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Abstract 

This study compared the effects of heat acclimation (HA) on female endurance performance 

following short-term (4-5 days; STHA) plus long-term (9-10 days; LTHA) heat acclimation, 

as well as examined HA’s ergogenic potential in females. Seven female recreational 

endurance athletes completed 10-days isothermic HA (40°C, 30%RH), and a 15-minute self-

paced time trial (TT) in hot (HTT; 35°C, 30%RH) and cool conditions (CTT; 15°C, 30%RH), 

before (1) and after STHA (2) plus LTHA (3). Following LTHA, distance cycled (hot: 

+260±150 m (3.3%), P=0.017; cool: +210±150 m, (2.4%), P=0.038) and mean power output 

(hot: +10.4±7.4 W (5.5%) P=0.015; cool: +10.7±7.7 W (6.8%) P= 0.040) were increased. 

Area under the curve (AUC) differences were observed in power output across CTT1 vs. 

CTT3 (P=0.034) and HTT1 vs. HTT3 (P=0.016). Body mass loss (+2.6±0.5% to 3.2±0.5%; 

P=0.034), sweat rate relative to body surface area (+613±105 g/h/m2 to 772±114 g/h/m2; 

P=0.018) and active sweat glands/sq. inch (395±135 to 494±157; P=0.016) increased 

following LTHA. Tre was lower (AUC; P=0.036) during CTT3 vs. CTT1. Other 

thermoregulatory, cardiovascular, and blood lactate measures were not different between TTs 

(P>0.05). No significant performance or physiological improvements were observed 

following STHA (P>0.05). The lack of physiological or performance effect following STHA 

indicates that females require LTHA to augment performance in the heat. Meaningful 

performance improvements in cool conditions further support HA’s ergogenic potential. 
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1. Introduction 
Since sport’s beginning, and as it gained popularity around the world, there has always 

been an imbalance in the way that men’s and women's sports are viewed. For example, 

throughout the nineteenth century, German men were encouraged to partake in sport and 

exercise for reasons of military preparedness and as a show of patriotism, while female ‘sport’ 

was limited to dances and exercises that would have an aesthetic benefit, as well as better 

prepare them for healthy childbearing (Hartmann-Tews & Pfister, 2003). Into the 20th century, 

the passing of the 1972 U.S. legislation called Title IX became an event of unforeseen 

significance for women’s sport. Title IX banned discrimination on the basis of sex in any 

federally funded education program or activity. While this legislation was not originally 

intended to cover sport and athletics, it was interpreted to cover all facets of education and it 

soon became apparent that discrimination in the areas of sport and athletics would also be 

banned (Ware, 2013). This modification was a springboard for women’s sport, with the USA 

seeing a 600% increase in girls’ sport participation in the six years following the addition of 

the Title IX legislature (Kaestner & Xu, 2010). This trend of female participation has 

continued upwards, as reflected in reports of the Women’s Sports Foundation showing that 

41.2% of high school-aged females in the USA were participating in athletics and sport in 

2011 (Ware, 2013). The rise in participation has been a factor in driving a similar increase in 

the success of female athletes, both at the university level, where 46% of intercollegiate 

scholarships are being awarded to women (Acosta & Carpenter, 2012), and on the world 

stage. Indeed, 45% of all competitors at the 2016 Summer Olympics in Rio de Janeiro were 

women; a substantial increase from the high of 29% reached in 1992 in Barcelona 

(International Olympic Committee, 2016). Although there were slightly fewer female 

competitors, many countries actually saw women taking home more medals from their events 
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in Rio than their male counterparts. American women won 61 total medals (compared to 55 

won by males), as well as the majority of gold medals (27 of total 46). China, Canada, 

Netherlands, Russia, Jamaica and New Zealand also had more female medal winners than 

male. It is evident from examples like these Olympic results that women’s sport has now 

reached a level that warrants an equal amount of attention, yet as more women begin not only 

to participate, but excel in the most elite level of sport, we are still left with a great 

discrepancy in funding, salary, leadership positions, facilities, and media coverage (Schull, 

Shaw & Kihl, 2013; Leberman & Shaw 2015; Lapchick, 2012; Hartmann-Tews & Pfister, 

2003; Fink, 2015), as well as in the amount of scientific research focused on female 

performance (Costello et al., 2014).  

Consequently, many exercise protocols and training recommendations are based on 

research that has been done almost exclusively on males, despite known physiological, 

biomechanical, and endocrinological differences between sexes (Costello, 2014). Given these 

known sex differences, using male-derived training recommendations to predict performance 

outcomes for female athletes is problematic. This study aimed to close the gap in the 

knowledge of performance outcomes of training interventions for female athletes, specifically 

when reacting and adapting to heat stimulus, better known as heat acclimation. Although heat 

acclimation in male athletes has been studied for decades, very few studies to date have 

examined female cohorts or sex differences in heat acclimation, and those that have were with 

an unmatched heat stimulus (Jay & Cramer, 2015) or have not structured their protocol with 

the aim to assess female endurance athlete performance outcomes. Additionally, as novel 

strategies exploring the ergogenic potential of heat acclimation are investigated, female 

cohorts have not been considered. As a result, there remains a lack of thorough understanding 

in the area of relevant heat acclimation performance outcomes for the female athlete. The 
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overall objective of this project is to determine female performance outcomes in hot and cool 

conditions following short- and long-term isothermic acclimation protocols (rectal 

temperature (Tre) aimed to be maintained at ~38.5°C). The specific aims were: 1) to determine 

if females can acquire meaningful thermoregulatory, cardiovascular and fluid regulatory 

adaptations following short-term (4-5 day) heat acclimation protocols or if long- term (9-10-

day) heat acclimation protocols are required, and 2) examine how these adaptations translate 

to performance improvements in both hot and cool conditions. 
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2. Literature review: Heat Acclimation for the Female Athlete 

The aim of this literature review is to provide the necessary background information to 

inform the reader of heat acclimation knowledge for females thus far, to highlight the areas in 

which the current research and recommendations are lacking, and to explore possible avenues 

to close these knowledge gaps and provide recommendations that are relevant and applicable 

for the female population. To do this, this review will first provide a basic summary of heat 

acclimation and its classic adaptations, followed by information on human thermoregulation 

that is pivotal to understanding how heat acclimation is achieved. Next, meaningful 

performance outcomes, the primary focus of the study, will be discussed by quantifying 

performance detriments experienced while under acute heat stress and how these can be 

minimised through heat acclimation. Novel strategies which are emerging to optimise 

adaptations will be examined, including short-term heat acclimation protocols and using heat 

acclimation as an ergogenic aid. Finally, the possible mechanisms facilitating these 

adaptations will be explained in further detail, predominantly addressing the variables 

measured in the study. Other possible mechanisms will be briefly recognised, however 

detailed description of these alternative mechanisms is beyond the scope of this review. The 

application of heat acclimation for females is central to the purpose of the study and will 

therefore be considered throughout.   

 

2.1 What is Heat Acclimation?  

Heat acclimation is a well-recognised means of improving temperature regulation and 

heat tolerance in occupational (i.e., military, firefighters) and athletic settings. Human 

adaptation to the heat is facilitated in two forms: acclimation and acclimatization. Acclimation 

is a laboratory-based method, often performed in an environmental chamber where conditions 
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such as temperature, humidity, and altitude can be manipulated and controlled. 

Acclimatization takes place in natural field conditions, in a hot environment where these 

factors are not controlled. During chronic heat stress sessions, temperature ranges between 

35-49°C and relative humidity (RH) ranges between 20-79% (Tebeck et al., 2017). Active 

acclimation (exercise combined with hot conditions) has been observed to induce the greatest 

adaptations, as it drives body temperature increases (core and skin) and provokes sweat loss 

(Buono et al., 2009). This combination of stressors also stimulates a unique upregulation of 

genes which cannot be stimulated with exercise or passive heat individually (Kodesh et al., 

2011).  

Heat acclimation can be achieved using a variety of protocols. As with any 

intervention, optimizing frequency, duration, intensity, and type of protocol will yield the 

greatest adaptations (Sawka et al., 1993). Typically, a protocol consists of daily acclimation 

sessions (Gill et al., 2001) of approximately 90-minutes of submaximal exercise under heat 

stress (Chalmers et al., 2014, Guy et al., 2015) to prepare for endurance events in the heat. 

However, shorter session durations may be effective for team sport settings if intensity is high 

enough to produce a steep and immediate rise in core temperatures (i.e. HIIT training; 

Sunderland et al., 2008). Traditional “long-term” heat acclimation (LTHA) protocols last ~10-

14 days (Garrett et al., 2011).  

The intensity of the workload prescribed during the acclimation protocols may be of a 

fixed or varied intensity. When workload is fixed, it will be either relative to an athlete’s 

VO2max or at a rate of metabolic heat production relative to their body mass (Watts/kg 

protocol). The Watts/kg protocol developed by Cramer and Jay (2014), allows mechanisms of 

adaptation to be compared independent of size differences in participants by matching the 

stimulus in the form of metabolic heat production, which has often confounded past sex-
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differences studies (Gagnon et al., 2008). Alternatively, workload can be manipulated to 

induce a rapid rise in core temperature to ~38.5°C, which is maintained for the duration of the 

session. This method, called an “isothermic” method, prioritizes maximal work done within 

the temperature zone commonly regarded to be “safe”, while ensuring heat strain throughout 

the duration of the protocol (Taylor 2000). As participants begin to adapt to the heat, the 

intensity and impact of the heat stimulus begins to decrease. Therefore, protocols can be 

modified to progress with the participants by either increasing the fixed workload (%VO2max, 

Watts/kg) or by raising the core temperature target for the session. This is the “progressive” 

method. Interestingly, Gibson et al., (2015a, b) observed no significant difference in markers 

of adaptation or in cellular thermotolerance response between fixed, isothermic or progressive 

isothermic 10-day protocols in male cohorts. All methods induce the classic markers of 

acclimation: decreased heart rate (HR) and temperature (at rest and during exercise), 

increased sweat rate, and improved aerobic performance in hot conditions (Sawka et al., 

2011). 

An alternative to active acclimation is sauna bathing following temperate endurance 

exercise, which may be effective in inducing heat acclimation and performance 

improvements, as it prolongs the elevated core temperatures that have been increased by 

exercise (Scoon et al., 2007; Zurawlew et al., 2016) and drives the fluid regulatory stimulus 

needed to significantly expand plasma volume (Stanley et al., 2015). In contrast, Creasy et al. 

(2003) observed that sauna bathing may be detrimental to performance during a 2,000 m 

rowing trial.  

While active protocols, and possibly passive heating, seem to be sufficient to drive 

adaptations in males, modifications to duration and/or intensity may be needed to induce 
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similar effects for females (Sunderland et al., 2008; Mee et al., 2015, 2017), as described 

below.  

 

2.2 Human Thermoregulation 

2.2.1 Heat storage and exchange. The aim of both heat acclimation and 

acclimatization is to improve an athlete’s ability to dissipate heat. The body stores and 

dissipates heat using four main pathways (Cheung, 2010): 

 Radiation: heat is exchanged between the body and surrounding objects via 

electromagnetic waves. Heat felt from the rays of the sun is a form of radiation. 

 Conduction: heat is exchanged when the body comes in contact with a stationary 

object and there is a temperature gradient between them.  

 Convection: heat exchange between the body to a moving substance, which allows 

heat to be moved away from the body immediately, i.e. air or water. 

 Evaporation: heat is dissipated from the body when water on the skin is vaporized.  

The body’s ability to lose heat via evaporation is dependent on both the temperature and water 

carrying capacity or humidity of the surrounding air. 

 

 Therefore, Heat Exchange = Radiation + Conduction + Convection + Evaporation 

 

 Each pathway can be represented by positive or negative values, except for 

evaporation, which is always a form of heat loss, not heat gain. A positive value indicates heat 

loss from the body to the environment. When environmental conditions become similar to 

body temperatures, the body’s ability to lose heat via conduction, convection, and radiation 

(dry heat exchange) are minimized (Hardy & DuBois, 1938). The body must then rely on its 
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ability to lose heat through evaporation. Sex is an important factor of thermoregulation in hot 

conditions, as females have reduced levels of sudomotor activity and sweat gland output in 

comparison to males at the highest levels of required heat loss (Gagnon & Kenny, 2012; 

Ichinose-Kuwahara et al., 2010), which limits females’ capacity for evaporative heat loss in 

comparison to males (Gagnon & Kenny, 2012).   

 Heat exchange is not only influenced by the surrounding environment, but also by 

how much heat is stored in the body itself. Approximately 80% of the energy expended by 

skeletal muscles is released as heat, which accounts for between 70% (at rest) and up to 90% 

(during exercise) of total metabolic heat production (Cheung, 2010). Additionally, external 

work done affects heat storage. Active, concentric work is accounted for with a negative 

value, while passive (i.e. a contraction facilitated by an external body), eccentric work is 

accounted for with a positive value.  

 

 Therefore, Heat Storage = (Radiation + Conduction + Convection + Evaporation) + 

(Metabolic Heat Production – Work) 

 

If heat is balanced, the equation will be equal to zero, and body temperatures will 

remain the same. This is because the amount of heat stress is compensable by the body. If the 

equation is positive, and the body cannot adequately dissipate metabolic heat, body 

temperatures will rise. This is known as uncompensable heat stress. The body’s ability to 

dissipate metabolic heat can be improved with heat acclimation, especially by improving 

evaporative heat loss capacity, a factor in which sex-differences may have an effect.  
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2.2.2 Impact of female sex hormones, menstrual cycle phase, and hormonal 

contraceptives on thermoregulation. The menstrual cycle and its effects on heat stress and 

heat acclimation are not fully understood, so it is common to test subjects with a regular 

menstrual cycle during the “low hormone” follicular phase (Kolka et al., 1994). However, this 

makes it difficult to accurately apply these results when protocols stretch across different 

phases of the menstrual cycle, the participants have an irregular cycle (or commonly for 

endurance athletes, are amenorrheic; Bennell et al., 1997, Dale et al., 1979), or the 

participants are using a form of hormonal contraception (monophasic or triphasic oral 

contraceptive pill, contraceptive patch, injectable birth control, implantable rods, intrauterine 

devices [IUDs; copper or Levonorgestrel], or vaginal rings).  

Internal core temperature may vary between 0.5-0.8°C over the course of the 

menstrual cycle (Baker & Driver, 2007; Stephenson & Kolka, 1999). As oestrogen rises 

during the follicular phase, there is lowering of body temperatures driven by vasodilation 

(Stephenson & Kolka, 1999; Kim et al., 2008). Following ovulation, progesterone steadily 

increases, peaking midway through the luteal phase and more rapidly declining in the few 

days preceding menstruation (Charkoudian and Johnson, 1999). Progesterone has direct 

effects on neurons of hypothalamus stimulating an increase of body temperatures during the 

luteal phase of the cycle (Charkoudian & Stachenfeld, 2016). Female sex hormones have been 

observed to elicit changes in thermoregulatory measures across the menstrual cycle during 

exercise in the heat (Pivarnik et al., 1992; Kolka et al., 2000; Stephenson & Kolka, 1999; 

Tenaglia et al., 1999; Janse et al., 2012) in untrained and recreationally trained eumenhorreic 

females (𝑉O2max ~42-45 ml/kg/min). Avellini et al., (1979; n = 4) and Lei et al. (2017) 

reported thermoregulatory differences in core temperatures and sudomotor activity across the 

menstrual cycle in highly trained females (𝑉O2max 49-57 ml/kg/min), however this is 
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somewhat conflicting, as other studies (Sunderland & Nevill, 2003; Kuwahara et al., 2005; 

Dervis et al., 2016) did not observe any effects of the menstrual cycle in highly trained 

females (𝑉O2max 49-52 ml/kg/min). This is likely because aerobic fitness minimises phase-

related differences in internal temperatures and thermoregulatory response (Dale et al. 1979; 

Bullen et al. 1984; Kuwahara et al., 2005a, b).  

Thermoregulatory effectors in oral contraceptive users appear to mimic eumenhorreic 

females, with slightly higher core temperatures during the second half of their pill cycle 

(Sunderland & Nevill., 2003; Grucza et al.; 1993); Although the effects may be less 

pronounced in combined (oestrogen and progestin), monophasic pill users than in triphasic or 

progestin-only pill users (Burrows & Peters, 2007; Joyce et al., 2013; Stachenfeld et al., 

2000). A progestin-only pill has been observed to illicit higher internal temperatures and 

sweating thresholds than a combined pill, which contains both oestrogen and progestin 

(Stachenfeld et al., 2000), possibly because it skews the normal ratio of oestrogen and 

progesterone. Although minimal research has been conducted on thermoregulatory capacity of 

females using these different forms of hormonal contraception, between group differences 

(besides <0.5°C difference in rectal temperature at sweat onset) have not been observed in 

thermoregulation under exercise heat stress in eumenhorreic, oral contraceptive users, or users 

of depot medroxyprogesterone acetate contraceptive injection (Tenaglia et al., 1999; 

Armstrong et al., 2005). There has not been any research to date addressing the possible 

effects of the contraceptive patch, implant, coil or IUD on exercise in the heat. However, as 

the implant and IUD rely solely on progestin, there may be negative effects on 

thermoregulation, as progestin-only pills have been shown to increase body temperature 

(Stachenfeld et al., 2000). Alternatively, they may act in a similar way to the contraceptive 

injection of synthetic progesterone, and have no effect on thermoregulation and performance 
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(Armstrong et al., 2005). Although female sex hormones have been observed to have some 

effect on thermoregulation, their impact on performance is much less prominent, as described 

below.  

 

2.2.3 Adjustable Set Point theory. Thermoregulation is a complex, integrative 

process that is still not completely understood. However, three distinct theories exist to 

attempt to explain the human ability to maintain thermostasis. The first is the Adjustable Set 

Point theory developed by Hammel et al., (1963), and is based on the analogy of the human 

body to a thermostat. When body temperature differs from the acceptable set/fixed 

temperature, a corrective response is initiated to restore homeostasis. However, this corrective 

response is graded, meaning that a more intense response is initiated the further body 

temperatures stray from the predetermined range. Afferent neurons from internal organs as 

well as peripheral limbs feed into the hypothalamus, which initiates a corrective response, 

with the intensity dependent on the variance from the predetermined “set point”. The most 

common limitation of this theory is how it fails to account for the influence of multiple factors 

that can cause this “set-point” to vary. These include menstrual cycle, pyrogens, circadian 

rhythms, training status, and heat acclimation status (Gisolfi et al., 1984; Cabanac et al., 2006; 

Sawka et al., 2011), which suggest that the “set-point” is actually more of a dependent range 

than a single fixed temperature. 

 

2.2.4 Reciprocal inhibition. Amendments to the Adjustable Set Point Theory lead to 

the development of the model of Reciprocal Inhibition by Bligh et al. (2006). While the set-

point theory describes the signals from the cold and heat sensitive neurons combining to give 

a single temperature feedback signal, reciprocal inhibition proposed that these neurons 
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provide their own separate feedback. This implies that hot temperatures would not only send 

an excitatory stimulus to initiate a cooling response (sweating, vasodilation, etc.), but would 

also send an inhibitory signal to prevent the initiation of heating mechanisms (shivering, 

vasoconstriction, etc.). Thus, the effector response depends on a net thermal signal produced 

by the separate afferent signals. While the set-point theory does include a differing intensity 

of the response depending how severely temperature deviates from the set-point, reciprocal 

inhibition adds an additional layer. It suggests that a vasomotor response is initiated first to 

correct minor deviations, with a sudomotor response or shivering being initiated only once 

body temperature deviates beyond what can be corrected with a vasomotor response.  
   

2.2.5 Heat regulation. The previous two models suggest that temperature is the main 

variable of which the body is defending and body heating or cooling is engaged in order to 

maintain this temperature and are the only pathways to thermal homeostasis. The proposal of 

the heat regulation model by Paul Webb (1995) takes a unique position that does not build on 

the theory of a set-point. Instead, the heat regulation model suggests that body temperature is 

a secondary priority as it is only a cause of underlying factors. The balance of total heat 

storage and dissipation are instead the main variables providing input for the initiation and 

intensity of thermoregulation. This model suggests that the body defends a heat 

production:dissipation balance as opposed to its deviance from a preset base temperature, 

which explains how the body tolerates a sustained higher temperature during prolonged 

exercise bouts. Although the body’s temperature is higher than normal, as long as heat 

dissipation is matching heat production, thermal homeostasis is being sufficiently defended. 

This helps to explain the “steady state” that athletes often experience during endurance 

events. This steady-state (where thermoregulatory mechanisms are being sufficiently engaged 
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to match heat dissipation to heat production) becomes the new normal for the body to 

maintain. Finally, this theory has non-thermal inputs for thermoregulation, which has been 

demonstrated by the initiation of thermoregulation while clamping hypothalamus activity 

(Hammel et al., 1963). Muscle metaboreceptor stimulation and possibly muscle 

mechanoreceptor stimulation (non-thermoregulatory reflexes) have also been observed to 

affect skin blood flow, a primary mechanism of heat dissipation (Shibasaki et al., 2005; 

González-Alonso et al., 2008).  

 

2.3 Performance in the Heat 

2.3.1 Theories of fatigue in the heat. Various factors have been known to influence 

fatigue while under heat stress, with several mechanisms put forward as being the limiting 

factor depending on the type and intensity of exercise. These hypotheses have been grouped 

into theories to outline the complex and unique impact of heat stress on fatigue and 

performance. 

 

2.3.1.1 Critical temperature and central fatigue. The commonly accepted theory of 

“critical temperature” describes performance detriments with core temperature increases, with 

fatigue occurring at the critical temperature of ~40°C. This is because, as core and brain 

temperatures are similar (Nelson & Nunneley, 1998), there is a central nervous system 

response inhibiting further activity as temperatures exceed a safe zone (Neilson & Nybo, 

2003; Nybo, 2008). This can be further described as an anticipatory response (Tucker & 

Noakes, 2009) and reflects the “template” in which the brain has created anticipating the 

workload at which will lead to “maximal effort” being reached at the termination of exercise 

without exceeding “safe” temperatures and reaching premature fatigue. This central governor 
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model (Noakes 2007, 2012) proposes that skeletal muscle motor recruitment is adjusted by 

the brain after calculating a pacing strategy based on afferent feedback and anticipated 

duration of exercise (Nikolopolous et al., 2001; Pires & Hammond, 2011). This central 

fatigue is most apparent at submaximal exercise levels, as indicated by the inability of 

muscles to sustain activation for repeated maximal contractions (Nybo, 2004, 2014). 

Additionally, central fatigue may be influenced by the reduction in cerebral blood flow during 

exercise in the heat (Nybo, 2010; Nybo et al., 2014).  

Higher core temperatures often observed in a hot environment coincide with higher 

thermal discomfort, which can severely impact a participant’s willingness and motivation to 

continue, as well as the task being perceived as more difficult. It is suggested by Cheuvront 

and colleagues (2010) that the reason that the task is perceived to be more difficult is that the 

participant is working at a relatively higher VO2max than is credited in order to attain the same 

power output in the heat as was attained in a trial in cooler conditions. As VO2max is reduced 

in the heat, a fixed workload trial would mean that the participant is working at a higher 

%VO2max than they would be in optimal temperatures. This also means that the participant 

would need to make behavioural adjustments to their pace during a time trial in order to 

complete the task without reaching fatigue prematurely (Cheuvront et al., 2010). An 

additional contributing factor to this central fatigue and thermal discomfort may be that 

pyruvate kinase, the rate limiting enzyme in glycolysis (Gupta et al., 2010), is highly heat 

sensitive and becomes impaired as muscle temperatures rise (Herman & Lee, 2009a, b, & c; 

Heller & Grahn, 2012). Additionally, at muscle temperatures of ~40°C, mitochondrial 

selective permeability becomes compromised (Brookes 1971), allowing protons to leak back 

into the intramembrane space, reducing the amount of ATP produced for a given number of 

protons moved through the electron transport chain (Parkin et al., 2011). Muscle strength has 
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been observed to be compromised as core temperature increases, regardless of local muscle 

and skin temperature, reinforcing that this higher core (and likely brain) temperature is critical 

(Thomas et al., 2006).  

 

2.3.1.2 Temperature gradient. The theory of a critical temperature is well supported 

in the literature (Gonzalez-Alonso et al., 1999; Nielsen et al., 1993; Nielsen & Nybo, 2003; 

Nybo, 2007), however none of these studies manage to isolate core temperature as being the 

limiting factor, often with fatigue being accompanied by a high mean skin temperature and 

narrowed skin-core temperature gradient. This indicates that the rising core temperature may 

not actually be what limits exercise capacity, but instead the negative effect that the resulting 

narrowing of the skin-core temperature gradient has on the cardiovascular system. This 

alternative theory is supported by Ely et al., (2010) which observed similar “sub-critical” core 

temperatures during a time trial in both hot and temperate environments, but substantial 

(17%) performance detriments along with higher skin temperatures in the hot environment. 

Similarly, in time to exhaustion trials (MacDougall et al., 1974) many participants reached 

exhaustion at sub-critical core temperatures in hot environments (simulated by water 

perfusion suit) when skin temperatures were elevated to ~36-37°C (vs. ~29°C; Sawka 1992). 

Large cardiovascular drift was observed at fatigue, indicating that the blood flow redirected to 

the skin has a substantial enough effect on the cardiovascular system to accelerate fatigue, 

independent of core temperatures (MacDougall et al., 1974). This may explain how marathon 

runners and endurance athletes are able to sustain high core temperatures for extended periods 

during races (Byrne et al., 2006).  
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2.3.1.3 Cardiovascular strain. Exogenous heat stress creates a unique demand for 

skin blood flow that is not experienced in cooler environments (Gonzalez-Alonso et al., 

2008). Blood is diverted to the skin by peripheral vasodilation (Gonzalez-Alonso et al., 2003), 

at the cost of central and splanchnic blood flow. 

This elevated skin blood flow demand also competes with the demand for oxygen by 

the active muscles and causes severe strain to the cardiovascular system. The rapidly 

experienced cardiovascular drift and reduction of cardiac output leads to an arteriovenous 

difference (Rowell, 1974) which impairs the body’s ability to deliver oxygen to working 

muscles (Gonzalez-Alonso et al., 2008). The resulting shift to anaerobic metabolism (Dimri et 

al., 1980) and eventual oxygen debt (marked by lactate accumulation) forces attenuation of 

pace during self-paced trials (Periard et al., 2011; Periard 2012) and earlier fatigue at a fixed 

workload (Arngrimmson et al., 2003 & 2004). The demand for skin blood flow in the heat 

leads to a level of cardiovascular strain greater than that experienced during exercise in 

temperate conditions, making it the limiting factor of performance, especially during maximal 

exercise in the heat (Rowell, 1974, Gonzalez-Alonso et al., 2008, Periard et al., 2011, Nybo et 

al., 2014).   

 

2.3.1.4 Integrative fatigue. Besides the aforementioned factors leading to fatigue, the 

stressor of acute heat stimulus has a significant impact on the endocrine system and 

metabolism during aerobic exercise (Young et al., 1985; Sawka et al., 1985). Higher cortisol 

and adrenaline levels while exercising in the heat stimulates sympathetic activation (Neilson 

et al., 1993) and greater carbohydrate metabolism and muscle glycogen consumption during 

submaximal exercise (Dimri et al., 1980; Jentjens et al., 2002). These metabolic changes are 

detected by some of the many receptors offering afferent feedback for the brain to process in 
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order to inhibit or stimulate efferent physiological responses (Noakes, 2007, 2012). Whilst the 

greatest limiters of performance in the heat are still being investigated, collectively, these 

layers of physiological processes that have been described by each individual theory suggest 

that fatigue is integrative (Nybo et al., 2014). Fatigue is a complex development, meaning it is 

important to acknowledge that fatigue in the heat has multiple sources (temperature, 

cardiovascular, behaviour, CNS, neuromuscular, metabolism), and to not solely credit high 

core temperatures with being the cause of fatigue (Nybo & González-Alonso, 2015). 

Additionally, as fatigue under heat stress is further researched, physiological sex-differences 

explored below warrant the investigation of both female and male cohorts to determine the 

specific manifestation of fatigue in both sexes.  

 

2.3.2 Quantifying performance detriments in the heat. The effects of heat stress 

and strategies for heat acclimation have been investigated in male cohorts since the 1930’s 

(Dill 1931; Dresoti, 1935; Dill et al., 1938) and 1940’s (Bean & Eichna, 1943; Robinson et 

al., 1943; Eichna et al., 1945). Heat stress has since been known to initiate an earlier onset of 

fatigue and cause exponential detriments to performance with every degree increase from 

“optimal” conditions (~10°C; Galloway & Maughan, 1997). VO2max is degraded by ~7-18% 

from “optimal” conditions in male cohorts (Pirnay et al., 1970; Nybo & Nielson, 2001; 

Gonzalez-Alonzo et al., 2003; Lorenzo et al., 2010; James et al., 2016) and 4-17% from 

temperate conditions (21-25°C; Arngrimsson et al., 2003; Lafrenz et al., 2008, Sawka et al.; 

1985; Klausen 1967). At maximal levels, it is suggested that heat stress resulting from hot 

ambient temperatures will degrade VO2max performance for females in a similar capacity to 

males (Arngrimsson et al., 2004). It has also been reported that females do not differ in 

𝑉O2max under heat stress either across the menstrual cycle, or while using monophasic oral or 
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injectable contraceptives (Grucza et al., 1993; Armstrong et al., 2005; Janse de Jonge, 2003), 

although reductions in 𝑉O2max have been observed in oral contraceptive users in temperate 

conditions (Joyce et al., 2013; Casazza et al. 2002, Lebrun et al. 2003).  

Reductions in time trial (TT) performance in the heat in male cohorts range from 2% 

in short trials (4km TT; Altareki et al., 2009) up to 12% in longer trials (43km TT; Racinais et 

al., 2014), with common reductions falling within this range (~6-7%; Tyler et al., 2008; 

Tucker et al., 2004; Tatterson et al., 2000; Periard et al., 2011; Peiffer & Abbiss, 2011). Trials 

employing a Time to Exhaustion (TTE) type protocol on male cohorts usually record greater 

detriments of 19-47% in comparison to the control, (James et al., 2016; Dill et al., 1931; 

Galloway & Maughan, 1997; MacDougall et al., 1974; Morris et al., 1998; González-Alonso 

et al., 2003), however the reliability of a self-paced time trial is greater than a TTE trial 

(Hopkins et al., 2001). Repeated maximal muscle contraction is also impaired in the heat 

(Nybo & Nielsen, 2001; Brazaitis & Skurvydas, 2010), which may contribute to the 

reductions observed in TT and TTE performance in hot conditions. Although some 

information regarding physiological responses to heat in female cohorts have been 

documented, neither TT or TTE reductions in the heat in comparison to cooler conditions 

have been quantified for females. For a complete summary of relevant studies of time trials in 

hot conditions, refer to Appendix.  

Behaviour is an important factor in performance in a self-paced time trial in the heat, 

which cannot be observed in a time to exhaustion protocol (Schlader et al., 2011). TTE trials 

involve a longer duration of submaximal exercise at a fixed intensity. This fixed intensity 

does not allow for behavioural adjustments, further impairing an athlete’s ability to 

thermoregulate and making physiological challenges of heat stress more apparent. Females 

have been observed to be more tolerant to heat due to a lower rate of heat injury in a 
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retrospective military study by Druyan and colleagues (2012), as well as reduced detriments 

in self-paced marathon performance in the heat according to an analysis of IAAF International 

Association of Athletics Federation statistics (Guy 2015). These data indicate that females 

may exhibit different behavioural adjustments in comparison to males. Additionally, the 

pattern of performance drop-off or pacing adjustments of the time trial may differ between 

sexes, as drawn from evidence in cognitive investigations (Fine & Kobrick, 1985; Fine, 

1987). Fine and colleagues reported that while males display a gradual reduction in 

performance of cognitive tasks with rising temperatures, females had a more abrupt pattern, 

showing minimal signs of performance detriments right up until the point at which heat can 

no longer be tolerated, and then declining rapidly to be similar to that of the males (Fine & 

Kobrick, 1985; Fine, 1987). How and if the cognitive performance differences observed 

between sexes in these studies could be observed in the pacing of time trials in the heat is 

unknown. 

Female tolerance times and time trial performance in the heat have not been quantified 

in comparison to trials in cooler or temperate conditions, however, comparisons have been 

made in females across the menstrual cycle and whilst taking oral contraceptives, although 

results are somewhat conflicting. Exercise tolerance times reductions in the heat during the 

follicular phase were demonstrated by Tenaglia and colleagues (1999) who observed a 20% 

decrease during the mid-luteal (ML) phase in comparison to the early-follicular (EF) phase 

(107.4 [8.6] and 128.1 [13.4] min, respectively) in hot conditions (40°C, 30% RH), as the 

higher resting temperatures was theorised to cause women in the ML phase to reach their 

threshold for heat tolerance sooner. These findings were similar to Janse de Jonge et al. 

(2012), who observed a higher rate of core temperature change and earlier fatigue in the heat 

(32°C, 60% RH) during the luteal phase; with effects of a higher core temperature more 
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pronounced with the longer duration of these tolerance tests (≥60 minutes). However other 

studies, both in the heat (Lei et al., 2017; Sunderland et al., 2003; Kuwahara et al., 2005) and 

in temperate conditions (Bryner et al., 1996; Vaiksaar et al., 2011; Joyce et al., 2013) have 

observed that menstrual cycle does not affect performance. These mixed results may be 

attributed to the lower training status of participants in the former studies who observed 

performance differences (~40-44 𝑉O2max vs ~51-57ml/kg/min 𝑉O2max in latter studies), as 

increased aerobic capacity has been shown to minimise hormonal effects (Kuwahara et al., 

2005). For example, Sunderland et al. (2003) did not find any differences in physiological 

responses (i.e., core temperature, perceived exertion, estimated sweat rate, plasma lactate) or 

in performance (total distance run in high-intensity shuttle run test) in normally menstruating, 

unacclimated women (𝑉O2max 51.1 (0.7) ml/kg/min) between the follicular and luteal phases 

when exercising in the heat (31°C, 23% RH).  

Despite possible detriments to VO2max whilst using oral contraception, it does not 

appear to influence more sport specific endurance performance (Bennell et al., 1999, Joyce et 

al.; 2013, Lebrun et al., 2003). Oral contraceptive use has not been observed to influence 

exercise tolerance or TT performance in the heat (Tenaglia et al., 1999; Sunderland et al., 

2003), and has been observed to have minimal to no impact in temperate conditions, 

especially when users were taking a low dosage, monophasic pill (Joyce et al., 2013; 

Giacomoni et al., 2000; Vaiksaar et al., 2011; Rechichi & Dawson 2012; Lebrun et al., 2003). 

For example, although Tenaglia et al. (1999) observed some differences in exercise tolerance 

times in normally menstruating females across their menstrual cycle, there was no such 

between group difference observed in exercise tolerance times in the heat (40°C, 30% RH) 

between normally menstruating women and oral contraceptive users.  
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Therefore, literature to date indicates that any differences between menstrual cycle 

phases or hormonal contraception users that is implied from mechanistic or VO2max trials does 

not translate to practical performance outcomes. Physical size and aerobic capacity appear 

more important than menstrual cycle when comparing sex-differences in exercise under acute 

heat stress (Kenney et al., 1985; Gagnon & Kenny, 2012; Notley et al., 2017; Kuwahara et al., 

2005). Female sex hormones are seen as a major barrier to research in female cohorts, and if 

research of female sport and female athletes is to ever catch up to rates of female participation 

and athletic success, menstrual cycle and hormonal contraceptives must be further 

investigated and addressed to construct well informed recommendations. 

Performance during team sports has also been observed to be impaired in hot 

conditions. Mohr and colleagues (2012) showed that total distance run and the amount of 

running qualifying as “high intensity” in a football match was lower in hot conditions (~43°C 

vs ~21°C). However, team sport performance is tactical and skilful as well as dependent on 

strength, power, and endurance (Chalmers et al., 2014), so it should be noted that subjects 

completed significantly more successful passes and crosses during the match played in hot 

conditions compared to the temperate conditions (Mohr et al., 2012). Similarly, Bandelow et 

al. (2010) found accuracy was positively influenced by rises in core temperature when 

completing a variety of cognitive tests throughout football matches in the heat. In contrast, 

Malan et al. (2010) reported a significant impairment in reaction time in the heat after 

analysing recorded clips of male hockey goalkeepers.  

In females, it is suggested that the addition of heat stress negatively impacts hockey 

skills, which Sunderland et al. (2005) observed to decline 6% more with exercise in hot 

(30°C, 38% RH) than in moderate (19°C, 51% RH) conditions.  
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Overall, heat stress has been observed to have a negative net effect on performance, 

however the severity of this effect may be expressed differently depending on the sport or 

activity, and the sex of the athlete may have a role.  

 

2.3.3 Meaningful performance outcomes following traditional heat acclimation. 

Early research into heat acclimation involved chronic bouts of exposure to heat stress in order 

to facilitate beneficial adaptations and thermal tolerance. Studies in the 1930’s and 1940’s 

focused on measuring physiological adaptations assumed to decrease risk of heat injury 

(Dresoti, 1935; Dill et al., 1938; Robinson et al., 1943; Eichna et al., 1945), and physiological 

adaptations gained from heat acclimation were later shown to translate to improved exercise 

tolerance in the heat (Pandolf & Young 1992). Recently, maximal and submaximal 

performance benefits have been quantified alongside physiological adaptations following 

traditional heat acclimation and acclimatisation protocols in male, or mostly male cohorts. 

Lorenzo et al., (2010) demonstrated performance improvements in 10 male and 2 female 

participants in hot conditions (38°C, 30% RH) following 10 days of acclimation, with an 8% 

improvement in 𝑉O2max, an 8% increase in mean power across a 1-h time trial, and a 5% 

increase in power at lactate threshold. In this study, the control group did not experience any 

significant performance improvements. Similarly, Keiser et al. (2015) demonstrated 

performance improvements in the heat both in mean and maximal power output during a 30-

minute time trial and in 𝑉O2max following 10 days of heat acclimation. Again, the control 

group did not experience any significant effects of training in temperate conditions (18°C, 

30% RH) for 10 days.  

 As a result of 13 days training in hot conditions in Qatar, Racinais et al. (2014) 

observed that performance times during a 43-km cycling trial in the heat (~37°C) were 
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comparable to times in cooler conditions (~8°C), equating to an 18% improvement from the 

pre-acclimation trial in these male athletes. Although mean power output was still slightly 

lower, the drop off in power output throughout the trial originally observed in the heat was 

greatly reduced.  

Studies that have investigated the physiological adaptations of heat acclimation have 

included female cohorts (Sawka et al., 1985; Mee et al., 2015; Armstrong et al., 2005; 

Avellini et al., 1980; Fein et al., 1975; Shapiro et al., 1980), however time trial performance 

improvements following traditional heat acclimation protocols (7-14 days) have yet to be 

quantified for females, exposing a large knowledge gap in real world application for females 

competing in hot conditions. Heat acclimation is normally undertaken in eumenhorreic 

females during the “low-hormone” follicular phase, and during the “quasi-follicular” or no 

pill/placebo stage for oral contraception users. This is to minimize confounding factors of sex, 

as men and women have been observed to experience similar thermoregulatory strain when 

women are in the low hormone phase of their menstrual cycle (Kolka et al., 1994). This is 

relevant for mechanistic based studies, however, as the literature suggests that possible 

physiological or VO2max differences across the menstrual cycle or as a result of hormonal 

contraceptives do not influence the results of more applicable performance tests and time 

trials, this is an illusory barrier to investigating performance following heat acclimation. Heat 

acclimation is equally attainable for eumenhorreic females, oral contraceptive users, and users 

of hormonal injections, as demonstrated by Armstrong and colleagues (2005). They reported 

that there were no between group differences following heat acclimation in either 

physiological adaptations (thermal, metabolic, cardiorespiratory, and perceptual responses, 

besides minor differences in core temperature at sweat onset) or performance measures (sit-

ups, push-ups, 4.6-km run time; Armstrong et al., 2005). Albeit, participants were relatively 
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untrained, and completed a 3-day/week acclimation protocol combined with other training 

over the span of 7-8wks – far from the traditional model of heat acclimation described above. 

Therefore, time trial type performance outcomes following heat acclimation have not yet been 

adequately quantified for females.  

 

2.4 Novel Strategies for Heat Acclimation 

2.4.1 Short-term heat acclimation. Despite known differences in males and females 

in response to acute heat stress, both sexes have historically been observed to adapt similarly 

to heat acclimation. Sawka et al. (1983) conducted an extensive study examining how females 

and males responded to both hot and dry heat at different hydration levels following a 10-day 

acclimation protocol. They concluded that there was no significant interaction of sex on 

acclimation, except that females may be more efficient sweaters under humid conditions. 

Other than that, both groups displayed classic signs of acclimation during a fixed intensity 

exercise heat stress test. Similarly, Avellini et al., (1980) observed similar results for male and 

female participants matched in aerobic fitness and size following a traditional 10-day 

acclimation protocol. A greater sweat rate in men (~7%) was the only observable difference, 

however it was statistically insignificant (P > 0.05). More recent acclimation research has 

explored shorter forms of acclimation (i.e., “short-term heat acclimation”), and, as detailed 

below, findings to date indicate that the duration of the acclimation stimulus may result in 

sex-dependent responses.  

Short-term heat acclimation (STHA) is classified as being < 7 days (Garrett et al., 

2011), while traditional, long-term heat acclimation (LTHA) protocols have typically lasted 

10-14 days. Short-term heat acclimation offers the potential benefits of a reduction in time 

and cost, especially valuable during the recovery/tapering time in the days before an event. 
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Garrett and colleagues demonstrated the effectiveness of a STHA protocol first on 

physiological markers of acclimation in moderately trained males (2009), and then on 

meaningful performance improvements in highly trained male athletes (2012). Following 5-

days of acclimation (39.5°C, 60% RH), athletes improved their time trial performance by an 

average of 4-seconds (1.5%), with a 10-second reduction at the highest level of improvement. 

The highly trained athletes were members of an international rowing team able to perform at 

90% of the world record pace for the 2,000 m row. The 2,000-m test itself is a highly reliable 

test (0.6-0.7% coefficient of variance; Schabort 1999, Creasy 2002) and in the sport of 

rowing, disproportionally large increases in power output are required to achieve measurable 

increases in speed, indicating that these improvements were both meaningful and substantial. 

These initial observations by Garrett et al. have since been replicated and extended by others 

using STHA, all demonstrating significant performance improvements under heat stress (e.g., 

Costa et al., 2012; Chen et al., 2013; Best et al., 2013; Racinais et al., 2014; Gibson et al., 

2015; James et al., 2016; Willmott et al., 2016 and Peterson et al., 2010).  

The rationale for the STHA strategy was perhaps first supported by Armstrong and 

Maresh (1991), who suggested that ~75% of adaptations to the heat are attained within the 

first 4-6 days of heat acclimation, as the plasma volume expansion alleviates the 

cardiovascular strain experienced while exercising under heat stress. Indeed, Gibson et al. 

(2015) reported that 5 days may even be enough to reach full acclimation status when an 

isothermic protocol (rapidly increasing core temperatures to ~38.5°C and maintaining core 

temperature throughout) is implemented, as there were no additional physiological 

improvements gained from the latter 5 days of heat acclimation (LTHA) that followed the 

first 5 days (STHA). Periard et al. (2016) describes heat acclimation as being biphasic, 

meaning that some adaptations are achieved from the more transient STHA, with adaptations 



	

26	

stabilizing following LTHA. Although the adaptations attained during STHA may be 

transient, they do translate to meaningful performance outcomes in males. This biphasic 

response is supported by performance outcomes observed by Racinais et al., (2014), who 

reported short-term performance improvements for male cyclists in the heat, with additional 

improvements following the more stable second phase of LTHA (Periard et al., 2016). 

While these positive results indicate possibilities for a contemporary protocol reducing 

valuable time and monetary cost to athletes, these studies were undertaken on all male 

cohorts. Physiological changes in female athletes following short-term and long-term heat 

acclimation were assessed in a sex comparison study by Mee et al., (2015). The results 

indicated that although females became partially acclimated (increased sweat rate), they were 

unable to attain the other classic markers of heat acclimation (reduced heart rate and core 

temperatures) after only 5 days of heat acclimation under controlled hypothermia, and may 

require a full traditional acclimation protocol of ≥10 days to alleviate this physiological strain. 

This highlights that female populations performing or working in the heat may not be as well 

prepared for substantial heat stress in the same capacity as their male counterparts after only 

undertaking a STHA protocol. In contrast, Sunderland et al., (2008) observed a 33% 

improvement in shuttle run endurance time in female soccer players in the heat following only 

four days of acclimation, albeit in the absence of physiological markers of acclimation. 

However, these were team sport athletes who may have exaggerated results compared to 

endurance athletes, who typically spend more time under heat stress and behave as if already 

acclimated (Taylor, 2000). Sunderland et al., (2008) attributes the success of the STHA 

protocol to its high-intensity nature – opting for intermittent interval training under heat stress 

in place of an isothermic protocol. Therefore, the traditionally prescribed 90-minute 
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isothermic protocol observed to induce markers of acclimation in males may not be a 

sufficient stimulus to induce the same results in females.  

One potential explanation for the differential sex-related response to a 5-day 

acclimation protocol may be attributed to the typical size differences between males and 

females, leading to females experiencing a reduced metabolic heat production during an 

isothermic protocol in comparison to males, as described by Jay and Cramer (2014). The 

comparison of an isothermic heat stimulus for participants of different sizes is described using 

the analogy of altering the cooking time of a turkey according to its mass, as larger “turkeys” 

will need more heat to reach the same internal temperature, just as larger athletes required a 

greater heat stimulus to maintain a high core temperature (Jay & Cramer, 2014). Therefore, an 

isothermic protocol leads to a greater rate of metabolic heat production, and therefore greater 

heat stimulus, for larger participants.  

A main requirement of a heat acclimation protocol is that it must induce sufficient 

sweating in order to drive adaptation (Buono et al., 2009). Jay and Cramer (2014) highlight 

that absolute evaporative requirements for heat balance are driven by metabolic heat 

production and are the main factor in determining sweat production. When internal heat 

production is matched under compensable conditions, so are sweat rates – a main requirement 

for driving heat acclimation (Neilson, 1998; Avellini et al., 1982; Henane et al., 1977).  

As an isothermic protocol that maintains participants’ core temperatures at ~38.5°C 

already provides the highest internal temperatures attainable within an ethically safe zone, 

Mee et al. (2017) investigated a possible solution in increasing the intensity of the heat 

stimulation during a STHA protocol for females by adding 20-minutes of passive heating 

while wearing a sauna suit before each session. This intervention yielded similar 

physiological adaptations for females during a running heat tolerance test to that which males 
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typically experience following STHA. These adaptations included reduced core temperatures 

and heart rate (at rest and during exercise), plasma volume expansion, increased rate of 

sweating, and improvements in ratings of perceived exertion and thermal comfort/sensation. 

This indicates that when acclimating females, the stimulus must either be more intense than 

that implemented for males, or they must spend more consecutive days under heat stress. 

However, there was no performance measure accompanying either study by Mee and 

colleagues. Therefore, the quantification of performance improvements in females following 

short-term vs long-term heat acclimation strategies is urgently needed to inform safety 

guidelines and preparation recommendations for real-world athletic events (Casadio et al., 

2016). 

 

2.4.2 Heat acclimation as an ergogenic aid. Research has been undertaken in male 

cohorts to determine the potential for heat acclimation to act in an ergogenic manner for 

performance in more temperate (20-23°C) or cooler (8-15°C) conditions. These temperatures 

better match conditions in which endurance athletes will ideally compete (of ~10-14°C; Ely et 

al., 2007), where heat stress is not imposed on athletes by the ambient temperatures. 

Performance improvements in temperate conditions (21-22°C) following HA for untrained 

athletes were first observed by Nadel et al. (1974), as participants experienced increases in 

𝑉O2max of ~190mL following a 10-day HA protocol. A similar improvement of 4% in the 

𝑉O2max of male soldiers was observed with a nearly identical protocol by Sawka et al. (1985). 

More recently, ergogenic effects were observed by Lorenzo and colleagues (2010), who 

reported that power at lactate threshold, 𝑉O2max, and maximal power output during a 1-h TT 

increased 5-6%, in cool conditions (13°C) following heat acclimation, whilst the control 

group did not experience any improvements. Improvements for power at lactate threshold and 
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peak power output in temperate conditions (22°C, 60% RH) were reported by Neal and 

colleagues (2016a, b) following short and longer-term protocols, although 𝑉O2max was 

unaffected. Additionally, Buccheit and colleagues (2011) observed a 7% improvement in 

intermittent shuttle test results in temperate conditions (22°C) following in-season heat 

acclimatisation of trained male football players. One such investigation in females was 

undertaken in international-level female soccer players, who recorded a 1.5% increase in 

speed during the 30–15 Intermittent Fitness Test (IFT) in temperate conditions (20°C), setting 

a personal best for the team in this highly familiar test. The small, but meaningful effect 

observed in elite female soccer players warrants further investigation into the ergogenic 

potential for HA in female athletes. The effect of HA on endurance performance in a time trial 

style test has not yet been investigated in females. 

The main mechanisms that could facilitate ergogenic outcomes following heat 

acclimation are: a) plasma volume expansion; b) an increased thermoregulatory capacity, and 

c) substrate metabolism shifts and metabolic adaptations. It would seem that a combination of 

these main mechanisms, along with smaller, underlying adaptations and the individuals’ 

responses to them, yields the small percentage of performance improvement sought out by 

high-level athletes (Minson & Cotter, 2016). 

The adaptation that has been most credited with providing ergogenic potential, as well 

as being highly debated, is the plasma volume expansion experienced as a result of heat 

acclimation. Individual performance improvements in temperate conditions have been 

observed to be highly correlated with plasma volume (and likely blood volume) expansion 

(Buccheit et al., 2011, Scoon et al., 2007). Minson and Cotter (2016) proposed that this is the 

central mechanism driving ergogenic effects, although it is specified that evidence is mainly 

applicable to sub-elite and team sport athletes. Nybo and Lundby suggested that in elite 
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athletes, plasma volume expansion does not improve performance (Nybo and Lundby, 2016). 

Elite endurance athletes may already be at an optimal, hypervolemic blood volume in which 

any further plasma volume expansion may reach the point that the increased cardiac output is 

no longer beneficial enough to counteract the reduced O2 carrying capacity resulting from 

haemodilution (Keiser et al., 2015; Neal et al., 2016). These athletes may also be approaching 

the limit of their diastolic reserve capacity (Warburton et al., 1999). The optimal balance of 

cardiovascular benefits and haemodilution varies on an individual basis (Racinais et al., 

2012), suggesting that some individuals could benefit from plasma volume expansion, while 

others may not. However, there appeared to be no clear performance trend when elite athletes’ 

plasma volume was expanded by heat acclimation in a controlled, counterbalanced study 

(Keiser et al., 2015). Additionally, plasma volume expansion along with an increased 

sensitivity to thirst resulting from heat acclimation could help to combat dehydration in any 

condition, a factor that can be critical athletic and mental performance (Baker et al., 2007, 

Devlin et al., 2001). 

Plasma volume responses to HA in females is not well understood. Sex differences in 

the endocrine response responsible for plasma volume expansion (detailed in Section 2.5.5; 

Stachenfeld et al., 2001), presents the possibility that even elite female athletes may respond 

differently to HA than males. Additionally, as plasma volume has been observed to fluctuate 

during the menstrual cycle (Fortney et al., 1988; Stachenfeld & Taylor, 2005), heat 

acclimation could be used to prevent plasma volume reductions and fluctuations across the 

cycle. 

As stated, “optimal temperatures” for endurance events is ~10-14°C (Ely et al., 2007), 

and performance decreases exponentially as conditions deviate further (Galloway & 

Maughan, 1997). Despite this, real-world endurance events may take place in temperatures 
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outside this “optimal” zone. Small changes in ambient temperature can be detrimental to 

performance, even as the temperature remains relatively cool, as rising internal temperatures 

may be a contributing factor in fatigue for endurance activities in any temperature 

(MacDougall 1974). Increased skin blood flow and sweating during exercise in cooler 

conditions further indicates that thermal strain is still a factor contributing to fatigue. 

Additionally, this knowledge can be applied practically for sports other than just 

cycling. Many sports with a substantial endurance requirement (i.e. soccer/football, field & 

ice hockey, lacrosse, etc.), require athletes to wear jerseys or uniforms that do not allow for 

the same optimal heat dissipation that is experienced by athletes in the lab, who are often able 

to wear minimal clothing (i.e. cycling shorts, sports bra). These jerseys or uniforms are extra 

clothing that create a microenvironment next to the skin with little airflow, and the sweat-

wicking properties of popular materials may inhibit heat loss by evaporation, impairing an 

athlete’s ability to dissipate heat (Cheung, 2010). In this scenario, there may be more of a 

thermal effect than anticipated, limiting performance even in temperatures that are considered 

“optimal” or cool. The thermoregulatory adaptations of heat acclimation, including improved 

sudomotor function and attenuated internal temperatures, allow the body to not only 

thermoregulate more effectively, but to also better tolerate these higher core temperatures 

(Maron et al., 1997; Byrne et al., 2006). Optimising an athlete’s thermoregulatory capabilities 

through heat acclimation training prepares them for the variable conditions that they may 

encounter in real-world competition in any ambient temperature. 

Metabolic adaptations have also been observed in both hot and cool conditions 

following heat acclimation (Sawka et al., 1985). A shift towards aerobic metabolism (Young 

et al., 1985) indirectly increases glycogen sparing, which may be particularly beneficial in 

cooler conditions, where glycogen stores are more severely depleted at the onset of fatigue, as 



	

32	

compared to heat stress (Parkin et al., 2011). A decreased lactate accumulation in both the 

muscle and plasma during exercise in cool environments (Young et al., 1985) may be an 

indication of this shift to aerobic metabolism. Additionally, an increase in VO2max following 

acclimation would increase oxygen delivery and decrease lactate production, and contribute to 

the reduction in lactate accumulation in the muscle and plasma during exercise. 

Substrate utilization in females has been studied during bouts of acute heat stress 

(Vaiksaar et al., 2011), but not following heat acclimation. However, it would be interesting 

to observe their responses and how it could affect their performance in cooler conditions, 

considering females’ elevated lipolytic sensitivity to epinephrine and the known effects of sex 

hormones on fatty acid mobilisation (Jensen et al., 1994; Pedersen et al., 2004; Horton et al., 

2006; Williams, 2007; Tarnopolsky, 2008; Oosthuyse & Bosch, 2012). 

Some endurance performance tests that have been undertaken following heat 

acclimation in temperate and cool conditions have yielded minimal (0.4%) or insignificant 

improvements (Neal et al., 2016, Karlsen et al., 2015, Morrison et al., 2002, Keiser et al., 

2015). These studies argue that plasma volume expansion is not ergogenic for more elite 

endurance athletes whom are already close to peak muscle O2 delivery (Keiser et al., 2015, 

Coyle et al., 1990). However, some limitations should be considered. Karlsen et al., (2015) 

undertook time trials in cool, outdoor conditions of 8°C, where participants were dressed in 

clothing which covered the majority of their skin, including gloves, which may have impaired 

their cooling mechanisms and increased heat storage, counteracting the benefits gained 

through heat acclimatization. Participants in Morrison et al. (2002) only undertook 7 days of 

heat acclimation, which can still be considered a short-term protocol (Garrett et al., 2011), and 

the heat acclimation phenotype may not have been fully developed and/or stable (Periard et 

al., 2016). In the study by Keiser and colleagues (2015), pre-heating before the performance 
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tests may have also interfered with the thermoregulatory benefits of heat acclimation, such as 

a lowered body core temperature. Additionally, the statistical analysis of data may have been 

underpowered by the sample size of seven participants, as the numerical mean increase in 

peak power of 10W (3%; P = 0.19) and in absolute VO2max of 200 mL (4%; P = 0.08) are not 

statistically significant, however are very similar to those found by Lorenzo and colleagues 

(12 W or 3%; P < 0.01 and 180 mL or 4%; P < 0.01, respectively; Lorenzo et al., 2010). 

Research to date has been limited, but presents interesting hypotheses for future 

avenues of ergogenic research. One idea is that these 10-14 day HA protocols are only 

“medium-term”, and truly stable adaptations may require an even longer protocol (Horowitz, 

1998). Rodent studies by Horowitz and Kodesh (2010), Horowitz et al., (2011), and Kodesh 

et al., (2011) demonstrated that prolonged heat acclimation (30-days) produced a stable 

phenotype with genomic adaptations. Maloyan et al. (2005) also observed that rodents heat 

acclimated for one month showed elevated hypoxia-inducible factor-1 (HIF-1) activation, 

which upregulates genes including vascular endothelial growth factor (responsible for 

angiogenesis) and erythropoietin (responsible for red blood cell production). This suggests 

that it is possible that prolonged heat acclimation could induce some of the desirable and 

ergogenic adaptations that have been observed following altitude training (Levine & Stray-

Gundersen, 1997; Ashenden et al., 1999; Richalet & C. J. Gore, 2008). 

If the ergogenic potential of a long-term acclimation protocol is to be explored, female 

endurance athletes especially, who are prone to anemia and low iron levels, and also lose 

more iron through sweating (Lamanca et al., 1988), may need to consider using iron 

supplementation while undertaking a long-term heat acclimation protocol to maximize 

benefits. Iron is necessary for red blood cell production, and is commonly suggested to 
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maximise results of altitude training (Stray-Gundersen et al., 2001; Wehrlin et al., 2006; Clark 

et al., 2009). 

Alternatively, as elite athletes have a smaller scope for adaptation (Periard et al., 

2015), it is possible that only high responders will experience measurable improvements in 

temperate conditions (Neal et al., 2016). Individual differences in response to heat acclimation 

have been reported by Racinais et al., 2012, just as individual responses have been observed 

in athletes undergoing altitude training (Levine & Stray-Gundersen, 1997). It should be noted 

that females are able to obtain these performance benefits from altitude training in a similar 

way to males (Stray-Gunderson et al., 2001). 

Varying the intensity and duration of the HA protocol has been observed to elicit 

different results in performance in the heat (Wingfield et al., 2016), and therefore may elicit 

different results in cooler conditions. The findings of Wingfield and colleagues (2016) 

indicated that 30-minutes of high intensity interval training in the heat will significantly 

improve peak power output by ~6% more than a low intensity protocol, possibly linked to the 

heat activated m-TOR pathway (Kakigi et al., 2011; Yoshihara et al., 2013). However, the 90-

minute lower intensity protocol was more efficient in improving 20-km time trial 

performance. Combining these intensities into a 90-minute protocol that also includes high-

intensity intervals is a possible strategy to improve both maximal and submaximal 

performance in cooler conditions. It is also reiterated that females require a more intense 

protocol to obtain the heat acclimated phenotype (Mee et al., 2017), making these interval-

long duration combination protocols a possible, and perhaps optimal, option. 

Alternatively, when designing these HA protocols for ergogenic use, it may be most 

effective to keep HA sessions as low-intensity session complimentary to normal training 

(Minson & Cotter, 2016). Since heat strain impairs exercise, athletes attempting to complete 
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all training sessions in the heat could see their performance suffer from a reduced exercise 

intensity during training sessions (Minson & Cotter, 2016). Completing all training sessions 

in the heat would also add the fatigue of an unfamiliar stressor, possibly impairing 

performance test results following an intense heat acclimation protocol. Therefore, keeping 

HA sessions to a lower intensity could be necessary to elicit endurance performance 

improvements. This practice has been successfully implemented as it relates to altitude 

training (“live-high train-low”), and evidence indicates that a “live-hot train-cool” model may 

be the new prescription for heat acclimation for ergogenic performance gains (Corbett et al., 

2014). Ergogenic effects may not be as easily attained as the acclimated phenotype, so finding 

the right way to combine training strategies is key to uncovering the ergogenic potential of 

heat acclimation. 

         In summary, there is strong evidence that heat acclimation can be ergogenic for sub-

elite and team sport athletes, and the possibility exists that carefully designing an optimal 

protocol could positively benefit even the most elite athletes, to whom even the smallest 

percentage of performance improvement is pursued. Considering possible female differences 

in adapting to heat stress, how females respond to an acclimation protocol designed with the 

intention of facilitating performance improvements in cool conditions is unknown. 

 

2.5 Mechanisms of Adaptation 

2.5.1 Core and skin temperatures. During exercise, blood perfused through the 

active muscles are heated and upon returning to the central areas of the body, cause internal 

temperatures to rise. Hot ambient temperatures impair the body’s heat loss mechanisms and 

internal and skin temperatures rise at a greater rate. Thermal response is estimated to be 90% 

influenced by core temperatures (mean skin temperature influences the remaining 10% of 
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response; Nadel et al., 1971), however, in a hot environment as skin temperatures deviate 

heavily, the influence of skin temperature on thermal response may increase (Sawka et al., 

2011). 

Rising core and skin temperatures are a central factor in heat injury and declining 

performance in the heat, making temperature adaptations a main target in heat acclimation 

(Neilson et al., 1993). Heat acclimation reduces core and skin temperatures during exercise, as 

well as resting core temperatures (Sawka et al., 2011). It is well documented that males can 

achieve these desired reductions in temperature after only completing a STHA protocol (< 7 

days; Garrett et al., 2011, 2012; Chen et al., 2013; Best et al. 2013, Racinais et al. 2014, 

Gibson et al. 2015), however females may require additional stimulus through a longer, ~10-

day protocol in order to similarly alleviate thermoregulatory strain (Mee et al., 2015). 

 

2.5.2 Skin blood flow. Warmed blood is delivered from the core to the surface to 

dissipate heat through the evaporation of sweat. Acclimation improves the body’s ability to 

dissipate heat via skin blood flow by initiating this cooling mechanism at a lower temperature 

threshold (Roberts et al., 1977).  

 A greater core to skin temperature gradient becomes increasingly important during 

exercise, as it lessens the demand for skin blood flow by allowing ambient and skin 

temperatures to cool the warm blood from the core (Cheuvront et al., 2003; Sawka et al., 

2011). If skin temperatures can remain low, less blood flow is required. Interestingly, a higher 

core temperature (often thought to have negative effects on all areas of thermoregulation) also 

increases this gradient, and therefore decreases skin blood flow (Sawka et al., 2011).  

Unacclimated females, who are typically smaller than males, rely more on skin blood 

flow and vasodilation to cool down. However, at compensable heat stress levels this is mainly 
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a product of physical size differences, not sex (Notley et al., 2017; Gagnon & Kenny, 2012). 

Additionally, females’ autonomic control of vasodilation may be influenced by their varying 

levels of sex hormones (Charkoudian et al., 2016).  

 

2.5.3 Cardiovascular. Although necessary for heat dissipation, the cardiovascular 

strain to meet the increased blood flow demands in the heat can compromise the system’s 

ability to provide O2 to the brain and active muscles (Neilson & Nybo, 2003; Nybo & Secher, 

2004; González-Alonso et al., 1998; Rowell, 1974). These competing demands, as well as 

decreased blood pressure as plasma volume is lost through sweating, drives the higher heart 

rate observed during exercise in hot conditions (Cheuvront et al., 2003). This results in less 

time spent in the diastolic phase. Both of these lead to a decrease in ventricular filling, and 

therefore a decrease in stroke volume (Rowell, 1966; Trinity et al., 2010). For cardiac output 

to be maintained, heart rate must increase further in parallel with stroke volume reductions, 

known as cardiovascular drift (Montain & Coyle., 1992; Lafrenz et al., 2008). Heat stress is 

characterized by an increased heart rate in comparison to the same workload in cooler 

conditions and an accelerated onset of cardiovascular drift (Sawka et al., 1992).  

Cardiovascular stability is attained through heat acclimation, primarily as a result of 

plasma volume expansion (Nielsen et al., 1993; Garrett et al., 2009), which simply provides 

an increased supply of body fluid to better meet demands. Therefore, heat acclimation lowers 

heart rate at rest and during exercise, increases ventricular filling, and increases stroke volume 

and cardiac output.  

Additionally, genetic adaptations of the myocardium have been observed following 

the heat acclimation of rats (Horowitz et al., 2011, Schwimmer et al., 2006). Myocardium 

contractions are facilitated by calcium-induced calcium release. calcium binds to receptors on 
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the cardiac muscle, which stimulates a further release of calcium from the sarcoplasmic 

reticulum into the cell, and contraction is initiated (Roderick et al., 2003). An upregulation of 

calcium signalling genes caused by heat acclimation improves cardiac muscle excitation-

contraction coupling, which increases force generation of the cardiac muscle (Cohen et al., 

2007). This increase in contraction force allows for greater expulsion of blood from the heart 

and a decrease in end diastolic volume (Horowitz et al., 1986). Therefore, cardiac efficiency 

can also be improved with heat acclimation, however it may be achieved sooner in males than 

in females (Mee et al., 2015). 

 

2.5.4 Sudomotor activity. Depending on the sport or activity, sex, size, and training 

status of the athlete, sweat rate can range from 0.5-2 liters/hour (Sawka et al., 2007). Trained 

athletes sweat more as a result of multiple factors, including a high density of active sweat 

glands and sweat onset being initiated at lower core temperatures.  

Warm skin increases sweat rate, as it stimulates local thermal neurons, and also 

because of the demand it creates for blood flow, making more plasma readily available for 

sweating (Charkoudian, 2003). Sweat rate is an important adaptation of chronic heat stress, as 

it allows heat dissipation via evaporation, the only avenue for heat loss as ambient 

temperatures surpass skin and core temperatures (Cheung, 2010). Historically, males have 

been credited with sweating more, however at a submaximal level, this may be primarily a 

function of size and body surface area to mass ratio (Notley et al., 2017, Gagnon & Kenny 

2012). At the highest requirements for heat loss, women exhibit a reduced capacity for 

evaporative heat loss, due to a reduction in sweat gland output (Gagnon & Kenny, 2012). 

However, in humid environments, females may be more “efficient sweaters”, as they are more 



	

39	

sensitive to wetted skin, preventing unnecessary fluid loss when already secreted sweat has 

not yet been evaporated (Sawka et al., 1985). 

Sweat is primarily secreted through the eccrine sweat glands, which may increase in 

size following heat acclimation (Bouno et al., 2009). Additionally, sodium that is excreted in 

the sweat can be resorbed by cells lining the duct portion, conserving electrolytes (mainly 

sodium, however chloride, potassium, calcium, and magnesium are also secreted; Maughan, 

1991), an ability which is improved with heat acclimation (Allan & Wilson, 1971). This is 

beneficial, as reductions in sweat sodium concentration will allow easier evaporation of 

sweat, and therefore increase evaporative cooling capacities. Sweat gland sensitivity also is 

enhanced following heat acclimation (Buono et al., 2009), and as females have a reduced 

cholinergic sensitivity in comparison to males (Madeira et al., 2010), there may be greater 

potential for immediate peripheral improvements, explaining sweat rate improvements in 

females following STHA. Although this increases evaporative capacity, the increased sweat 

rate may add further strain to the female cardiovascular system that has not yet established 

stability in the heat (Mee et al., 2015; Taylor, 2014). 

 

2.5.5 Plasma volume expansion. Heat acclimation provides a large stimulus for fluid 

regulatory adaptations through sweat loss, which leads in the expansion of plasma volume 

(typically ~7-14%; Guy et al., 2015, Patterson et al., 2004, 2014) through a number of 

processes. In order for adaptation to take place, dehydration levels of the intracellular fluid 

must pass the “osmotic threshold” of an approximate 2% increase in plasma osmotic pressure 

(Andreoli et al., 2000; Cheuvront & Kenefick, 2014), roughly measurable by a 2% loss in 

body weight. Once this threshold has been exceeded, adaptive mechanisms of anti-diuretic 

hormone (ADH) secretion by the hypothalamus and thirst sensitivity improvements by neural 
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signalling are triggered (Andreoli et al., 2000, Bourque et al., 2008). The most rapid response 

is the secretion of aldosterone and ADH, which activates the renin-angiotensin-aldosterone 

system, and increases sodium chloride retention and decreases urine output (Nagashima et al., 

2001, Akerman et al., 2016). This, combined with an increased water consumption through an 

improved sensitivity to thirst, results in an increased extracellular fluid volume and net fluid 

retention (Nose et al., 1998, Convertino et al., 1980, Cheuvront et al., 2013). Albumin 

synthesis resulting from fluid regulatory stimulus increases circulating intravascular proteins, 

and subsequently, the colloid pressure of the vessels. This pulls water into the circulatory 

system, and further increases plasma volume (Convertino et al., 1980).  

The advantages of an increased plasma volume counteract any possible performance 

detriments that may accompany an increase in body mass. An increased plasma volume better 

matches the demand for skin blood flow, allowing for greater thermoregulation (Periard et al., 

2016). Cardiovascular stability is also improved as a result of increased vascular filling 

pressure (Senay et al., 1976). Additionally, plasma volume expansion has been the only 

physiological mechanism statistically linked to predicting individual performance 

improvements following heat acclimation (Racinais et al., 2012)  

Plasma volume expansion in males may be transient if the acclimation protocol 

includes a fixed workload and does not provoke a sufficient stimulus (Shapiro et al., 1981, 

Periard et al., 2016), which also does not drive the same percentage of plasma volume 

expansion in females (possibly due to females resisting renin activity; Dustin et al., 1970; 

Tarazi, 1976), however with the implementation of an isothermic protocol, this response 

becomes more stable in men. In females, a traditional isothermic protocol still does not induce 

the cardiovascular and thermoregulatory stability typically accompanying plasma volume 

expansion, until ~10 days (Mee et al., 2015), which indicates that stable plasma volume 
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expansion may not be as established, and a longer or more intense protocol may be required 

(Mee et al., 2017). This could be a result of females retaining less salt as osmolality of the 

blood increases, as oestrogen may mediate aldosterone and ADH secretion (Spruce et al., 

1985; Stachenfeld et al., 1998), as well as females having a higher renal sensitivity to ADH 

(Stachenfeld et al, 2001). Additionally, males have been observed to have increased levels of 

plasma ADH at a similar plasma osmolality, indicating a higher sensitivity to changes in 

plasma osmolality (Stachenfeld et al., 2001). There has been some research on plasma volume 

expansion following heat exposure in females, however it has been in sedentary or untrained 

participants, and produced confounding results because of the known plasma volume 

expansion that accompanies endurance exercise (Fellmann et al., 1992).  

 

2.5.6 Lactate and substrate utilization. The added stressor of a hot environment 

results in a shift to a greater percentage of anaerobic substrate utilization (Dimri et al., 1980), 

resulting in a greater accumulation of blood lactate during submaximal exercise in the heat 

(Young et al., 1985), as it is an output of anaerobic metabolism. Blood lactate measurements 

are indicative of both the production of lactate and the body’s ability to remove it, making it a 

consequence and a measurable marker of fatigue (although it is not necessarily a cause; Heller 

& Grahn, 2012; Brooks, 2001). It is therefore a useful measure to compare to direct findings 

and hypotheses of muscle metabolism, and allows us to speculate about the processes and 

adaptations happening at the cellular level. 

It has been demonstrated that HA reduces aerobic metabolic rate and improves muscle 

glycogen sparing in males (Young et al., 1985; Febbraio et al., 1994). This is partially as a 

result of increased capacity for lactate removal by changes in regional blood flow and 

increased lipid oxidation (Kirwan et al., 1987), but reductions in epinephrine are likely to be 
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of greater influence (Febbraio et al., 1994). These factors influence the reductions in muscle 

and blood lactate following HA (Young et al., 1985). Acclimation may also increase power at 

lactate threshold, as observed during a graded exercise test in hot conditions in a study by 

Lorenzo et al. (2010). 

There are known sex differences in the factors above, which may influence the 

reductions in muscle and blood lactate following HA. At low exercise intensity levels, 

females rely more on fat oxidation for fuel (Romijn et al., 2000, Horton et al., 1998) because 

of sex differences in the capacity for fatty acid metabolism (Soler-Argilaga & Heimberg 

1976; Tarnopolsky et al., 1990; Jensen et al., 1994; Tarnopolsky et al., 2008), and glycogen 

and epinephrine levels are reduced in females (Horton et al., 2006). Females also exhibit an 

increased lipolytic response to this epinephrine (Crampes et al., 1989), however as females 

experience elevated levels of epinephrine when exposed to heat stress (Jezova et al., 1994), 

the gap in substrate utilization between males and females may be narrowed when exercise is 

undertaken in hotter conditions. Blood lactate response to endurance exercise has been 

observed as similar between sexes (Ohkuwa et al., 1988, Korhonen et al., 2005), however, 

these observations have been in temperate conditions, and possible sex differences in 

substrate utilisation and blood lactate responses following acute and chronic heat stress have 

not been investigated. 

One caveat when using blood lactate as a measure of fatigue in hot conditions is that 

higher muscle glycogen stores have been observed at the point of fatigue in the heat in 

comparison to temperate (18°C) conditions. This indicates that other factors limit maximal 

exercise in the heat before glycogen can be depleted enough to make metabolism a limiting 

factor (Parkin et al., 2011). Therefore, blood lactate measures may be a marker that is more 

closely related to the causes of fatigue in cool than in hot conditions. 
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2.5.7 Heat shock response. Behind the systemic appearance of many physiological 

adaptations to chronic heat stress, there are cellular mechanisms at work protecting the 

organism. Heat shock proteins (HSPs) are the molecular response to heat stress, which drives 

thermotolerance at the cellular level and may contribute to other heat stress adaptations 

(Horowitz, 2014; Amorim et al., 2015; Akerman et al., 2016). HSPs can be divided into 

intracellular HSPs (iHSPs) and extracellular (eHSPs). Heat stress appears to have a greater 

impact on intracellular HSPs than extracellular HSPs (Tyler et al., 2016). Intracellular HSPs 

are activated by heat stress (among other stressors) and are responsible for refolding 

denatured polypeptides, keeping thermally damaged proteins from clustering (chaperoning), 

accelerating repair of these denatured proteins and maintaining structural proteins (Mosely et 

al., 1997; Asea, 2005). This prevents cell death, allowing the cells to withstand stressors that 

would have otherwise been fatal, and therefore acquire thermotolerance (Landry et al., 1982; 

Kregel, 2002). Thermotolerance may explain why some marathon runners, among other 

endurance athletes, are able to tolerate internal temperatures of 41.5°C, far past clinical heat 

stroke thresholds (Maron et al., 1997). This thermotolerance extends to other organs, such as 

the gut, where HSPs may be linked to a reduction in the heat-induced permeability of the 

epithelial monolayer and could decrease endotoxin leakage (Moseley et al., 1994). 

  HSP72, specifically, is found in the nucleus and cytosol of the cell, and is responsible 

for protein folding and cytoprotection, with other members of the HSP70 family found in the 

mitochondria having the additional role of molecular chaperone (Mayer & Bukau, 2005). 

Some of the HSPs are released from the cells in vacuoles formed from the cell membrane, 

called exosomes, where they then become extracellular HSPs (Lancaster & Febbraio, 2005). 

These eHSPs trigger an immune response and cytokine release (Asea et al., 2005), which, 

combined with their known chaperoning function, has earned HSPs the name of 
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“chaperokines” (Asea et al., 2003). Acute heat stress causes an upregulation of HSPs, 

although as acclimation develops, the heat shock response to acute heat exposure is reduced 

(Maloyan et al., 1999). 

Heat shock proteins may have a threshold for activation, requiring a protocol 

considerably more intense than the athlete’s normal training level, and even greater than the 

minimal requirements for physiological adaptations of heat acclimation (Gibson et al., 2014). 

In a study by Hom et al. (2012) participants cycled at 50% of their VO2max for 90-minute 

sessions in 33°C, which induced classic physiological adaptations of heat acclimation, albeit 

in the absence of increases iHSPs. Cycling at only 50% VO2max may not have been intense 

enough to meet the threshold for a heat shock response to be initiated. Gibson and colleagues 

(2014) suggest that this threshold can be reached by driving core temperatures to ~38.5°C 

during HA sessions. Once protocol intensities have reached this threshold and a heat shock 

response is initiated, it appears that an individual’s heat shock response is linked with their 

ability to heat acclimate effectively (McClung et al., 2008). McClung and colleagues (2008) 

observed that an increased blunting of HSPs was correlated with the individual’s ability to 

thermoregulate whilst exercising in hot conditions (49ºC, 20% RH). 

While the heat shock protein response has been relatively well established and 

investigated in males for decades, sex-specific differences in humans were not observed until 

2009 by Morton and colleagues. They observed that whilst males experienced a meaningful 

increase in HSPs (38 ± 41%) following 6 weeks of interval training, females did not 

experience any significant increase. This difference was hypothesized to be linked to findings 

in rodent studies, where female rodents have been observed to already exhibit higher basal 

levels of HSPs, therefore diminishing the necessity for further production, with the 

proposition that oestrogen is regulating this process (Paroo et al., 2002; Voss et al., 2003; 
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Shinohara et al., 2004; Hamilton et al., 2004; Rayner et al., 2008; Bombardier et al., 2009; 

GIllum et al., 2012). Oestrogen stimulates the release of HSPs in the unstressed state to 

increase basal HSP levels, providing cytoprotection when the cell comes under stress (Voss et 

al., 2003; Hamilton et al., 2004). This is supported by rodent studies in which female rodents 

exhibit reduced vascular (Otsuka et al., 1996; Hinojosa-Laborde et al., 2000; Rayner et al., 

2008) and skeletal muscle damage (Paroo et al., 2002; Bombardier et al., 2009) following 

various stresses. Furthermore, evidence is drawn from various studies of rat hearts, one of 

which showing reduced basal HSP levels of rats which have had their ovaries removed, with 

HSP levels restored with oestrogen therapy (Paroo et al., 2002). 

Although it has been suggested that females require greater levels of stress to 

upregulate HSP activity on account of their elevated basal HSP levels (Voss et al., 2003), 

there are no sex differences in transcription of HSP mRNA following chronic heat stress (Mee 

et al., 2016). This means that the both sexes are receiving similar signals for genetic 

upregulation of HSPs, and oestrogen’s role in mediating the heat shock response is further 

downstream from transcription. The evolving linkage between oestrogen and HSPs may 

provide a source of explanation for some of the differences in responsiveness to heat stress 

between males and females. 

 

2.5.8 Psychophysical and behavioural. Athletes commonly report higher ratings of 

perceived exertion (RPE; Borg 1962) with exercise under heat stress as a result of greater 

discomfort of the warmer ambient and skin temperatures, as well as greater perceived effort in 

the heat caused from the elevation in cardiovascular strain (Cheuvront et al., 2010). Ratings of 

thermal comfort and thermal sensation (Toner et al., 1986) reported by the athlete are also 

important indicators of how the environment may be impacting their performance. Overall, 
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RPE ratings and thermal sensation have an inverse relationship with muscular and aerobic 

performance (Nybo, 2014; Cabanac, 2006). These may be partially overridden, however, by 

external motivation factors, such as head-to-head competition (Corbett et al., 2017). Heat 

acclimation has been observed to improve RPE and thermal comfort and sensation in both 

males and females, however the temporal patterns of their improvements may differ.  

Sunderland et al. (2008) reported an improvement in thermal sensation for females in 

hot conditions after only four days of heat acclimation, whereas James et al., (2016), Neal et 

al. (2016), and Gibson et al. (2015) failed to find any significant improvements in males 

following a STHA protocol, with perceptual changes only manifesting after completing the 

full 10-day protocol (Neal et al., 2016, Gibson et al., 2015). These improvements may stem 

from the reduction in cardiovascular strain following heat acclimation, allowing athletes to 

work at a lower %VO2max than in pre-acclimation heat stress tests (Cheuvront et al., 2010), 

although comfort may also develop with the experience of performing in the heat during the 

acclimation protocol. While acclimation improves these psycho-physical ratings, it is still 

recommended that athletes wear clothing that allows sweat wicking when competing, as an 

accumulation of sweat adds a level of discomfort that cannot be combated with heat 

acclimation (Aoyagi et al., 1998). 

Behavioural modifications also develop with heat acclimation, as athletes may 

improve their pacing strategies with heat acclimation (Racinais et al., 2014). In summary, 

although there has been little information investigating the role of psycho-physical 

adaptations on performance in the heat, the importance of its influence cannot be ignored.  
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2.6 Summary  

 There is still much to be done for sport science research to catch up to the success of 

female athletes, especially as it pertains to heat acclimation. As heat stress can cause severe 

physiological and cognitive detriments that affect performance, the investigation of optimal 

protocols for females to efficiently adapt is urgently needed, especially as it has been 

observed that females may require longer durations or elevated intensity to acquire the same 

cardiovascular and thermoregulatory stability as their male counterparts. Various factors, 

including size and sudomotor differences, sex hormones’ effects on thermoregulation, 

endocrinological differences affecting fluid regulatory responses, and oestrogen’s 

cytoprotective properties may be partially responsible for these discrepancies. Although 

evidence indicates that menstrual cycle and hormonal contraception have minimal, if any 

significant effect on performance, additional information is needed to confirm this. Finally, as 

new research emerges relating to heat acclimations ergogenic potential, female cohorts should 

be tested alongside males in a way that reflects their now similar participation and success in 

high level sport. 
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3. Methods 
 
3.1 General Overview and Design 

An overview of the study design is displayed in Figure 1. This study was approved by 

the University of Birmingham Ethics Committee, and conformed to the standards set by the 

Declaration of Helsinki. All participants were informed of the experimental procedures and 

possible risks involved in the study before their written consent was obtained. Each 

participant also completed a general exercise questionnaire and a menstrual cycle 

questionnaire. All testing procedures were completed in the environmental chamber 

laboratory in the School of Sport, Exercise and Rehabilitation Sciences building at the 

University of Birmingham. Participants performed all heat acclimation (HA) and testing 

sessions at the same time of day (± 2 hours), and at similar times to their normal training 

sessions so as not to disrupt their normal circadian rhythms (Winget et al., 1985; Reilly & 

Brooks 1986). Following preliminary procedures and familiarisations, 15-minute time trials 

were conducted in hot (40°C, 30% RH) and cool (15°C, 30% RH) conditions pre-acclimation, 

following 4-5 days HA, and following 9-10 days HA. One recovery day was taken before all 

baseline time trials, before all cool time trials (15°C, 30% RH), which coincided with a rest 

day between 5-day HA blocks, to minimise the carryover effect of fatigue. This experiment 

was conducted in the UK from April-June, when mean ambient temperatures were below 

20°C (exclusive of n = 3 days; mean daily temperatures of 23°C, 24°C, and 27°C). The 

protocol was performed in a complementary fashion to normal training sessions (i.e., weight 

training and normal conditioning such as swimming and running). Participants were asked to 

refrain from alcohol and overly strenuous sessions outside of the laboratory 48 hours before 

time trials.  
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Figure 1. Schematic diagram of the experimental protocol. VO2max tests and a minimum of 
two familiarisation trials were conducted pre-acclimation, with one day’s rest before 
beginning the protocol. Time trials were conducted in hot (HTT; 35°C, 30% relative humidity 
(RH)) and cool conditions (CTT; 15°C, 30%RH), before (1) and after short-term (4-5 days; 
(2)) plus long-term (9-10 days; (3)) heat acclimation. Heat acclimation sessions (40°C, 
30%RH) followed an isothermic protocol (where exercise intensity was manipulated for 90-
minutes to attain rectal temperatures of ~38.5°C) with permissive dehydration. There was at 
least one day’s rest between time trials.  
 
3.2 Participants 

  Seven recreational endurance athletes aged 23-35 years volunteered for and completed 

this study. An additional participant (Participant 6) volunteered, but dropped out after 

preliminary testing, and was not included in the results. All participants were familiar with 

competitive, race-style endurance events, and corresponded to performance level of 3 

according to classifications set for participants in sport-science research (De Pauw et al., 

2013), when VO2max is compared for similar female scores (Shvartz & Reibold, 1990). 

Participants were eumenhorreic or using various forms of hormonal contraceptives, including 

OCPs (oral contraceptive pill), contraceptive implant, and IUDs (intrauterine device), and did 

not report any negative premenstrual symptoms that could have affected performance during 

time trials (Giacomoni et al., 2000). All participants were previously unacclimated and had 

not been in hot conditions for the past three months. Personal characteristics are summarised 

in Table 1.  
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Table 1. Personal characteristics of participants 

Participant 
Age (years) Height (cm) 𝑉O2max 

(ml/kg/ min) 
Body mass 

(kg) 
Contraceptive 

1 32 168 40.0 54.1 OCP (Cilest) 
2 28 168 44.9 58.8 Implant  
3 25 176 42.5 64.8 Implant  
4 23 165 43.4 55.3 EU 
5 35 173 41.8 68.9 EU 
7 32 172 52.7 63.0 IUD Coil 
8 23 165 52.7 61.1 OCP (Yasmin) 
OCP, Oral contraceptive pill user (pill brand); IUD Coil, Copper coil intrauterine device; EU, 
eumenhorreic natural cycle 
 
3.3 Preliminary Testing 

3.3.1 VO2max test. During the first visit to the laboratory, participant height was 

recorded to 1 cm using a fixed stadiometer (Seca 217, Seca, Hamburg, Germany), and nude 

body mass recorded to 0.1 kg using digital scales (Seca 877, Seca, Hamburg, Germany). To 

determine VO2max, a graded exercise test was performed at room temperature (~18°C) 

 using a cycle ergometer (Sport Excalibur, Lode, Groningen, The Netherlands). During a 3-5 

minutes warm-up, power output was adjusted according to ratings of perceived exertion 

(RPE; Borg 1962), until reaching an intensity level reported as 11 (i.e. “light”). The test began 

at this self-selected intensity, and resistance was applied to the flywheel to gradually increase 

intensity by 20W/min. The test was terminated when participants reached volitional 

exhaustion and/or the cadence could no longer be maintained at 80 ± 5 rpm despite strong 

verbal encouragement. Expired air was measured using a metabolic cart (Vyntus CPX, Jaeger, 

Wuerzberg, Germany) and VO2max was determined by absolute peak VO2 relative to body 

mass. Heart rate (HR) was recorded in the final minute of each stage using a HR monitor 

(Polar Electro, Kempele, Finland). 

3.3.2 Familiarisations. Each participant completed a minimum of two familiarisation 

sessions, where they were re-briefed on the time trial protocol. Participants completed an 



	

51	

identical time trial protocol to that described below on a Velotron cycle ergometer (Velotron, 

RacerMate Inc., Seattle, WA). The familiarisations took place in cool conditions (15%°C, 

30%RH), however HR was the only measurement collected. Participants were encouraged to 

become familiar with the gearing and the pacing strategies that they would use for the time 

trials.  

 

3.4 Heat Acclimation Sessions 

Participants were instructed undertake permissive dehydration by restricting water 

intake during the acclimation sessions as well as ~30-minutes after the sessions. Upon arrival 

to the laboratory, participants voided their bladder to provide a urine sample, which was 

analysed for urine osmolality (Osmu; Osmocheck, Vitech Scientific Ltd., West Sussex, UK). 

Towel-dried, nude body mass was recorded before and immediately after each session as a 

measure of estimated sweat loss. Conditions during HA sessions were set to 40°C, 30%RH 

with a fan-generated airflow of ~3 m/s facing participants. All heat acclimation sessions and 

time trials were completed using a Velotron cycle ergometer, which was calibrated according 

to manufacturer instructions for each temperature and confirmed to exhibit < 1% deviation 

from calibration settings before each use. Following a 5-minute, self-selected warm-up, 

participants completed 15-minutes of high-intensity intervals, where maximum effort was 

given for 15-seconds, with 45-seconds of active recovery. The aim of the high-intensity 

intervals was to rapidly increase rectal temperature (Trec). This was followed by an additional 

5-minutes of self-paced active recovery, and 70-minutes of cycling at an intensity 

manipulated with the aim of further increasing Trec, and maintaining it at ~38.5°C (Patterson 

et al., 2004; Garrett et al., 2012). On days that time trials (TT) preceded HA sessions, the TTs 

were used in place of the high-intensity intervals. Time exercising under heat stress totalled 
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90 minutes, plus a 5-minute warm up, aiming to increase Trec to 38.5°C. RPE (Borg, 1962), 

Thermal Sensation, and Thermal Comfort (Toner et al., 1986) were recorded at 15-minute 

intervals during the HA sessions. Participants were instructed to refrain from fluid 

consumption as much as could be tolerated during HA sessions to induce the added stressor of 

dehydration (Garrett et al., 2014). Water bottles were weighed to 0.001 kg before and after 

HA sessions and the difference was added to estimated sweat loss. Exercise was terminated 

(zero incidences) if Trec ≥ 39.5 °C, or the participant withdrew due to volitional exhaustion, or 

the participants could no longer maintain exercise intensity despite strong verbal 

encouragement. Heat acclimation involved two, five consecutive day blocks of HA sessions 

(STHA, plus LTHA), with 1-day’s rest in between. 

Participants inserted a rectal thermistor (Mon-a-Therm, Covidien, Mansfield, MA) 10 

cm past the anal sphincter before each session to measure Trec. Skin temperature (Tsk) was 

recorded using skin thermistors (Squirrel Thermal Couples, Grant Instruments, Cambridge, 

UK) attached to four sites: the mid-point of the right pectoralis major (Tchest), midpoint of the 

triceps brachii lateral head (Tarm), right rectus femoris (Tthigh), and right gastrocnemius lateral 

head (Tlower leg). Skin and rectal thermistors were connected to a Squirrel temperature logger 

(Squirrel 2020 series, Eltek, Ltd., UK) and were recorded at 30-second intervals throughout 

HA sessions and TTs. Heart rate (Polar Electro, Kempele, Finland) was also recorded 

throughout each session. Power output and distance cycled were recorded by the Velotron 

Coaching Software (Velotron CS 2008, RacerMate Inc., Seattle, WA). 

  
3.5 Time Trials 

Participants were instructed to maintain normal hydration before each time trial, which 

was verified with an Osmu value of ≤ 700 mOsm/kg (Sawka et al., 2007). Towel-dried, nude 

body mass was recorded before and immediately after each trial as a measure of estimated 
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sweat loss. Participants lay supine for 10 minutes of stabilisation prior to each trial in order 

collect resting measures of HR, Trec, blood lactate, Haemoglobin (Hb) and Haematocrit (Hct). 

Blood lactate measures were recorded by extracting a finger-tip blood sample using an 

automated lancet (Unistik 3 Comfort, Owen Mumford, Oxfordshire, UK) and then 

immediately analysing the sample with a Lactate Plus analyser (Lactate Plus, Nova 

Biomedical, Waltham, MA). Hb and Hct were recorded using a syringe (15-mL BD Plastipak, 

BD Medical, Madrid, Spain) for venous blood draw from the antecubital vein. The blood 

sample was immediately pushed from the syringe directly onto a sample cartridge (i-STAT 6+ 

Cartridge, Abbott, Maidenhead, UK) and analysed using an i-STAT blood analyser (i-STAT 

1, Abbott, Maidenhead, UK). Hb and Hct measures were recorded for n = 3 participants. 

Supplies for measures of Hct and Hb were not yet available whilst the other participants (n = 

4) were undergoing the HA protocol. Participants entered the environmental chamber and 

commenced a 5-minute warm up at a self-selected pace, before completing a 15-minute, self-

paced time trial. Power output and distance cycled were recorded continuously by the 

Velotron Coaching Software (Velotron CS 2008, RacerMate Inc., Seattle, WA). Participants 

were aware of the time elapsed, as displayed by a stop-clock mounted to the handles of the 

cycle ergometer, however they did not have access to any other physiological or performance 

feedback (i.e., HR, power output, distance cycled, etc.) so as not to influence motivational 

factors. Participants were given equal verbal encouragement by the same researchers at 

similar time points during the trial. Free drinking was permitted during TTs, and pre- and 

post-trial water bottle mass was considered when accounting for estimated sweat loss. RPE 

and blood lactate were recorded immediately following the TTs. Participants then completed 

5 minutes of self-paced active recovery before exiting the environmental chamber.  
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Time trials were performed in cool conditions (15°C, 30%RH) pre-acclimation 

(CTT1), following STHA (CTT2), and following LTHA (CTT3). A schematic describing the 

CTTs is displayed in Figure 2. Time trials were also performed in hot conditions (40°C, 

30%RH with a fan-generated airflow of 0.30 m/s facing participants) on the first day of heat 

acclimation (HTT1), on the final day of STHA (HTT2), and on the final day of LTHA 

(HTT3; Figure 2). Ratings of Thermal Comfort and Thermal Sensation (Toner et al., 1986) 

were reported inside the environmental chamber, preceding the warm-up for HTTs, as well as 

immediately after. Sweat gland activity was also recorded immediately following HTTs. 

Active sweat glands were quantified using a modified-iodine paper technique with computer 

aided analysis (Gagnon et al., 2012). This technique involves impregnanting 100% cotton 

paper with iodine for 48 hours before use, and cutting papers of exactly the same dimensions 

(28mm diameter circle) using a craft punch. Three pre-cut papers were applied evenly to the 

dorsal forearm using a flat plastic surface for 6-seconds immediately following the HTTs. 

When the paper is applied to the skin, purple dots appear where the fluid secreted by the 

sweat glands contacts the saturated paper. Each paper was scanned at the highest resolution 

(600x600dpi) and the clearest paper was subjectively selected for analysis. The dots were then 

quantified with computer aid (ImageJ, available from the NIH at http://rsbweb.nih.gov/ij/; 

Gagnon et al., 2012). 
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Figure 2. Schematics of physiological measurements taken during time trials in cool (CTT) 
and hot (HTT) conditions.  
HR, heart rate; Trec, rectal temperature; Tsk, skin temperature; BM, body mass; RPE, rating of 
perceived exertion (Borg, 1962); Hb, haemoglobin; Hct, haematocrit; RH, relative humidity 
 
3.6 Data Analysis 
 

Mean rectal temperatures for the final 75 minutes of the session, which followed the 

15-minute high-intensity intervals, is represented by Trec75. Maximum rectal temperature 

recorded during the session (Max Trec) was used to calculate rectal temperature increase from 

rest (ΔTrec). Tsk was calculated as a weighted average according to Ramanathan (1964): 

 
Tsk = 0.3 x (Tchest + Tarm) + 0.2 x (Tthigh + Tlower leg) 

 
Estimated sweat rate relative to body surface area (SRBSA) was calculated from 

changes in nude body mass (NBM) from pre- to post-session with considerations for water 

consumed, relative to body surface area (BSA; calculated using the formula derived by Du 

Bois & Du Bois, 1916), as normalised for exercise time:  
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Estimated sweat loss (g) = (pre-trial NBM – post-trial NBM) + (water bottle pre-trial – water 
bottle post-trial) 

BSA (m2) = 0.007184 x (height0.725 x body mass0.425) 
 

SRBSA (g/h/m2) = (estimated sweat loss) / (1-hour / exercise time) / (BSA) 
 

Two values were obtained for measurements of resting blood lactate and an additional 

two values were obtained for blood lactate immediately following TTs. The results were 

averaged to yield a single value for each time point (pre- and post-trial). Extreme outliers 

falling outside the physiological range were excluded, and only the rational value was used 

(Goodwin et al., 2007; n = 3).   

Relative changes in plasma volume (n = 3) were determined using changes in the 

concentration of Hb and Hct, as described by Dill and Costill (1974). The subscripts 1 and 2 

refer to time points in chronological order. Blood volume 1 (BV1) is assumed as 100%, and 

therefore 100. 

 
Blood volume 
BV1 = 100% 

BV2 = BV1 x (Hb1/Hb2) 
 

Red blood cell volume 
CV1 = BV1 x (Hct1) 
CV2 = BV2 x (Hct2) 

 
Plasma volume 

PV1 = BV1 – CV1 
PV2 = BV2 – CV2 

 
Percent changes 

ΔBV, % = 100 x (BV2 – BV1) / BV1 
ΔCV, % =100 x (CV2 – CV1) / CV1 
ΔPV, % = 100 x (PV2 – PV1) / PV1 

 
Power output (watts) was recorded per second during TTs, and an average of each 

minute’s power output was used to calculate area under the curve (AUC; Pruessner et al., 
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2003). AUC was also calculated for Trec (recorded at 30-second intervals) during TTs in both 

environmental conditions. 

All data were analysed using SPSS statistical software (SPSS version 24.0.0, SPSS, 

Chicago, IL). To assess performance and physiological differences during STHA and LTHA, 

between HTT1, HTT2, and HTT3, and between CTT1, CTT2, and CTT3, a repeated-

measures one-way analysis of variance (ANOVA) was performed. AUC comparison of power 

output and Trec were also analysed using a one-way ANOVA. If significance was found, 

Bonferroni-corrected post-hoc comparisons were undertaken to isolate the effect. All data are 

expressed as means ± SD, and the threshold for significance was set at the p < 0.05 level for 

each analysis. 
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4. Results 
 
4.1 Heat Acclimation Sessions 

4.1.1 STHA vs. LTHA. Mean Trec75 was lower during long-term heat acclimation 

(LTHA) sessions (Days 6-10) as compared to short-term heat acclimation (STHA) sessions 

(Days 1-5; p = 0.020). No other significant physiological or psychophysical differences were 

observed between STHA and LTHA (p > 0.05). Heat acclimation (HA) results are 

summarized in Table 2. Athletes’ average RPE ratings for sessions were between 14-15 

(“Hard”), and mean power output during the sessions were not different between STHA and 

LTHA. 

Table 2. Performance, physiological, and psycho-physical responses across short-term heat 
acclimation (Days 1-5) as compared to long-term heat acclimation (Days 6-10). Data are 
presented as mean ± SD 

 STHA LTHA 
Mean Power Output (W)  108.1 ± 18.6 112.9 ± 21.6 

Mean Trec75 (°C) 38.3 ± 0.2 38.1 ± 0.2* 

Resting Trec (°C) 37.3 ± 0.4 37.2 ± 0.3 

Max Trec (°C) 38.6 ± 0.2 38.5 ± 0.2 

ΔTrec (°C) 1.3 ± 0.4 1.2 ± 0.4 

Mean HR (bpm) 149 ± 6 145 ± 7 

SRBSA
 (g/h/m2) 680 ± 138 713 ± 127 

Urine Osmolality (mmol/kg) 383 ± 91 476 ± 120 

RPE 15 ± 2 14 ± 2 

Thermal Sensation 10 ± 1 10 ± 1 

Thermal Comfort 5 ± 1 5 ± 2 
STHA, short-term heat acclimation (Days 1-5); LTHA, long-term heat acclimation (Days 6-
10); Trec, rectal temperature; Trec75, rectal temperatures recorded during the final 75-minutes of 
the session; ΔTrec, change in rectal temperature from rest; HR, heart rate; SRBSA, estimated 
sweat rate relative to body surface area; RPE, ratings of perceived exertion. *Significantly 
different from STHA (p < 0.05) 
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4.1.2 Resting measures. Resting rectal temperatures decreased across the 10 days of 

HA (main effect: p = 0.038, Table 3). Post-hoc comparisons revealed that resting Trec was 

lower following 10 (-0.26 ± 0.17 °C; p = 0.028) but not 5 days of HA (p > 0.05). 

There were not differences in HR at rest (Table 3), although there was a trend for 

improvement (p = 0.08), as 6 of 7 participants experienced a decrease in resting heart rate 

averaging 8 ± 5 bpm following 10 days of HA.  

Table 3. Resting physiological measures recorded following stabilisation at room temperature. 
Data are presented as mean ± SD 

Resting measure Pre-Acclimation Post-STHA Post-LTHA 
HR (bpm) 64 ± 10 63 ± 12 58 ± 11 
Trec (°C) 37.44 ± 0.18 37.28 ± 0.29 37.18 ± 0.26* 

STHA, following 5 days of heat acclimation; LTHA, following 10 days of heat acclimation; 
HR, heart rate; Trec, rectal temperature. 
*Significant increase from pre-acclimation (p < 0.05).  

 

Plasma volume data obtained at rest prior to HTTs (n=3), as calculated via haematocrit 

(Hct) and haemoglobin (Hb) content, showed no change (p > 0.05). Individual data are shown 

in Table 4.  
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Table 4. (A) Haematocrit and haemoglobin levels measured at rest before trials pre-
acclimation (HTT1), following 4 days of heat acclimation (HTT2), and following 9 days of 
heat acclimation (HTT3), and (B) relative percent change in plasma volume across the 
protocol. 
A. 
  HTT1 HTT2 HTT3 
 Participant   Hct (%PCV)  Hb (g/dL) Hct (%PCV)  Hb (g/dL) Hct (%PCV)  Hb (g/dL) 
 5 37 12.6 39 13.3 34 11.6 
 7 43 14.6 38 12.9 41 13.9 
 8 39 13.3 35 11.9 37 12.6 
 mean 40 13.5 37 12.7 37 12.7 
B.  

Participant 
Relative Plasma Volume Change (%) 

HTT1 ⇒ HTT2 HTT2 ⇒ HTT3  HTT1 ⇒ HTT3 
5 -8.3 24.1 13.8 
7 23.1 -11.7 8.7 
8 19.1 -8.5 9.0 

mean 11.3 1.3 10.5 
Hct, haematocrit; Hb, haemoglobin; (n = 3). 
 
 
4.2 Hot Time Trials 

4.2.1 Performance. Distance cycled during time trials in hot conditions increased 260 

m ± 150 m (3.3% ± 2.0%) from HTT1 to HTT3 (main effect: p = 0.008; Figure 3). Post-hoc 

analysis indicated that distance was greater in HTT3 (p = 0.017) as compared to HTT1, but 

not HTT2 as compared to HTT1 (p > 0.05). Additionally, distance cycled increased from 

HTT2 to HTT3 (p = 0.022; Table 5).  

  



	

61	

 
Figure 3. Distance cycled during time trials in the heat pre-acclimation (HTT1), following 4-
days heat acclimation (HTT2), and following 9-days heat acclimation (HTT3). *Significant 
increase from HTT1 (p < 0.05); †Significant increase from HTT2 (p < 0.05). 
 
Table 5. Performance measures during time trials in the heat. Data are presented as mean ± 
SD 
 HTT1 HTT2 HTT3 
Distance (km) 7.85 ± 0.50 7.95 ± 0.46 8.11 ± 0.54*† 
Average power (W) 174.1 ± 28.9 179.0 ± 26.8 189.4 ± 32.8*† 
Peak power (W) 225.6 ± 37.9 237.7 ± 52.1 268.0 ± 58.8*† 
HTT1, pre-acclimation trial; HTT2, trial following 4-days heat acclimation; HTT3, trial 
following 9-days heat acclimation. *Significant increase from HTT1; †Significant increase 
from HTT2 (p < 0.05). 
 

These results were paralleled by mean power output across the HTTs (main effect: p = 

0.004). Post hoc analysis revealed that improvements were attained in HTT3 as compared to 

HTT1 (+15.3 W ± 8.7 W (+8.8% ± 5.4%); p = 0.015), but not in HTT2 as compared to HTT1 

(p > 0.05; Table 5). Additionally, power output during HTT3 was greater than in HTT2 

(+10.4 W ± 7.4 W (+5.8% ± 4.1%); p = 0.040). AUC for power output during HTTs were 

calculated from minute averages (Figure 4) and a main effect was observed between HTTs (p 

= 0.005). Post hoc comparisons revealed that power output AUC during HTT3 was greater 

than in HTT1 (p = 0.016) and showed a trend towards increases from HTT2 (p = 0.057). 
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Power output AUC was not different between HTT1 and HTT2 (p > 0.05). Peak power output 

also increased as a result of LTHA (main effect; p = 0.028), with post hoc comparisons 

revealing that increases were observed in HTT3 in comparison to HTT2 (p > 0.05; Table 5). 

All significant performance improvements from HTT1 were observed during HTT3 only.  

 
Figure 4. Power output during 15-minute time trial in hot conditions (40°C, 30% RH) 
performed pre-acclimation (HTT1), following 4-days heat acclimation (HTT2), and following 
9-days heat acclimation (HTT3). Each data point is an average of the preceding minute. *Area 
under curve (AUC) significantly different from HTT1 (p < 0.05). 
 
 Power output during the time trial was also separated into the start, middle, and “end-

spurt”, which consisted of minute 0-2, minute 2-13, and minute 13-15, respectively (Figure 

5). There was a main effect observed between the starting segments of the HTTs (p = 0.039), 

with an increase in power output of 29.8 W ± 28.8 W (20% ± 17%) at the start of HTT1 as 

compared to the start of HTT3, however post-hoc analysis could not locate the location of the 

differences.  

There was a main effect between mean power outputs during the middle portion of the 

HTTs (p = 0.011; Figure 5). Post-hoc comparisons revealed that power output during the 

middle of HTT3 was greater than in the middle of HTT1 (+12.8 W ± 9.2 W (+8% ± 6%); p = 

*	
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0.03), but not HTT2 as compared to HTT1 (p > 0.05). There was a main effect between mean 

power outputs during the end-spurt of the HTTs (p = 0.006; Figure 5). Post-hoc analysis 

indicated that power output during the end spurt was greater in HTT3 as compared to HTT1 

(+13.6 W ± 4.4 W (+7% ± 2%); p = 0.001), but not HTT2 as compared to HTT1 (p > 0.05). 

 

 

 
Figure 5. Mean power output during of start, middle, and “end-spurt” of time trials in hot 
conditions performed pre-acclimation (HTT1), following 4-days heat acclimation (HTT2), 
and following 9-days heat acclimation (HTT3). Data are an average of power output during 
minutes 0-2, minutes 2-13, and minutes 13-15. *Significant increase from HTT1 (p < 0.05); 
†Significant increase from HTT2 (p < 0.05). 
 

4.2.2 Thermoregulatory. There were no statistically significant differences in rectal 

temperatures during the HTTs (Figure 6). Mean and maximum skin temperatures (Tsk) during 

HTTs were not affected by HA (p > 0.05; Table 6).  
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Figure 6. Rectal temperature recorded at 30-second intervals during time trials in hot 
conditions pre-acclimation (HTT1), following 4-days heat acclimation (HTT2), and following 
9-days heat acclimation (HTT3).  
  

4.2.3 Cardiovascular. There were no significant differences in HR during TTs in hot 

conditions (Table 6; p > 0.05). 
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Table 6. Physiological measures recorded during time trials in hot conditions. Data are 
presented as mean ± SD 
 HTT1 HTT2 HTT3 
Thermoregulatory    

Mean Trec (°C) 37.64 ± 0.23 37.69 ± 0.32 37.54 ± 0.28 
Max Trec (°C) 38.03 ± 0.29 38.07 ± 0.32 38.09 ± 0.46 
ΔTrec (°C) 0.88 ± 0.50 0.91 ± 0.33 1.04 ± 0.65 
Mean Tsk (°C) 33.86 ± 2.09 34.02 ± 1.18 34.06 ± 1.00 
Max Tsk (°C) 34.97 ± 0.59 34.75 ± 0.65 34.81 ± 0.47 

Cardiovascular    
Mean HR (bpm) 167 ± 14 164 ± 9 167 ± 12 

Sudomotor response    
SRBSA (g/h/m2) 613 ± 105 676 ± 252 772 ± 114* 
Sweat loss (%BW) 2.6 ± 0.5 2.8 ±1.0 3.2 ± 0.5* 
Active sweat glands/sq. inch 395 ± 135 422 ± 153 494 ± 157*† 

Blood lactate     
Pre-Test (mmol/L) 1.2 ± 0.7 1.0 ± 0.4 1.0 ± 0.5 
Post-Test (mmol/L) 11.8 ± 3.6 11.9 ± 2.0 13.4 ± 2.1 

HTT1, pre-acclimation trial; HTT2, trial following 4-days heat acclimation; HTT3, trial 
following 9-days heat acclimation.  
Trec, rectal temperature; ΔTrec, change in rectal temperature during trial; Tsk, weighted mean 
skin temperature; HR, heart rate; SRBSA, estimated sweat rate relative to body surface area; 
Sweat Loss BSA, estimated sweat loss during trial relative to body surface area. 
*Significant increase from pre-acclimation trial (p < 0.05); †Significant increase from HTT2 
(p < 0.05). 

 

4.2.4 Sudomotor. There were no significant differences in measures of sudomotor 

activity following STHA. Sudomotor activity was elevated following LTHA, as demonstrated 

by an increased estimated sweat rate relative to body surface area (SRBSA) from HA Day 1 

(613 ± 105 g/h/m2) to HA Day 10 (772 ± 114 g/h/m2; p = 0.018), as well as estimated sweat 

loss relative to percent body mass (2.6 ± 0.5% to 3.2 ± 0.5%; p = 0.034). Active sweat gland 

density during HTTs also increased following LTHA, from 395 ± 135 active sweat glands/sq. 

inch immediately following HTT1 to 494 ± 157 active sweat glands/sq. inch immediately 

following HTT3 (p = 0.016); with post-hoc analysis locating the difference to be between 

HTT2 and HTT3 (p < 0.01; Figure 7). Results are summarized in Table 6.  
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Figure 7. Example of sweat gland activity measured immediately following trials a) pre-
acclimation (HTT1), b) following 4 days of heat acclimation (HTT2), and c) following 9 days 
of heat acclimation (HTT3). Bottom row images are scanned copies of iodine-cotton paper 
applied to participant’s skin. Top row of images are the same images following computer 
processing (ImageJ, available from the NIH at http://rsbweb.nih.gov/ij/; Gagnon et al., 2012). 
 
 

4.2.5 Blood Lactate. There were no differences in blood lactate across HTTs at rest or 

immediately following any of the HTTs (p > 0.05), although blood lactate did increase from 

pre- to post-HTT (p < 0.01; Table 6).  

4.2.6 Psychophysical. Mean RPE ratings at the end of HTTs were 18 ± 1 (HTT1), 18 

± 1 (HTT2), and 19 ± 1 (HTT3). This confirms all participants gave a maximal effort during 

performance test and that the effort given was not different between tests (p > 0.05). 

Psycho-physical ratings of thermal comfort and thermal sensation (Toner et al., 1986) 

did not change across the heat acclimation protocol (Table 7; p > 0.05). 

  

a)																																																				b)		 	 	 	 							c)	

|																																																				|	



	

67	

Table 7. Thermal comfort and thermal sensation ratings reported immediately before and after 
each time trial in hot conditions. Data are presented as mean ± SD 

 HTT1 HTT2 HTT3 
Thermal comfort    

Pre-Test 2 ± 2 2 ± 1 2 ± 1 
Post-Test 5 ± 1 5 ± 2 4 ± 2 

Thermal sensation    
Pre-Test 9 ± 1 9 ± 1 8 ± 1 
Post-Test 10 ± 1 10 ± 1 10 ± 1 

HTT1, pre-acclimation time trial; HTT2, time trial following 4-days of heat acclimation; 
HTT3, time trial following 9-days of HA. 
 
 
4.3 Cool Time Trials 
 
 4.3.1 Performance. Participants cycled 210 ± 150 m (2.4% ± 2.3%) further in CTT3 

than in CTT1 (8.21 ± 0.52 m vs. 7.99 ± 0.64m, respectively; main effect: p = 0.039; Figure 8). 

Post-hoc comparisons revealed that improvements were only observed following LTHA (p = 

0.038), with no improvement in distance cycled from CTT1 to CTT2 (p > 0.05; Table 8).  

 
Figure 8. Distance cycled during cool time trials (15°C, 30% RH) pre-acclimation (CTT1), 
following 5-days heat acclimation (CTT2), and following 10-days heat acclimation (CTT3). 
*Significant increase from CTT1 (p < 0.05) 
 



	

68	

Table 8. Performance measures during trials in the cool conditions (CTT; 15°C, 30% RH). 
Data are presented as mean ± SD 
 CTT1 CTT2 CTT3 
Distance (km) 7.99 ± 0.64 8.09 ± 0.55 8.21 ± 0.52m* 
Average power (W) 183.6 ± 37.0 187.7 ± 33.7 194.4W ± 31.5* 
Peak power (W) 247.0 ± 50.8 247.7 ± 56.9 278.0 ± 68.4 
CTT1, pre-acclimation trial; CTT2, trial following 5-days heat acclimation; CTT3, trial 
following 10-days heat acclimation. *Significant increase from HTT1 (p < 0.05). 
 

Mean power output increased 10.7 W ± 7.7 W (6.8% ± 5.1%) from CTT1 (183.6 W ± 

37.0 W) to CTT3 (194.4 W ± 31.5 W; main effect: p = 0.034). Post-hoc tests revealed 

differences between CTT1 and CTT3 (p = 0.040), but mean power output was not increased 

in CTT2 in comparison to CTT1 (p > 0.05). There was no effect of heat acclimation on peak 

power output, although a trend towards an increase was observed (p = 0.058; Table 8). AUC 

for power output during CTTs was calculated from minute averages (Figure 9) and a main 

effect was observed between CTTs (p = 0.033). Post-hoc analysis indicated an increase in 

AUC in CTT3 in comparison to CTT1 (p = 0.034), but not for CTT2 as compared to CTT1 (p 

> 0.05).  
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Figure 9. Power output during 15-minute time trials in cool conditions (15°C, 30% RH) 
performed pre-acclimation (CTT1), following 5-days heat acclimation (CTT2), and following 
10-days heat acclimation (CTT3). Each data point is an average of the preceding minute. 
*Area under the curve (AUC) different from CTT1 (p < 0.05). 
 
 There was no significant difference between the start, middle, and “end-spurt” 

segments of any CTT (main effect: p > 0.05; Figure 10). However, there was a trend towards 

a main effect of mean power output between the start portion of CTTs (p = 0.087), as well as 

a trend for a main effect of mean power output between the middle portion of CTTs (p = 

0.051). 

*	
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Figure 10. Mean power output during of start, middle, and “end-spurt” of time trials in cool 
conditions (15°C, 30% RH) performed pre-acclimation (CTT1), following 5-days heat 
acclimation (CTT2), and following 10-days heat acclimation (CTT3). Data is an average of 
power output during minute 0-2, minute 2-13, and minute 13-15. 
 
 

4.3.2 Thermoregulatory. AUC for rectal temperature during CTTs was calculated 

from 30-second measurements (Figure 9) and a main effect was observed between CTTs (p = 

0.049). Post-hoc analysis indicated an increase in AUC in CTT3 in comparison to CTT1 (p = 

0.034), but not for CTT2 as compared to CTT1 (p > 0.05; Figure 11). Mean and maximum 

skin temperatures during CTTs were not affected by HA (p > 0.05; Table 9).  
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Figure 11. Rectal temperature recorded at 30-second intervals during cool time trials (15°C, 
30% RH) pre-acclimation (CTT1), following 5-days heat acclimation (CTT2), and following 
10-days heat acclimation (CTT3). *Area under the curve (AUC) different from CTT1 (p < 
0.05). 
 
Table 9. Physiological measures recorded during time trials in cool conditions (CTT; 15°C, 
30% RH). Data are presented as mean ± SD 
 CTT1 CTT2 CTT3 
Thermoregulatory    

Mean Trec (°C) 37.9 ± 0.3 37.6 ± 0.3 37.6 ± 0.2 
Max Trec (°C) 38.3 ± 0.4 38.1 ± 0.3 38.0 ± 0.3 
ΔTrec (°C) 0.8 ± 0.3 0.8 ± 0.3 0.8 ± 0.3 
Mean Tsk (°C) 28.5 ± 1.2 27.8 ± 1.2 28.1 ± 0.8 
Max Tsk (°C) 29.1 ± 1.0 28.6 ± 1.1 28.8 ± 0.7 

Cardiovascular    
Mean HR (bpm) 167 ± 14 167 ± 11 167 ± 11 

Sudomotor response    
Sweat loss BSA (g/m2) 272 ± 46 -- 259 ± 50 

Blood lactate     
Pre-Test (mmol/L) 1.4 ± 0.5 1.4 ± 0.5 1.9 ± 0.4 
Post-Test (mmol/L) 13.2 ± 1.9 13.5 ± 2.3 12.7 ± 3.0 

CTT1, pre-acclimation trial; CTT2, trial following 5-days heat acclimation; CTT3, trial 
following 10-days heat acclimation.  
Trec, rectal temperature; ΔTrec, change in rectal temperature during trial; Tsk, weighted mean 
skin temperature; HR, heart rate; SRBSA, estimated sweat rate relative to body surface area; 
Sweat Loss BSA, estimated sweat loss during trial relative to body surface area. 
*Significant increase from pre-acclimation trial (p < 0.05); †Significant increase from HTT2 
(p < 0.05). 
 

4.3.3 Cardiovascular. Heart rate was similar during CTTs (Table 9; p > 0.05). 

*	
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4.3.4 Sudomotor. There were no differences in measures of sudomotor activity during 

CTTs. Results are summarized in Table 9. 

4.3.5 Blood lactate. There were no differences in blood lactate across cool time trials 

at rest or immediately following any of the CTTs (p > 0.05), although as expected blood 

lactate did increase from pre- to post-CTT (p < 0.01; Table 9). 

4.3.6 Psychophysical. RPE scores were reported immediately following CTT1 (18 ± 

1), CTT2 (19 ± 1), and CTT3 (19 ± 1). This confirms all participants gave a maximal effort 

during performance test, but effort given was not different between tests (p > 0.05).   
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5. Discussion 
 
 

This study was designed to determine whether females could achieve the performance 

improvements in hot conditions following STHA that have been observed in males, or 

whether LTHA is required. This study also aimed to investigate whether the ergogenic 

endurance performance effects of HA that has been observed in males could also be observed 

in females. Heat acclimation (HA) was undertaken using two, 5-consecutive day bouts of 90-

minute isothermic HA sessions. In females, STHA did not significantly improve time-trial 

performance; however, LTHA resulted in performance improvements TTs in hot and cool 

conditions, with a lower rectal temperature observed in CTT3. Significant sudomotor 

adaptations were observed in hot conditions following LTHA, including increased sweat rate 

and sweat gland activity. These adaptations, in union with a decrease in resting core 

temperature and a trend for a decrease in resting heart rate, contributed to an augmented 

performance in both conditions. These results were consistent with the study hypothesis, 

which predicted that females would require a greater heat stress stimulus than is typically 

administered using a STHA protocol in order to make the physiological adaptations needed to 

transfer to performance enhancements in the heat, and that these performance enhancements 

would also be observed in cool conditions.  

 

5.1 Heat Acclimation for Performance 

5.1.1 Short-term heat acclimation. There were no performance improvements in 

distance cycled or mean or peak power output observed in either hot or cool conditions 

following STHA. There was also no change in rectal or skin temperature, heart rate, sweat 

rate, blood lactate, thermal comfort or thermal sensation at rest or during time trials following 

STHA. Collectively, these data indicate that the lack of physiological adaptations to heat 
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stress in females following STHA documented in our study and in the literature (Mee et al., 

2015) are reflected in endurance performance. The significant improvement from STHA to 

LTHA in this study is in stark contrast to findings in male cohorts observed by Gibson and 

colleagues (2015). They found that males had no significant additional physiological 

adaptations following LTHA, and that a STHA protocol was sufficient to attain stable 

acclimation when an isothermic protocol was used (as was used in the current study). This has 

been reflected in a number of studies on male cohorts, where males have been observed to 

improve a range of endurance performance measures in the heat following STHA (Garrett et 

al. 2012; Costa et al., 2012; Chen et al., 2013; Best et al. 2013, Racinais et al. 2015, Gibson et 

al. 2015, James et al. 2016, Willmott et al. 2016 and Peterson et al. 2010).  

Two participants may have been exposed to additional heat stimulus during STHA, as 

mean daily ambient temperatures for the Birmingham, UK area reached 23°C, 24°C, and 

27°C on days that they were undergoing STHA. Regardless, as there were no significant 

improvements in any measure following STHA, this additional stimulus did not appear to be 

enough to drive additional adaptations or influence our results.   

Although the performance results mirrored the timeline of mechanistic adaptations 

observed by Mee and colleagues (2015), it is possible that the environmental conditions 

selected for the heat acclimation sessions may not have been stressful enough to elicit 

adaptations and performance improvements following STHA.  

Maximum Trec for HA sessions was ~38.5°C, though this was not the rectal 

temperature that was maintained for the majority of the sessions (Mean Trec75 was ~38.1-

38.3°C). This is slightly lower than what was desired and what is normally maintained during 

isothermic protocols (typically maintained at ≤ 38.5°C). This may not have been sufficient to 
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induce adaptations, indicating a possible explanation for the lack of significant performance 

improvements following STHA.  

 

5.1.2 Long-term heat acclimation. The increase in overall mean power output as a 

result of LTHA was significant in hot conditions (p < 0.01), indicating a meaningful 

improvement in this performance measure. This improvement was confirmed using area 

under the curve, which allowed us to compare pacing during time trials and showed that 

power output was significantly elevated throughout the time trial (p < 0.05; see Figure 4). 

Additionally, when comparing the mean power output of minutes 3-13 of the HTTs (which 

excludes starting pace and end spurt), participants had a significantly higher power output in 

HTT3 than HTT1, indicating that heat acclimation improved participants’ ability to maintain 

pace when working aerobically in the heat, which is well documented in male cohorts (Costa 

et al., 2012; Chen et al., 2013; Best et al., 2013; Racinais et al., 2014; Gibson et al., 2015; 

James et al., 2016; Willmott et al., 2016).  

Significant improvements in power output during the “end spurt” of the final minute 

of HTT3 alongside increases in peak power output (relative to HTT1) may be attributed to the 

high-intensity intervals that were incorporated into the HA sessions, as heat acclimation 

adaptations may be specific to the type of exercise done during HA (Wingfield et al., 2016). 

The stimulation of the m-TOR pathway by maximal efforts under heat stress may also 

underlie improvements in peak power output in HTT3 (Kakigi et al., 2011; Yoshihara et al., 

2013). This type of mixed-intensity HA may be an efficient way to heat acclimate athletes for 

self-paced events in the heat that require both aerobic stability and spurts of maximal effort, 

which is typical of many race-type scenarios (i.e. triathlon, cycling, etc.). 
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The 8.8% improvement in power output observed in HTT3 following LTHA is 

comparable to that observed in male cohorts in hot conditions. Keiser et al. (2015) showed 

that male participants experienced a 10% improvement in power output during a 30-min TT 

following HA, and Lorenzo and colleagues (2010) found that male participants had an 8% 

improvement during a 1-h TT following HA.  

However, changes in mean power output do not always proportionally translate to 

distance covered during TTs, as pacing and cadence also contribute. Distance cycled 

increased on average ~260 m (3%) in HTT3 from HTT1. Although the range of performance 

results were relatively large (7.09 - 8.75 km in HTT1, 7.39 - 9.08 km in HTT3; 6.96 - 8.99 km 

in CTT1, 7.36 - 9.02 km in CTT3), the ability of participants to successfully improve 

performance following heat acclimation was not related to initial time trial results. For 

example, the participant that scored the lowest (7.09 km) in HTT1 improved ~6% (440 m) in 

HTT3, and the participant that scored the highest in HTT1 (8.75 km) improved ~4% (330 m). 

Both of these scores were above the mean improvement of 3%. Additionally, performance 

improvements following heat acclimation were unlikely to be related to participants’ VO2max. 

Therefore, performance improvements in hot conditions following acclimation are achievable 

for females falling within a 𝑉O2max range of 40.0 mL/min.kg-1 to 52.7 mL/min.kg-1, which is 

typically classified as being recreationally or moderately fit.  

Every participant was able to successfully increase their distance cycled in cool 

conditions following LTHA (CTT3). This is in agreement with the hypothesis that 10-days 

heat acclimation can be used as an ergogenic aid in females. Female athletes aiming to 

improve their performance in an upcoming event should therefore consider heat acclimation 

as a complementary segment to their preparation. Even the lowest recorded performance 

improvement in this cohort (0.3% or 30 m) is meaningful in a short 15-minute performance 
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test, especially for athletes competing in endurance sport where fractions of a second can 

separate placing and qualifying times. Although this protocol was deemed “long-term”, 10-

days is not synonymous with what is normally thought of as being a long-term training 

intervention. The performance improvements observed in cool conditions following a 

protocol that can be completed in under two weeks should not be overlooked.  

The 6.8% improvement in mean power output in CTT3 is similar to the 6% observed 

by Lorenzo et al. (2010) in a mostly male cohort completing a 1-h TT in 13°C conditions. 

This indicates that females undertaking a LTHA protocol can expect to experience 

performance enhancements in cool conditions similar to that of their male counterparts. 

Analysis of the start, middle, and end spurt did not reveal any segment of the CTT to be a 

statistically significant source for improvement (p > 0.05). However, the trend for an increase 

in power output during the middle of CTT3 (p = 0.051), as well as the trend for an increase in 

peak power output across CTT3 (p = 0.058), indicates that although the augmented power 

output during the “steady state” or aerobic portion of the trial may be responsible for the 

majority of the overall improvement, other mechanisms which increase muscle strength or 

anaerobic performance, such as m-TOR pathway stimulation by heat stress (Kakigi et al., 

2011; Yoshihara et al., 2013), may play a role in improving endurance performance in cool 

conditions.  

It is possible that there was a training and/or learning effect in TT performance 

induced independently of HA. Participants were completing all sessions on the Velotron cycle 

ergometer and increased familiarity with the equipment and the test is possible (Nybo & 

Lundy, 2016). However, it seems unlikely that there was a learning effect, as a minimum of 

two familiarisation time trials were undertaken before commencing the protocol, and trials 

following STHA would have been the forth (HTT2) and fifth (CTT2) time that the 



	

78	

participants completed the 15-minute time trial. In spite of this experience, there was no 

performance improvement following STHA. However, the lack of a comparative control 

cohort makes it difficult to decisively exclude the possibility of a training effect, even for a 

protocol involving only ten training sessions. 

The range in improvements in distance cycled in CTT3 in comparison to CTT1 (0.3-

5.7%), provides evidence for the theory that there may be high and low responders to heat 

acclimation, and that responses could be dependent on the individual’s balance of 

haemoconcentration and plasma volume (Racinais et al., 2012). Two participants experienced 

minor improvements (0.3%) in CTT3, whilst two experienced relatively large performance 

improvements (~6%). The remainder scored very close to the mean of 2.7% improvement. 

When applying HA to an athlete’s training protocol, their individual responses should be 

considered when predicting their expected performance outcomes.  

Although there is a mixed consensus in the literature concerning the utilisation of HA 

as an ergogenic aid, all previous investigations have been undertaken on male cohorts. It has 

been generally agreed that HA can be an effective training component for performance in cool 

conditions for trained, moderately-trained, and team sport athletes; although its effectiveness 

for elite level endurance athletes is highly contested (Nybo & Lundy, 2016). Sub-elite athletes 

can benefit from the plasma volume expansion known to follow heat acclimation, as their 

blood volume is not maximally expanded within the optimal limits to avoid excessive 

haemodilution (Schmidt, 1988; Hopper et al. 1988; Luetkemeier & Thomas, 1994). This 

determines that these athletes have a greater potential for performance augmentation resulting 

from the plasma volume expansion and cardiovascular stability that typically follows HA 

(Sawka et al., 2011; Minson & Cotter, 2016). The results of the present study provide further 
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evidence for this theory and for heat acclimation’s effectiveness as an ergogenic aid for sub-

elite athletes by demonstrating performance improvements in female endurance athletes. 

A consideration when evaluating these results is that high intensity exercise bouts 

were often implemented to drive a rise in Trec, especially during LTHA sessions, and 

participants were consistently rating sessions as between 14-15 on the RPE scale (Borg, 

1962), or “Hard”. Anecdotal feedback from the participants indicated that they felt fatigued 

from the intensity of the HA protocol and that the single day’s rest between sessions and time 

trials was insufficient to alleviate factors of soreness and general exhaustion. This may have 

caused the positive effects of HA on performance during the final time trials to be 

underestimated. Furthermore although, the 15-minute time trial was a reliable test time length 

(Hickey et al., 1992), the extent of the pre-acclimation detriments in HTT1 caused by heat 

stress and post-acclimation benefits (heart rate and temperature adaptations) in HTT3 may not 

be as prominent as that observed in more prolonged efforts (i.e., 30-60 minutes). Therefore, 

the performance benefits reported in the heat may be underestimated for endurance events 

longer than 15 min. 

 Additionally, this study did not control for menstrual cycle. Studies on lesser trained 

cohorts have led to the general recommendation that investigations involving females should 

control for menstrual cycle and hormonal contraception (Avellini et al. 1979; Stephenson & 

Kolka, 1993; Kolka & Stephenson, 1997; Tenaglia et al. 1999; Janse de Jonge et al. 2012). 

However, in light of recent investigations concluding that performance under heat stress is not 

affected by menstrual cycle in trained female athletes (Lei et al., 2017), we did not control for 

menstrual cycle. Furthermore, it has been suggested that the combined monophasic pills that 

were used by participants in this study are unlikely to have a significant effect on temperature 

regulation and performance (Stachenfeld et al., 2000; Burrows & Peters, 2007; Joyce et al., 
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2013). Participants were randomised in their phases, with both eumenhorreic participants 

being in opposite phases and both oral contraceptive pill users being in opposite phases. None 

of the other three participants (contraceptive implant or copper IUD) were menstruating. 

Despite this, it is possible that there could have been some effect of menstrual cycle and 

hormonal contraceptives on performance. 

 

5.2 Physiological Adaptations to Heat Acclimation 

5.2.1 Core & Skin Temperatures. As hypothesised, LTHA was required to observe a 

significant drop in resting rectal temperatures in females. This drop in resting rectal 

temperature contributed to a lower rectal temperature sustained throughout the time trial in 

cool conditions, however only following LTHA (CTT3). STHA, using a standard isothermic 

protocol, was an insufficient stimulus to drive this classic thermoregulatory adaptation 

(Sawka et al., 2011). It is well documented that males can achieve these desired reductions in 

body temperature after only completing a STHA protocol (< 7 days; Garrett et al., 2011, 

2012; Chen et al., 2013; Best et al. 2013, Racinais et al. 2014, Gibson et al. 2015). However, 

consistent with Mee and colleagues (2015), findings from the current study indicated that 

females may require additional stimulus and a longer ~10-day protocol in order to similarly 

alleviate thermoregulatory strain.  

It was important for performance to be evaluated alongside mechanistic adaptations, 

as the lack of thermoregulatory adaptations observed in STHA by Mee and colleagues (2015) 

can only imply, not confirm, performance outcomes. For example, Sunderland and colleagues 

(2008) observed a 33% improvement in intermittent running performance times following 4-

days HA in the absence of differences in Trec and HRpeak. This highlights that a reduction in 

core temperature is an indirect outcome of the underlying physiological adaptations of the 
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thermoeffectors, and does not necessarily solidify this marker as an explicit requirement for 

performance improvement (Nybo & González-Alonso, 2015). Likewise, our results indicated 

that core temperatures reaching similarly high levels during all time trials in hot conditions 

did not appear to be limiting performance improvements following LTHA, although the full 

effects of core temperature adaptations may have been underestimated and may be more 

prominent in a longer time trial. 

Assuming that females are typically smaller than males, size differences often 

contribute to sex differences in metabolic heat production during an isothermic protocol, 

which may be a source of the temporal differences observed in attaining adaptations to 

chronic heat stress (Gagnon & Kenny, 2012; Jay & Cramer, 2014). Men, who are typically 

larger and carry more muscle mass, require greater internal heat production to reach the 

typical 38.5°C core temperature threshold of an isothermic protocol, leading to a greater 

stimulus (Jay & Cramer, 2014). However, while isothermic protocols do not account for body 

mass, they still provide the highest relative intensity and stimulus for the individual within the 

ethical safety limits set by core temperatures. The typically smaller females cannot attain a 

greater stimulus by further increasing exercise intensity, as they are limited by their rising 

core temperature. To match their stimulus, (larger) males would need to reduce the intensity 

of their HA sessions, which is not ideal when investigating a practical and applicable protocol 

that aims to maximise heat as a stimulus. This is problematic for female athletes, who are also 

aiming to maximise the benefits of HA, and requires them to instead lengthen their sessions to 

be under heat stress for longer to attain the same thermoregulatory adaptations as men 

following STHA (Mee et al., 2017).  

Reductions in core temperature are facilitated by adaptations of the thermoeffector 

responses, including vasomotor and sudomotor activity. As the body fights for equilibrium of 
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the heat balance equation, the thermoeffector response adapts in three ways: 1) earlier 

initiation of the thermal effector responses (i.e. vasodilation and sweating); 2) an increase in 

responsiveness to thermal changes in the body (i.e. a greater response initiated for a lesser 

temperature disturbance), and 3) the thermal effectors become more efficient by dissipating 

the same amount of heat at a lower grade of effector response (Gisolfi & Wenger, 1984; 

Gagnon & Kenny, 2012). Therefore, sex hormones and their effect on vasodilation 

(Charkoudian et al., 2016), as well as differences in female sudomotor activity described 

above in Section 2.5.4, (e.g. reduced evaporative capacity and peripheral modulation of 

sweating (Gagnon & Kenny, 2012)) may also influence thermoeffector adaptations. This may 

subsequently contribute to the observed differences in core temperature adaptations following 

STHA.  

Although it was suggested above that it is unlikely that menstrual cycle or hormonal 

contraceptives had an effect on performance results, female sex hormones are known to affect 

measures of thermoregulation, and the validity of the more mechanistic results, such as body 

temperatures, cardiovascular adaptations, and sudomotor activity, could be questioned (Lei et 

al., 2017).  

Mean skin temperatures were not significantly different across HTTs (all ~34°C, see 

Table 6), indicating that participants were experiencing similar demands for skin blood flow 

in each HTT (Smith & Johnson, 2016). Despite these high demands, participants were able to 

perform better in the final trial in hot conditions (HTT3). This may be as a result of plasma 

volume expansion enabling the cardiovascular system to direct blood flow to meet these 

demands, whilst also providing more oxygen to the brain and active muscles, which would 

have been compromised in the unacclimated state (Rowell, 1974; Neilson & Nybo, 2003; 
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Nybo & Secher, 2004). However, as measurements for the calculation of plasma volume (n = 

3) were insignificant, this is only speculative.  

 

5.2.2 Cardiovascular. Six of seven participants experienced a drop in resting heart 

rate following LTHA, and an overall trend was observed (p = 0.08). This was not observed 

following STHA (p > 0.05), providing further evidence of the longer or more intense protocol 

required to acclimate females.  

Again, we speculate that the trend for a reduction in heart rate at rest was facilitated by 

plasma volume expansion and an increased stroke volume (Senay, 1986). However, it should 

be considered that resting heart rate was measured following stabilisation in the laboratory 

instead of immediately after waking up in the morning, and an anticipatory response of the 

time trial that was to follow may have impacted results. This methodological design likely 

impacted the accuracy in reporting a true “resting heart rate”, and could explain why only 6 of 

7 participants experienced a drop in resting heart rate following a full LTHA protocol. This 

also may have interfered with detection of a possible drop in resting HR following STHA. 

Additionally, a major limitation of this study is that there were only seven participants. A lack 

of power may explain why some of the expected physiological adaptations were observed 

only as trends, if at all.  

Although peak and mean heart rate during exercise were unchanged in all CTTs and 

HTTs (p > 0.05), the workload was not standardised. It is likely that cardiovascular stability 

following LTHA contributed to the improvement in time trial performances in both 

conditions, especially during the middle segment HTT3, when participants were cycling at a 

submaximal pace. Submaximal performance in the heat pre-acclimation is known to be 

limited by the poor ability to meet flow demands of both the skin and the active muscles 
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(Rowell, 1974; González-Alonso et al., 1998; Nybo et al., 2014), which is improved with 

acclimation (Wyndham et al., 1976). 

 

5.2.3 Sudomotor activity. In the current study, sweat rates in hot conditions were not 

significantly increased following STHA, but were significantly increased following LTHA. 

This timeline of sudomotor adaptation was in accordance with the hypothesis, although it was 

not in accordance with data recorded by Mee et al., (2015). Mee et al., (2015) observed 

increases in sweat rate following STHA, and also observed increases of a greater magnitude 

following LTHA. Participants in this study exhibited sweat rates of 613 ± 105 g/h/m2 pre-

acclimation (HTT1), and 772 ± 114 g/h/m2 following LTHA (HTT3), whilst participants 

investigated by Mee and colleagues exhibited sweat rates of only 326 ± 156 g/h/m2 before 

improving to reach 798 ± 229 g/h/m2 following LTHA. The higher pre-acclimation sweat 

rates observed in our study possibly indicate a higher training status in our participants prior 

to acclimation. However, as we measured sweat rates whilst employing a maximal effort time 

trial, it is difficult to compare to the fixed-workload submaximal test used by Mee et al. 

(2015). Some of these differences could also be attributed to differences in methodological 

design between our study and that of Mee and colleagues (2015). Our study was designed 

with the foremost aim of investigating endurance performance augmentations during self-

paced time trials, so workloads were not standardised. Sweat rates during the sessions were 

assumed to be driven by internal temperature changes (Nadel et al. 1971; Gisolfi & Wenger, 

1984; Wenger et al. 1985), which were similar during our isothermic protocol, however 

without a standardized workload, mechanistic changes across HA cannot be confirmed. 

Although insignificant, there was an increase in mean power output from HA day 1 to HA 
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day 10, which could have been partially responsible for the increase in sweat rate observed 

here.  

High sweat output during heat acclimation sessions is required for meaningful 

sudomotor adaptations (Buono et al, 2009). We are confident that the sweat rates recorded 

during HA sessions were enough of a stimulus to elicit a sudomotor adaptation. The ~600-800 

g/h/m2 recorded during HA sessions in our cohort far surpasses the ~200-400 g/h/m2 recorded 

by Mee and colleagues (2015) during HA sessions in their female cohort. Despite this, 

participants studied by Mee and colleagues (2015) more than doubled their sweat rate during 

the submaximal running heat tolerance tests following 10-days HA, whilst our cohort did not 

achieve an adaptation of quite the same magnitude following LTHA (~25% increase). 

An auxiliary detail of our protocol was the undertaking of voluntary dehydration 

during HA sessions, which was not included in the study by Mee and colleagues (2015). The 

usefulness of voluntary dehydration as an added stimulus for HA has been questioned in 

recent studies by Neal and colleagues (2016a, b). The core temperature threshold for sweating 

onset (Montain et al., 1995) and the thermoeffector’s sensitivity to changes in core 

temperature (Gonzalez-Alonso et al., 2000, Montain et al., 1995) are both impaired by 

dehydration. Given that maximising sweating during HA sessions is critical for initiating 

adaptation (Buono et al., 2009), dehydration during HA may have subsequently reduced the 

stimulus for sudomotor adaptation during our study (Armstrong & Maresh, 1991). 

There was no change in sweat rate during CTTs, which is likely due to the 15-minute 

duration of the trial in 15°C, 30% RH being too short to drive a strong enough thermal 

stimulus for a significantly different thermoeffector response (Gagnon & Kenny, 2012), 

especially as the effector response may be graded and may employ vasodilation prior to 

sweating to correct for lower levels of thermal disturbance (Bligh et al., 2006).  
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We observed an increased density of active sweat glands on the forearm following 

LTHA, which may have been related to an increased cholinergic sensitivity, as observed by 

Buono and colleagues (2009) following HA in males. Additionally, the dots left by the sweat 

output of the sweat glands on the iodine paper appeared larger in diameter, as well as having a 

deeper colouring (See Figure 7). These observations were purely subjective, as the reliability 

of the iodine paper technique has been verified to quantify number, not size or sweat output of 

the sweat glands. These seemingly larger dots indicate that more moisture was absorbed per 

dot (i.e., per sweat gland) in the same amount paper-to-skin contact time, following HTT3 vs 

HTT1. This may indicate an increase in sweat output by the individual glands, which is 

facilitated by an improved size of the sweat gland and its efficiency in secreting sweat for a 

given length of secretory coil (Sato and Sato, 1983; Sato et al., 1990; Bouno et al., 2009).  

It should be noted that these measures of sweat gland activity were taken from sites on 

the forearm and it is not suggested that they are a precise indication of whole body sweat 

gland adaptations. While the increased activity shows a better use of body surface area to 

dissipate heat, heat acclimation has been shown to increase local sweat rates of the forearms 

more than areas that already exhibit a high sweat output in the unacclimated state, such as the 

back and chest (Havenith et al., 2008; Poirier et al., 2016). Females in the unacclimated state 

exhibit a more evenly distributed sweat rate than males (Havenith et al., 2008), meaning it is 

possible that the increase in sweat gland activity of the forearm is a better representation of 

whole body sweat glands than would be in males. 

Other factors possibly contributing to the increase in sweat rate observed in our 

investigation following LTHA include sweat onset being initiated at lower core temperatures 

(Wyndham, 1967; Nadel et aI., 1974; Tipton et al., 2008) as well as an increased sensitivity of 
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the sudomotor response to deviations in core temperature (Kondo et al., 2009). However, 

these mechanisms were not measured in the current study.  

 

5.2.4 Plasma volume measures. Although the measures of Hb and Hct in three 

participants yielded insignificant results, plasma volume expansion following HA is heavily 

documented in the literature, and typically accompanies the other main markers of the heat 

acclimation phenotype (Wyndham et al., 1968; Senay, 1979; Shapiro et al., 1981; Nielson et 

al., 1993; Patterson et al., 2004, 2014). Nevertheless, even with just three participants’ data 

and the general trend observed it seems likely that plasma volume expansion did occur for our 

participants, and was likely one of the contributing mechanisms responsible for the decreased 

resting core temperature and the trend for decreased resting heart rate observed in this study. 

It is also the main mechanism credited with enhancing VO2max and aerobic performance in 

sub-elite endurance athletes (Schmidt, 1988; Racinais et al., 2014; Minson & Cotter, 2016) 

which was also observed in the current study.  

The heavy sweating during both STHA and LTHA sessions (2-4% BM of water loss), 

with the addition of voluntary dehydration, should surpass the “osmotic threshold” of plasma 

osmotic pressure required for the implementation of adaptive mechanisms to increase plasma 

volume (Andreoli et al., 2000; Cheuvront and Kenefick, 2014). However, as males have been 

observed to have increased levels of plasma ADH at a similar plasma osmolality (indicating a 

higher sensitivity to changes in plasma osmolality; Stachenfeld et al., 2001), this osmotic 

threshold could be higher for females. This offers some explanation for the difficulty 

experienced in attaining the heat acclimated phenotype following STHA that was observed 

here as well as in the literature (Sunderland et al, 2008; Mee et al., 2015).  
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5.2.5 Lactate and muscle metabolism. Blood lactate was not significantly affected 

by STHA or LTHA in both hot and cool conditions when recorded at rest and immediately 

post-trial. Although heat acclimation has been shown to reduce muscle and blood lactate 

accumulation in both hot and cool conditions (Young et al., 1985) in a time trial-style 

performance test, it is more difficult to interpret these mechanistic results than during a fixed-

workload type test. The high blood lactate recorded post-trial is likely as a result of the 

maximal effort “end spurt”, and therefore was elevated to a similar level pre- and post-

acclimation. However, as blood lactate is a measure of both lactate production and lactate 

clearance (without distinction), it is not certain that the weight of this balance stayed similar 

both pre- and post-acclimation. For example, during the middle, steady-state portion of the 

trials, it is possible that blood lactate may have been reduced, or may have not have changed, 

alongside the higher power output that was recorded. The improvement in aerobic capacity 

and assumed increase in lipid oxidation during HTT3 (Kirwan et al., 1987) may have allowed 

for the participants to set their pace at a greater mean power output, and subsequently produce 

more lactate, but an increased blood flow allowance to the liver and the inactive muscles 

(facilitated by plasma volume expansion) may have slightly improved the clearance of this 

blood lactate (Rowell, 1968; Lorenzo et al., 2010). Additionally, reductions in epinephrine 

levels observed in male cohorts following HA are thought to largely influence the reduction in 

blood lactate accumulation (Febbraio et al., 1994). However, an already reduced epinephrine 

level in females during exercise in comparison to males (Horton 2006) may influence 

metabolic responses to chronic heat stress. 

 

5.2.6 Psycho-physical and behavioural. Similar Trec and Tsk during HTTs and a 

variable workload may explain the lack of significant improvements in either thermal comfort 
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or thermal sensation reported immediately following the trials in the heat. However, evidence 

of psycho-physical changes lies in the improved time trial performance results. As it was a 

self-paced test, increased power output may be largely a behavioural result of assessment of 

physiological factors by a central governor to increase intensity (Noakes 2007, 2012; Tucker 

& Noakes, 2009; Nikolopolous et al., 2001; Pires & Hammond, 2011). Behavioural 

modifications are known to develop with heat acclimation, as athletes may improve their 

pacing strategies with chronic heat exposure (Racinais et al., 2014). 
Performance tests with a standardised workload have provided evidence that heat 

acclimation has been observed to improve perceived exertion and thermal comfort and 

sensation in both males and females, however the temporal patterns of their improvements 

may differ (Sunderland et al. 2008; Gibson et al., 2015: Neal et al., 2016; James et al., 2016). 

These improvements may stem from the reduction in cardiovascular strain following heat 

acclimation, allowing athletes to work at a lower %VO2max than in pre-acclimation heat stress 

tests (Cheuvront et al., 2010), although comfort may also develop with the experience of 

performing in the heat during the acclimation protocol. 

 

5.2.7 Other possible mechanisms of adaptation. As the performance results of this 

study mirrored the temporal patterning of female physiological adaptation in the sex 

differences study by Mee and colleagues (2015), we are left to speculate the possible reasons 

that females appear unable to adapt to chronic heat stress using a 5-day isothermic protocol. 

One of these possibilities is the sex-differences that have been observed in heat shock protein 

synthesis following heat acclimation (Hamilton et al., 2004; Bombardier et al., 2009; Morton 

et al., 2009; Gillum et al., 2012, 2013). The upregulation and functioning of HSPs appears to 

be necessary for the appearance of the markers of the heat acclimated phenotype, although it 
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is unclear exactly how they are involved (Kuennen et al., 2011). HSP72 mRNA has been 

observed to be similar in males and females during isothermic heat acclimation (Mee et al., 

2016), indicating that the isothermic heat stimulus is sufficient to surpass the activation 

threshold of the heat shock response (Gibson et al., 2015) in both males and females; however 

the obstructer of their eventual synthesis and appearance in females is unknown. Oestrogen 

may (Paroo et al., 2002; Voss et al., 2003; Shinohara et al., 2004; Hamilton et al., 2004; 

Bombardier et al., 2009; Chu et al., 2017) or may not (Gillum et al., 2012) play a role. The 

connection and direct interaction between these sex-differences observed at a cellular level 

and the female performance augmentations observed in our study is unknown.  

 

5.3 Perspectives 

These results contribute to a currently sparse collection of research that informs the 

expected performance outcomes of HA for female athletes in a quantifiable manner and 

confirms the translation of physiological adaptations to a positive effect on performance in hot 

conditions. Previously, any performance outcomes that were anticipated for females were 

either derived from male cohorts or predicted based on mechanistic approaches. Therefore, 

these results provide valuable information to female athletes who are considering heat 

acclimation to prepare for an event in a hot climate, as they offer applicable information on 

the performance improvements that they can expect to gain following a typical heat 

acclimation protocol. The results of this study indicate that while HA can be an effective 

training component for competition in both hot and cool temperatures, female athletes 

utilising heat acclimation as an ergogenic aid should expect to undergo at least a LTHA 

protocol (if not longer) before experiencing any changes to their performance.  



	

91	

While participants in this study were moderately-trained endurance athletes, their 

VO2max may be comparable to a higher level of team sport athletes, who’s primary focus is not 

endurance and aerobic conditioning, although it is an important component of their sport (i.e. 

football, hockey, netball, etc.). Additionally, the improvements observed in a time-trial lasting 

only 15-minutes highlights that the use of heat acclimation as an ergogenic aid should not be 

limited to long-distance endurance athletes, and can be explored by any athlete requiring 

aerobic proficiency in their sport or event.  

The sex-differences in adaptations to STHA observed by Mee and colleagues (2015), 

as well as in our study in comparison to aforementioned studies on males, is concerning for 

female athletes. Previous to the publication of this information, females assuming the 

effectiveness of STHA protocols may have been exposed to a safety risk when competing in 

hot conditions without proper acclimation, in addition to the poorer performance than 

anticipated.  

Besides females being unable to attain thermoregulatory adaptations following STHA, 

one particular concern involves discrepancies in the observations of temporal patterning of 

sudomotor adaptations in females. Data from the current study and a study by Sunderland and 

colleagues (2008) did not indicate any sudomotor changes following STHA, however data 

from Mee and colleagues (2015) did show a difference. Females undergoing HA should be 

aware that sudomotor adaptations may precede other adaptations that accompany the heat 

acclimated phenotype (Sawka et al., 2011; Mee et al., 2015), and that this increased fluid loss 

could add further strain to a cardiovascular system which may not have yet established 

stability in the heat via accelerated dehydration (Taylor et al., 2014). 
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5.4 Future Directions  

Sex hormones’ effects while under acute and chronic heat stress remain highly 

debated (but considerably less investigated). Thus, the ability of trained female athletes to 

acclimate, regardless of their menstrual cycle and/or contraception method, should be 

investigated for more definite and inclusive HA prescriptions that can be confidently 

implemented for the safety and benefit of all athletes. As records of HA being investigated 

date back to the 1930’s, and it has been well-known for decades that sex hormones may have 

an effect on females’ ability to acclimate, the delay in this investigation by avoidance is 

unacceptable. The common practice of testing females only during the low-hormone phase 

masks this avoidance as “control” and renders results unreliable for athletes that must 

compete during all phases of their menstrual cycle. Considering the success that female 

athletes have experienced on the current side of the 21st century, this information is urgently 

needed.  

Elite female athletes are a population that also warrant unique investigation for use of 

HA as an ergogenic aid. Sex-differences in fluid regulation (Stachenfeld et al, 1998, 2001), 

thermoeffector response (Gagnon et al., 2012), and heat adaptation (Mee et al., 2015) may 

result in a more positive outcome than previously observed in elite males (Keiser et al., 2015; 

Nybo & Lundy, 2016).  

Whilst the blood lactate measurements in this study allow for speculations described 

above, amongst other possible speculations about the metabolic adaptations of female athletes 

following HA, future research should investigate these theories with more precise measures 

(i.e., muscle biopsies, gas exchange analysis, indirect calorimetry, etc.). Longer trials should 

also be investigated in female cohorts to determine if this increased thermoregulatory capacity 

can have a greater impact as heat accumulation becomes a more influential element of 
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performance in temperate conditions. Additionally, in the future, a more taper-like protocol 

should be investigated to: 1) replicate the preparation an athlete would take before an event or 

competition, and 2) document performance results devoid of the fatigued state caused by an 

accumulated training load.  

Overall, future research should incorporate a practical, real-world focus on 

performance for female athletes. To do this, factors in plasma volume expansion, substrate 

utilisation, and the heat shock response interaction with sex hormones, along with longer time 

trials and time trials in cool conditions, should be further investigated. 
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6. Conclusion 

Moderately-trained females did not improve performance in either hot or cool 

conditions for a 15-minute time trial following STHA. Performance improvements were 

observed following LTHA in both hot and cool conditions, providing the first quantifiable 

evidence of time trial performance improvements for females following HA. This also 

provides more evidence for the use of heat acclimation as an ergogenic aid, a possibility that 

has not previously been investigated in females. 

The mixed-intensity HA protocol that involved both high-intensity intervals and lower 

intensity aerobic training could be beneficial to athletes that are required to vary their pace 

when competing (i.e. a faster pace during the start and end spurt than during the middle). This 

HA protocol has proved ergogenic for this cohort of moderately-trained female endurance 

athletes after 10-days of exposure, likely by achieving a more beneficial balance between 

plasma volume expansion and haemoconcentration, amongst an amalgamation of other 

underlying factors. Performance results experienced in both conditions in a self-paced time 

trial lasting only 15-minutes indicates that heat acclimation can improve performance in short 

and longer distance time trials This was the first study to investigate the effects of a full long-

term heat acclimation protocol on female endurance performance using a self-paced, time trial 

style performance test. Previously, heat acclimation research for females has involved heat 

tolerance tests at a fixed workload (Mee et al., 2015; Avellini et al., 1980; Fein et al., 1975; 

Shapiro et al., 1980; Sawka et al., 1985), heat tolerance tests in the form of intermittent sprint 

test duration (Sunderland et al., 2008) or sedentary participants (Armstrong et al., 2005). 

A decrease in resting Trec may have helped to improve performance in both time trial 

conditions following LTHA, although lack of significant differences in mean, peak, and delta 

Trec during HTTs indicates core temperature adaptations may not be the most important 
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adaptation for performance enhancement. A trend for cardiovascular stability following 

LTHA may have been facilitated by plasma volume expansion and/or cardiovascular 

efficiency. 

There were no physiological or psychophysical adaptations following STHA. Thus, 

data from the current study indicated that classic physiological markers of heat acclimation 

(i.e., reduced heart rate and core temperatures, increased sweating; Sawka et al., 2011) must 

be present in order to improve time trial performance in hot conditions for females. Females 

in the current study not exhibiting cardiovascular and thermoregulatory stability following 

STHA that has been demonstrated in male cohorts may be due to sex-differences in the 

following factors: fluid regulatory factors leading to plasma volume expansion; cytoprotective 

thermotolerance; thermoregulatory control; body size and resultant differences in metabolic 

heat production during an isothermic protocol; evaporative capacity at the highest 

requirements for heat loss. The current study’s results may also have been influenced by 

fatigue during time trials resulting from the length and intensity of the protocol, the absence 

of a standardised workload, not controlling for menstrual cycle and hormonal contraception, 

and a slightly lower Trec maintained during HA sessions.  

The additional support and performance element that this study provides for the 

temporal patterning of adaptation to chronic heat stress in female athletes should prompt a re-

examination of exercise prescriptions in the heat. These recommendations have traditionally 

been constructed based on research involving primarily male cohorts, and this study provides 

meaningful information that has been missing for female athletes implementing heat 

acclimation into their training. 



	

Appendix 
 Time/Length Control Heat Performance 

Reduction 
Time Trial     

Altareki et al., 2009 4 km 13°C 35°C 2% 
Tyler et al., 2008 90-minute 14°C 30°C 7% 
Tucker et al., 2004 20 km 15°C 35°C 6% 
Racinais et al., 2014 43 km 8°C 37°C 12% 
Tatterson et al., 2000 30-minute 23°C 32°C 7% 
Periard et al., 2011  40 km  20°C 35°C 7% 
Peiffer & Abbiss, 2011 40 km 17°C 32°C 6% 
Castle et al., 2011 Intermittent 

Sprints 
22°C 32°C Power in 4/20 

sprints 
significantly 
reduced 

Drust et al., 2005 Power 
during 
intermittent 
cycling 
sprints  

20°C 40°C 10%  

TTE     

Dill 1931  12°C 34°C 25% 
James et al., 2016  13°C 32°C 19% 
González-Alonso et al., 
2003 

 +1°C skin 
temperatures 

+10°C skin 
temperatures 

28% 

Galloway & Maughan, 
1997 

 21°C 31°C 36% 

Morris et al., 1998  20°C 30°C 22% 
MacDougall 1974  29°C * 35°C * 47% 
*skin temperature manipulated by water perfusion suit 
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