party aware of their turn to speak. The latter could be appropriate for some applications, 

nevertheless, Norman (2007) adds: “Implicit communication can be a powerful tool for informing 

without annoying”. 

As such, for cognified objects, an approach to interaction would be to consider the 

objects’ implicit affordances as a property of the thing (or, for IoT, perhaps a collection of things) 

which can be naturally perceived by the user, enabling inference on the appropriate course of 

action. Affordances increase the ‘perceived relatedness’ to objects to “highlight user involvement 

and control” (Jia et al., 2012). In the context of the IoT, this concept has been also used to analyse 
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how an object is understood  (Barthel et al., 2010), and how objects relate to their digital 

representations (Coulton et al., 2014). 

When analysing the implications of affordances in the context of smart objects, Baber 

(2018) identifies the requirement for models that provide a framework for the design of prompts 

and cues that enable users to identify how objects are used and what are they expected to achieve. 

Nevertheless, Baber notes that designing object’s affordances is not possible, but that efforts 

should be focused on the design of ‘affording situations” that show how “Knowing how a person 

with given ability would interact with an object to achieve a given goal in a given context is 

central to ISO definitions of Human-Centred Design”. 

3.2.2 Sensemaking 

Duffy and Baber (2013) address the notion of sensemaking as the process of coordinating 

actions given certain situations. As such it relates to "interpreting a situation in terms of the 

'meaning' that can be extracted from it...in a cognitive process of information collection and 

assimilation". 

For a human-centred IoT (Koreshoff et al., 2013) argue that the sensemaking process 

requires interaction methods that address collection and assimilation not only of the devices 

physical attributes, but also of data-enabled characteristics, highlighting the design requirements 

that must be put in place in order to allow for these process to occur within the system such that 

they allow for action on the user’s behalf to take place. 

 In the IoT, this implies that sense-making processes should inform how humans create 

models of the IoT in terms of their interfaces and the services it presents, as will be discussed in 

the following section. 
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3.2.3 Mental models 

As discussed in the previous Chapter, the IoT presents a view were data interactions often 

occurs in communication channels undisclosed to the users. This section analyses how humans 

make sense of technology, and in the context of this thesis, IoT applications. 

Analysing how artefacts support human cognitive activities, Norman (1993) highlights the 

notion of ‘representation’ to provide a framework in which we make sense for “objects, things 

and concepts”. Representation provides a model that “captures the essential elements of the 

event”, but also has the drawback of relying on how close is the model to what it is representing. 

If the representation omits aspects relevant to what it is expected to support it could become 

misleading and confusing to its users. Norman (1993) provides a guideline to develop 

representations as follows: 

 “They should capture important and critical features of the represented world” 

 “They are appropriate for the person” 

 “They are appropriate for the task, enhancing the ability to make judgements” 

Moreover, Norman (2014) extends his definition by differentiating amongst the 

stakeholders for a particular object. As such, these representations should include the user’s 

conceptual model (the user’s representation of the object), the user’s mental model (its 

understanding or internal representation) and the designer’s conceptual model  

Schmitt et al. (2011) focus on user’s abilities that must be supported by the conceptual 

model noting that they should provide a description of the system’s working mechanisms; an 

explanation of the interactions of the systems, i.e., the system’s reactions to its possible 

interfaces; and to provide expectations or anticipations of the system’s behaviour under a 
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particular context. Moreover, Schmitt et al. propose that the user’s mental model is also of 

interest in light of the conceptual model as it will influence how the user creates its internal 

representation.  

Yarosh and Zave (2017) approach smart object design from a perspective of mental 

models created by users in terms of the interactions with the most prominent features of the 

device. Their research provides different scenarios on the usability and users’ expectation of a 

‘smart lock’. In particular, errors and biases are analysed as a way of understanding user’s 

misconceptions with the system, and to highlight problems in device design. This methodology 

exploits the notion of a human-centred analysis of interactions in terms of usability depending on 

the context. This approach enables to provide responses for the mental models in different 

domains by encapsulating the object’s features into particular functions.  

For home automation, Kempton (1986) explores the mental models that define the 

constructs that explain human behaviour when interacting with autonomous heating, providing 

the groundwork for the research of how users perceive autonomous systems in home 

environments and how these often deviate from what was designed, as will be discussed in 

section 4.6.  

Moreover, for context-aware ubiquitous computing, Schmitt et al. (2011) identify a 

requirement for systems that supports the users’ mental model such that they “enable people to 

describe a system’s working mechanisms, to explain their interaction with the system and to 

anticipate future system behaviour”. 

As such, for the purpose of this work mental models of IoT systems are defined as the 

representations that describe, explain and contextualise relevant, human-centred and support user-

centred goals.  
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When considering the IoT as an autonomous, smart environment, this research aims to 

explore human behaviour when interacting with objects, providing both physical and data-based 

representations in interaction design.  

3.3 Usability for the IoT 

The Internet of Things has been adopted into applications which either requires the 

intervention of the human user, or provides information to the user. As such, interactions occur 

within a group of cognified objects and humans, establishing a society similar to that described 

by Marvin Minsky (1988) where simple processes and agents, operate alongside to fulfil tasks. In 

the context of Human Computer Interaction (HCI), the question then is how a human will 

become a participant in such a society. As described in Chapter 2, things often serve as data 

collection nodes in a network, and are managed by a central node. In this topology, user 

interaction occurs with the central, controlling node. Arguably the system’s ‘intelligence’ would 

be considered to reside for the most part in this controlling node, in much the same way a server 

manages a range of client nodes in a computer network (Tanenbaum, 2002). In this paradigm, 

HCI for IoT would not be dissimilar to traditional approaches, with the user negotiating with the 

user interface of the central node to specify operation parameters or query information about the 

system. This conflicts with the vision of an IoT comprised of loosely connected devices that 

interact with others only when required to complete their tasks and goals. Moreover, nodes 

connected in a centralised topology have, at best, an incomplete view of their role in the 

operation of the network. If as mentioned earlier, the human user is to be considered to have a 

role in the IoT, they would also have a partial view of the networks functionality. As such, the 

challenge for HCI is to analyse how best to supplement the human user’s role and interactions 

with the IoT. 
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One of the aims of usability has been to design clear interactions, that prevent users from 

being distracted or diverted from their goals (Norman, 2002). Digital devices have mostly 

followed these interaction principles. Nevertheless, cognification of things has also created 

scenarios in which much of the information exchanges occur in communication channels hidden 

or opaque to the users.  

3.3.1 User experience in the IoT 

Based on the previously introduced notion of physical-computing (Stankovic et al., 2005),  

Kuniavsky (2010) proposes that thing design encompasses many disciplines, focusing on: 

 The physical object 

 The software interface 

 The hardware interface 

 Interactions with other devices in the network 

 Representation to other objects and human users 

Based on work by Garrett (2002) focusing on web-based applications, Kuniavsky 

proposes different levels of user experience, ranging from the concrete to the abstract (Figure 

3.1). In his framework, user experience focuses on the physical aspects (surface), to the 

functional (structure), requirements (scope) and the purpose of the system.  
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Figure 3.1 Planes of user experience in smart objects, adapted from (Kuniavsky, 2010). 

Norman ( 2007) states that system designers “tend to focus on the technology, attempting 

to automate whatever possible for safety and conveniences”, but notes that given some 

technological limitations not everything can be automated, with users needing to keep their 

attention on those tasks that are not. In these cases, it is imperative that both human and machine 

know what each is attempting. Thus Norman proposes that to provide meaningful experiences, 

system should designers focus on improving the coordination and cooperation of human and 

smart objects. 
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3.3.2 Data representations in IoT usability 

As observed in Chapter 2, IoT development has focused on data. Thus, much like 

materials (plastic, metal, etc.) in physical objects, Kuniavsky (2010) argues that “information 

becomes a design material” for smart objects, providing its own set of constraints and 

capabilities. 

Data-based approaches become useful when thinking about devices whose interfaces rely 

on displays (i.e. smartphones). Figure 3.2 shows the interface for a mobile app used to control a 

‘smart’ lighting system. Users are able to change lighting intensity and colour in different zones 

in their household, looking to create ambient situations according to context, such as ‘watching a 

movie’ or ‘dinnertime’. 

 

Figure 3.2 Smartphone based application to interface with the Hue Smart lightning solution (image: 
www.meethue.com) 
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In interfaces such as the Hue’s, although there is a clear metaphor for switching lights on 

and off, for a more ‘intelligent’ and flexible behaviour, the system also provide a means of 

controlling and programming the operation of the lightbulbs. As such, for the latter example, the 

physical interaction through a screen dislocated from the physical object, produces opaque 

interactions. 

3.3.3 Tangible interfaces 

Ishii and Ullmer (1997) introduced the notion of tangible interfaces to consider computing 

devices that “augment the real physical world by coupling digital information to everyday 

physical objects and environments”. These objects operate under the basic paradigm of “user uses 

their hands to manipulate some physical object(s) via physical gestures; a computer system 

detects this, alters its state, and gives feedback accordingly” (Fishkin, 2004). 

In contrast to a data enabled paradigm (as described in the previous section) where users 

are often left wondering what the device is trying to accomplish, Pschetz et al. (2017) presents 

the Bitbarista IoT-enabled coffee machine, aimed to provide a way for users to reflect on the 

impact of data being used and produced by an ‘intelligent’ machine. Based on the notions of 

‘Reflective’ and ‘Critical’ design, this device is explicitly designed not centred on efficiency, but 

on information and data processes, in contrast to what usability guidelines would traditionally 

suggest. By showing users the price of their cup of coffee and where the coffee is sourced 

(through a built in User Interface), this ‘verbose’ IoT device displays data instead of hiding it, 

relates the data to the process behind it, and allows users to decide how they participate in these 

data processes (Figure 3.3). The study found that users perceived the system to be a passive 

device in contrast to an autonomous object. Notwithstanding, users referred to be more at ‘ease’ 

with the system by knowing exactly which data transactions were occurring, and  reflected on a 
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positive relationship with the device. This study suggest that a dialogue approach with a smart 

object provides user with a sense of being in control, leading to less “discomfort and anxiety” 

(Pschetz et al., 2017). 

Houben et al. (2016) analyse how users interpret, relate and organise data through a 

‘human-data design’ approach, arguing that ‘hybrid’ representations that consider both physical 

and data-based aspects are much better suited for these systems. 

This relationship between users and things in the context of design, has been explored in 

terms of a things forming a “socio material assembly” in which objects share a “physical effect in 

the world”(Cila et al., 2017) in relation to their operation. According to Cila et al. (2017), these 

devices also need to be in “a form that enables users to invite these products into their lives and 

makes an impact on people’s life quality”. As such, design efforts not only should look into the 

system’s technical implementation, but also on the impact it has on users. 

By using tangible interfaces in a controlled environment, Houben et al. (2016) posit that 

users engage with technology and appropriate it when they can directly relate to the effects it has 

on the operation of the device. By using tangible interactions participants in their study found that 

devices were “doing what they were supposed to be doing”.  

3.3.4 Modelling Human Interaction with the IoT 

Modelling is the “process of matching the facilities that the system provides to the needs 

of the user” and based on user needs, to specify guidelines for “design decisions and make 

design choices explicit” (Booth, 2014). IoT design and modelling has focused on a device and 

system perspective, highlighting technical implementations over usability (Sterling, 2005). 

Methodologies have been approached from a data centric perspective (Feinberg, 2017; Wolff, 

2016) in which the modelling process is based on data flow, from their collection to their 
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application, or how data is understood and appropriated by its users (Pschetz et al., 2017). It has 

also been addressed from an agent based perspective (Cila et al., 2017), in which actors in the 

network (both things and humans) are considered agents that are imbued with “collector, actor, 

and creator” roles that define how they interact with each other. From a device perspective 

domain specific ontologies and semantics have been identified (Derler et al., 2012). Kawsar et al. 

(2010b) explore how to implement object’s profiles that allow for their extensibility through the 

addition of new, compatible sensors and actuators, highlighting the development efforts to the 

networks and its devices. Finally, research has been conducted on the adoption of middleware 

technologies that allow for modelling interactions through centralized entities (Dixon et al., 

2010). 

3.3.5 Interaction Design for the IoT 

Cila et al. (2017) define four types of connected products as: 

 “Products that inform users of their status and expect instructions, 

 Products that create connections with users to learn from the interactions, 

 Products that form networks with other products to provide information and infer 

user activities, 

 Non-networked products that can learn from user interaction” 

By placing users at the centre, this categorisation relates to the roles of the actors of the 

network also considering what type of interactions are expected, and the negotiation and 

delegation between user and smart objects. 
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Figure 3.3 Bitbarista, a 'verbose' IoT device (image: petrashub.org). 

For intelligent machines, the challenge for HCI is to create engaging products such that 

they provide meaningful services to their human users. In ‘The design of Future Things’ 

(Norman, 2007) six rules for interaction design are provided: 

1. “Provide rich, complex and natural signals 

2. Be predictable 

3. Provide a good conceptual model 

4. Make the output understandable 

5. Provide continual awareness, without annoyance 

6. Exploit natural mappings to make interaction understandable and effective” 
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Norman’s framework implicitly considers human users in a harmonious relationship with 

smart objects.  

3.4 Task and goal analysis 

System usability has been approached by in ergonomics and HCI by a different range of 

methodologies, focusing on analysis of user actions. Hierarchical Task Analysis (HTA) (Stanton, 

2006) has been used as a means of providing system requirements through a representation of the 

system’s sub goals, and used in different applications such as user interface design, workload 

design and assessment and error prediction. An extension of HTA was defined by Task Analysis 

for Error Identification (TAFEI) (Baber and Stanton, 1994), originally conceived as a tool to 

analyse a system’s usability through system actions, and the possible errors derived from them.  

3.4.1 Hierarchical Task Analysis 

Hierarchical Task Analysis (HTA) (Stanton, 2006) has been applied to different 

applications such as user interface design, workload design and assessment, and error prediction, 

acknowledging that tasks can be categorised as physical and cognitive, seeking to represent 

system goals and plans (Stanton, 2006). 

Stanton (2006) states that there are three principles for analysis in terms of tasks: 

1. Tasks consists of operations defined in terms of the goal they seek, 

2. The system can be defined by its operation, which can be broken down into sub-

operations defined by their contribution to the core goal 

3. The relationship between operations and sub-operations is hierarchical. 

The application of Hierarchical Task Analysis to describe a system operation in terms of 

its goals has been broken down as a guideline by Stanton (2006) as follows: 

 “Define the purpose of the analysis 



CHAPTER 3  

74 
 

 Define the boundaries of system description 

 Analyse sources of information for the system  

 Describe the system’s goals and sub-goals, in a manageable way 

 Link goals and sub-goals, including the rules determining their sequence 

 Sub-goals should be described applying a sensible stopping-rule 

 Verify with subject-matter expert 

 Iterate analysis” 

System analysis should focus on the context of operation, who is it aimed to, what it does 

in terms of the actions that are performed and how each are related to each other. Additionally, 

each task should be described in terms of simpler units up to the point where it fits the analysed 

application. Stanton provides a procedure to describe the sub-goal hierarchy as shown in Figure 

3.4. 
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Figure 3.4 A procedure to break down hierarchy in sub-goals (Stanton, 2006). 

 

3.5 Analysing human error for goal deviation identification 

As noted, one of the main concerns of Human-IoT interaction is the misalignment 

between user’s goals, and the machine’s. This section provides a review of techniques based on 
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usability and human based errors, with the expectation not only to highlight mistakes, but to 

determine how deviations in usability can be used to state system requirements in a collaborative 

environment.  

Human error has been analysed mostly in the context of safety critical systems such as 

power plants or aircraft (Norman, 1983; Cooper et al., 1996), with the aim to “assist in analysing 

the dependability and reliability of systems with a human component” (Fields et al., 1997). 

Norman (1983) proposes that the psychological mechanisms in human error can be 

applied to examine the human-machine interface, highlighting error description as follows: 

 Mode errors, in which users perform actions to operate the machine under the 

assumption of a particular mode of operation, when in fact they are in another. 

 Description errors, in which errors occur when actions are not clear, leading to 

ambiguity. 

 Lack of consistency errors, leading to perform actions with the previous 

knowledge of successful actions, but that don’t apply to other use cases. 

 Activation error, related to “inappropriate actions get performed and appropriate 

actions fail to get done” due to forgetfulness.  

To address this, Norman proposes that analysing errors should inform system design to 

identify possible interaction problems, and proposes that human-machine interaction should focus 

on providing feedback, adequate response sequences, and is consistent in structure and design to 

prevent memory and representation problems from the user.  
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3.5.1 Technique for Human Error Assessment 

In regards to exploring error for the definition of requirements, Fields et al. (1997) define 

a iterative process involving a proposed user interface. In a Technique for Human Error 

Assessment (THEA) the system’s purpose and performance models are analysed under different 

scenarios, in which agents perform tasks towards a goal. Error identification requires asking 

question about causal factors to identify them and how they impact the system. The output of the 

system is given in terms of suggestions for system requirements, and the iteration of the process 

once these are applied (Figure 3.5). 

 

Figure 3.5 The THEA process (Pocock et al., 2001). 

 

As discussed earlier in this chapter, this thesis frames the IoT is as a collaboration of 

actors, each with their own role and purpose. Thus, the breakdown of usage scenarios requires the 

analysis of actors involved in tasks and plans to achieve the system’s goals.  
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Figure 3.6 The CHLOE process (Miguel and Wright, 2014). 

3.5.2 Human error analysis for collaborative work 

The CHLOE framework focuses on identifying errors in collaborative work (Miguel and 

Wright, 2014) within a process similar to THEA in regards to scenario description, decomposition 

of goals in tasks and producing suggestions to improve the system, it introduces a model of 

collaboration in the process loop, as shown in Figure 3.6. 

CHLOE focuses on socially enabled collaborations in human-human, and human-

technology-human environments, in which the latter are mediated through technology. 

Notwithstanding, this framework considers agency on behalf of those involved, and models their 

collaboration in the context of a shared understanding the system’s purpose. Figure 3.7 shows a 

simplification of the collaboration process in which participants form their own mental models of 

the system, understand the system goal and form a plan based on goals to achieve it. A shared 

understanding allows users to collaborate on shared goals, whilst interfacing with agents under 

certain constraints, such as their user interfaces. Notably, a collaborative approach is the basis of 

the conversational IoT defined in chapter 4. 
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Figure 3.7 CHLOE collaboration process, adapted from (Miguel and Wright, 2014) . 

3.5.3 Task Analysis for Error Identification 

Task Analysis for Error Identification (TAFEI) presents a method that describes “a form 

of dialogue between users and products with a view to predicting likely types of human error 

arising from dialogues described in terms of state-space diagrams” (Baber and Stanton, 2002). 

TAFEI (Baber and Stanton, 2002) characterises a dialogue occurring between users and 

objects pursuing a goal cooperatively, sharing information and assisting each other. This method 
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analyses how participants in these conversations select the appropriate actions given the goal that 

they want to achieve and is supported by the product. As such, Baber and Stanton define a goal-

directed methodology, in which human-object interaction is characterised through a series of 

‘legal’ states. In the context of TAFEI a ‘legal’ state is such that is supported by the system, and 

its leads to the completion of the specific goal. In this regards, products can support different 

goals, but some state-transitions could be consider irrelevant (‘illegal’) to the task at hand, whilst 

being ‘legal’ for others. Moreover, TAFEI is a state based method, suited for IoT devices that are 

inherently based on states as introduced in chapter 2. 

TAFEI provides a methodology to model user interactions, highlighting system’s goals. In 

the context of the IoT, TAFEI provides a perspective in which HII interactions are analysed from 

the perspective of system’s valid (or invalid, which in this tool’s case are errors) goals and sub 

goals.  

Its primary focus is on the turn-based interaction between human and product, working as 

a system to pursue a goal. TAFEI has been used to analyse products in task-based scenarios, and 

successfully applied to products such as ATM and vending machines (Baber and Stanton, 1997), 

and critical-use and safety scenarios as surgery (Kuang et al., 2009) , industrial meat grinders 

(Mohammadian et al., 2012) and electrical substations (Stanton and Baber, 1996). 

Using TAFEI as a modelling methodology, common activities would be identified to 

belong to the same overarching theme of the network, and thus would enable a conversational 

IoT system with common grounding, across different topics. 

One of the drawbacks found in CHLOE (Miguel and Wright, 2014) is the difficulty in 

identifying the roles of the participants in the collaboration, often disregarding the agent’s 

involvement, as reported by analyst led trials. Conversely, TAFEI is very clear in providing 
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analysis for both the machine’s and humans’ roles, tasks and state transitions, bringing them 

together in a unified model. Hence the following chapters provides a worked example of TAFEI, 

building upon the concept of instrumented objects in everyday situations. In them, users interact 

with the objects, performing activities to achieve a goal. In this context, the overarching theme of 

the conversations becomes the system’s main goals, as described by TAFEI analysis. Moreover, 

by identifying system’s plans, tasks and states, an informed decision on sensor placement will be 

demonstrated as an extension of TAFEI for the IoT. 

3.6 Conclusion 

In this chapter we have explored the notion of an Internet of Things that shifts from a 

technology based paradigm to one in in which human users are introduced, and have to ‘make 

sense’ of the things and of how these objects present their data and physical features. As 

presented in chapter 2, for some of these ‘smart’ devices, the notion of agency is introduced. As 

such, devices act on their own accord to accomplish their purpose, which in this chapter has been 

characterised in terms of the tasks they complete to attain goals.  

Moreover, in terms of smart systems Kuniavsky, (2010) argues device’s and user’s roles 

must be treated similarly in “a network of relationships” with a common goal, and that by 

understanding both their requirements and how they associate to each other, products design can 

be informed in the expectation of a successful product. Thus, roles for each actor should be 

designed and not just occur by accident. Consequently, this chapter aims to provide an 

exploration of agency is balanced between humans and things in order to reach the common 

system goal.  

The IoT can be conceptualised as a human-machine system, in which each of the 

participants take upon roles, interacting with each other, with their own specific goals. In the 
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following chapter, the notion of the relationships and the networks that characterise it will be 

explored in the context of socially linked nodes, in which common interests are shared, leading to 

a discussion in subsequent chapters of how the roles are affected in terms of tasks and goals 

(chapter 4) and how these roles inform system design and development (chapter 5).



 
 

4 A Social Internet of Things 

This chapter is partly based on the paper “Towards Theme Discovery Paradigm in the 

Internet of Things” by, Cervantes-Solis, J. W., & Baber, C. (2016), presented in the Contemporary 

Ergonomics and Human Factors 2016 conference. The author of this thesis developed the 

concepts presented in the work, conducted the research and wrote the paper with the support of 

Prof Baber. 

4.1 Introduction 

In the past two chapters two visions of the IoT have been presented: one in which the IoT 

is fundamentally based on a technology and data approach, and another where human users are 

introduced, noting that the former minimises its influence on areas that improve aspects of human 

activity (Stankovic, 2014), whereas the latter relies in technology to promote system usability. As 

such, there is a potential paradigm shift to a social organisation of objects and humans where 

smart, physical-computing objects interact with other things, and with their human users. The 

expectation would be to analyse how these relationships can be characterised so they support 

human activities. Moreover, this chapter focuses on identifying how these activities are defined in 

the context of the IoT. 

As the IoT gets adopted into everyday human activities, these smart things will fulfil 

support roles in different environments, and interact with their users and other objects. However, 

these interactions are not always clear and apparent to those involved, so a more meaningful 

communication strategy ought to be implemented between the two if a vision of a society of 

smart objects is to be achieved. A collaborative environment in which humans and things 
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establish connections to form networks leads to analyse the nature of these exchanges and how 

they are represented amongst those involved. 

In much the same manner that conversations hold meaning to those involved only when 

there is mutual interest and shared information, this chapter introduces the concept of a social-

like Internet of Things in which actors engage in conversations framed by a common theme. 

The notion of themes in a Social Internet of Things (IoT) is introduced as a means of 

describing the conversations that occur in these networks. As will be explored in more detail in 

Chapter 5, in the context of this thesis, in IoT conversations theme refers to the aggregation of 

topics that contribute to a conversation in a particular context, providing a high level definition of 

the network’s purpose. The context relates to a clearly defined environment, characterized over 

time by the recurrence of these interactions.  When a collection of things collaborate in the pursuit 

of a common theme, a conversation can be characterised in terms of topics. As such, this chapter 

provides a description of a categorisation of these concepts and their role in a Social IoT. 

4.2 The Social IoT 

When smart devices are adopted into everyday usage scenarios, understanding their 

activity both in term of their connections and their particular datasets could become increasingly 

problematic for their users given the limited capabilities of the user interfaces as mentioned in 

3.3. One approach to addressing such problems is to shift analysis from the networks or the data-

centric things, and to consider instead the ways in which they are used in social-like scenarios, 

defined by specific contexts and environments. This concept has been defined as the Social IoT 

(Atzori et al., 2014b; Guo et al., 2012a) in which the things, the networks and users could be 

defined in terms their relationships and the functions they perform as members of a society. This 

raises the possibility that things in these networks can have socially defined roles, in addition to 
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their technically enabled functions. As described by Atzori et al. (2011) in their Social IoT 

Architecture (SIoT) things are described by their: 

 relationships  

 services 

 and trustworthiness 

That is, things in the IoT can be characterised by the level of trust they have amongst 

network’s participants, the nature of the relationships, and the purpose of these relationships. 

Given these characteristics, the framework allows for service composition and discoverability of 

things allowing them to make themselves, and their functionality, available to their relevant peers 

as defined by these social-like networks.  Moreover, things’ roles might vary across different 

networks, such that the objects could be called upon to perform the same functions in different 

networks, albeit in different environments, provided that the relationships social attributes are 

relevant and shared. For example, a temperature sensing object could be used in the context of an 

industrial application to provide temperature readings in a furnace or in an office as a part of the 

ambient heating. The interpretation given to the information they provide would have different 

value and meaning to the different stakeholders, depending on how they approach the device, as 

will be discussed in section 4.3.  

By considering these social attributes, information exchange becomes related to the 

object’s role in an activity to achieve a goal (or the tasks it contributes to the goal), and less so on 

their specific data sets or function. Thus, in contrast to industrial or consumer IoT systems, the 

expectation would be that these exchanges become more meaningful between the actors of this 

Social IoT. As such, as will be discussed in section 4.2, in social-like environment, the involved 
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parties usually engage in conversations when there is a requirement for information exchange 

(Khan et al., 2016). 

Thus, the information that the things convey to user’s needs to be presented in such a way that 

conversation-like exchanges are represented between the actors in this Social IoT, where the 

theme of the conversation is made clear to all. To support knowledge-based interactions, the 

concept of theme has been identified to characterise the overarching purpose of the network 

(Cervantes-Solis et al., 2015a). 

4.3 The Human-Things system 

Ross (1973) argues that agency is a social interaction between two or more parties, in 

which: 

“…the agent, acts for, on behalf of, or as representative for the other, designated the 

principal, in a particular domain of decision problems”. 

In the smart IoT paradigm, these definitions suggest devices or a collection of devices that 

possess attributes allowing them to take the appropriate actions on behalf of users, given decision 

making informed by a set of inferences on the environment.  

Stankovic (2014) argues that involving the humans in their design and operational 

models, would enable improvement in areas that directly impact users, such as safety and 

usability, and points three main challenges for the development of Human in the Loop (HiTL) 

applications: first, to characterise the full range of applications that fall within the HiTL domain; 

second, improve on the techniques to derive models of human physiological and psychological 

behaviour; and third, to identify the position of the human in feedback control models. The first 

two requirements warrant their own research, but in the context of this work, the latter challenge 
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provides a framework to understand the role of the human in an IoT. From control theory, 

Stankovic (2014) identifies the possible placement of a human user, in one of the following 

categories: 

1. Outside of the loop, 

2. As part of the controller, 

3. As a member of the system model, 

4. As a sensor, 

5. As an actuator. 

This categorisation places the human as a part of the system, fulfilling different roles as 

required. In an automatic temperature control system, the human user must define a set point (a 

desired temperature) that the system will aim to attain: the human becomes a controller. 

Conversely, in the same example, the user also acts as a sensor, by ‘feeling’ cold or warm, 

influencing temperature settings. Automatic controllers are more suited to machine-based 

decision making processes, particularly those involving tedious and monotonous tasks (Norman, 

1993a). Thus, one must consider when is the role of a controller most suited for a human to take. 

Figure 4.1 shows the duality on the human’s role both as a controller and as an observer recipient 

of the system’s services. As described by the figure, the user’s interaction with the system is by 

issuing commands and receiving feedback from the system through a central node that in turn 

relays commands (set points) to devices and collects data from devices. As such, humans become 

participants in the interactions with the things, placed as part their control loop.  

Schirner et al. (2013) argue that for tasks involving “perception, intuitive control and high 

level decision making” humans perform better than autonomous machines. These notions suggest 

that when humans become involved in Human in the Loop systems, an approach would be to 
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consider solutions that delegate tasks between the two parties. In this situation, where the desired 

set points established by the human might not be in alignment with the system’s, there might be a 

requirement for negotiation and agreement. 

 

Figure 4.1 IoT-Human in the loop system. 

 

In agents that engage in collaborations with other agents, this negotiation is expected to 

occur in an organised manner, providing the adequate framework of information and intention 

exchange, as will be discussed in Chapter 4 in the context of a social IoT. 

If we consider the notion of a human being part of the system loop, we should also posit 

the scenario in which the human is outside of the loop, at best characterised as an observer of 
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exchanges and services provided by the system, and at worst by being left out of the interaction 

processes. By reconsidering the characteristics from a smart system as defined in the previous 

chapter (transparency, reliability, helpful and context-aware), we could frame human’s role not 

only as how they relate to the control loop as described by Stankovic, but also as one in which 

there’s an expectation of these objects such as they support human activity, particular in order to 

complete specific goals. This places an expectation of agency on the objects from the point of 

view of the user. When considering the tasks and goals that the IoT system supports, we should 

posit how roles are balanced in terms of agency, and whether there could be a conflict in what the 

system’s purpose is assumed to be, as will be discussed in following chapters. 

Jennings and Moreau (2014) argue for the inclusion of humans as part of the IoT, 

considering them part of a collective, stating that the IoT has enabled a “ubiquitous information 

substrate” of which people become dependent of them for everyday activities. The concept of 

human-agent collectives (HAC’s) is introduced to demonstrate the social-like collaboration 

between humans and ubiquitous computing.  

Thus, by considering the cooperative aspect of the relationship between humans and 

cognified objects described in this section, this thesis proposes to understand the Internet of 

Things as a Human-Things system in which both parties collaborate to achieve a common goal. 

In the following sections the nature of these goals will be described to characterise its 

commonalities.  

4.4 Machine-centred goals 

Sterling (2014) argues that the IoT is no more than a reaction to current market forces, 

looking to monetise data produced by connected devices. Sterling posits that most of the 
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solutions found in the IoT do not really follow the user’s best interests, but the manufacturer’s or 

technology ‘giant’ harvesting the information. 

Morozov (2014) has applied the concept of ‘technological solutionism’ as a way of 

describing what he believes to be the state of recent technological developments. He argues that 

solutionism occurs when someone invents a problem, creates a narrative to frame it and in the 

process misrepresents the problem as something genuine and urgent, and then advocates for 

technology to provide a solution to the problem. 

These notions suggest a scenario in which the IoT does not fully considers its human 

stakeholders. The existence of devices such as a smart toaster, a smart kettle or a smart saltshaker 

would seem to confirm Sterling’s and Morozov’s visions, and certainly would elicit an argument 

as to the purpose of these devices (Figure 4.2). 

 

Figure 4.2 'Smart' devices. From left to right: a smart toaster, a smart kettle, and a smart salt shaker. 
(Source: griffin.com, appkettle.com, mysmalt.com). 

Controlled trough a mobile app, the smart toaster and kettle offer the capability of 

programming and fine tuning their actions according to the user’s needs. In the case of the smart 

saltshaker, a mobile app is used to set the amount of salt desired, and automatically dispense it. In 
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addition, it is also able to play songs and change its LED colours, which makes one wonder what 

would be the purpose of those features, as they do not directly relate to the salt shaker’s main 

goal. 

Norman argues that a product’s design should support the user’s activities (Norman, 

2002). Analogously, a common criterion to support a product’s business plans is its ability to 

reduce friction or ‘solve a pain’(Osterwalder and Pigneur, 2010). As such, the ‘not-cognified’ 

counterparts of the products found in Figure 4.2 would support the corresponding activities as 

well, arguably with fewer actions and at a lower cost. 

Thus, the necessity for such devices comes into question, first in their capacity of solving 

real problems, and secondly as to how effective they are in supporting the user’s actions and 

goals.  

A data centric approach implies that some processes often occur in the background 

without providing users with any information of how they operate. Indeed, most of the times 

users should not be required to know how the system came upon given responses or actions, as 

long as it produced them in line with its established purpose. However, this could have a negative 

effect. Kuniavsky (2010) proposes that objects become ‘service avatars’ providing a 

representation of their functionality, the drawback being that their physical attributes are hidden 

from the user. Moreover, systems that are appear to ‘smarter’ and more abstract than expected by 

the users, would look to complete goals that could diverge from the user’s in pursuit of other 

optimisation parameters, deriving in user misunderstanding (Yang and Newman, 2013). 

Accordingly, it would be of benefit for the system’s designers to have a way of analysing the 

system’s requirements from a user perspective. In addition to smart objects’ and systems’ being 

augmented by SPC traits to act autonomously, their behaviour should not be to exclusively 
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operate autonomously and achieve its own goals. It should be complemented to promote a 

cooperative behaviour with its stakeholders, allowing the opportunity to convey useful 

information to its users, as will be explored in Chapter 4. 

4.5 User centred goals 

Norman (1993) argues that technology design often follows the path of having people 

behave in machine-centred ways, not always suited for a human. In this regard, Norman 

observes, technology tends to fail because of this misrepresentation of what needs to be 

supported: the human or the machine? Arguably, this would depend on the application, for 

example, those requiring a more precise, repetitive and monotonous tasks would be suited to a 

machine, whereas those involving cognitive or creative processes would suit a human best. The 

question would be how to appropriately set these goals when considering hybrid systems, in 

which the machine performs tasks alongside a human user and vice versa. Thus, Norman 

introduces the concept of ‘technological affordances’, an extension of the notion of affordance 

that expresses the idea that “technologies make some activities possible or easy, other activities 

impossible or difficult”. 

Maes (2017) argues that smart devices and their software have not been designed with the 

user’s goals in mind. For example, recent mobile phone applications ‘fight’ over each other to 

gain the user’s attention, effectively creating confusion on the part of the human due the volume 

and frequency of interactions. Maes proposes an integrated experience, putting the user in the 

centre by providing systems that are not only context aware, but also user aware, and that provide 

a proactive and personalised experience, supporting the goals of the user, in a “symbiotic 

relationship of human and machine that can help with [the user’s] self-actualization by changing 



CHAPTER 4  

93 
 

the way they make decisions, learn, remember and regulate mood”. As a consequence, Maes 

posits that technology “assists us, powers us, and augments us”. 

A characterisation of systems that follow human-centred goals could be derived from both 

Norman’s and Maes’ concepts as follows: human-centred systems should support activities 

related to decision making, learning and memory, and mood regulation , not hindering, but 

augmenting user’s activities and well-being. 

4.6 Conflicting goals 

For the IoT, where devices are augmented with SPC capabilities, HCI’s models and 

theories are observed from a new perspective, as traditional methods have to be re-framed to 

accommodate not only for physical interactions but also for data enabled interactions. 

The effect of having a partial view of the system’s operation has been explored from the 

perspective of thermostat control. Kempton (1986) analysed the mental model that a temperature 

control system creates on its user and how it might differ from the system designer’s model of 

operation. Kempton found that some users followed their ‘feeling’ of how the system operated, 

while others approached it in a more analytical fashion. That is, the first group followed their 

own instincts and physical sensations to make assumptions about the systems operation: if they 

temperature control setting was increased, it should naturally lead to an immediate increase in 

temperature. As such, Kemp argues, this group operated the system as a ‘valve’ from which ‘heat’ 

flows according to the valve being shut or open. In contrast, participants from the second group 

tended to have a wider understanding of the technical operation of the heating system, and were 

aware of the existence of a furnace that needed to heat water, that was pumped into pipes in order 

to reach the radiators as controlled by a thermostat. Kemp defined this approach as ‘feedback’ 
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control, and lead to users being more aware of a system that needed to adjust itself to reach the 

user’s comfort settings.  

In both cases, based on their own assumptions about the system, each group attempted to 

create mental models of how temperature could be controlled to achieve a comfortable 

environment. That is, users would be optimising for their own parameter (comfort). Both groups 

failed to fully consider the relation between furnace operation and energy consumption. Although 

the ‘analytical’ group was closer to the designed operation, both groups reported insecurity on the 

success of their interaction with the system, leaving them to wonder if it was indeed working 

correctly. These observations, lead the author to conclude that “a theory that is useful for 

designing thermostats is not guaranteed to be a good theory to for using them”.  

Though Kempton’s research was conducted over a fully analogue system, with a 

controller similar to that shown in Figure 4.3 (left) and obviously lacking a computing element, 

the effect of system’s goals and user’s expectations is explored. Thus, for Human Computer 

Interaction, Kempton’s research provides an appropriate observation that could be applied to 

systems whose aim is to automate tasks, such as the IoT as per the definition explored in previous 

chapters. Moreover, a corollary of this study is the observation that actors in the system (the user 

and the heating system) present conflicting goals. The furnace’s (machine) goal would be to 

attain a temperature level (and to some degree energy consumption), while the user’s would be to 

attain a comfort level.  
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Figure 4.3 An analogue thermostat controller (left) and a digital Nest ‘smart’ thermostat controller (right) 
(Image sources: Wikimedia Commons) 

 

Interestingly, research on the effect of usability on modern IoT enabled thermostats has 

also been made. The Nest (Figure 4.3 right) is an IoT device developed to control centralised air 

conditioning systems. As previously described, this device not only fulfils the goal of a common 

thermostat, but it learns the user’s comfort settings, while optimising for energy consumption. 

Yang and Newman (2013) posit similar implications to those found by Kempton, by analysing a 

digital, smart device. By looking to optimise its settings through its algorithms, Yang and 

Newman found that the system failed to convey its secondary goals to its users, creating 

frustration and disengagement. This lack of communication and misunderstanding of goals is not 

dissimilar to that found by Kempton, suggesting a requirement to extend HCI methods to 

incorporate aspects of the IoT, such as its capability of making intelligent decisions on behalf of 

the user. 

Human-IoT Interaction (HII) aims to create synergetic partnership amongst its 

participants looking to attain common goals in social-like structures (Nunes et al., 2015). ‘Smart 
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objects’ and humans collaborate towards common aims, emphasising goal achievement, over 

system’s rules, highlighting the overarching purpose of the system (Cervantes-Solis et al., 

2015b). In this environment, it is often the case that both devices and human users have to 

negotiate to some extent their role within this association, based on trust and common interests, 

much like the social-like interactions that will be discussed in chapter section 4.7.1. 

Complementing the vision presented in section 4.3, an intelligent IoT would be a system 

comprised of both things and their human users, harmoniously supporting of goal achievement as 

a collaborative endeavour. 

4.7 Conversational IoT 

From a technical perspective, protocols that support a breakdown of message components 

(such as MQQT defined in Chapter 2) do not fully address the requirements that a human-based 

approach to interaction requires, acknowledging common representations of knowledge and its 

associated mental modes. As such, for the IoT, the concept of a ‘Conversational IoT’ has been 

discussed in the context of natural language and text-based conversations, through the 

implementation of virtual assistants (McTear et al., 2016). This approach aims to semantically 

extract descriptions of the services that the IoT provides, enabling speech-based interfaces to 

communicate with users, providing textual descriptions of the system’s actions and its 

programmability (Braines et al., 2017). 

In contrast to speech based communication between the IoT and humans, Gajendar (2016) 

proposes to embrace HCI aspects that emphasise on the system’s physicality, the actions things 

support and how they affect users’ relationship with them. This section analyses the 

‘conversational IoT’ from the point of view of things’ affordances, the tasks and goals they 
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support and how they enable human interaction in a turn-based exchange framed under a 

common theme. 

4.7.1 Friendship relationships in the IoT 

In social networks, friendship describes common interests and trust between parties (Nitti 

et al., 2014). Conversations commonly occur between people that share a relationship, or are 

‘friendly’ to each other, and they have contextual relevancy to the specific information exchange 

(Gibbins et al., 2004; Clark et al., 1991). As discussed in 4.2, this thesis explores the notion as 

Social IoT, where social traits such as trust, nature of the relationships and purpose of the 

relationships can be attributed to the system’s nodes. In this context,  Atzori et al. (2014) suggest 

that things can build their own social network and generate new services from the collaboration 

with other friends in the network. As such, the Social IoT could take advantage of traits of 

friendship relations such as how friends might have mutual prior knowledge and shared 

experiences; friends might trust each other with personal or private information; friends might 

recommend other friends or might seek to protect their own friends. In much the same manner 

that social network support conversations, things in the IoT can engage in conversations amongst 

themselves, and as discussed in 4.3 we could posit that things and humans can also engage in 

conversational exchanges, beyond the commonly used data-based approach to interaction 

described in Chapter 2. This notion will be discussed in the following chapters by exploring how 

these conversation can take place. 

4.7.2 Social objects and their conversations 

Norman (2007) analyses ‘future things’ as machines that have sufficient intelligence to 

communicate their intentions and outcomes to their users. Norman argues that despite these 

capabilities communication exchange with the machine as it is often a one-way conversation. The 
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machine will perform its function, without much human intervention, in fact he compares the 

exchange as “two monologues” as opposed to a conversation between two parties. As a solution, 

Norman proposes that a collaboration between human and machine in which activities are 

synchronised, by providing a reason and an explanation of how this synchronisation is achieved. 

In addition, he suggests this collaboration should be based on trust, through a negotiation of 

shared experiences, knowledge and understanding of what they are pursuing. This agreement 

imbues actors in these collaborations with social-like attributes, which as noted in section 4.7.1, 

form friendship relationships. 

Bleecker (2005) introduced the concept of ‘blogjects’ for objects and things that exist 

within “the sphere of [the] networked social discourse variously called the blogosphere, or 

social web”. This notion was introduced as a predecessor to Sterling’s conception of ‘spimes’ 

that are searchable, trackable and share their trajectories across time and space, in contrast 

‘blogjects’ were intended to not only make information available, but also to provides a mean of 

circulating the information enabling a conversation. Bleecker posits that this enables an Internet 

of Things in which “socially meaningful exchanges” occur, modifying cultural experiences 

through media sharing in a collaboration between human and sensor data.  

Moreover, ‘blogjects’ engage in conversations with other devices “by starting, 

maintaining and being critical attractors in conversations around topics that have relevance and 

meaning to others who have a stake in that discussion”. In this regard the social interactions of 

these objects and their users, gain visibility as they are reinforced over time, or conversely, ‘die 

out’ if they lack relevance. 

By conferring the ability to establish a two-way interaction, both parties are assumed to be 

able to interact with a degree of autonomy. In this context, Bleecker (2005) argues that agency in 
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fact must be reframed in terms of not only of their capacity to act automously, but also in how 

they are able to effect change providing a framework for meaningful conversations. 

For computational devices the Turing test has been used as a tool to measure the degree of 

intelligence by establishing a conversation with the machine, and evaluate whether it could pass 

for a human to another human (Turing, 1950).  In the context of this thesis, the notion of a 

conversation provides an interesting approach to how these conversations are supported in 

devices such as those found in the IoT with constrained capabilities in terms of interfaces or 

computational processing power. 

For the IoT, Rubens (2014) analyses how the Turing Test could be applied under these 

constrains. Notably, as originally conceived, the test involves a ‘single’ computing system, that is, 

it does not necessarily makes the assumption that intelligence could be distributed over a range of 

devices, in an scheme like the one found in the IoT. 

Rubens posits what would be the nature of such a conversation with objects such as a 

kettle when it clearly does not provide an interface that allows it to ‘talk’, but performs its 

expected goals. Thus, Rubens argues that intelligence in the IoT is not a measure of the object 

being capable of sustaining a speech or text based conversation, but of its capacity to support an 

‘operational dialogue’: the machine’s ability to take action conducting to the expected goal, as 

intended and expected by the users. Furthermore, Rubens points that this ‘intelligence’ should be 

able to support predictive behaviour from the machine, such as coffee machine inferring when 

will it be used and thus turn itself on, and a degree of transparency on its processes such that they 

become opaque actions to its users. Notably, this approach to an ‘intelligent conversation’ in the 

IoT requires the analysis of goals and tasks in an organised manner within a common thread, and 

not entirely on the notion of speech or text based communications. 
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4.7.3 Conversational Common ground 

Within the context of human-human communication, (Clark, 1996) defines ‘grounding’ as 

a “collective process in which the participants try to reach a mutual belief”. This proposes that 

conversation is a social activity, in which the content of the exchange must be negotiated by a 

clearly defined process. Moreover, the established ‘common ground’ must be updated through the 

pursuit of positive evidence of understanding. Such evidence can come from common forms of 

reinforcement, such as: acknowledgement, turn taking, and continued attention. Hence a 

conversation is an active process in which participants recognize that they understand what is 

being said, agree that the conversation is divided into stages or sections of communication that do 

not overstep on each other, and that conversation requires participants to constantly attend to 

what their partners are doing at any given time. As such, this model of conversation frames 

positive, meaningful exchanges between parties. These guidelines define a state-based 

communication that defines the turns (or sequences) in which objects interact collaboratively 

towards the same outcome, following a common topic. 

 

Figure 4.4 A model for conversation based on common grounding. 
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Within this notion of conversation, information exchange is not a matter of presenting 

well-defined ‘units of meaning’ but rather a continuous movement towards understanding, with 

each partner adding and modifying the topic through provision of information that indicates their 

comprehension. As with any form of interaction between people and computers, it is a moot point 

as to far this common understanding can be achieved, but within the IoT we would argue that the 

situation is exacerbated. Not only is it unlikely that all parties have access to the same 

information, knowledge and, possibly, goals but also the ‘conversation’ involves multiple agents 

who might be pursuing different topics. From this, one can readily understand why there might be 

confusion in the human-IoT interaction. 

4.8 Meaning 

The definition of ‘meaning’ can be derived from different fields such as philosophy, 

psychology and linguistics. Although this thesis is by no means a philosophical exploration of the 

concept of meaning, it is worthwhile noting that its different schools of thought relate the idea to 

that of purpose, or a an individual’s basis of existence (Blackburn, 2005). The concept of 

‘purpose’ is akin to that is used throughout this thesis as a system’s core goals. 

From a psychology perspective, ‘meaning’ has connotations related to behaviour and 

cognitivism and in order for a concept to possess ‘meaning’ from the perspective of an individual, 

it must have some value attributed to its use or experience (Meretz, 1999). The psychological 

process of ‘meaning-making’ describes how persons make sense of life events, their relationships 

and their own selves. 

On the other hand, the IoT’s potential to influence the economic value chain of different 

industries, has framed the notion of ‘value’ in a very direct relation to economic wealth (LaValle 

et al., 2013). However, in the context of this research, ‘value’ is considered a broader term that 
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relates to that found in psychology, of ‘making sense’ and appropriation. As such, in the context 

of HCI methodologies, it is expected to promote a system’s understanding from its user’s point of 

view, focusing on creating engaging and valuable experiences and outcomes. 

As described in (Chandler, 1994) the field of linguistics provides its own interpretation of 

meaning through semantics. It studies the relationships between language’s most basic units 

(signs and symbols), and their ‘signifiers’, or the concept they convey. Their interpretation is 

defined through their ‘connotation’, that is to say their particular circumstances and context. 

Semantics provides formalisms in which symbols provide representations, references and 

a literal meaning (their ‘denotation’). As defined by Montague’s grammar (Montague, 1970) 

“meaning of a sentence can be deconstructed to the meaning of its parts”, hence, ‘meaning’ can 

be described as a result of the  aggregation of different units of language. 

Moreover, the concept of connotation provides the notion that meanings are not complete 

without their context. 

In the context of this research, the concepts found in semantics provide an analogue to the 

notion of units of information, which within the same context, provide value to their user. In a 

‘society of things’ IoT model, nodes are described as the basic unit of the networks, working 

collaboratively towards the same goal. Hence, in much the same way that semantics approaches 

the problem of meaning, the interactions in a collective of smart objects, within the same context, 

can be understood as defining ‘meaning’ for the network. In other words, the functionality of the 

system as described by its goals. 

4.8.1 Semantics in Computer Science 

In computer science, semantics has been approached as a solution to the problem of 

providing a structure for the information found in computing systems (García-Sánchez et al., 
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2009), used to model data-enabled systems, aiming to establish less rigid approaches to the 

information that it can convey.  

In particular, for the internet and its web-based applications, Berners-Lee et al. (2001) 

propose the concept of a ‘Semantic Web’ in which software agents take the task of providing 

meaning to the data stream users create when browsing the web. These agents would produce 

structure to the information, such that they would be able to perform tasks on the user’s behalf, 

according to the context. In contrast to the ‘traditional’ approach to the web in which the 

information is expressed in terms of the raw data itself (i.e., the contents of a document), the 

semantic web establishes common semantical descriptions and rules to describe resources and 

relationship to other resources. This common ontology allows for the creation of structured links 

that provide an explanation or meaning to the resources. 

While the communications infrastructure and protocols (Thoma et al., 2014; Russell and 

Paradiso, 2014) are a significant aspect of the development of the IoT in terms of device 

relationships, the fundamental physical attributes of things should also be taken into 

consideration (Guo et al., 2012b) in relation to the object’s affordances, or its attributes as 

tangible interfaces (Ishii and Ullmer, 1997). As discussed in Chapter 3 these physical 

characteristics provide links between functionality and the tasks they support, providing meaning 

to the interaction, supporting a paradigm shift from a ‘data-based’ vision, to a ‘knowledge-based’ 

view (Berners-Lee et al., 2001). The approach taken by research in semantic web could be 

applied to identify semantic relationships in IoT networks (Kirstein and Varakliotis, 2014; Russell 

and Paradiso, 2014; Wang et al., 2012; Wu et al., 2014). Borrowing from World Wide Web 

protocols, these approaches are focused on supporting shared vocabularies through the use of 

Uniform Resource Identifiers (URI) and hyperlinks, establishing mechanisms for clients to 
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address resources and other nodes in a subscribe to push/pull data architecture, analogous to 

Hypertext Transfer Protocol (HTTP). Linking resources allows for descriptions of the 

applications they enable based on their relationships, location, ownership and functionality, as 

shown in Figure 4.5. 

 

Figure 4.5 Linking resources through their functionality, location and ownership (image adapted from 
Russell and Paradiso, 2014) 

4.8.2 Knowledge 

A major challenge for the IoT is to turn a vast amount of data from various devices into an 

output that facilitates insights (knowledge) for the end user, enabling the creation of meaning. 

Computing for Human Experience, as described by (Sheth, 2010), aims to “enable a system that 

makes conclusions and decisions with human like intuition”. The semantic web approach has 

been discussed as a solution for IoT standardisation. Figure 4.6 shows an architecture for 

semantic computing, as proposed by (Sheth, 2010). This approach relies on the extraction of 

metadata from patterns found in the different sources of information, based on semantical 

observations on data. This method relies on the annotation of metadata provided by the data 
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sources, and on known conceptual models that characterise the nature of IoT nodes, and what is 

expected from them. 

 

Figure 4.6 A Semantic Computing Architecture, from Sheth (2010). 

For the IoT, (Zhao et al., 2015) present a method for searching knowledge in the IoT 

using semantic mining based on topic discovery. This method provides “topic-relevant 

information according to user’s demand”, and the “interactivity between users and the 

surrounding environment”. Zhao et al., provide in this way an extension for semantical extraction 

relying on the relationships found between systems, users and environment, matching IoT 

resources by their relatedness to others, proposing “knowledge networks” organised by shared 

topics. In other words, the purpose of the network is defined in terms of the contextual 

organisation of common semantical units. In the context of this research this proposition is 

aligned to the notion of providing a common ground that provides context to the interactions 

found amongst devices, breaking them down into simpler units. In the conversational IoT this is 

supported by an overarching theme comprised of topics as will be discussed in section 5.2.  
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4.8.3 Collaborative sensemaking 

When considering a collaborative system in the context of meaning as described earlier, 

we should ask how the participants in the collective agree on the tasks and goal. In the IoT, 

sensemaking not only relates to the steps taken by the devices or humans to gain an 

understanding of their purpose, but also to how this supports engagement to proactively reinforce 

its social aspects. 

Pirolli and Card (2005) argue that ‘sensemaking is “information gathering, re-

representation of the information in a schema that aids analysis, the development of insight 

through the manipulation of this representation, and the creation of some knowledge product or 

direct action based on the insight”. This cycle will be explored later in terms of distributed 

environments, such as those mentioned in chapter 2, devices on the edge follow their own 

conversation with their users (in contrast to a centralised paradigm), but should be able to follow 

their own turn-taking, attention and sensemaking. In this context, Preece et al. (2015) argue that 

as a result of automation found in these devices “the user becomes a more active participant in 

the process, able to ask the system for information as well as receive it”. Hence, users become a 

crucial part of the loop for meaningful interactions.  

As described in section 3.2 sense-making and mental models play an important role in 

how human users take action on IoT systems. Moreover the IoT has been described as a 

distributed system comprised of different entities looking to attain common goals (as discussed in 

chapter 2). As such, sense-making process should address systems where resources are 

distributed across their components, and, as introduced in section 2.5, in which every component 

might be also looking to reach their goals. (Roschellel and Teasley, 1995) describe collaboration 

as "mutual engagement of the participants in a co-ordinated effort to solve the problem together". 
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 Moreover, Umapathy (2010) describe the process of collaborative sensemaking as the 

process in which different entities understand a situation by collective consensus and take action. 

In the context of the IoT this notion of collaborative sensemaking implies that each of the nodes 

that comprise a system has a role in how it provides meaning. As will be described in Chapter 5, 

this extension of sensemaking as a collaborative process provides a framework for the 

development of a design methodology for an IoT that supports human activities through defined 

tasks and goals, and by acknowledging the technological capabilities and physical attributes of 

things and how they are understood and in by users. 

4.9 Conclusion 

Parts of the conclusion section were taken from (Cervantes-Solis and Baber, 2016). 

This chapters focuses on inspecting the interactions of a society of smart objects, were human 

users and instrumented devices network to achieve a particular outcome as collaborative system, 

and providing the background relating to the nature of Human-IoT conversations. It presents a 

framework to characterise the purpose of social-like interactions in the IoT, based on its tasks and 

goals.  

Knowledge representation in computing shifts from data centric domain to a meaning 

based domain. On the one hand, there is a requirement for the development of technical aspects 

the IoT, such as specific protocols for device communication in the IoT (Fan and Chen, 2010) or 

the taxonomy and syntax of the data interchange (Zhu et al., 2005). Nevertheless, there is also the 

aspect of investigating the tools and techniques with which meaning could be communicated by a 

network and understood by other networks and their users. The conversational approach 
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presented in this chapter lays the foundation for an structure to describe interactions between 

human and users, as will be discussed in the following chapter. 

The social framework will serve as the basis for the development of a methodology to analyse 

user interaction in IoT systems The methodology that will be described in chapter 5 aims to 

support IoT system development to not only consider sensor data, but also human users though 

system usability framed in a conversational approach grounded under a common theme. In this 

regard, further exploration of the concepts of Themes and Topics as related to the human and 

machine tasks and goals is required. This notion will be explored in more detail providing a 

knowledge structure to describe these interactions.



 
 

5 Designing for a Human-Centred IoT 

As discussed in the previous chapters, the IoT has been primarily focused on its 

technological development, with applications based on providing solutions highlighting data-

centred approaches, relying on machine learning techniques to provide insights to their users. 

Thus, the question of whether an approach based on human user requirements was explored in 

chapter 3, finding that a purely technical view of the IoT leaves users in a secondary plane, 

effectively hindering engagement with things. Further, the problem of how to provide meaning to 

users was introduced, in terms of the goals expected by the users. A framework for characterising 

the IoT a conversation a conversational IoT was explored, along with some techniques to identify 

tasks and goals in system usability. Things’ and humans’ goals misalignment was identified as a 

reason hindering IoT system usability. As such, techniques to analyse goal deviation were 

introduced. Thus, the problem would be to provide a methodology addressing how to effectively 

analyse an IoT system such that both devices’ and humans’ actions support each of their goals, 

and to provide a framework to model and develop a human-centred IoT. 

This chapter proposes such methodology based on Task Analysis for Error Identification 

(TAFEI), paving the ground for IoT system modelling and design. 

5.1 The design of smart objects 

As discussed in Chapter 2, design and modelling efforts in the IoT have been primarily 

through data centric frameworks, focusing on the expected outcome of the system, as opposed to 

the tasks and interactions required to achieve it with a human user at the centre of the analysis. As 

discussed in chapter 3, methodologies for goal and task-based modelling can be applied to the 

IoT, focusing on the concept of a collaborative and ‘conversational’ IoT. 
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As discussed, cognification is an attribute applied to devices when they are imbued with 

sensing, processing and communication capabilities (SPC), and as an extension, behave with 

agency, enabling things and humans to organise in social-like structures. Recalling the notion 

discussed in Chapter 2 that ‘smart’ systems are sometimes enabled by smartphone applications, 

we often find that interactions in these structures occur between a digital representation of the 

object and the user, and not the physical object itself. In this context, users are provided with 

extensions of the thing’s behaviour either through their data or representation of their data. 

Moreover, improvements on SPC characteristics enable technological properties that lead to more 

complex and richer data that allow for machine learning and AI solutions that arguably embed 

higher degrees of automation and decision making that are considered intelligent. Although these 

increments in ‘smartness’ could provide additional functionality in IoT systems, from the point of 

view of a user the effect could be the opposite, as smart devices also gain an additional layer of 

complexity. Therefore, their usability is impacted, as the additional functionality occurs in a layer 

hidden to the user. As previously discussed, the effect of smart thermostats highlights the 

possibility of IoT systems becoming opaque to users by not providing a full explanation of what 

they are doing, or cues related on which goal they are pursuing. 

For HCI, the challenge then is to create sufficient transparency for people to understand 

how things are functioning in an IoT, without burdening humans with undue and unnecessary 

control decisions. Given that the IoT functions as a network in which information is exchanged 

between its nodes, one could consider this exchange in terms of a conversation as discussed in 

chapter 4. Consequently, ideas are exchanged between participants and these ideas gain meaning 

through their context and the nature of the relationship between participants. The suggestion is 

that the key focus of analysis is not simply information exchange but rather than translation of 
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information into an ‘idea’. In other words, conversation is about managing topics which occur in 

a specific context, giving purpose to the interactions, in the form of an overarching theme. It is 

also worth, at this point, consider how the ‘conversation’ metaphor might collapse in the face of 

IoT. We have noted that there is a need for continuous movement towards understanding in a 

conversation. At one level this could imply a desire to have people continually interacting with 

things in an IoT, which would go against the desire to off-load activities and could create all 

manner of problems relating to distraction and disruption to human activity. When using the word 

‘conversation’ the aim is to highlight the need to establish a shared topic amongst conversation 

partners, and to assume that, given agreement of topic, it is possible for the partners to pursue 

entirely independent activities. Thus, by considering the system’s goals as the centre of IoT 

interaction design, this research posits that in the social-like IoT, conversations could be 

developed following the concept of ‘grounding’, aiming to provide mutual agreement on the 

expected outcome, in a turn-based fashion. 

As described in Chapter 3, smart object design should consider a hybrid approach in 

which device behaviour is related to its tangible interface and data-based enabled interactions, 

and the user’s mental models that support their activities and expectations.  

5.2 Meaning: Themes and Topics 

Some parts of this section are taken from the paper “Towards Theme Discovery Paradigm 

in the Internet of Things” by, Cervantes-Solis, J. W., & Baber, C. (2016), published in the 

proceedings of the Contemporary Ergonomics and Human Factors 2016 conference. The author 

of this thesis developed the concepts presented in the work, conducted the research and wrote the 

paper with the support of Prof. Baber. 
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As discussed in chapter 4, one of the problems faced in usability for the IoT is a lack of 

understanding of what the system is expected to achieve. The concept of social conversations, 

involves the notions of context, topics and theme providing a framework to agree on the purpose 

of the IoT system. In this research the context of the network is considered to be the clearly 

defined and mutual environment in which human and things cooperate for mutually agreed goals. 

For example, sensors collecting temperature readings in a single room are located in the same 

physical location. Moreover, when a particular collection of objects perform defined actions to 

reach their goal, we acknowledge that topics in the conversation are established. Extending the 

previous temperature control scenario, temperature sensors would communicate temperature 

readings to a control hub, whilst humidity sensors would exchange moisture levels. The control 

hub would then issue commands to adjust settings to a furnace or boiler. Two topics would be 

identified in this system: a ‘temperature control topic’ and a ‘humidity control topic’. Thus, the 

concept of theme in the IoT refers to the collection of topics that contribute to interactions in a 

particular context, providing a high level definition of what the network does. Accordingly, the 

theme of our example network would be climate control in a certain environment. As such, 

instead of looking purely at data or sensor types, as found in current IoT systems, this thesis 

proposes to characterise the themes of these networks in terms of their goals and tasks. 

The term ‘topic’ is used in a number of IoT architectures to describe communication, i.e., 

how nodes adhere to assigned data buses. For example, as described in Chapter 2, in MQTT, 

devices subscribe to a ‘topic’ if they are to communicate with the messaging broker, which in 

turns manages communications. Similarly, in the Node-RED data-flow programming tool 

presented in Chapter 2, messages are delivered to nodes as payloads to previously defined 

participants of a ‘topic’. These definitions of ‘topic’ feel too constrained as they hardcode the 
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level and nature of interactivity between nodes, focusing on exchanging data. In contrast, this 

thesis pursues the concept of topic in a framework of loosely connected devices, and propose that 

by their interaction with each other, meaningful and contextual-based connections emerge. In this 

context, the question would be how to implement this concepts in smart systems design, as will 

be discussed later in this chapter. 

5.3 A knowledge structure for a theme-based conversational IoT  

As discussed in Chapter 4, ontologies in the IoT are required to provide commonly agreed 

descriptions of the relationships and structure of the network’s elements. 

(Gruber, 1995) identifies ontologies to represent domain knowledge as “declarative 

formalism, and a set of objects that describe relationships amongst them”. As such, an ontology 

requires a rigorous and formal methodology for its definition. In the context of this thesis, in lieu 

of the rigorous methodology to define a formal ontology, a knowledge structure is proposed to 

provide a structural description of the elements and relationships of the elements in the proposed 

conversational IoT. 

In this section, a basic ontology-like knowledge structure for a Theme based conversation 

IoT is presented, specifying a framework to define the types, properties and relationships of the 

actors involved in these exchanges. 

As defined in chapter 2, a thing is a physical object with sensing, processing and 

communication capabilities, which can be described by the service it provides, in relation to its 

data. The data stream coming from sensor nodes in an IoT system, can be classified by the 

actions the thing produces or requires. At a higher level, those functions determine the intended 

outcomes, or goals, in the network. Each thing is constrained in its scope by the interactions it 

can have with other things, either because of their functions, physical location and proximity with 
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other things or by the communication protocols they use or networks to which they are able to 

connect. These are considered the system boundaries, and in the case of Social IoT they become 

analogous to the context of the relationships to other things in the network. The previous 

description provides the basis for the structure that defines the elements and their interactions in a 

conversational IoT. Moreover, by reframing this structure as a social system as described in 

chapter 4, it could be argued that devices who are not socially linked to others, are considered to 

be outside from their context and, thought they could communicate to each other, they wouldn’t 

necessarily collaborate towards the same goal. 

In this framework, goals are reached through actions aggregated from sensor node data 

(Figure 5.1). In the Social IoT structure proposed in this work, this is akin to conversation topics, 

occurring within an overarching, common theme. 
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Figure 5.1 From sensor data to goals. 
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As an example, sensor data describes the data type that a transducer can measure 

(acceleration, humidity, magnetic field, light, etc.). By grouping these data, actions that describe 

a unified goal can be considered. In terms of a conversation, these actions are the topics that 

provide meaning. Thus, a thing could be cognified with an accelerometer, magnetometer, 

gyroscope and GPS whose data could be aggregated into an IMU (Inertial Measurement Unit) 

action, a Pedometer action, and a positioning action, with the goals of providing measure of 

walking distance, step counter, bearing (orientation), and geographical location framed within a 

‘Support a fitness regime’ theme. Similarly, another thing could be imbued with a temperature 

sensor, grouped with a barometer and UV sensors to collect data supporting actions such as 

ambient temperature, atmospheric pressure and UV Level, with an Environmental weather goal, 

supporting for a ‘Weather forecast’ theme or a separate ‘What-to-wear’ theme. Table 5.1 shows a 

summary of the previously described things. 

Table 5.1 Things characterised in terms of the sensor data, actions, goals and themes. 

 Sensor data Actions Goals Theme 
Thing 1 Accelerometer, 

magnetometer, 
gyroscope, GPS 

 Inertial 
Measurement 
Unit (IMU) 

 Pedometer 
 Positioning 

 Walking 
distance 

 Step counter 
 Bearing 
 Geographical 

location 

‘Support fitness 
regime’ 

Thing 2 Temperature, 
barometer, UV 
detector 

 Ambient 
temperature 

 Atmospheric 
pressure 

 UV Levels 

 Environmental 
weather 

 ‘Weather 
forecast’ 

 ‘What-to-
wear’ 

 

In this frame of reference, there is a possibility of new topics emerging, with the 

combination of seemingly unrelated functions. For instance, a pedometer and a barometer could 
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be used to count the number of floors in a building, or a switch in a fridge and another in a coffee 

machine could be used to determine that a coffee with milk has been made. 

Thus different networks need not share data, but a topic of conversation (as sensor node 

actions), which in the context in which the system operates, defines the Theme of the network.  

By re-examining Figure 5.1, this work posits that goals are comparable to themes, 

whereas sensor node actions are analogous to topics. Moreover, in terms of the technical 

implementation, a potential benefit of this approach could mean that data is handled as locally as 

possible, akin to what has been proposed by edge or fog computing, while enabling a higher level 

meaning exchange amongst things. 

Moreover, a context is required for the system to operate in, such that the topics are 

meaningful to the particular conversation. Without a common context of understanding between 

each other, different topics would behave as noise in the environment. As described in the 

previous chapter through the concept of common ground in conversations.  

As illustrated in Figure 5.2, a theme is defined as the collection of topics occurring in the 

same context, such that this theme represents the overarching focus of a conversation, as 

identified by the user’s goal. Moreover, according to the conversational interface framework 

proposed by McTear et al. (2016), utterances are the minimal unit of information found in 

conversational systems, and are related to the actions a machine performs “in the pursuit of a 

goal”. As such, in the proposed knowledge structure, utterances would be comparable to sensor 

node actions. 
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Figure 5.2 A knowledge structure to support a Conversational IoT. 

In terms of the IoT system comprised of both humans and things this thesis posits, this 

framework needs an analysis of what is required to produce topics in terms of their corresponding 

sensor node actions and who will be supported by the goals. This involves understanding not only 

the machine’s perspective as described previously, but also the user’s. Thus, identifying user 

actions that need to occur in order for the relevant sensor node actions to be triggered is required. 

For example Thing 1, shown in Table 5.1, needs a person moving (walking or running) for the 

sensors to operate, enabling machine actions. The user would then interact with the device 

through the available interfaces, such as reading a display, and by doing so complementing their 

own goals such as an awareness of the distance walked and calories burn in the context of a 

‘support fitness regime’ goal. Shifting from a data-centric approach, to the described meaning 
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based paradigm, allows to characterise system interactions in terms of users’ requirements, as 

opposed to the devices’. 

The following sections focuses on complementing the methodology with a human-based 

task and goal analysis approach, providing insights on user actions and goals. 

5.4 What and how to augment? 

As discussed in the previous chapters, the Internet of Things is comprised of objects 

augmented by sensing, processing and communication capabilities. When considering humans as 

beneficiaries of the products and services enabled by these technologies, a consideration should 

be made on what and how to augment in devices to create cognified counterparts, whilst 

addressing the need to support user goals, which as discussed in Chapter 2 characterises the 

purpose of the system. 

As discussed in terms of conversational grounding, the initial focus should be placed on 

the context of operation. Based on the ‘planes of experience’ framework presented in Chapter 3, a 

second step would be to focus on the purpose of the system, and thirdly on the physical aspects 

that support the thing’s goals. Identifying these goals, and how they support or hinder the user’s 

goals becomes a focal point of smart object design. Additionally, goals and actions should 

support a conversational exchange, in the terms presented in Chapter 4.  

5.5 Task and goal analysis for system requirement definition 

As noted previously, there is a notion of agents collaborating with each other in pursuit of 

a common, core goal. As such, the steps taken by each of these agents is an important 

consideration in order to be able to describe what the system is doing and how it will do it.  

The system can be characterised by its goals, by a clear criteria (such as a utility function 

in agents, as discussed in chapter 2). Analogously, sub-goals are can also be defined in terms of a 
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particular performance criteria, and the series of rules that organise the sequence in which these 

are accomplished. Hence, the system can be described in terms of basic units, much like the 

argument made in Chapter 3 regarding conversations. Communication exchanges can be broken 

down into hierarchically organised simpler units: actions form topics, and topics can be 

aggregated into a common conversational thread or theme, as shown in Figure 5.2. Moreover, 

common grounding provides contextual significance, turn-taking and order for the conversation.  

5.5.1 Hierarchical Task Analysis: a human based goal description. 

Described in Chapter 3, Hierarchical Task Analysis (HTA) has been identified as a tool to 

describe a system’s functionality through its tasks, and how those tasks actions relate to the 

system’s core goal. Moreover, the system’s operation can be broken down as sub-operations 

(sub-goals) and their relation to the core goal. In this hierarchical description, sub units can be 

used to break down the actions into minimal descriptions, according to the application’s 

requirements.  

According to the guidelines presented in Chapter 3 to provide a system description in 

terms of its goals, it could be argued that these guidelines can be applied to the knowledge 

structure presented earlier in this chapter. Table 5.2 summarises these guidelines in the context of 

the conversational IoT. 

Table 5.2 HTA and Conversational IoT Knowledge structure equivalence. 

HTA A knowledge structure for a 
conversational IoT 

Purpose of activity Theme 
Boundaries and sources of 

information 
Context 

Goals Topics 
Sub goals Actions 

Links in goals and sub goals Actions aggregating into topics 
Plans Rules for controlling topics 
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As an iterative process, goals can be described in terms of sub-goals (topics in the 

knowledge structure), that can be broken down further into simpler units describing specific 

sensor data. This property posits an important opportunity to identify where to augment a thing as 

will be discussed later in this chapter. Moreover, the relationships in the HTA methodology and 

the knowledge structure allow analysis of how topics hierarchically relate to each other to 

describe goals. However, an interesting feature of HTA is that it provides a human-based analysis 

of goals, as the plans the human takes to complete the goals are described as a series of tasks. 

That is, it allows an understanding of what the user aims to achieve in terms of tasks supported by 

the system’s parts. 

The steps required to analyse a system in the HTA framework is presented in chapter 3. 

They can be summarised as: 

1. Identify the purpose of the activity 

2. Identify the objects and the tasks you could do with these which are relevant to the 

goal. 

3. Break down tasks into simpler tasks, and iterate according to the application and 

the context (stopping rule). 

4. Identify the plans humans need to take to complete goals, characterised as 

sequences of tasks. 

The following section provides a worked example of HTA for the recurring example of a 

heating system. 
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5.5.1.1 Applying HTA for the Conversational IoT, a worked example 

5.5.1.1.1 Determining a goal 

The user’s expectations with the system should be identified, in terms of what the system 

is capable of doing. In this example, a basic central heating system has the purpose of providing 

an automatic control of the temperature in a room or building. Thus, as their main goal, users 

would expect to be able to ‘use thermostat’ to adjust ambient temperature to their desired comfort 

level. 

5.5.1.1.2 Determining tasks 

Tasks in the system can be identified in terms of how the human user interacts with the 

machine. In a simple central heating system, users interact with a form of interface providing the 

current ambient temperature reading, and a control unit to adjust the temperature setting. Often 

they are found in the same device, as shown in Figure 5.3, but they require two different actions 

(reading a display and adjusting a dial) to support two different tasks: ‘Read temperature’ and 

‘Use control’. Moreover, some task can be decomposed into simpler tasks, allowing a finer 

description of what needs to be done by a user completing a goal. For this example, the task of 

reading a display can’t be described further in terms of simpler tasks, in this case it is assumed 

that a ‘stopping rule’ applies (as will be described below, this is denoted by underling the task in 

the HTA diagram). The task related to the control unit can be described in terms of the tasks of 

‘increasing temperature’ and ‘decreasing temperature’. 

5.5.1.1.3 Defining plans 

The sequence in which users will complete tasks in order to complete the expected goal is 

defined as a plan. As each task can be divided into simpler tasks, plans for those tasks need to be 

provided as well. 
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For the example, Table 5.3 shows the system’s supported actions, while Table 5.4 shows 

the plans that support user’s tasks, and will be discussed further in the context of the HTA 

diagram presented in the following section. 

 

Figure 5.3 A central heating control unit integrating two functionalities: displaying current temperature 
and controlling temperature setting (Image source: Wikimedia commons). 

 

Table 5.3 Actions supported in a central heating system. 

Object Expected user 
action 

Temperature 
gauge  

Check temperature 
(visual) 

Control  
dial Adjust temperature 
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Table 5.4 Plans for the 'use thermostat’ goal, as related to the HTA of a Central Heating system 

Plan 
Plan breakdown 

P0. Use 
thermostat 

P0: 1→ if(temperature not at an 
acceptable level)→2→else→1→exit 

P2. Use 
control dial 

P2:if(cold)→2.2→else→2.1→else→exit 

 

5.5.1.1.4 The HTA diagram 

The Hierarchical Task Analysis is presented through a diagram summarising the previous 

descriptions. Shows the HTA for the ‘Use thermostat’ goal in a central heating system. Plans are 

labelled P0, P1 and P2 and are described in Table 5.4. 

 

Figure 5.4 HTA for the ‘Use thermostat’ goal in a central heating system. Plans are described in Table 
5.4. 



CHAPTER 5   

125 
 

5.5.2 State diagrams: a machine-based goal description. 

The concept of state based machines was introduced in Chapter 2 in the context of event-

driven systems. These systems can be described using behavioural state diagrams (SD) providing 

a characterisation of a system’s components and their relationships. States and their transitions 

represent the status of the system’s components and their tasks. 

Where HTA can provide a human based approach of tasks and goals, State Diagrams 

provide a view of the machine’s. For the running central heating example, Figure 5.5 shows a SD 

describing the machine’s components and interactions. 

 

Figure 5.5 State diagram for a machine-based description of the Central Heating System. 
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5.6 TAFEI and the Conversational IoT 

HTA and State Space Diagrams each provide the tools to model tasks, goals and their 

interactions. However, each focuses on a particular role in the system. The former providing a 

view on human-centred tasks and the latter on machine-centred transitions. Thus, the question 

would be how to bring them together such that the goals for both points of view consider the 

other. 

As has been discussed, on the main drawbacks on the IoT as applied to its human users is 

the understanding of goals such that they are complemented and aligned to each other. Chapter 3 

presents an overview of some methodologies for goal deviation analysis, such as CHLOE, THEA 

and TAFEI. Although each present particular benefits over the others, it was found that the latter 

presents the additional benefit of bringing together goal descriptions for both the human user’s 

and the machine’s in terms of actions performed by them through a unified, state-based diagram. 

By modelling human-object interaction as a form of state-space diagram, TAFEI 

illustrates two aspects of the notion of conversation that is relevant to our conception. First and 

foremost it indicates the turn-taking between human and objects to show when the human is 

expected to intervene and also when transitions in the state of the object exclude human 

intervention. From this two requirements for user interface content could be proposed: (i) cues to 

tell the user when (and how) to act, and (ii) indication of the objects current state and intended 

actions. Second, each TAFEI is developed to indicate a particular goal. It would be expected to 

create multiple such diagrams in order to explore when states might occur in more than one goal. 

TAFEI allows us to provide a framework in which both users and machine know when it’s their 

turn to act, or whether they need to wait. If a topic is not clear to the user, some machine 

transitions might appear invisible, effectively ‘locking’ the user out of the conversation. TAFEI 
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provides the turn taking approach required in a conversation, however, evidently users are not 

necessarily aware of the full set of states, transitions and tasks that TAFEI provides, it would only 

be required to be aware of the common ground that the conversation is based on, and this is 

provided by the expected goal at any particular time. This suggests that some design 

consideration should be addressed to support the transparency required to identify the topic the 

system is engaged at any given time. Some systems might inform users through traditional user 

interfaces such as displays or meters, but in other cases, affordances could be used to support 

them, or as suggested by Baber, to construct affording situations. 

 

 

Figure 5.6 Summary of required steps to apply TAFEI for the Conversational IoT 
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5.6.1 Applying TAFEI for the conversational IoT 

The flowchart presented in Figure 5.6 shows a summary of the steps required to apply 

TAFEI for the Conversational IoT, considering human and machine’s actions to support a defined 

goal, as described in the previous sections. 

This section applies the methodology for the previously discussed Central Heating 

example.  

Goals and tasks will be characterised in terms of the system’s HTA and State Diagrams. 

By analysing the two diagrams, a vision of their relationship is obtained and summarised with a 

state-based diagram, linking the states in the SD (Figure 5.5) and the plans in the HTA (Figure 

5.4 and Table 5.4). A TAFEI diagram for the central heating example system is shown in Figure 

5.7. As observed, state 0 is defined as ‘idle’ in ‘standby for user action’. A user following P1 

would trigger a transition to state 1, in which the system would be waiting for ‘reading 

temperature display’ from the ‘temperature gauge’. Following plan P2 would make a transition to 

state 2, in which the user would be required to interact with the ‘control dial’ to adjust the 

temperature setting.  

Notably, some state transitions do not directly relate to the user, but to the machine. These 

transitions are those previously described as ‘opaque’ to the user, as they occur in a different 

layer. Identifying these states allows for a description of where the interaction design could be 

supported by the appropriate communication cues, as will be discussed in chapter 7 with the 

design and development of a demonstrator system. 

The final step in TAFEI involves the creation of a State Transition Matrix (STM) to 

identify which state transitions are legal in the context of goal completion. These transitions are 

marked as ‘L’ in the matrix, and require to focus on the particular goal at hand, to analyse 
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whether the transition contributes towards achieving the expected goal. A transition could be 

possible, but if it does not fits the goal, it is considered ‘invalid’, and noted as ‘I’. Finally, if a 

transition is not possible, it is considered ‘impossible’ and marked as ‘-‘ in the matrix. Figure 5.8 

shows the STM for the central heating example, where legal transitions (L) occur from state 0 to 

state 1; from state 1 to state 2; from state 2 to state 3, and so on for a complete cycle of operation 

of the central heating system. Conversely, a transition from state 0 to state 3 is possible, for 

example when the system is regulating temperature on its own, but in terms of TAFEI it is 

considered illegal since it does not supports a user goal, in this case ‘set temperature’. 
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Figure 5.7 TAFEI diagram for a 'set temperature' goal in Central Heating System. 

 

Figure 5.8 State Transition Matrix (STM) for 'set temperature' goal in Central Heating System. 
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5.7 Conclusions 

Interaction designer Donald Norman (2007) points “The machine is not intelligent: the 

intelligence is in the mind of the designer”, highlighting the need for design methods suited to 

smart systems. 

In this chapter, using the concepts that define the topics and theme in a social IoT are used 

to develop a conversational knowledge structure centred on topics to support theme 

communication within a Social IoT. It proposes that the relations between these topics and 

themes are characterised through the association of sensor functions and their specific outcomes 

contributing to an overarching theme agreed by a conversational common ground. By providing a 

clear and common framework an IoT that supports conversations and theme sharing with other 

networks, things and users would benefit from a common understanding of each other purposes 

and intentions, supporting a more transparent Human-IoT Interaction. 

As discussed in this chapter, feedback is essential to a successful and meaningful human-

IoT interaction. Users need to know the status of the machine, its actions and what is preparing to 

do. Even in optimal operation, users need to have the confidence that indeed, the system is 

operating as expected. This feedback is not only provided through a purpose-built interface, but 

as discussed in chapter 3, it can be achieved by cues provided by their affordances, for example 

humming sounds from a motor working or LEDs blinking. 

In this thesis, the interactions between humans and things in IoT are characterised through 

the mapping of context to goals. This is presented in terms of the notion of IoT conversations (in 

which humans and objects cooperate to pursue specific topics in terms of themes). In this regard, 

TAFEI provides an adequate design methodology not only to analyse deviations in system 
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usability, but also to provide a system-level description of user and machine based tasks to 

support device instrumentation. 

TAFEI provides a human centred approach to system modelling and requirements 

definition. It considers a system comprised of both human users and ‘things’ in a systematic 

analysis of actions required to achieve goals within a system.  By using this information to 

instrument the object, we could support system autonomy design by establishing rules that 

monitor when actions occur. For example, by placing a sensor on a coffee machine, the system 

could keep track of the amount of coffee consumed and in turn, proactively inform the user to 

purchase more consumables, or by linking to e-commerce platforms, make machine-based 

decisions such as order the supplies on its own. 

Based on the application of Task Analysis for Error Identification, the following chapter 

describes how demonstrators are built to support interaction with a simple IoT system. 

Furthermore, data collected from interactions with these systems over a period of several weeks 

are analysed and discussed in chapter 7.



 
 

6 Understanding Topics and Themes in the IoT 

6.1 Introduction 

This chapter is based on the paper “Rule and Theme Discovery in Human Interactions 

with an ‘Internet of Things.’” by Cervantes-Solis, J. W., Baber, C., Khattab, A., & Mitch, R. 

(2015), published in the Proceedings of the British HCI 2015 Conference. 

J. Waldo Cervantes-Solis and Prof. Chris Baber developed the study and methodology, 

whilst Ahmad Khattab and Roman Mitch developed the hardware. The author of this thesis 

completed the results, analysis conceptual background and paper. 

This chapter focuses on how users understand ‘smart’ objects and ‘smart’ environments in 

the context of HCI. This chapter presents a study where humans arrange tangible interfaces on an 

instrumented grid in order to determine their goals. The participants’ role was twofold: to move 

the tangible interfaces and to ensure that all their goals were met. The task was presented either 

as a rule discovery task (i.e., to deduce the goal of each object) or as a theme (pattern) discovery 

task (i.e., to deduce an appropriate arrangement of boxes to satisfy the goals). Differences 

between these conditions were identified and discussed as the framework for a definition of a 

goal centred approach to Human-IoT Interaction.  

6.2 Background 

Portions of this section were taken from (Cervantes-Solis et al., 2015a). 

The objective in developing this study was to create a collection of smart objects with 

which people could interact as a ‘society of mind’ (Minsky, 1988). Inspired by the work of Walter 

(1950) and Brooks (1991) the study explores how a collection of objects could appear 

‘intelligent’, or at best, could solve a simple problem, a ‘society of smart objects’. While the 
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robots of Grey Walter were capable of moving themselves as stimuli from its simple sensor 

changed, in this study the objects were moved by the human. Given the physical nature of smart 

objects, humans were provided with a specific, physical role in this society of objects.  By 

requiring humans to move the objects, it would be possible to consider how (or if) control is 

exercised by the users. For example, the person could move the objects on the basis of their own 

intentions and plans, or could wait for the objects to respond at each step in the interaction and 

prompt the user to act. 

6.3 Methodology 

This section was taken from (Cervantes-Solis et al., 2015a), including the description of 

architecture, smart objects’ description and implementation, the description of the study, data 

analysis and results. 

The testbed was originally conceptualised as an exploration of how smart objects would 

communicate their goals to users and understating users understanding of instrumented devices, 

and influenced by Norman’s (1993) concept of ‘experiential’ and ‘reflective’ cognitive artefacts, 

in which he differentiates between those objects that “provide ways to experience and act upon 

the world” and those that “modify and act upon representations of the world”. Moreover, these 

objects directly influence reflective and experiential cognitive processes. Under this framework, 

this study was interested in questioning how does the IoT influences its user’s understanding of 

what it does, and which goals does it supports. 

Of interest was also the notion of whether users thought of the system as a collection of 

devices or as individuals and their own role in making sense of the purpose of the system. 

Moreover, the study whether this purpose could be used as an extension of the knowledge created 

by the system, and who would be responsible to provide this information. As such, the testbed 
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was developed as a simple game in which users had to ‘guess’ the placement of objects within a 

grid. The testbed platform comprised tangible interfaces, with a simple LED-based user interface 

and hard-coded with a specific rules determining their goal. The grid was developed from a table 

with sensors that could detect whether an object was placed on top of one of the sixteen pads 

identifying a coordinate on the grid. Participants were tasked to arrange each of the tangible 

interfaces on the grid such that each object’s goals were satisfied. 

The experiment was run under the University of Birmingham’s ethics guidelines. 

Participants were informed of the nature of the study, and were given the option to opt out. All 

gave their consent for the data to be used in the analysis, and for their anonymised results to be 

published in a conference paper. 

6.3.1 Architecture 

Centrally controlled IoT systems often follow architectures such as the one shown in 

chapter 2. These topologies involve a central node with the role of collecting data, issuing 

commands, policy enforcing (rules) and interfacing with users to receive input and provide 

feedback if required. 

In order to investigate the roles of objects and users within a ‘smart’ system, the design 

principle for the testbed was to provide an environment in which no single component had a full 

view of the purpose of the network or the other objects. Each of the actors in the study was tasked 

to fulfil a particular role in the system.  Thus, the architecture was develop to be a collection of 

loosely connected devices, recreating relatively decentralised network topology. Figure 6.1 shows 

the block diagram architecture for the testbed, highlighting information and action flow, based on 

the decentralised architecture shown in chapter 2. 
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Figure 6.1 Testbed system architecture 

As observed, in the proposed ‘decentralised’ architecture, flow of information would 

occur within the appropriate entities, without the others participating in the exchange. The user 

would interact with the tangible interface through a command, in this case the physical action of 

moving it, whilst the object would interact with the grid trough a pressure sensor (switch), and 

consequently message back its relative position to the tangible interface. Rules would be 

predefined for the tangible interfaces to evaluate whether their goal had been fulfilled, and if so, 

they would show their state to the user through a set of LEDs.  

In terms of the technical implementation, Figure 6.2 shows the state diagram of machine-

based interactions in the system, as discussed in Chapter 5. 

As will be described below, objects were required to connect to a wireless network to 

communicate between each other. Moreover, to be able to collect data about the experiment, it 

was decided that hub node would be implemented, acting as a router and a data collecting device. 

Given that the communication would be handled by this node, it was also decided that it would 

present an opportunity to disassociate another layer of information from each object by 

Tangible  
Interface Grid 



CHAPTER 6  

137 
 

delegating some functionality to this node as described in the following section.

 

Figure 6.2 Experiment State diagram, showing interactions required on the Tangible Interfaces (TI) and 
the grid.  
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6.3.2 The testbed architecture 

The tangible interfaces that were developed and used in the experiment were based on 

wooden boxes fitted with sensors (tangible interfaces), a microcontroller and wireless 

connectivity, and a table with sensors (grid), managed by a connecting hub/server, and 

manipulated by a human user as shown in Figure 6.3. 

 

Figure 6.3 Puzzle architecture diagram. The communication links show the type of interaction expected 
from each node. 

6.3.2.1 Grid 

The table-based grid was instrumented with switches that that detected when an object 

was placed on them. The switches were managed by an Arduino-based Lilypad microcontroller, 

which could determine the location of the activated pad within an x, y coordinate in a grid. This 

coordinate was conveyed to a hub/server, and relayed to the boxes if required. Figure 6.4 shows 

the experimental setup, including grid and the tangible interfaces used. 
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Figure 6.4 Experimental testbed, including instrumented grid and tangible interfaces. 

 

6.3.2.2 Tangible interfaces 

Four tangible interfaces (TI) were implemented using the same technological architecture. 

Each device consisted of a Wi-Fi transceiver and an infrared (IR) proximity sensor, controlled by 

a Raspberry Pi single-board computer. By establishing communication with a hub (described 

below), each TI would be informed of its location on the grid by messaging the hub, which would 

relay information from the grid. When a TI was placed on top of a pad, the grid would 

communicate its location to the hub. In addition, a light sensor was used as a cue for the TI to 

initialise communication, and wait for its coordinate to be transmitted from the hub.  

Through the IR sensor, the TI could detect proximity to another TI in its vicinity. 

For user interface, the experiment design required the simplest way to convey its state to 

participants. As such, each TI had three Light Emitting Diodes (LED) representing its state. If the 



CHAPTER 6  

140 
 

TI’s goal had been satisfied, a ‘goal’ LED turns from red to green. In addition to the ‘goal’ LED, 

the TI had two extra LEDs to indicate its ‘communication’ and ‘proximity’ status. Figure 6.5 

shows one of the TIs used in the study, whilst Figure 6.6 shows a view of the user interface as 

implemented with LEDs. The interface labels are defined as: 'P' stands for proximity, 'R' for rules, 

and the middle LED indicates communication status. (N.B., although the TIs show geometrical 

figures on one of its sides, they serve no purpose in the study. They were a consequence of the 

wooden box used as enclosure for the on-board electronics). 

 

Figure 6.5 Tangible Interface used in experiment. User Interface LEDs (top) and proximity sensor are 
shown. 
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Figure 6.6 Tangible Interface user interface implemented with LEDs. 

6.3.2.3 Hub 

As mentioned above, the testbed was designed to be a collection of loosely connected 

devices. They would still need to be able to connect to a physical medium for data exchange, and 

also to be able to collect data about them to fulfil the study. As such, a Raspberry Pi computer 
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was used as a Wi-Fi router and as message relay hub. In addition, this hub also served as a logger 

of user activity, recording the sequence and box movements across the grid. 

Whenever a TI is lifted, its ‘communication’ LED would turn blue (middle LED), 

indicating that a connection with the grid is being established. On successful connection to the 

hub, the TI announces its identification code. This triggers the server to log the TI ID. When the 

TI is placed on a grid square, the grid sends back the corresponding coordinate, which gets 

registered by the server. This architecture implies that on their own, each object would not know 

their location or status, requiring of the hub to keep track of it, and to relay it to the other. Thus, 

once the grid obtains the coordinate, it is communicated to the TI, and their momentary 

connection ceases (as enabled by the hub). Technical limitations on this configuration established 

the condition on the puzzle that only one TI could be moved at any given time.  In this manner, 

each TI becomes ‘aware’ of its coordinate and uses this information to check its rules (Table 6.1). 

If the TI is placed on an acceptable location and conditions as established by its hardcoded rules, 

then the ‘Rules’ LED could turn green.  

6.3.2.4 User 

In addition to the smart objects, the study involved a human user to consider their role as 

another actor in the system. As such, the user’s primary role was to provide the physical action of 

moving the TIs, with a secondary role to determine whether the goals of all TIs had been 

satisfied. 

6.3.3 Objective of study 

The study was conceptualised as a puzzle game in which the participant would need to 

correctly position four TIs on a grid, following a ‘hidden’ (to the user) parameter in each TI. The 

goal of each TI was defined by a set of rules only known to the TI itself as part of its 
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programming. Rules were defined by the coordinate on which the TI was placed on the grid, and / 

or the proximity to another TI. Each of the TIes was individually labelled for identification 

purposes with letters A to D, as shown in Table 6.1. 

Table 6.1 Rules programmed in 'puzzle' Tangible Interfaces (TI). Dashes indicate that condition did not 
applied to the TI. 

TI 
X  

Coordinate 
Y  

Coordinate 
 

Proximity 

A ODD - - 
B EVEN - - 
C - - ACTIVE 
D EVEN EVEN ACTIVE 

 

The rules for three of the Tangible Interfaces were defined to provide simple constrains 

regarding their own position or in relation to other TIs, whilst for last TI, a stricter set of rules 

was applied. As per Table 6.1Table 6.1, TI A, required to be placed in any odd numbered X 

coordinate, that is, 1 or 3, regardless of the Y coordinate and TI B would need to placed on an 

even numbered coordinate. TI C would just require to be in proximity to another TI, regardless of 

the X, Y coordinates. Finally, TI D imposed more restrictions a as it would need to be placed in 

even X and Y coordinates and next to another TI.  

Thus, participants would move the TIs into their appropriate positions, trying to determine 

the TIs goals. 

In summary every component in the network only had a partial view of the system’s 

purpose, such that: 

 The grid detects a TI placed on its grid, and logs its position 

 The TI only knows its position by communicating with the grid 

 Only the TIs know the rules of the game they adhere to 
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 The user moves the TIs, getting their status feedback through their LEDs 

6.3.4 Study 

The study was divided in two conditions.  In each, participants were asked to solve the 

puzzle by following three different sets of instructions: 

 Condition 1, Patterns: Users were informed that the fulfilment of goal state involved 

the TIs forming a pattern (or shape) in the grid.  

 Condition 2, Rules: Users were informed that the fulfilment of the goal state involved 

the location (coordinate) of the TIs on the grid and their proximity to another TI. 

Condition 1, would be addressing the possibility of identifying the purpose of the system 

in terms of its status, that is, a data-based paradigm as discussed in Chapter 2. Condition 2 would 

relate to the semantics of the network, possibly a human-centred description of the goal, as 

proposed in Chapter 3. 

It was expected that participants would take different approaches to problem solving, to 

find what each object can do and what it needs (Figure 6.7). Referring back to the knowledge 

structure developed in Chapter 5, we can describe the TIs as things capable of performing 

‘actions’ (what they can do) in pursuit of a ‘goal’ (what they need). Notably, as discussed in 

Chapter 2, this view aligns with the notion of objects possessing agency and pursuing goals. In 

terms of the social IoT introduce in previous chapters, this shows that a balance of agency must 

be addressed in the IoT, as both humans and things are capable of having goals. 
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Figure 6.7 Participant of study interacting with the puzzle. 

The ‘actions’ would be defined in terms of rules, which are specific to the object and 

which could involve the person generating an internal representation for each object (as a result 

of developing a mental model of what the rules the TI will follow). Consequently, this would 

involve a bottom-up approach to problem solving.  In contrast, a ‘goal’ would be defined by the 

arrangement of objects on the grid, as required by each object and their collaboration. This would 

provide an external representation, enabling a top-down approach to problem solving. 
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Participants had a time limit restriction for each trial of 6 minutes. Time was not 

considered a dependant variable on the study, however, this this allowed to limit the attempts 

towards finding a solution.  

After their first trial was completed, participants for each condition were asked by the 

investigator what the pattern or rule set they used to solve the puzzle, and for their second attempt 

(trial 2) they were asked to repeat the experiment with the knowledge about the system they 

gained during the first trial. 

As mentioned, the location and sequence of TI movement was recorded by the hub node. 

Thus, analysis for this study was based on these data, the participants’ comments, and a record of 

the final position of the TIs as observed by the investigator. 

Finally, a control condition in which participants knew what rules to apply for each TI and 

hence, knew exactly the complete and correct functionality of the experiment, was run to provide 

ground truth data. 

6.3.5 Data analysis and results 

For this study, results were analysed in terms of overall performance and in terms of the 

number of moves for each TI. 

As previously mentioned, participants were asked to move the TIs around the grid to try 

to discover where they should be placed in order to fulfil their goals. This process initiated as a 

trial and error process for participants, relying on the TIs’ LEDs to guide them. Also, given the 

range of rules found amongst TIs, there is not a definite solution to the ‘puzzle’. Figure 6.8 shows 

a solution based on participants finding the TIs’ rules, whilst Figure 6.9 shows a pattern based 

solution. In both cases all the devices’ goals were fulfilled, indicating to participants that they had 

accomplished the task through their LED interface (middle LED in this case). 
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Figure 6.8 A puzzle solution based on users following individual rules. 
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Figure 6.9 A puzzle solution based on users following patterns (s-shape). 
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6.3.5.1 Performance 

Performance in this study is defined as the number of correct and incorrect moves 

participants took to find a solution. An independent t-test was conducted to compare this attribute 

across the Patterns and Rules conditions on two trials, and was found there is no difference 

between conditions on trial 1 [t (18) = 0.524, p = 0.6], nor on trial 2 [t(18) = 1.028, p = 0.32]. 

Hence, it was found that in both trials, participants made a similar number of moves to reach a 

solution. However, by comparing performance across the trials (first trial with no knowledge of 

the system and second trial with knowledge of the system), while there was no difference in 

performance for participants using patterns [t(18) = 1.228, p = 0.235] there was a significant 

reduction in performance for people using rules [t(18) = 2.667, p = 0.016]. These results suggests 

that participants following patterns appear to maintain a level of performance, whilst those using 

rules performed poorly in the second trial.  One explanation for this could be that people in the 

rules condition had not formulated complete and correct sets of rules, which affected their 

performance, whist participants using patterns sought to apply their understanding of arranging 

TIs.  When looking at the type of patterns used, participants in trial 2 of the rules condition were 

far more likely to place the TIs away from each other, i.e., no pattern, in both trials (P1 = 0; R1 = 

3 and P2 = 2 and R2 = 5). 

This analysis allowed to explore the research question set in chapter about the nature of 

Human-IoT Interactions. The results from the analyses are summarised in Figure 6.10 and its 

corresponding data shown in Table 6.2.  Baseline data is presented to allow for contrasting the 

conditions with the minimal number of moves required to complete the test in either of the 

conditions. As such, these results also suggest that patterns conditions allow for participants to 

get closer to the ideal number of movements. Moreover, the rules condition also suggest that 
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although participants were able to recognise the ‘shapes’ formed by the arrangement of the 

tangible interfaces, this hindered their ability to recognise additional rules could prevent the 

system to reach a state in which all conditions were met. In particular for some of the TIs with 

more constrains (as shown in Table 6.1), whose effect is discussed in the following section. 

 

Table 6.2 Number of Correct Moves per trial in performance test. 

  

Patterns  
Condition  e 

Rules  
Condition  e 

Baseline  
Condition  e 

Number of 
Correct 
Moves 

Trial 1 
7.500 4.905 9.000 4.967 5.500 1.732 

Trial 2 7.300 4.029 8.300 5.618 5.000 0.816 

 

 

Figure 6.10 Average performance for users across trials and conditions. 
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6.3.5.2 Number of moves 

In terms of how people moved the TIs, the results from a variance analysis suggest a 

significant main effect of TI [F(3,54) = 21.9, p = 0.0001], and a significant interaction between TI 

and trial [F(3, 54) = 2.8, p = 0.05].  No other within subjects effect reached significance, nor was 

there a between subjects effect [F(1,18) = 0.737, p = 0.4]. This suggests that there was little effect 

of condition on the movement of the TIs. Participants tended to move TIs A and B to a square in 

which the 'rules' LED turned green, and then left these in place while they moved TIs C and D.  

These results are illustrated by Figure 6.11 and its accompanying data shown in Table 6.3, and 

allow for the exploration of the research question of the thesis related to how humans make sense 

of interactions in the IoT. As observed for Tis C and D (those with more constrains are shown in 

Table 6.1), it took a higher number of moves for user to find the correct placement on the grid, 

hindering on the participants ability to find the governing rules of the Tangible Interfaces. 

However, when contrasting the results from the rules and patterns conditions, these ‘difficult’ TIs 

presented better results when they were arranged next to others forming shapes. The results from 

the analyses from these two sections suggest that providing a pattern that conveys meaning to the 

participant’s interactions allows for a better understanding of the system’s purpose. 
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Table 6.3 Average Number of moves per Tangible Interface (TI) across two trials. 

 Patterns e Rules e Baseline e 

TI A, 
Trial 1 2.20 1.87 2.60 1.58 1.25 0.50 

TI B, 
Trial 1 2.50 1.65 2.20 0.92 1.75 0.96 

TI C, 
Trial 1 7.10 9.12 11.40 8.62 1.75 0.96 

TI D, 
Trial 1 12.20 10.26 14.20 9.70 2.25 0.96 

TI A, 
Trial 2 2.10 1.60 2.90 3.03 1.00 0.00 

TI B, 
Trial 2 2.80 1.87 3.60 4.27 1.75 0.96 

TI C, 
Trial 2 4.00 3.13 4.50 5.23 1.50 0.58 

TI D, 
Trial 2 8.40 11.55 7.60 8.60 1.50 0.58 

 

 

Figure 6.11 Average number of moves per Tangible Interface across trials and conditions 
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6.4 Conclusions 

Portions of this section were taken from (Cervantes-Solis et al., 2015a). 

This chapter analyses how humans react to a ‘smart environment’ and understand its 

purpose, noting the approach taken by both users and machine in the pursuit of their goal. 

The study allowed to characterize goals in terms of both data and human centred 

paradigms, by allowing users to discover the functionality of the network, or its ‘theme’ as 

defined in the knowledge structure presented in chapter 5.  

In the context of the central heating example used across this thesis, it has been discussed 

that they present some challenges to user because they do not provide users with a full 

description of what is happening in the background, as suggested by the results on the ‘rules’ 

condition trials. Conversely, the results found in this study suggest that mental models play a 

fundamental role in characterizing an IoT system. Users benefit from having a meaning-based 

approach to interacting with the machine, as suggested by the ‘pattern’s condition. 

As defined in chapter 2 of this thesis, in the context of Human-IoT interaction it is 

expected that actors, both machine and human perform specific roles in a collaborative fashion 

with the system’s goal as the guideline for the cooperation. Through the guise of a puzzle game, 

the study presented in this chapter aimed to analyse how such a collaboration is enabled in a 

simple ‘smart’ environment. By concealing the machine’s (the Tangible Interfaces) goal’s, users 

were expected to try to engage with the objects to put them in their desired stated. In fact, an 

interesting response was shown by some participants by labelling the end status of the TIs as 

‘happy’. In addition to giving human-like attributes to the machine, it imbued a sense of 

collaboration towards a state that implied well-being, as a subjective measure of accomplishment. 
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An architecture in which all of the nodes had a partial view of the system, enabled a 

system in which knowledge was pushed to the edges of the network, as opposed to having one 

device in charge of managing all interactions and the corresponding interpretation (as found in 

centralised architectures). Thus, this allowed for an analysis of the role of human users in the 

system, as monitors, controllers or nodes. 

The results from the study suggest two principal conclusions. First, when the smart object 

relies on a simple rule that relates movement to spatial coordinates (such as for TIs A and B), 

participants were able to easily recognise this rule. However, this proved to constrain subsequent 

activity. As participants placed TIs A and B in a correct position (as informed by the 

corresponding LED), they did not seek to move these TIs further, affecting their strategy for the 

remaining TIs. This was true in both in the ‘rules’ and the ‘pattern’ conditions, across both trials 

(see Figure 6.10). In TIs with proximity rules (TI C), participants were likely not to realise this 

and concentrated on finding a coordinate. Thus, TI C is moved more frequently than the 

coordinate rule TIs (A and B).  Interestingly, participants in the ‘patterns’ condition moved TI C 

less than those in the ‘rules’ condition.  For ‘patterns’, a location for TI C could be defined by its 

relation to TIs A or B, i.e., participants would place TI C near one of the TIs already in place. In 

the ‘rules’ condition the relationship between TIs was less discernible.  Finally, TI D was moved 

a great deal in both conditions. It is believed that the combination of rules for TI D led to 

confusion for the participants in both conditions. Even though the rules were not complex, the 

combination of more than one rule led to TI combinations that participants struggled to resolve. 

Second, when participants focus on rules, they showed deterioration in performance from first to 

second trial.  This could be due to them applying incomplete or erroneous rule sets. Also, this 

deterioration suggests that the ‘pattern’ group might have been less restricted by the need to 
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determine what each individual TI required and focused more on the combination of boxes 

forming shapes on the grid. 

These results highlight the question of what needs to be ‘discovered’ by users in an 

internet of thing, and how sense making occurs in this environments. The results point to an 

interesting question for the design of networks of smart objects.  On the one hand, there is a 

requirement to identify and define an object’s function and goals. In the study, this corresponded 

to the identification of individual rules.  This could be considered as analogous to ‘service 

discovery’ in computer networks, where resources broadcast what can they do to other nodes.  On 

the other hand, there is the need to discover an overarching ‘pattern’ in the solution. Although not 

in the rigorous context of the field, this could be comparable to the ‘semantics’ of the network 

activity, describing in its meaning and purpose as presented in chapter 3. 

Results from this study suggest that human interaction with smart objects should focus 

more on the higher-level outcome of system wide activities, and less on individual object’s rules 

or functions. In the study, the patterns condition enabled a clearer understanding of the object’s 

requirements or goals. As such, a central, common thread shared amongst system’s actors would 

provide a guideline for interactions. Thus, the concept of ‘discovering’ the ‘theme’ of the network 

is introduced, analogous to the notion of service discovery in networks.  Themes are also 

considered the common threads in a conversation, as defined in chapter 3.  

The IoT vision implies that physical objects are imbued with SPC capabilities, making 

them prone to various degrees of autonomy and smartness. Thus, it is expected that many devices 

would communicate with each other to complete tasks and goals. This leads to the question of 

how the user could either eavesdrop on this exchange of messages (and so, determine the goals 

being pursued) or how the user could participate in the exchange.  The study presented in this 
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chapter also lead to suggestion that users look to find ‘correct’ solutions, in the sense that theirs is 

an understanding that a goal should be accomplished, and their role towards completion of the 

system goal. 

Having analysed how roles are enacted in terms of themes and topics, the following 

chapter will delve into the requirements for modelling IoT systems that put human goals at the 

centre.



 
 

7 Modelling an experimental Testbed 

Based on the design framework presented in Chapter 5, this chapter describes the 

development of an experimental testbed. Focusing on the outcomes of the methodology, a set of 

requirements is defined to enable system instrumentation. The demonstrator systems allowed for 

data collection which subsequently were used to demonstrate the system’s operation in alignment 

with the model, as related to the system’s goals and tasks. This chapter shows how a human 

centred system analysis through the proposed methodology allows for the understanding of 

emergent autonomous and intelligent opportunities to support the system’s primary goal, with a 

focus on its usability. 

This chapters describes how TAFEI can be used to model an IoT systems through its 

tasks, the objects involved in a goal, and their state transitions, on a two part study on two 

models. The first part of each study applies the TAFEI methodology to provide a description of 

goal completion in a collaborative system comprised of a human user and instrumented objects. 

The second part of each study involved the instrumentation objects informed by the human 

centred description of the system to systematically collect and analyse sensor data to validate the 

approach. 

The platforms presented in this chapter were developed with the aim to extend the TAFEI 

methodology presented in chapter 5, first on a single device with a specific them, and then 

extending it on a network of devices used to achieve goals within the same theme. Given a 

research lab setting, it was observed that common activities in people in the environment related 

to drinks consumption. Hence, the platforms were developed with the expectation that the related 

themes could be decomposed into a collection of topics, which relate to coffee making in the first 
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testbed, and different types of drink for the second. In this respect, a topic could be analogous to a 

goal, i.e., the topic of making a cup of tea involves the goal of making a cup of tea, together with 

actions and events that relate to this, such as use of consumables such as water, electricity, 

teabags, milk etc. This means that, in order to achieve the goal, it is also necessary to ensure that 

the consumables are available. For this reason, one could say that a ‘goal’ is the desired outcome 

of a system, and the ‘topic’ is the necessary condition required for this goal to be met. In this 

case, the topic of the conversation (within the system) would involve confirming that the 

conditions have been met and checking that pursuit of the goal is proceeding without problem.  

This chapter presents the development of two platforms: one based solely in the 

instrumentation of a coffee machine, analysing its interaction requirements for its most common 

goals. Moving forward, a second testbed was developed in which the coffee machine becomes a 

part of a broader system, aiming to support any kind of drinks making activities, in contrast to 

only coffee. In this regard, these two approaches would aim to focus on the differences of 

designing interactions for two different ‘scales of experience’ as noted in Chapter 5. 

7.1 Applying TAFEI in a simple object 

7.1.1 A coffee making device 

Coffee makers are almost ubiquitous in office environments. Given its context of 

operation, it is expected that human users would use these objects as part of their everyday 

activities. As such, these object was selected to develop a testbed for the application of TAFEI as 

an interaction design methodology for smart objects.  

The selected device was a Nespresso coffee machine. This appliance operates by using 

capsules for a single serving of coffee, and thus, this approach provided s trackable mode of 

operation, suited for a task based interaction and requirements analysis. 
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7.1.1.1 System image and points of interaction 

As described in the previous chapter, the first step to apply TAFEI is to provide a system 

image, identifying the system’s components, as shown in Figure 7.1. The system image 

highlights the main points of interaction from a user perspective, enabling a user-centric 

perspective of task and goal analysis.  

 

Figure 7.1 A breakdown of the components of a capsule-based coffee machine. (Image adapted from 
Nespresso-Krups Inissia user’s manual. 

Based on the system image shown in Figure 7.1, Table 7.1 shows the points of physical 

interaction that users can find on the coffee machine and the expected action from the user. This 

is required by TAFEI to provide a description of the tasks required to complete a goal within the 

system. Moreover, as will be discussed later, this will inform the sensor placement for 

instrumentation. 
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Table 7.1 Interaction points found in the analysed coffee machine. A brief description of the expected user 
action that can be performed on the device is presented. 

Object Expected user 
action 

Button  Press 

Lever Move up/down 

Capsule Place capsule  

Used capsule 
container 

 Remove/Replace 
 Empty used 

capsules 

Water tank  Remove/Replace 
 Fill with water 

 

7.1.1.2 System states and goals 

Based on the system image and identified points of interaction in the previous section, it 

is assumed that the object’s operation in order to complete a goal can be described in terms of a 

transitional states system defined by the user supported actions. From a system perspective, State 

Space Diagrams show the transitions required to achieve the desired topic but require an 

understanding of actions available to the user, described through Hierarchical Task Analysis 

(HTA) as defined in chapter 5. This provides a breakdown of the plans involved to achieve 

system’s goals, in this case to make a cup of coffee. 

The goals that users can perform with the coffee machine are shown in Table 7.2. 
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Table 7.2 Goals supported by the coffee machine. 

Goals 
Make a cup of 
coffee 
Empty used 
capsules 
container  
Fill water tank 

 

Figure 7.2 shows the HTA diagram for the coffee-making themed system, with its 

corresponding plans described in Table 7.3. 

 

Figure 7.2 Hierarchical Task Analysis diagram for coffee-making themed system, plans are shown in 
Table 7.3. 

Table 7.3 User plans for the coffee machine HTA shown in Figure 7.2. 

Plan 
Plan breakdown 

P0. Make a 
cup of coffee 

P0i: 3→1→2→4→2→1→exit 
P0ii: 3→if(water not available)→5→2→4→2→1→exit 
P0iii: 3→1→2→4→2→if(capsule stuck) →6→2→1→exit 

P1. Press 
button 

P1:1.1→if(more coffee wanted)→1.1→else→exit 

P2. Use lever P2: 2.1→if(capsule not correct)→2.1→else→2.2→exit 
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Plan 
Plan breakdown 

P3: Place 
cup 

P3: 3.1→if(coffee not ready)→3.1→else→3.2→exit 

P4: Insert 
capsule 

P4: 4.1→exit 

P5:Refill 
water tank 

P5: if(tank empty)→5.1→5.2→if(not full)→5.2→else→5.3→exit 

P6: Empty 
used 
capsules 
container 

P6: if(container full) →6.1→6.2→if(not full)→6.2→else→6.3→exit 

 

Plans identify the ways in which users would complete tasks with the device in the pursuit 

of a goal, in this case making a cup of coffee with this particular coffee maker. As shown, a user 

wanting to make a cup of coffee would need to follow ‘P0’ as the higher level sequence of 

operation, requiring the user to place their cup on the tray, press the brew button to turn the 

machine one, lift the lever, place a capsule, lower the lever, and press the button again to brew 

coffee, ending the sequence by removing the cup from the tray. Alternatively, plans ‘P0ii” and 

‘P0iii” take into consideration the possibilities of an empty water tank or a full used-capsules 

container (when full, the latter, prevents operation of the lever). 

P2 implies that a user would have placed their cup on the tray, lift the lever, insert a 

capsule, make sure that the capsule is placed properly and lower the lever to carry on into P3. P3 

requires to press the brew button, and also addresses the possibility of the user wanting extra 

coffee from the same capsule (something commonly done for a larger beverage). 

A plan-oriented view of the system alongside the system image, allows to identify not 

only the tasks and its sequences, but also provides insight on sensor placement for object 
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instrumentation, as will be described in section 7.1.1.4. While an HTA diagram provides a user 

perspective on the tasks, a State Diagram (SD) provides a machine level characterization of 

actions available to the object. Figure 7.3, shows the State Diagram showing the states and 

transitions for the coffee machine.  

 

Figure 7.3 State Diagram for Coffee Machine 
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The state transitions in the SD show what the machine is doing or expecting from itself, or 

in some cases from the user, as an organised sequence in terms of the points of interaction.  

7.1.1.3 TAFEI for a coffee making theme 

With user actions specified by an HTA and machine actions through a SD, a TAFEI 

diagram is developed as a combination of the two, providing a description of the human-machine 

system actions involved in goal fulfilment. Moreover, TAFEI determines machine state 

transitions as characterized by the user plans. 

Figure 7.4 shows the TAFEI diagram for the ‘make a cup of coffee’ goal. 
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Figure 7.4 TAFEI diagram for a coffee machine. 
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From state 0, the TAFEI diagram shows which plan is followed by the user and the 

machine’s state transitions, as the user interacts with the coffee machine.  

Summarising the state and HTA diagram analysis, Figure 7.5 shows the system’s TAFEI 

transition matrix, in which legal transitions for the ‘Make a cup of coffee’ theme are marked as 

‘L’. As discussed, TAFEI is generally used to identify errors in product usability design. In the 

context of devices that can potentially be imbued with a notion of intelligence, the description of 

interactions that are not part of the main theme becomes a tool to establish different goals that are 

either actions that performed by the system or that through interactions with other parts of the 

system would enable secondary goals or themes. Notably, the former might not require user 

intervention as it might be implied by the system’s or the device’s embedded intelligence, and 

could enable additional knowledge to the user. By observing the illegal and impossible transitions 

(marked as ‘I’ and ‘-‘, respectively) in the main goal’s state diagram, states 5 and 6, relate to 

filling up the coffee machine’s water tank and emptying the used capsule container, hence a 

secondary theme emerges in the form of ‘Coffee machine servicing’. 
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Figure 7.5 State Transition Matrix for Coffee Machine 

 

7.1.1.4 Instrumenting a coffee machine 

The detailed breakdown of all the required plans and actions in the system, allows for its 

interpretation as a network where state transitions occur towards the achievement of a particular 

goal. As such, one of the aims of this study was to produce a framework in which an IoT system 

could be modelled and implemented in in a real-life environment. Using the Node-RED 

programming language as a development environment proved to be a suitable alternative for 

implementation, as it follows a flow programming paradigm, in which nodes become part of a 

network, following a set of rules provided by the governing logic (Figure 7.6). By using the 

information described in by the TAFEI diagram and Transition matrix, it is possible to provide a 

model of the system in terms of programmable function nodes within Node-Red. As discussed in 

Chapter 2, flow-base programming supports system description in terms of states, even driven 
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transitions, inputs and outputs. Thus, a flow can be defined to model the behaviour of the system, 

with nodes representing objects and their rules, sequentially linked to each other. As such, Node-

Red was used to as a tool to translate SDs into code. Moreover, subsequent logic can be 

implemented with ease, allowing for the experimentation with decision-making nodes, and output 

nodes to connect the things with external services, users or other things.  
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Figure 7.6 Node-RED flow for coffee machine automation. 
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Plans defined in the HTA diagram (Figure 7.2), where user action is expected, are used to 

label transitions in the TAFEI diagram and could be used to provide system cues to improve user 

interaction. Similarly, states that provide more than one transition (such as the one in found state 

5 to state 4 or 6, given the possibility that the user might want more coffee from the same 

capsule) could be identified as ‘problematic’ and trigger user cues in the communication 

exchange. 

For example, as presented in Figure 7.6, by the system could detect when some of the 

described conditions are met, and then communicate with the user through a tweet using the 

Twitter API (or any other available mechanism enabled by the IoT middleware). 

Figure 7.7 shows the instrumented coffee machine as a result of the TAFEI analysis. The 

following section will provide a TAFEI analysis of a system comprised of different devices, and 

using the more complex system as an example, provide a more detailed description of how device 

instrumentation was developed. 
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Figure 7.7 An instrumented coffee machine and the implemented sensors. Clockwise from top: lever, cup 
tray/used capsule container, water tank. 

7.2 Applying TAFEI in a multi-object system 

7.2.1 A drinks-making themed system in an office environment 

TAFEI was originally conceived as a tool to analyse usability in objects, rather than 

systems comprised of different artefacts (Baber and Stanton, 2002). Following the model 

description and instrumentation of a single-device system as shown in section 7.1, a system 

comprised of more than one object was devised to identify the differences in analysing the model 

using TAFEI, for a more complex system capable of supporting different goals framed within a 

common theme. 

7.2.1.1 System Image and Components 

As noted in the previous section, the first step in constructing a TAFEI description is to 

identify the system components. In this case, the system comprises of the people and the things 

which can be used to support the goal of ‘making a drink’, e.g., cups, containers for the various 

consumables related to drink making (tea bags, coffee granules, sugar, milk etc.), devices used in 
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making drinks (such as kettles, coffee makers, refrigerators etc.), water, etc., within the office 

environment (which could include chairs, desks, other furniture, doors etc.). In order to define a 

minimal set of objects for this environment, we assume that (a) users have their own cups (and so 

identifying a cup would also identify a user), and that (b) identifying a user identifies the desk 

and chair of that user. This means that, rather than including person, chair, and desk as discrete 

objects in this domain, we would simply identify the cup. If the theme was, say, ‘desk 

occupancy’, then we would need to identify other objects. Alternatively, if the theme was ‘drink 

making at home’ then we might include different objects. 

Table 7.4 shows the objects identified as part of drinks making activities in the office 

environment, and the minimal physical action required to interact with these objects. In the same 

way described in section 7.1.1, this not only provides TAFEI’s human centred description of the 

goals, but also informs the implementation of the object´s instrumentation. 

Table 7.4 Objects found in the ‘having a drink’ theme within an office environment. A brief description of 
the expected user action that can be performed on the device is presented. 

Object Expected user 
action 

Cup Lift/Replace 

Coffee machine 

 Lever 
lift/down 

 Press brew 
button 

Water cooler Button 
press/release  

Fridge 
 Open/Close 
 Take/Replace 

milk 
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7.2.1.2 System states and goals 

From the described minimal sets of objects and actions (Table 7.4), we assume that each 

object possesses a set of discrete states, and that transition between states arises from an action 

(either performed by a human or by the object). In order to keep the description tractable, the 

actions and transitions are considered in terms of a specific topic, e.g., ‘making coffee with milk’, 

or ‘making tea without milk’. The resulting state-space diagrams will show all possible 

transitions across the available objects within this topic. TAFEI assumes that, unless otherwise 

constrained, each object will be ‘waiting for’ a transition from the current state to one of the 

possible states that the object could occupy. So, a cup on the desk could be ‘waiting for lifted’ 

(following the action of pick up cup), or a kettle that is empty could be ‘waiting for filled’ or 

‘waiting for switch on’. The latter state, of course, is undesirable and should not be performed 

until the kettle is filled. This indicates the way that TAFEI seeks to highlight potential for errors, 

i.e., undesirable transitions between states.  

Figure 7.8 shows the HTA diagram for the ‘have a drink theme’, with its corresponding 

plans shown in Table 7.6. 



CHAPTER 7  

174 
 

 

Figure 7.8 Hierarchical Task Analysis diagram for ‘Having a drink’ theme. Plans are shown in Table 7.6. 
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In Table 7.5 the activities supported by the ‘having a drink’ themes are shown. Thus, from 

the Hierarchical Task Analysis diagram for this theme (Figure 7.8) we can describe the plans a 

user could follow to complete specific topics or goals, as shown in Table 7.6. 

Table 7.5 Goals supported by the ‘having a drink’ theme. 

Goals 
Water 

Coffee  
Coffee & hot 
water 
Coffee & milk 
Coffee & milk & 
hot water 
Tea 

Tea & milk 

 

Table 7.6 User plans on the ‘Have a drink’ theme for HTA in Figure 7.8. 

Plan 
Plan breakdown 

P0. Have a 
drink 

P0i: If(drink available)→1→5→6→exit 
P0ii: If(drink available)→1→5→if(drink more) →5→else→6→exit 
P0iii: If(drink not available)→1→if(coffee)→2→elseif(water) →3→elseif(tea) 
→3→elseif(milk)→4→6→exit 

P1. Use cup P1:1→exit 

P2. Use 
coffee 
machine 

P2: 2.1→2.2→2.3→if(capsule not correct) →2.3→else→2.4→2.5→if(not 
enough coffee) →2.5→else→2.6→exit 

P3: Use 
water cooler 

P3: 3.1→if(cold) →3.2→elseif(hot) →3.3→if(not enough water) 
→3.1→else→3.4→exit 

P4: Use 
fridge 

P4: 4.1→if(milky)→4.2→4.5→if(not enough milk) 
→4.5→else→4.3→4.4→exit 
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The plans shown in Table 7.6, describe how a user would perform tasks on the system 

with the involved objects (Figure 7.9). For example, ‘P0’ describes the higher-level sequence of 

tasks, which is precisely ‘have a drink’. It follows that if a drink is available on the user’s cup, 

they would first pick up the cup, then drink, then put the cup down back again. P0ii and P0iii 

describe the possibilities of a user drinking again, or in the event of no drink available, make one 

from a choice of coffee, tea, water or milk. 

 

Figure 7.9 Objects part of the ‘having a drink’ theme. Clockwise from top right: Cup and coaster, water 
cooler, fridge door, coffee machine. 
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Plans P1 to P5 provide a detailed description for each of the tasks. Hence, as per the 

system image for the coffee machine shown in Figure 7.1, P2 follows its own plan as described in 

section 7.1.1.2 “System states and goals” which analyses the coffee machine on its own. Since it 

is the same coffee machine, the described plan still applies and can be reused. Each plan involves 

tasks, their sequence and crucially, decision points that provide an insight on object 

instrumentation. As observed, some plans imply that some pre-conditions are met, for example, 

that there is a cup already in the possession of the user, or that consumables are available (coffee 

capsules and milk). As mentioned in the previous section when applying each of the steps 

required by the TAFEI methodology, a State Diagram (SD) is required to characterise the actions 

available to the objects, providing a machine-based perspective to contrast the HTA’s user-

centred perspective. Figure 7.10 shows the SD for objects in the ‘having a drink’ theme. 
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Figure 7.10 State Space Diagram for ‘Having a drink’ theme. 

7.2.1.3 TAFEI for a drinks-making themed system instrumentation 

As mentioned in section 7.1.1.3, TAFEI characterises state transitions in terms of user 

plans. Thus, a different TAFEI diagram is required for each topic in the analysed theme of ‘drinks 

making’. 



CHAPTER 7  

179 
 

For brevity this section describes two topics: having a cup of cold water and having a cup 

of coffee with hot water (an Americano type coffee).  

Figure 7.11 and Figure 7.12 show the TAFEI diagram for the analysed goals, including 

the definition of plans towards the fulfilment of the tasks described in the HTA (as specified in 

Table 7.5).  

 

 

Figure 7.11 TAFEI diagram for ‘Having a cup of cold water’ goal. 
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Figure 7.12 TAFEI diagram for ‘Having a cup of coffee with hot water’ goal. 

 

For the ‘Cold water’ goal, the TAFEI diagram starts in the ‘IDLE’ state (state 0). In that 

state, the system is waiting for any of the objects to be used (cup, coffee machine, water cooler 

and fridge). Only using the cup would lead to a valid transition (to state 1) to complete the goal 

by having the user follow plan 1 (P1). Other objects would lead to states that although possible 

within the system, do not contribute to the goal. Thus, from state 1 using the ‘water cooler’ 

following plan 3 (P3), would lead to a valid transition to state 3, completing the goal with plan 0 

(P0). States 2, 4 and 5 are shown in the diagram for to provide a complete view of the system, but 

they are not part of the transitions for this goal. Valid and invalid transitions toward goal 

completion are presented in TAFEI as a ‘State Transition Matrix’ (STM). Highlighting the 



CHAPTER 7  

181 
 

required transitions for the goal, it shows a summarized representation of both the state and 

hierarchal task analyses.  

Figure 7.13 and Figure 7.14 show STMs for ‘Cold water’ and ‘Coffee and hot water’ 

goals. Legal transitions for the goal are marked as ‘L’. Illegal and impossible transitions are 

marked as ‘I’ and ‘-‘, respectively. In this context, an illegal transition is that which involves 

action that doesn’t support completing the expected goal; moreover, those transitions that can’t 

occur are considered impossible.  

 

Figure 7.13 State Transition Matrix for ‘Having a cup of cold water’ goal. 
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Figure 7.14 State Transition Matrix for ‘Having a cup of coffee with hot water’ goal. 

The states in the matrices correspond to those shown in the TAFEI diagrams (Figure 7.11 

and Figure 7.12), and include all possible states within the system, even if they are not part of the 

analysed goal. 

As shown in Figure 7.13, the State Transition Matrix for the ‘cold water’ goal presents 

three ‘legal’ transitions to complete the goal: from state 0 to state 1; from state 1 to state 3; and 

from state 3 to state 0 to complete a legal sequence. 

By analysing the sequences, actions and conditions for a goal within the system, we can 

identify which objects relate to a specific topic. Specifically by reviewing the HTA, conditions 

found in the tasks provide a definition of suitable points for instrumentation, enabling ‘smart’ 

behaviour from a system perspective. In this context, it is considered that decision points on plans 

support an understanding of a task being performed, or more accurately the involved object.  

TAFEI makes a distinction between Consumables and Things (objects). When designing 

instrumentation, the former would imply a higher number of sensors. This could provide a higher 

granularity input to automatic activity recognition algorithms, enabling more detailed descriptors 
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of system actions. However, it creates more complex systems that present the drawbacks on 

usability described in chapter 3. By using TAFEI we would not only provide a user centred 

approach to instrumentation, but also a minimal set of sensors that fit the system’s purpose. Thus, 

as a design constraint, it was decided that no sensors would be placed on consumables. Moreover, 

we hypothesized that if required, how these consumables would be inferred from the basic system 

functionality. For example, coffee capsules are linked to lifting the coffee machine lever, water to 

the button presses on the water cooler, and milk to fridge door opening and closing2.Furthermore, 

another design constraint was to minimize disruption on the office environment and its users.  

As such, sensor placement was implemented in such a way that the objects wouldn’t need 

to be disassembled or that they interfered with their normal use. This led to the decision of not 

instrumenting cups directly, but to build coasters that provided the same effect of detection lift 

and replace actions. Interestingly, this posits the situation of users without a coaster and how 

would they be involved in the study? As these users would be those that didn´t had a desk in the 

study’s office, a solution was conceived by instrumenting the office door as described with more 

detail in section 8.1. Finally, the coffee machine presented the most instrumentation restrictions. 

As mentioned, object functionality was not to be disrupted. Thus, we considered how to properly 

identify the required action under the given limitations. It was decided that sensors would the 

attached to the coffee machine’s lever, provided that when making a coffee it is always required 

move it in order to place a capsule in the machine. Intrinsically, this action consistently implies 

                                                 

 

2 For the duration of the study reported in this chapter, the office’s fridge was only used to store 
milk for drinks making. Thus it could be safely assumed that when opened it was to get milk. 
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that a coffee is being made. Consequently, this action is also linked to the coffee capsule 

consumable usage.  

Based on the previous considerations, but more importantly, on the requirements specified 

by the tasks and goals identified by TAFEI, Table 7.7 presents the system’s instrumented objects 

and its sensor placement. 

Table 7.7 Objects found in the ‘having a drink’ theme within an office environment, and the sensors used 
to instrument them. 

Object Sensor 
placement 

Sensor 

Cup Coaster Force sensitive 
resistor 

Coffee machine Lever Accelerometer 

Water cooler 
Hot water and 
cold water 
buttons  

Push button 

Fridge Door Magnetic switch 

Office door Door Magnetic switch 

 

The objects shown in Figure 7.15 were instrumented as informed by Table 7.7, and 

correspond to tasks found in the ‘Having a drink’ theme, and support the plans defined by the 

HTA. The coaster allows detection of cup actions; switches on the water dispenser buttons allow 

for detection of serving water actions; an accelerometer on the coffee machine lever provides a 

mean for detecting coffee-making actions, and finally a magnetic switch in the fridge door, 

enables detection of fridge usage. Details of instrumentation will be provided in the following 

chapter. 
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Figure 7.15 Instrumented objects. Clockwise from top right: Cup and instrumented coaster; water cooler 
buttons; fridge door; coffee machine lever. 

7.3 Conclusion 

As the IoT permeates into more human-in-the-loop applications, and objects rely not only 

on their physical attributes, but also on their digital representations, the relationships they hold 

with users are affected, sometimes in unexpected ways. When objects are ‘cognified’, an 

additional layer of information is available to users. As such, affordances as traditionally 

interpreted, are not the only method for an object to convey information on how to interact with it 
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and what they are for (their goal, or when the object gets socially linked to other objects or users, 

their theme). 

By repurposing TAFEI’s original aim of modelling systems focusing on errors as users 

attempt to carry out their main goal, we show how for instrumented objects it is possible to 

extend its functionality, providing a framework in which intelligence can be embedded into the 

system. When devices that traditionally were not considered ‘smart’, such as a coffee machine, 

become IoT enabled, they have extended capabilities and present opportunities for proactive and 

intelligent behaviour. These scenarios would allow a system to predict a user’s intent and to 

provide them with additional information. 

In the ‘coffee machine’ testbed, the main goal is characterised by a ‘coffee making’ theme 

with clearly identified states, plans and transitions. With additional sensors, such as the one found 

in the coffee machine’s water tank and discarded coffee capsules container, it is possible to 

describe the states required to identify their capacity level (empty or full water tank; capsules 

overfilling the canister), defining additional topics and interactions available to the system, 

enabling a new ‘servicing’ theme, facilitating the knowledge of whether the water tank needs to 

be filled or the capsule container replaced. 

The study aimed for the minimal number of objects (and sensors) required to accomplish 

goals within the system’s theme. This paradigm supported system instrumentation granularity at 

an object level. That is, although TAFEI provided a way to inform instrumentation points, it was 

done to identify single objects as related to state transitions. Notwithstanding, this study suggests 

that increasing granularity at a device level could enable further opportunities for autonomous 

and intelligent behaviour. For example, instrumentation on the coffee machine’s water tank could 

provide a more accurate metric on the amount of water used to prepare coffee, and correlate that 
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information to when the machine needs refilling and overtime, when it needs cleaning or 

descaling. As such, these additional layers on instrumentation show that emerging themes could 

be involved in the system, for example a ‘maintenance’ mode. 

It is expected that the application of TAFEI analysis would allow the consideration of 

human factors in the design of IoT systems and smart objects, alongside decision based. By 

allowing users to become more aware of the system’s themes, meaningful interactions and user 

engagement would be promoted, enhancing IoT adoption. 

Consequently, to demonstrate how users interact with a system developed using TAFEI, 

the following chapter describes how such a system was deployed in a real-world scenario, 

allowing for data collection and its subsequent analysis to find correlations between the 

conversation-based model and user generated data. 



 
 

8 Developing an experimental Testbed 

8.1 Testbed 

Based on the outcome from the TAFEI model, a testbed was developed. System 

instrumentation was informed by TAFEI’s outcomes. In terms of technical implementation sensor 

nodes comprised of sensors and wireless connectivity were developed. Moreover, middleware for 

sensor node integration and data connection was implemented using the Node-RED framework. 

8.1.1 Sensors 

Sensor placement was defined by how the device was expected be used according to the 

TAFEI model. As such, each of the devices would require sensors that supported the users’ 

actions in the least disruptive way. That is, the instrumented devices were to be instrumented with 

minimal modification on their functionality and their appearance. 

Due to TAFEI’s state transition based modelling approach, the sensors would be required 

to support a binary description of the system states. Thus, devices would be considered to be in 

use or not, with no middle ground to describe their behaviour. For example, the fridge would be 

required to inform when it was opened to get something out of it, but not exactly what was being 

taken out (as mentioned, for the duration of the study only milk was stored in the fridge). As will 

be detailed later in this section, this was accomplished by positioning a sensor on its door. 

Thus, some sensors required calibration and conditioning, and thus required additional 

hardware for this purpose. Due to its flexibility, Arduino Uno boards were used to provide the 

required support. 

As described in Table 7.4 for the ‘drinks making’ testbed, sensors were required for the 

devices involved in the study, and were instrumented as follows. 
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8.1.1.1 Cups and coasters 

As described in Table 7.4 the supported action for the cup is lift and replace from a desk 

or table for the user to drink from it or to prepare any drink. 

Given that the cup is a device that would be continually used, and moreover, would 

require washing up on a regular basis, directly instrumenting the device would represent an 

engineering challenge out of the scope of this work. Moreover, it was also expected that user 

might want to use different cups for the duration of the study according to their personal 

preferences. Thus, a solution was found by instrumenting coasters, instead of placing sensors 

directly on the cups. For this purpose, the device would require to detect whether a cup would be 

placed or removed from it.  

The technical solution for this task involved the placement of a Force Sensitive Resistor 

(FSR) (Figure 8.1). The electrical characteristics of the device change according to the force 

applied on its surface, making it suitable for object detection. By placing this sensor below the 

coaster, making contact with a flat surface (i.e. a table or desk) it was possible to detect when a 

mug was placed on top. The instrumented object is shown in Figure 7.15. 

 

Figure 8.1 Force Sensitive Resistor (FSR). 
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The output from the sensor is an analogue voltage reading that correlates to the weight of 

the object placed upon its surface. Thus, to comply with the model’s requirement, the sensor 

output required a signal calibration and conditioning stage. This required the conversion of 

analogue to digital, and setting the correct thresholds to distinguish between an empty coaster and 

when a cup was placed in binary form. Although this output was designed to comply with the 

model’s specific requirements, an interesting caveat is that if by implementing the sensor with its 

full analogue measurement range, an empty or full cup could be detected, enabling different 

behaviour and outcomes from the system, as discussed in the final section of this chapter. The 

conditioning module was implemented in an Arduino Uno board 

A total of 5 coasters were implemented for the participants that had a desk in the office. 

Wireless connectivity was implemented using a ESP8266 Wi-Fi enabled board as described in 

section 8.1.2. 

8.1.1.2 Fridge 

As described in Table 7.4, the supported action for the fridge is to close and open its door. 

Notably, for the duration of the study only milk was kept in the fridge, thus, any action performed 

using this appliance necessarily related to removing and replacing a bottle of milk. 

A magnetic switch (Figure 7.15) was used to detect the supported action. This device is 

made of two separate magnetic plaques that close an electric circuit when in close proximity. One 

terminal of the sensor was placed on the door of the fridge, whilst the other remained fixed to its 

side as observed. The output produced by the sensor was a binary signal and thus suitable to be 

used directly as required by the state based model. As such, this signal didn’t require any 

conditioning. 
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8.1.1.3 Coffee machine lever 

As noted in the previous chapter, the developed TAFEI model required detection of when 

the coffee machine was used. Given that the coffee machine usage could be implied by the 

placement of capsules by movement of its lever (system image view as shown in Figure 7.1). For 

this purpose an accelerometer was placed on the side of the lever to detect its change from a 

horizontal position to vertical and vice versa.  

The accelerometer used for this application (Figure 8.2) produced an analogue voltage 

proportional to the acceleration on the measured axis. To accommodate for the TAFEI state based 

model described in chapter 5, a binary output was required from the sensor. As with the coaster 

sensor, the analogue signal required calibration and conditioning, accomplished with an Arduino 

Uno board. 

 

Figure 8.2 Sparkfun's ADXL335 accelerometer sensor (Image: sparkfun.com). 

8.1.1.4 Water cooler buttons 

The particular water cooler appliance used in the study had the capabilities of dispensing 

both cold and hot water, by using two different buttons as shown in Figure 7.15 (water dispenser 

buttons). Thus each of the buttons was instrumented to detect interaction with the device. This 

device was identified to be of concern, as it would be the one most used by all participants. Thus 
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sensor placement had to support for continuous and heavy use, and different approaches for 

instrumentation were tested.  

Each of the buttons produced a binary output, and thus did not require additional 

conditioning to support the model’s requirements. 

8.1.2 Connectivity 

Each sensor required wireless connectivity into a network. Given its flexibility and ease 

of integration Wi-Fi was selected as the main communications protocol, supported by a 

communication hub as described below. As such, each sensor component was supported by a Wi-

Fi module to provide connectivity. The module used was a Sparkfun Thing8266 (Figure 8.3).  

 

Figure 8.3 Sparkfun's ESP8266 Wi-Fi enabled module (Image: sparkfun.com). 

This Arduino based board is capable of receiving up to 6 digital input signals and one 

analogue signal. Additionally, the on board computer runs a basic HTTP stack to implement an 

on-board webserver. Hence, the status of the board’s inputs is updated through simple HTTP 

POST commands that can be read by other devices in the network using HTTP requests. 

Each of the available sensors was supported by its own Wi-Fi module, and addressed in 

the network by its own IP address. 
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8.1.3 Gateway 

As part of the IoT platform a communication hub is required to provide a centralised 

connection point for devices in the network. Often, this is achieve through a gateway that 

provides the required network services, such as NAT and DHCP. This testbed was supported by 

an Intel Edison board acting as an Access Point (AP) and router to provide connectivity to sensor 

nodes. This single board computer is capable of providing network services for connecting 

devices, whilst providing a full-fledged Linux server for IoT middleware as described in chapter 

1. 

 

Figure 8.4 Intel Edison single board computer (Image: intel.com). 

8.1.4 Middleware 

In addition to serve as a device gateway, the Edison board acted as a Linux server running 

the Node-RED platform. Its flow based programming paradigm was found to have a direct 

representation of state based system descriptions, and thus was identified as a well suited 

platform for the development of the testbed. As described in Chapter 2, Node-RED provides a 

framework that allows for the characterisation of system states, its transitions and the rules 

governing their behaviour. Moreover, the data-flow approach allows the modelling of system 
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objects as function nodes, providing a direct representation of the physical system in the program 

flow. By using this state and even-driven approach, it is possible to relate to a human-based 

model such as TAFEI. Shows the Node-RED flow for the office’s instrumented objects. 
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Figure 8.5 Node-RED flow for smart office environment supporting the 'drinks making' theme. 
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8.1.5 Data Collection 

On start-up, the server initialises Node-RED as a node.js application, and runs its 

programmed flows on the background. As such, data from all sensor nodes would be captured by 

Node-RED by issuing HTTP GET requests to the particular webservers in their Wi-Fi boards. All 

data were collected at 500 ms intervals in a polling approach (as opposed to collecting data in an 

interrupt driven scheme, were sensor signals would only be stored when an event occurred). 

Then, data would be parsed by a purpose built node within Node-RED, scraping the sensor status 

and converting it into a binary data type. Data coming off this stage would be appended with a 

unique ID and a timestamp, and finally stored in a .csv file for offline processing as described in 

the next section. 

Thus, four different .csv files were produced in any given day, and they were manually 

backed up at regular intervals (one day in average to avoid the Edison board’s memory from 

overflowing). 

As previously discussed, each node produced its own data file and as such, it was required 

to combine them all in one single file. Thus, a python script was written such as each day’s worth 

of data from each node was assembled for the entire period in which the experiment ran, and to 

aggregate all sensor data in one single file, specifying each of the observation’s timestamp.  

The created raw data file, was formatted such that each observation included the status of 

each of the sensor (features) at a given timestamp. 

8.1.6 Data conditioning 

Because the activations could occur at any time, asynchronously of each other, in the raw 

data file no single observation contains more than one active sensor at a time.  This made it 
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necessary to reprocess the data to obtain meaningful representations of activities being performed 

in the room as will be discussed in the following section. 

A pre-processing algorithm developed on python was used to filter the data set before 

analysis (Figure 8.6). As each sensor node produced its own data in a .csv file, the first step of 

data pre-processing required appending all data sources into a single file. This allowed arranging 

them in sequences according to their timestamp, enabling the time-window analysis described in 

chapter 7. Next, data was cleaned to remove unnecessary empty rows produced the sensor nodes, 

and rows containing inactive sensors within the office’s out-of-hours periods. Finally, data were 

organized in feature vectors, including each of the sensors as described in Figure 8.7 

 

Figure 8.6 Data-preprocessing algorithm. 

Thus, each data row defined a feature vector describing the state of the system at any 

given time, as the examples shown in Figure 8.7, saving the output as a single .csv file. 

 

Figure 8.7 Feature vector examples from data pre-processing algorithm. 
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Figure 8.8 Sensor node connected to a coaster. 

 

8.2 Conclusion 

In this study a system with a clear and simple goal was used as a way demonstrate 

TAFEI’s suitability as a modelling tool for an IoT system’s goals. With additional sensors, such 

as the one found in the coffee machine’s water tank and discarded coffee capsules container, it is 

possible to describe the states required to identify their capacity level (empty or full water tank; 

capsules overfilling the canister), defining additional topics and interactions available to the 

system, enabling a new ‘servicing’ theme, facilitating the knowledge of whether the water tank 

needs to be filled or the capsule container replaced. 
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The study presented in Chapter 7 aimed for the minimal number of objects (and sensors) 

required to accomplish goals within the system’s theme. This paradigm supported system 

instrumentation granularity at an object level. That is, although TAFEI provided a way to inform 

instrumentation points, it was done to identify single objects as related to state transitions. 

Notwithstanding, this study suggests that increasing granularity at a device level could enable 

further opportunities for autonomous and intelligent behaviour. For example, instrumentation on 

the coffee machine’s water tank could provide a more accurate metric on the amount of water 

used to prepare coffee, and correlate that information to when the machine needs refilling and 

overtime, when it needs cleaning or descaling as shown in the coffee machine’s analysis in 

Chapter 7. As such, these additional layers on instrumentation show that emerging themes could 

be involved in the system, for example a ‘maintenance’ mode.



 
 

9 People using the testbed 

9.1 Introduction 

The previous chapter describes an application of the framework proposed in this thesis 

(chapter 5). In the described scenario a test bed based on drinks-making and consumption in a 

multi occupancy office was developed and deployed in a real-world environment.  

Given that the developed framework required the identification of specific themes and 

goals (topics in the conversational IoT discussed in Chapter 4) characterised by their tasks (or 

actions as per the Knowledge structure presented in Chapter 5), specific goals for the test bed 

where defined within a specific theme. Thus the considered theme was that related to ‘drinks 

making and consumption’ whilst the goals where identified by the possible actions supported by 

the system image such as: ´making a cup of tea´, ´making a cup of coffee´, ´getting a cup of cold 

water´, etc. 

The testbed allowed for data collection and a study to analyse it was developed with the 

aim of answering the hypothesis of whether the user-data could be used to characterise and 

validate the framework proposed in chapter 5. 

This chapter describes the study and the results from the analysed data. 

9.2 Participants 

The test bed described in the previous chapter was installed in a multi-occupancy office 

and people working in the office were asked to use the sensorised objects to make drinks. The 

study was designed and conducted in accordance with the University of Birmingham ethics 

guidelines. This was explained to participants, who were also informed they could opt out and 

withdraw their data. Their data and resulting analyses were anonymized. 
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11 participant’s data were collected, during a 3-month period. In order to provide ground 

truth, participants were asked to record their actions on a flipchart. Additionally, 5 of those 

participants had coasters in their desks. Over this time period, a total of 309 drink making actions 

were recorded by participants. Although participants used different wording and terminology to 

describe the actions they logged during the study, ultimately all related to the devices and the 

drinks that were most commonly made. Hence, the text descriptions were classified into the 

previously defined TAFEI goals, as shown in Table 7.5. 

Participants in the study were asked to act as naturally as possible when having a drink, 

and to write a record of the time and date and what kind of drink they had. As discussed in the 

previous chapter, instrumenting a coaster for the cups was required to provide more flexibility to 

participants (they would be able to change cups or wash them without interfering with the 

sensors). However, some participants in the experiment did not have any coasters as they worked 

in different offices. This presented an opportunity to allow for investigating differences in activity 

recognition amongst those participants who could be identified with those who could not, without 

interfering with the defined HTAs. As such, each participant’s recorded activities involved a 

direct interaction with instrumented appliances, characterizing a user, an activity or both. 

 

9.3 Data collection 

Data were sampled at 500 ms intervals, determined by the maximum refresh rate of the 

Wi-Fi modules.  This produced an initial set of over 11 million observations.  Although the 

system ran for 24 hours a day, 7 days a week collecting sensor information, the analysis was 

constrained to “regular” office hours, that is, from 7 am to 7 pm, and only on weekdays.  

Therefore, much of the data related to out of hours or when no recorded actions were made.  
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Consequently, this set was reduced to only reflect times of day when people were in the office.  

System activities were sampled at fixed intervals, as opposed to interrupt-driven, to mimic a 

system that could externally observe the sensor activations, without the need of modifying the 

behaviour and functionality of the sensor nodes.  

As defined in the TAFEI analysis stage, participants preparing a ‘cup of coffee with milk’ 

would trigger their cup/coaster sensor (if they had one), the coffee machine sensor, and the fridge 

door sensor to get the milk. By analysing device activation sequence, and characterizing the 

related actions, the type of beverage that was prepared could be inferred, and over time, assigning 

those patterns to individuals.  

For instance, as described by the TAFEI, a sequence could begin when the coaster sensor 

detects removal of cup, and ends when the coaster sensor is activated again, provided that other 

sensors were also active during the sequence. Hence, once the beginning and the end of that 

sequence are identified, everything that belongs within this time frame, could potentially be 

identified as that person making a particular type of coffee. As discussed in Chapter 4, a 

conversation is considered to be taking place within the IoT system, establishing a sequence of 

system states in which users and objects negotiate turns to complete a goal. Thus, this study 

allowed an exploration on how these sequences of activations relate to the topics in the network, 

as described by TAFEI. 

9.4 Data preparation 

The first stage of the analysis involved unsupervised classification to all collected data, 

that is, not cross-referencing any of the user logged activities, analysing the full data stream. Data 

were collected from the system, and analysed offline, looking at the aggregated sensor data from 

all sensor nodes, following the algorithm described in Figure 8.6. Sensors that initiated and 
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finished an activity were unknown. Thus, a sliding time window was used to examine the data 

set. This procedure required obtaining feature vectors from sensor data using overlapping time 

intervals to avoid data loss from potentially cutting off activities at their start or end.  

To define the sliding window length, users were observed as they performed any of the 

involved activities, and the time from start to finish was manually recorded. With the aid of the 

user-logged activities as labels for the feature vectors, a second analysis was performed. For the 

duration of the study, participants were asked to write down their actions on a log, including the 

time and date. However, it wasn’t always reported in the same order in the process, i.e., before or 

after the actual time when they prepared their drink. Hence, a fixed-time window was used to 

algorithmically search for active sensors in the data, given the recorded activity by the 

participants. The window size was 10 minutes, considering plus and minus five minutes from the 

user-recorded activity time, allowing for an adequate time frame for both the start and end of the 

sequence. Thus, raw data files were processed to extract the active sensors within the proposed 

time window, resulting in a data set with clearly identified feature vectors, which included the 

status of the sensors, a timestamp and more importantly, labels for each of them indicating the 

corresponding user and activity. These data were used as ground truth and validation of the 

analysis. 

9.5 Statistical data analysis 

An exploratory analysis of the data was performed using different unsupervised learning 

tools, such as K-means, hierarchical clustering and binary logistics regression using IBM SPSS3 

                                                 

 

3https://www.ibm.com/analytics/us/en/technology/sps/ 
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data analysis software tools. Table 9.1 shows the descriptive statistics of the analysed data. Table 

9.2 and Table 9.3 show the summary of statistics for the participants and the user-recorded 

activities. 

Table 9.1 Descriptive statistics for the analysed data. 

 

 

 

 

 

 

 

 

 

 

 

 

User Activity Coaster1 Coaster2 Coaster3 Coaster4 Coffee Door Fridge
Hot water 

button

Cold 
water 
button

Valid 309 309 309 309 309 309 309 309 309 309 309
Missing 0 0 0 0 0 0 0 0 0 0 0

.1359 .2557 .4725 .1553 .3883 .5955 .1521 .3495 .3657

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

.34326 .43694 .50005 .36282 .48817 .49160 .35970 .47759 .48241

.118 .191 .250 .132 .238 .242 .129 .228 .233

2.135 1.126 .111 1.912 .460 -.391 1.947 .634 .560

.139 .139 .139 .139 .139 .139 .139 .139 .139

2.575 -.738 -2.001 1.668 -1.800 -1.859 1.802 -1.608 -1.697

.276 .276 .276 .276 .276 .276 .276 .276 .276

42.00 79.00 146.00 48.00 120.00 184.00 47.00 108.00 113.00
25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
50 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
75 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000

Kurtosis

Std. Error of Kurtosis

Sum

Percentile
s

Mode

Std. Deviation

Variance

Skewness

Std. Error of 
Skewness

N

Mean

Median
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Table 9.2 Descriptive statistics for study's participants. 

 

Table 9.3 Descriptive statistics for user-recorded activities.  

 

Principal Components Analysis (PCA), a multivariate analysis technique which aims to 

transform the data into a lower dimensional representation to simplify its description, provides a 

means of classifying observations into categories, and a metric for the underlying connections 

amongst the analysed data (Abdi and Williams, 2010; Distefano et al., 2009; Augello and Gaglio, 

Frequency Percent
Valid 

Percent
Cumulative 

Percent

User 1
47 15.2 15.2 15.2

User 2
9 2.9 2.9 18.1

User 3
81 26.2 26.2 44.3

User 4 16 5.2 5.2 49.5
User 5 4 1.3 1.3 50.8
User 6

28 9.1 9.1 59.9

User 7 1 .3 .3 60.2
User 8 1 .3 .3 60.5
User 9 14 4.5 4.5 65.0
User 10 41 13.3 13.3 78.3
User 11 67 21.7 21.7 100.0
Total 309 100.0 100.0

Valid

Frequency Percent
Valid 

Percent
Cumulative 

Percent

coffee + 
hot water 55 17.8 17.8 17.8

coffee + 
milk 9 2.9 2.9 20.7

coffee+mil
k+hot 
water

6 1.9 1.9 22.7

cold water
137 44.3 44.3 67.0

hot water 57 18.4 18.4 85.4
tea + milk 29 9.4 9.4 94.8
water (hot 
+ cold) 16 5.2 5.2 100.0

Total 309 100.0 100.0

Valid
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2014). An aspect of the present research was to establish a method to identify topics and themes 

within an assumed ‘conversation’ amongst IoT network actors. The PCA approach presented an 

opportunity to interpret the resulting classification as an indicator and measure of topic and theme 

membership of each of the sensors in the dataset, and their corresponding identified activities. 

Hence, component loadings are considered analogous to the degree of contribution each sensor 

has in a particular conversation. 

As such PCA was run on the data set using SPSS, through its Factor Analysis module, 

using varimax rotation, with the default 25 maximum iterations for convergence. The exploratory 

factor extraction method used was based on eigenvalues, and its corresponding scree plot, to 

explore the adequate number or factors. Each factor contributes to explaining the variance of the 

data set.  

The method iterates until an adequate percentage of variance is explained cumulatively by 

each component, until a threshold is reached. Similar analyses have been performed with a 70% 

of explained cumulative variance, and is considered a suitable limit (Beaumont, 2012). 

9.6 Results from study’s data analysis 

A first analysis identified cross loadings on one of the variables, generating noise in the 

data set. This led to inspect data sources, finding that one of the participants had not used their 

instrumented coaster (described in Chapter 8) in the correct way, and all data belonging to that 

user was removed from the study. 

As shown in Figure 9.1 a scree plot was produced by PCA with the collected data for the 

‘Drinks making’ office testbed. This graphical method allows to identify the point where the 

eigenvalues allow to identify the required number of components that explain most of the 

variance in data. SPSS is capable of performing an automatic selection of components, but as an 
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exploratory analysis, the number of components were manually changed. Moreover, SPSS’s 

output produces a table identifying the variance and components, allowing to determine that for 

this data set, the optimal number of components to use were 5. A larger number of components 

led to each of them correlate to individual variables, neglecting the inherent underlying latent 

correlations amongst them. T. Thus, using 5 components the total explained variance was of 

72.60%, which according to the previous section, would be sufficient to determine the 

relationship between sensors (variables).  

 

Figure 9.1 Scree plot for PCA analysis of 'Drinks Making' study. 
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Moreover, Table 9.4 and Table 9.5 present a summary of the statistics from the PCA factor 

analysis method, showing the correlation matrix as a means of an initial identification of cross-

loading components and the variance analysis to determine the number or components to 

consider in the test. By observing the correlation matrix it is possible to identify clustering 

between groups of variable that will be extracted as components (Beaumont, 2012).  

Table 9.4 PCA Correlation Matrix for 'Drinks Making' Study. 

 

Table 9.5 PCA variance analysis for 'Drinks Making' study 

 

Coaster1 Coaster2 Coaster3 Coaster4 Coffee Door Fridge hot cold

Coaster1 1.000 .071 -.035 .273 -.006 .115 .148 .006 .091

Coaster2
.071 1.000 -.035 -.128 .066 .166 .454 .099 -.060

Coaster3 -.035 -.035 1.000 .077 -.102 .067 -.022 .272 -.207
Coaster4 .273 -.128 .077 1.000 -.140 .008 -.082 -.127 .194
Coffee -.006 .066 -.102 -.140 1.000 .210 .125 .001 -.122
Door .115 .166 .067 .008 .210 1.000 .165 .258 -.155
Fridge .148 .454 -.022 -.082 .125 .165 1.000 .238 .015
Hot Water 
Button

.006 .099 .272 -.127 .001 .258 .238 1.000 -.289

Cold 
Water 
Button

.091 -.060 -.207 .194 -.122 -.155 .015 -.289 1.000

Coaster1 .108 .271 .000 .458 .021 .005 .456 .055
Coaster2 .108 .272 .012 .125 .002 .000 .041 .147
Coaster3 .271 .272 .088 .036 .121 .351 .000 .000
Coaster4 .000 .012 .088 .007 .447 .075 .013 .000
Coffee .458 .125 .036 .007 .000 .014 .494 .016
Door .021 .002 .121 .447 .000 .002 .000 .003
Fridge .005 .000 .351 .075 .014 .002 .000 .395
hot .456 .041 .000 .013 .494 .000 .000 .000
cold .055 .147 .000 .000 .016 .003 .395 .000

Correlatio
n

Sig. (1-
tailed)

Total
% of 

Variance
Cumulativ

e % Total
% of 

Variance
Cumulativ

e % Total
% of 

Variance
Cumulativ

e %

1 1.928 21.417 21.417 1.928 21.417 21.417 1.566 17.399 17.399
2 1.465 16.281 37.698 1.465 16.281 37.698 1.391 15.456 32.855
3 1.327 14.749 52.447 1.327 14.749 52.447 1.224 13.602 46.456
4 1.070 11.887 64.334 1.070 11.887 64.334 1.217 13.524 59.980
5 .744 8.271 72.605 .744 8.271 72.605 1.136 12.624 72.605
6 .733 8.145 80.749
7 .691 7.678 88.427
8 .586 6.516 94.943
9 .455 5.057 100.000

Compone
nt

Initial Eigenvalues
Extraction Sums of Squared 

Loadings
Rotation Sums of Squared 

Loadings
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The previous scree plot (Figure 9.1) and PCA statistical summaries (Table 9.4 and Table 

9.5) show that for this study five components would provide the required number of components 

to consider as signifiers for the data set. Thus, five factors were used as observed in Table 9.6, 

showing the interpretation given to each of the extracted components. The components where 

selected by applying the commonly used criteria of stablishing a threshold of 0.4 (Beaumont, 

2012). Thus, Table 9.6 only shows the loadings above said criteria. 

Table 9.6 PCA rotated component matrix for sliding windows data set, sensor loadings and descriptors 
for extracted components. Descriptors relate to the TAFEI goals. 

 

As discussed in the previous section, a second data set was used as ground truth for 

validation of the method. This ‘recorded-activities data set’, provided labels for users and 

activities, and a structured approach to the classification technique. Using the same PCA 

extraction method and settings in SPSS as on the sliding windows data set Table 9.7 shows, albeit 

slight changes in the order of the components, the sensors found in the components and their 

1 2 3 4 5

Coaster1 .846
Coaster2 .779
Coaster3  .807  
Coaster4 .801

Coffee    
ColdWater .944

Door .902
Fridge .700

HotWater  .439 .436  
Higher 

Loading 

Sensors in 

component

Coaster 1

Coaster 4

Coaster 2

Fridge

Coaster 3

HotWater

Door

HotWater
ColdWater

Descriptor N/A
"drink with 

milk"

"Hot water 

related 

drink"

"Coffee 

related 

drink"

"plain 

water 

drink"

Sensor
Components for sliding windows data set
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descriptors closely matching the ones produced in the unsupervised classification approach. This 

similarity suggests that the latent relationships within both data sets are comparable, allowing to 

use the extracted components as the topics in the conversation established by nodes engaging 

with each other in the network. Furthermore, as shown by TAFEI, the sensors identified as part of 

each component, directly relate to the tasks identified, and thus the component loadings describe 

the plans to achieve specific goals. 

Table 9.7 PCA rotated component matrix ‘recorded-activities data set’ (labelled), sensor loadings and 
descriptor for extracted components. Descriptors relate to the TAFEI goals. 

 

PCA regression scores from the recorded-activities data set’ were used to define 

weighting of the extracted components. The user labelled data set and extracted PCA components 

clearly related to the activities from the study and the TAFEI model. Participants could be 

recognized through the extracted features, and in alignment with the modelled TAFEI goals, a 

subset of the results from user and activity identification analysis are presented below. 

1 2 3 4 5

Coaster1 .915
Coaster2 .819
Coaster3 .799
Coaster4 .598 .505

Coffee  .768
ColdWater  .856

Door  .763
Fridge .834

HotWater  .656  
Higher 

Loading 

Sensors in 

component

Fridge

Coaster 2

Coaster 3

HotWater

Coffee

HotWater

Coaster 1

Coaster 4

ColdWater

Coaster 4

Descriptor
"drink with 

milk"

"Hot water 

related 

drink"

"Coffee 

related 

drink"

N/A

"plain 

water 

drink"

Components for labeled data set
Sensor
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Averages for the PCA scores weightings on the labelled featured vectors were obtained 

and plotted to visualize the degree of membership of the scores in the activities and the users 

performing the activity. In the case of activities Figure 9.2 shows an instance in which the PCA 

extracted components and scores for the activity ‘coffee + hot water’ are examined. It can be 

observed that for this activity, there is a higher loading on component 3 (PC3) and less so towards 

component 2 (PC2), which as per Table 9.7, suggests that participants interacted with the sensors 

related to ‘coffee’ and ‘door’, and less so with ‘hot water’ ‘coaster 3’. This shows a similarity to 

the objects involved in the TAFEI modelled goal, supported by empirical observations during the 

study, and the participant’s logged activities. 

 

Figure 9.2 ‘Coffee + hot water’ activity PCA Components and average PCA scores. 
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Furthermore, by using PCA scores to classify users, Figure 9.3 shows a case where 

groupings were made amongst the two users who reported that they had undertaken the ‘Coffee + 

hot water’ activity. It can be observed that for User 1, there was a clear loading towards 

component 3 (PC3), interacting with the ‘coffee’ and ‘door’ sensors, as per table 6. In this case, it 

was observed that for the duration of the study this participant had a clear pattern of behaviour 

when preparing this drink. This user didn’t have a coaster associated, nor was based in the office. 

Thus, to use the coffee machine, the user had to access the office through the main door. 

Conversely, User 11 had a coaster associated, and thus, a heavier loading towards component 2 

was found, with a slightly lower loading to component 3, confirming their observed behaviours. 

Correspondingly, by examining results from user classification for goals, the relationship between 

sensors found in each component and plans defined in the HTA can be observed. As described, 

the components found for User 1 in the ‘coffee and hot water’ activity (Figure 9.3), show that the 

interactions occur with the coffee machine and the door, as described in the TAFEI diagram 

through plans P2 and P3 (Table 3), whereas for User 11, the objects are their coaster, the hot 

water button and the coffee machine, as established by plans P1, P2 and P3, validating the 

modelled behaviour in TAFEI. 
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Figure 9.3 Average PCA scores comparison for two different users performing the ‘Coffee + hot water’ 
activity. 

9.7 Conclusions 

TAFEI provides a human centred approach to system modelling and requirements 

definition. It considers a system comprised of both human users and ‘things’ in a systematic 

analysis of actions required to achieve goals within a system. By using this information to 

instrument the object, we could support system autonomy design by establishing rules that 

monitor when actions occur. For example, by having a sensor on the coffee machine lever, the 

system could keep track of the number of capsules used, and in turn, proactively inform the user 

to purchase more consumables, or by linking to e-commerce platforms, make machine-based 

decisions such as order the supplies on its own. 
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The study aimed for the minimal number of objects (and sensors) required to accomplish 

goals within the system’s theme. This paradigm supported system instrumentation granularity at 

an object level. That is, although TAFEI provided a way to inform instrumentation points, it was 

done to identify single objects as related to state transitions. Notwithstanding, this study suggests 

that increasing granularity at a device level could enable further opportunities for autonomous 

and intelligent behaviour. For example, instrumentation on the coffee machine’s water tank could 

provide a more accurate metric on the amount of water used to prepare coffee, and correlate that 

information to when the machine needs refilling and overtime, when it needs cleaning or 

descaling. As such, these additional layers on instrumentation show that emerging themes could 

be involved in the system, for example a ‘maintenance’ mode. 

This work posits that a conversation occurs in the human-machine system through an 

exchange of actions, following a sequence of states within a theme. Topics in a conversation 

become its guideline in an organized, turn based information exchange. Analogously, we argue 

that goals in the system provide a common ground for the human-machine interaction, and we 

can make a distinction between human based transition and machine based transitions in a 

collaborative exchange within the topic. For example, in the case of a coffee machine, the act of 

coffee being brewed becomes quite evident, providing a clear cue on system status. Common 

ground is established by both parties agreeing on what the conversation is about, thus, if users 

can’t directly perceive with the outcome of the goal, they won’t be part of the conversation 

negatively affecting their engagement, as suggested by the intelligent thermostat studies 

discussed in the introduction.  If the user sets the temperature, say at the highest level, and 

nothing happens the user is left to wonder if the system is functioning properly. It might be 

maximizing energy savings, but the user might not be locked into that conversation, thus missing 
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information. Conversely, for a system designer, this becomes a tool to scrutinize all interactions, 

plans, states and actions that form conversations to inform development of new topics, or to 

enhance user interfaces or system notifications. By the same token it also provides the basis for 

analysing user intent. In conjunction, user intent and system notification could also be used as to 

support the development of autonomous and ‘intelligent’ system behaviour as expected from the 

IoT.  

TAFEI analysis is by definition subjective, as it relies on the analyst’s point of view. 

Consequently, it could be argued that instrumenting the chosen objects would perhaps not be 

sufficient to provide an explanation of the task and goals being performed. As such, to test the 

hypothesis that was set earlier in the chapter, PCA was used to define meaning of the interactions 

amongst sensors and to provide a measure of correspondence with the modelled behaviour, 

linking plans as defined by TAFEI with PCA’s extracted components. By using the components 

and their scores from explicit connections, we found the implicit interactions between devices 

when they were used to fulfil a goal within a theme, such as ‘having a drink’, validating our 

human centred framework for system design. 

Thus, this thesis proposes that users and devices establish a partnership amongst them, 

cooperating with each other towards a simple goal. In doing so a ‘conversation’ is enacted, 

allowing the objects to convey meaningful information (knowledge) given their common ground. 

The extracted components from the data-mining tool involve co-activation of sensors, and as 

such, we suggest that these represent the collaborating topics in a discussion. When these topics 

occur within a particular context -for instance an office drinks making environment- a theme 

emerges, giving meaning and purpose to the communication exchange between network nodes. 

Thus, through device instrumentation and data collection and PCA analysis we suggest how the 
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components found can be employed to describe their inherent connections, in the same manner 

that we propose topics can be used to aggregate into themes, or subsets of the supported theme as 

topics or goals. 

This study aims to fill the gap in requirement definition towards the implementation of 

devices that effectively contribute to parsimonious collaboration between users and the IoT. 

Although TAFEI was originally conceived to analyses errors in usability, we show how it can be 

repurposed to identify user interactions that deviate from the originally conceived goals and could 

potentially lead to opportunities to develop intelligent behaviour. As such, TAFEI is used to make 

predictions of possible interactions in the system, both from a user and machine perspective.  For 

example, the coffee machine has at least five points of user interaction that warrant their own 

analysis through TAFEI and PCA. This finer approach can lead to the discovery of additional 

topics and themes in both the system and the object, by showcasing actions taken by the user, and 

actions made ‘in the background’ by the system. In such a system, the definition of background 

activities would allow the modelling of ‘intelligent’ activities. For example, in the case of the 

finely instrumented coffee machine, a machine-based goal would allow the system to keep track 

of its frequency of use, and thus proactively identify service related activities, such as descaling 

or prediction of coffee capsule usage. 

It has been argued that the user values a system or object through its perceived value, or 

its capacity to provide meaning. Thus, TAFEI’s analysis of diverging goals can be used to 

observe opportunities to increase user engagement with the system, promoting usability and 

adoption.  

Through analysis of device collaboration both at an interaction and data level to fulfil a 

particular task, we show how they cooperate towards achieving a goal that provides meaning to 
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the user. By modelling a system with a methodology such as TAFEI we show how to identify 

actions on its nodes as defined by its goals, and the steps that a user takes to successfully 

accomplish the task.



 
 

10 Discussion 

Although the Internet of Things concept initially suffered from being treated as concept 

pushed by economic and marketing forces, and considered no more than ‘hype’ or a ‘buzz word’, 

research and application development have advanced the area, providing significant results 

warranting continuous research efforts. Nevertheless, the necessity for an IoT could be 

questioned. As such, the first research question this thesis asked was whether a human-centred 

vision of the IoT could be favoured over the purportedly prevailing technology-based IoT. By 

reviewing the fundamental features of a techno-centric IoT, such as its devices, its networks, and 

its management infrastructure, we provide a framework to analyse how these traits define and 

influence how human users react and interact with the IoT. Features such as constrained user 

interfaces have the potential to limit the information conveyed to users, or data processes 

occurring over wireless network connections can hide things’ activities from users leading to 

interaction problems, as discussed in Chapter 3. 

Consequently, from a human user point of view, we could ask what is the purpose of an 

Internet of Things application and what kind of services would they be addressing. Even though 

smart devices might not completely solve complex problems on behalf of humans, they could be 

aimed to at the least reduce friction on daily activities. Arguably, some product designers aim to 

solve these problems in such a way that users just don’t consider them problems anymore as 

friction is reduced over time. As such, an interesting position for designers is to address what to 

cognify such that this friction is reduced in a meaningful way. How do designers identify 

opportunities for smart behaviour and in the same regard, how do users become engaged with the 

provided solutions? 
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In a more proactive scenario, given recent advancements in machine learning and 

artificial intelligence perhaps the machines themselves could be capable to provide answers to 

those questions by way of learning our habits. Nevertheless, a paradigm in which all is left to the 

machine might lead to Norman’s (2007) assertion that machines are not intelligent, but 

intelligence is in the mind of the designer. Hence, ideally objects should be able to learn and infer 

from their human users, but before that stage is reached, we should focus on the design of smart 

systems that are meaningful to their users and promote engagement. 

This thesis posits that the IoT not only should aim to reduce friction in everyday activities 

or create valuable and rich experience to their users, but also to proactively engage in 

collaborative endeavours in a virtuous circle of operation: friction is reduced when systems are 

actually used for their intended purpose. 

As discussed in chapter 2, a smart kettle or a smart toaster might be considered ‘useless’ 

devices, laden with technologically solutionism (Morozov, 2014). In the case of the smart toaster, 

the notion of smartness is provided due to the fact that it allows user to set the toast level, the type 

of bread, it notifies of the remaining time for toast to ready to your liking. But why? Is it 

something that we really need? Does it actually supports and extends any user action? A 

meaningful action? Is it removing friction on the user’s everyday activities? At best most of these 

devices end up used in much the same way as their dumb’ counterparts, or shelved because their 

special features actually become cumbersome to the user. Notably, the first ‘electrified’ versions 

of these appliances were developed out of a desire of users to reduce time and effort in chores as 

simple as boiling water and toasting bread. A tin opener is also a tool born out of desire for 

efficiency, however, does it warrants cognification? 
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Thus, the question of how to characterise the IoT to support user activities, can be 

answered in terms of cognification (Kelly, 2017) of things such that they not only reduce friction, 

effort, time or cost, but also support user goals, as described in Chapter 4. 

Interestingly, there could be an argument in favour of devices such as the smart kitchen 

appliances as those mentioned, perhaps would become more evident if we consider that they are 

two of the most used home appliances in the UK (Appliances Direct, 2016), making a case for the 

developers to place a connected device in every household to collect data related to energy 

consumption or household occupancy patterns for example. Arguably, not all applications would 

necessarily benefit all stakeholders in the product’s value chain, but given their potential 

ubiquitousness, what if they could provide information to the energy grid about the household’s 

energy consumption aggregating information for different users, providing the data analytics to 

proactively adjust the grid’s energy management. In the case of the saltshaker presented in the 

same chapter of this thesis, it would be debatable whether the device is useful or not. However, 

on their website, the creators of the device imply that the device is in fact a centrepiece for the 

digital home, in the guise of an object common to dining tables. This shows a clear disconnection 

of what the designers intend, how the product is marketed and most importantly whether it solves 

a problem (friction) for the users.  

The previous examples provide scenarios in which there is a disassociation of a ‘smart’ 

devices goals and the users. Moreover, what is the impact of the machine making decisions 

without the user's being fully informed? This has been analysed in the thesis, observing that these 

situations often result in frustration from the user. 

Consequently, if a misalignment of goals exist between a smart machine and its users, the 

question could be how an agreement is negotiated in terms of completing goals? As actors in the 
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network are considered agents, each carry out their own tasks and goals. Hence, this thesis posits 

that a social-like collaboration needs to occur between those involved in the network, with the 

purpose of achieving each other’s goals. To characterise these collaborative endeavours, the 

notion of a conversational IoT is presented in chapter 4, not in the commonly used approach of 

speech based communications, aiming to provide natural language user interfaces like those used 

in chatbots or virtual assistants such as Amazon’s Alexa (Amazon, 2018) or Google’s Home 

(Google, 2018). Although these devices provide interfaces that perform activities on behalf of the 

users, such as controlling ambient temperature or lightning, they do not completely address the 

goal-based approach of the IoT as defined in Chapter 4. Firstly, interaction occurs in a centralised 

topology, focusing on providing a middleware based solution to interaction in the IoT, as 

presented in Chapter 2. In terms of their speech capabilities, they become interpreters of input 

and output commands that are previously hardcoded. As such, the conversational capabilities 

focus on providing an intermediate layer between users and things, in charge of ‘translating’ user 

goals to machine language. The conversational IoT paradigm presented in Chapter 4 posits that 

conversations are based on the exchange of actions to convey ideas. As obvious at it might be, it 

is important to state that objects are incapable of expressing their ideas, however they are capable 

of supporting exchanges with users through their physical attributes. In this context, 

conversations are enacted, based on the specification of turn-taking and feedback framed on the 

notion of a common interest and context. This implies a mutually beneficial collaboration in 

which participants seek not only to fulfil their tasks and goals, but also provide the means to not 

hinder the other party’s own tasks and goals, and at best support them.  

These collaboration have been analysed from different perspectives, from semantics and 

ontology to the services, leading to IoT system modelling. As discussed in Chapter 5, these 
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models have often overlooked user experience and the fact that smart objects often rely on their 

digital representation, thus data exchanges often occur through communication channels 

undisclosed to the user. This leads to question how to best approach and implement Interaction 

Design strategies as applied to a human-centred IoT. 

For HCI, the link of physical devices to a virtual equivalent through their instrumentation 

and cognification, presents interesting challenges in terms of the level of abstraction in which the 

‘cognified’ object might not necessarily represent the same concept in both its physical and 

virtual representations. For example, the physical representation of a kettle is immediately 

conveyed through its affordances (a handle, a water container, a button to heat), but an 

instrumented kettle collects and produces data in a format not immediately obvious to its user. As 

such, the goal of this research has been to provide a framework in which the two spaces co-exist 

in coherent, meaningful way. 

These motions not only address the aspect of HII, but could open new opportunities 

towards creating the vision of the IoT in which the devices are intelligent enough to provide 

answers to user’s needs or even those use cases not necessarily considered initially, providing 

new services and insights. Commonly, devices are connected in centralised topologies, and thus 

their functionality, and the knowledge obtained from them, is rigid, considering that they would 

only establish communication with nodes within its own network, as defined by a hub. 

Nonetheless, this notion is at odds with the ubiquitousness of IoT devices. In a different scenario, 

‘things’, regardless of their network membership, could be used in applications different to those 

originally intended for, by sharing their resources and information, addressing the issue of 

interoperability and device heterogeneity. However, a prerequisite before this can be achieved, is 

the need for a common communication schema, and thus, this research has proposed the notion of 
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topics and themes as a way of understanding the interactions amongst devices, in a social-like 

paradigm. 

10.1 Designing for usability 

Chapter 5 of this thesis focuses on the use of Task Analysis for Error Identification 

(TAFEI) as a tool for IoT systems modelling, with the goal of analysing user intent and 

promoting meaningful interactions. In particular, Hierarchical Task Analysis (HTA) has been 

used to define system requirements through a representation of the system’s sub-goals, and 

applying them to user interface design, workload design and error prediction.  

Drawing upon strands of research in Task Analysis and Human-IoT Interaction (HII), this 

research focuses on the use of Task Analysis for Error Identification (TAFEI) as a tool for IoT 

systems modelling, with the goal of informing system instrumentation. The cognification imbued 

through the implementation of sensor and communication technology enables the prediction of 

user intent, which if done in a human-centric approach leads to the promotion of meaningful HII 

interactions. 

Chapter 6 presents a study in which participants were expected to interact with cognified 

objects, attempting to discern their purpose. In this regard, it was observed that users tend to build 

mental models to make sense of things. Moreover, things provide a means of conveying their 

goals through their affordances. In this regard, it could be considered that the process becomes 

one of ‘service discovery’, or in terms of the collaborative environment presented in chapter 4, as 

a process of ‘theme discovery’. The study’s results suggest that users favour interactions were the 

theme of the system is presented, as opposed to those that are based on a data-driven approach. In 

the latter, users are presented with a status based view of the IoT, leading to an incomplete view 
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of IoT interaction in which users feel as mere observers. In contrast, a theme based approach 

provides meaning, supporting mental representations of the system’s purpose. 

An interesting notion presented by this study is that of the nature of the thing’s goals. It 

should be noted that a full analysis of a human-centred IoT should consider what the things are 

expecting to achieve. 

As such, this thesis answered the question of how to enable interaction modelling 

strategies that favour service-based interactions, or in terms of the knowledge structure presented 

in chapter 4, theme and topic interactions, identified by goals and tasks. 

In the context of the IoT, TAFEI provides a frame of reference in which interactions 

between the person and the object are analysed from the perspective of the system’s goals and 

sub-goals. This enables a system to be designed and developed by providing useful meaning, not 

only to the owner of the business case the object supports, but also more importantly to the 

person using the system. 

By repurposing TAFEI’s original aim of modelling systems by focusing on errors as users 

attempt to carry out their main goal, it’s possible to see how the system’s functionality could be 

extended, and more importantly, how intelligence could be embedded in the system. When 

devices that traditionally were not considered ‘smart’, such as a coffee machine, become IoT-

enabled, they can possess extended capabilities and present opportunities for proactive and 

intelligent behaviour. These scenarios could allow a system to predict a user’s intent and to 

provide them with additional information. 

The application of TAFEI would allow the consideration of human factors in the design of 

IoT systems and smart objects, alongside machine learning techniques. By allowing people to 
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become more aware of the system’s goals, meaningful interactions and engagement would be 

increased, enhancing successful adoption of objects in the Internet of Things. 

A test bed was developed to investigate how loosely connected sensors, in a decentralised 

topology interact with each other towards the creation of a common interest, or overarching 

theme. ‘Drinks making’ was chosen as the theme of the network given that is well stablished 

routine, with minimal requirement for feedback, and it used existing objects. Moreover, it relied 

on previous knowledge and mental models involved in the operation of objects. As such, the 

system would be a non-intrusive in terms of modifying user behaviour.  

Data collected from the test bed was analysed with Principal Components Analysis as a 

tool to extract the underlying meaning of interactions amongst objects. By using the extracted 

components and their scores from explicit connections, it was that found the implicit interactions 

between devices when they were used to fulfil a simple task, such as drinks making in an office 

environment. The extracted components from the data-mining tool involve co-activation of 

sensors, and as such, there’s a suggestion that these represent the aggregation topics in a 

discussion. When these topics occur within a particular context -for instance an office drinks 

making environment- a theme emerges, giving meaning and purpose to the communication 

exchange between network nodes. As in social networks, objects are considered as part of the 

same cluster because of their social ties, a product of both their theme and context of 

conversation.  

Analysing how devices collaborate to fulfil a particular task, provides a path into the 

conversation they sustain with each other to transfer knowledge within their network. This 

presents the opportunity for developing IoT systems that would be able to convey their purpose to 

other systems and potentially combine efforts to produce novel services different than the ones 
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they were originally designed for. Moreover, as the networked systems grow in scale, smaller 

networks (clusters of sensors, actuators and users) act as local nodes that in turn could be 

considered localized ‘sensors’ in a wider scale, loosely connected Internet of Things. 

For example, different ‘drinks making’ systems, located in different rooms across a 

building, could expand its functionality by communicating with the building’s energy 

management system, allowing it to receive knowledge from each of the rooms enabling it to 

administer its energy management policies more efficiently, from planning to scheduling and 

coordination of any available actuators and human user interfaces.  

10.2 Restatement of Contributions 

10.2.1 Research Questions revisited 

As introduced in chapter 1, the main research questions postulated by this thesis where: 

 Why is there a requirement for a human based view of the IoT over a ‘tech-centred’ 

paradigm? 

 How can the IoT be characterised to support human activities? 

The evolution of the Internet of Things from a technology perspective supported an 

analysis of how the IoT has, to some degree, deviated from addressing some usability challenges 

by focusing instead on the services that could be provided by their data and accompanying 

analytics. In chapter 2, this thesis focused on observing the technological requirements) for the 

IoT to identify their relation to human users and the affordances (chapter 3) they convey to 

support human-centred activities (Kawsar et al., 2010a; Kortuem et al., 2010; Baber, 2018; 

Giaccardi et al., 2014) and their related interactions (Jha and Lehnhoff, 2014; Jara et al., 2014; 

Nunes et al., 2015; Cervantes-Solis et al., 2015a; Golightly, 1996; Norman, 2007) and usability 
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(Stankovic et al., 2005; Kuniavsky, 2010; Pschetz et al., 2017). The research allowed to identify a 

requirement for an IoT paradigm that placed the human user at the centre, and this thesis 

addresses the first major research question by conceptualising the IoT as a system in which 

meaningful exchanges, framed as commonly grounded conversations, occurring amongst its 

nodes and in characterised as a Social IoT in chapter 4.  

The second major research question of how the IoT can be characterised to support 

human activities is addressed in chapter 5 by proposing a human centred IoT development 

framework based on the observation of attributes required for smart object interaction (Chapter 5)  

to allow for the identification of system meaning from the human user (Cervantes-Solis and 

Baber, 2016), and how it is structured under the social IoT previously defined (chapter 5). 

Moreover a study was developed to analyse the nature of Human-IoT interaction (chapter 6) to 

support the development and application of a modelling framework (chapter 7 and 8), and 

validating the results obtained through data analysis techniques (chapter 9). 

10.2.2 The Human-Centred IoT 

This thesis explored how the IoT’s technology centred development informed how users 

approached interaction with these systems. As a consequence, user’s goals were not necessarily 

considered in the system’s development. As such, this thesis reframes Human-IoT interaction as a 

social, collaborative system, described in terms of its capacity to support the activities of the 

involved social actors in pursuit of a common goal. In this regard, an IoT system should be 

characterised not only by the collection of technologies it incorporates, but also by the human 

user, reframing it as a goal based Human-Machine IoT System. 
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10.2.3 A Human-Centred Interaction Design Framework 

This thesis presents a framework that allows for the design of Internet of Things systems 

with usability as it main focus, enabling the analysis of goals from both the human users and the 

machine (things in the IoT), by observing the actions and plans that users take to complete them, 

and linking them to the machine’s states that are involved in those interactions. Moreover, the 

introduced paradigm shows how a Human Centric Internet of Things framework can be applied 

to design and implement the infrastructure required to deploy IoT systems. 

 

The design framework presented in chapter 5 focused on analysing human behaviour to 

implement a model for an IoT system, identifying how to approach object instrumentation such 

that user’s goals were supported. By framing the goals and actions under the notion of a 

conversational IoT in which organised turn taking takes place under a commonly agreed context, 

the notion of a theme and topics is proposed. This concept allows the interlinking of actions and 

state transitions to identify the intersection of themes and the instrumentation required to 

implement Internet of Things systems.  

 Furthermore, as part of the implementation, Node-Red, a data-flow programming tool, 

was used to complement the machine-based application acting as a middleware platform to 

connect the IoT network’s nodes, data collection and application logic. The introduction of this 

programming paradigm allowed to focus on the state and turn taking nature of the IoT and the 

framework, allowing for the implementation of the state-based model provided by TAFEI, 

through a scalable and extensible technology platform that supports the use of APIs to interface 

with other systems and for data collection and analytics.  
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10.2.4 A redefinition of ‘smart’ systems 

In the context of this research, focusing on human-machine interaction, with the aim of 

enhancing user engagement and value, the notion of ‘smart’ should be restated to consider the 

following principles: 

 They are enhanced objects possessing attributes that allow them to share status of 

their location, surroundings, and usage as enabled by their SPC capabilities 

 They should warrant user engagement and perceived value, otherwise objects 

become no more than glorified versions of themselves 

 Should consider user’s experience in their design to prevent misunderstanding on 

its purpose  

 Should regard user’s goals, and have the capability to negotiate and prioritise their 

own goals in this consideration. 

10.3 Limitations of the research 

The studies reported in this thesis are focused on experiments run under constrains such 

as a limited number of participants and the background of these participants. Both studies relied 

on academic staff, research students and undergraduate students with engineering or computer 

science backgrounds. As such, the results are potentially eschewed due to the inherent experience 

of these users with technology and knowledge and experience on smart systems. However, both 

experiments were designed to be as simple as possible (very simple and intuitive tangible 

interfaces for the first study) and as non-intrusive as possible (instrumenting devices such that 

their operation or usability was not interfered with in studies 2 and 3), to minimize for the 

mentioned cognitive biases.  
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Arguably, studies 2 and 3 could have been implemented by instrumenting more devices 

related to the office’s environment and activities, allowing for additional data to be collected and 

that could be correlated to the study’s data to obtain additional insights on themes, topics and user 

behaviour. However, the experimental design followed the methodology presented in chapter 5, 

aiming to identify the minimal number of sensors required to recognise activity patterns related to 

the specified goals and tasks. 

 Finally, both studies focused on small scale developments, showing how the framework 

can be applied to environments such as an office or stand-alone devices (such as a coffee machine 

in studies 2 and 3, or a puzzle in study 1). Although the middleware that was used to implement 

the testbed networks is enterprise ready, allowing for the scalability and replicability of the 

system, the studies did not allow for the testing of a large scale system, as will be expanded in the 

following section. 

10.4 Future research 

The thesis contributions relate to a framework that focuses on providing a human-centred 

approach to the IoT based on the analysis of goal and task based human behaviour to inform 

system implementation. In the context of the thesis, the system is characterised as the 

collaboration of its human users and its machine-based elements engaging in a collaborative 

endeavour to complete their expected goals, identifying human and machine based actions, 

enabling opportunities create affording situations (system cues for interaction) and system 

instrumentation to enable the machine’s automated and intelligent behaviour. Moreover, the 

nature of the Human-IoT cooperation (conversations in the context of the thesis) has been 

characterised by its states and transitions, making it turn-based and contextual. 
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Hence, this framework not only focuses on Human-IoT interaction, but provides a 

methodological approach to model collaborative interactions between agents aiming to complete 

specific tasks. 

As discussed in the literature review of the thesis, the autonomous view of the IoT 

requires the collaboration of intelligent agents that perform activities on behalf of their users. As 

such, an area where future research efforts is to extend the methodology to identify and refine 

agent interaction design. The framework allows for a top down approach to IoT system 

modelling, allowing to define requirements or goals (themes and topics in the context of the 

thesis), and align them with the required actions (tasks) required to reach them. As such, the 

method provides the specification of the intersection between goals and instrumentation, and it 

could be applied to identify the minimal number of sensors in IoT applications, simplifying the 

underlying electronics. 

As mentioned in section 10.3, a limitation that was found in the reported studies is such 

that the framework was tested on the intended small scale systems. This research allowed us to 

observe the challenges of analysing interactions from loosely connected nodes in a controlled IoT 

network. An area of further development is to address the issues of how the concepts of Theme, 

Topic and Context are incorporated in IoT systems outside of the lab domain, and at a bigger 

scale and scope, in IoT systems applied to domains such as city infrastructure, industrial IoT or 

healthcare to name a few. 

As the framework focuses on the interactions required from nodes to attain goals, it could 

be argued that at a different, larger, scale the interactions occur not at a device or user level local 

level, but at a service level.  
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Consumer based IoT networks are comprised of local networks of devices that collaborate 

with each other to provide localised services, for example ‘cognified’ appliances within the 

household, connected to each other to allow for the automation of home goals such as cleaning or 

cooking. Their application scale can be scaled up to allow for those local home-based IoT 

networks to communicate with each other to attain larger scale goals, for example, by connecting 

them to the electrical grid to automate the production and transmission of electrical power at a 

municipal level. As the level of scope becomes larger, the electrical grid can be modelled as a 

network where nodes are the aforementioned municipal grids collaborating to achieve the goal of 

balancing the national power grid. 

As such, the framework in this thesis has the potential to be used to model and define 

these larger scale networks, by characterising the system’s nodes at different levels and scopes, 

but maintaining a focus on their intended tasks and goals (themes and topics).  

Shifting the focus to a service level would also allow the framework to be applied to 

model and develop IoT enabled processes, focusing on their outcomes. 

 

An area left unexplored by the work presented in this thesis is that of leveraging the 

machine learning algorithms (such as PCA) used to develop the framework, and integrating the 

models to develop automation and reasoning within the implemented systems. Future versions of 

the testbed system could be implemented by creating a controller with parameters defined by the 

methodology in a flow based programming platform supporting the system’s state-based 

description. As such, the use of machine learning algorithms could be the basis for additional 

avenues of research, investigating mechanisms for autonomous intent prediction based on tasks 

and goals.  This could be extended to allow for automated processes that continuously verifies its 
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themes and topics to identify those that are not recognised and that could be labelled as emergent 

behaviour, enabling the opportunity of developing further intelligent behaviour.  

Finally, an area of research opportunity is that of extending the knowledge structure 

presented in chapter 5, to a formal ontology that could be used to extend the previously described 

research efforts. The establishment of a formal, rigorous ontology could enable the extensibility 

and replicability of the framework and promote its adoption into Internet of Things current areas 

of development.
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