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Abstract 

A fundamental question in the investigation of episodic memory is how the human brain 

represents information from the past.  

This thesis introduces a new method that tracks content specific representations in rhythmic 

fluctuations of brain activity (i.e. brain oscillations). It is demonstrated that a frequency band 

centred at 8 Hz carries information about remembered stimulus content. This is shown in 

human electrophysiological recordings during episodic memory formation and retrieval.  

Strong and sustained power decreases consistently mark this 8 Hz frequency band; successful 

memory encoding and retrieval are associated with power decreases in low frequencies (<30 

Hz) throughout this thesis and in numerous former studies. The presented results link power 

decreases to the reinstatement of oscillatory patterns in sensory specific areas for the first 

time and therefore implicate them in the representation of information.  

Finally, the temporal dynamics of recollection are investigated by tracking information from 

distinct sub-events in continuous episodic memories. In behavioural and neural data, memory 

replay is faster than perception and takes place in a forward direction. Herein, fragments of 

fine-grained temporal patterns are reinstated; yet, subjects can skip flexibly between sub-

events. Leveraging oscillatory mechanisms to track information can therefore identify 

episodic memory replay as a dynamic process. 
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Chapter 1 – General Introduction 
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Theoretical background 

Episodic Memory 

Episodic memory is the memory for our personal experiences and their temporal relationship; 

it can loosely be described as mental time travel (Tulving, 1972, 1993). Practically, our 

episodic memory allows us to access information that is no longer present in the world 

around us. The related term memory reinstatement describes the evoking of information 

from the past and is also referred to as recollection (Yonelinas, 2002). This recollection of 

information can be investigated with a cued-recall paradigm (e.g. Fisher & Craik, 1977). In 

this, a cue is associated with a target, later only the cue is presented and the target must be 

remembered.  

Importantly, episodic memory needs to be distinguished from working memory, which is the 

ability to temporarily maintain and manipulate information (Baddeley, 2003). In experiments 

that investigate episodic memory, a short distractor task is therefore included between the 

learning and recollection of information. It engages working memory in a task irrelevant way 

and prevents confounding working memory processes from influencing the episodic retrieval. 

Brain Oscillations 

The notion of brain oscillations refers to rhythmical fluctuations in the ongoing local field 

potential which can be measured with electroencephalography (EEG) and 

magnetencephalography (MEG) (e.g. Long, Burke, & Kahana, 2014; Staudigl & Hanslmayr, 

2013; Wimber, Maaß, Staudigl, Richardson-Klavehn, & Hanslmayr, 2012; Zhang et al., 2015). 

Brain oscillations have been linked to cognitive functions in numerous ways (Buzsáki, 2006); 

importantly decreases in the amplitude of oscillations in the alpha and beta (8-30 Hz) 
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frequency band, play an important role in episodic memory formation and retrieval 

(Hanslmayr & Staudigl, 2014; Long et al., 2014; Zion-Golumbic, Kutas, & Bentin, 2010).  

Information via Desynchronization 

The information via desynchronization hypothesis (Hanslmayr, Staudigl, & Fellner, 2012) 

makes a clear prediction about the function of power decreases in brain oscillations and 

provides an explanation of their role for episodic memory. According to this framework, 

power decreases are crucial for the reinstatement of information-rich content in the 

neocortex. Specifically, the theory states that observed power decreases reflect a 

desynchronisation of activity in neural populations. In line with information theory (Shannon 

& Weaver, 1949), this desynchronization is crucial to maximize the information that a system 

can represent. Synchrony between neural assemblies, on the other hand signifies redundancy 

because several neural units fire in the same way.  

Desynchronization, which is marked by power decreases,  is also relevant for perception 

(Harris & Thiele, 2011; Jensen & Mazaheri, 2010; Marshall, Bergmann, & Jensen, 2015). 

Importantly, several studies implicate the phase of the alpha frequency band (8-12 Hz) 

(Klimesch et al., 1996) in the organization of incoming information, when oscillatory power 

decreases. Specifically, there is evidence that fluctuations at 7/8 Hz, rhythmically sample a 

continuous input stream during perception (Hanslmayr, Volberg, Wimber, Dalal, & Greenlee, 

2013; Jensen, Bonnefond, & VanRullen, 2012; Landau & Fries, 2012; VanRullen, Busch, 

Drewes, & Dubois, 2011; VanRullen, Carlson, & Cavanagh, 2007).  

This link between decreases in oscillatory power and the organization of information via the 

phase of the alpha frequency band could therefore generalize to episodic memory:  Power 

decreases could be a general mechanism that allows for the representation of rich 
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information that is organized by oscillatory phase, during perception and in memory. Patterns 

of activation that are measured in oscillatory phase during encoding could therefore reappear 

during episodic memory reinstatement. This should happen in those frequency bands that are 

marked by power decreases. 

Representational Similarity Analysis 

Representations of content can be investigated with representational similarity analysis (RSA) 

(Kriegeskorte, 2008). RSA uses similarity in patterns of neural activity and assesses its 

structure. If neural data codes for representation-specific information, then measurements of 

activity that correspond to the same representation will be more similar to each other than 

patterns that correspond to different representations. This code can take multiple forms, e.g. 

spatial activation patterns, temporal activation patterns or patterns in spectral power. In 

functional magnetic resonance imaging (fMRI), the representational structure of spatial 

patterns has been used, for instance,  to reveal which regions code for detailed events and 

which regions code for multi-event narratives (Collin, Milivojevic, & Doeller, 2015). In 

electrophysiology, this method can now answer questions like “which frequency band codes 

temporal information and when?” In summary, the key ingredients for RSA are a measure of 

similarity and repeated measurements of neural activity that belong to the same 

representation.   

Coding of Representations in Oscillations 

Representational similarity analysis can therefore be combined with measures of similarity in 

electrophysiology. Specifically, repeated measurements of electrophysiological activity can be 

compared in their similarity with the use of adequate similarity metrics. The structure of 

similarity between measurements can then be assessed to reveal, whether neural activity 
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codes for representations. These similarity metrics can be tailored to compare oscillatory 

activity that is confined to a certain frequency band. This will make it possible to investigate 

individual representations and their temporal structure, coded in power decreases of neural 

oscillations. An established set of measures that assess similarity in neural oscillations are 

measures of phase coherence (Lachaux et al., 2000; Mormann, Lehnertz, David, & E. Elger, 

2000; Tallon-Baudry, Bertrand, Delpuech, & Pernier, 1996; Vinck, van Wingerden, 

Womelsdorf, Fries, & Pennartz, 2010). These measures should lend themselves to the 

investigation of content specific representations that are coded in oscillatory patterns via 

representational similarity analysis. 

Aims of this research 

This research aims to observe memory reinstatement in neural patterns that are measured 

with electrophysiology. The investigation of memory representations with these temporally 

resolved recordings will make it possible to draw conclusions about temporal dynamics and 

mechanisms of episodic memory replay. Importantly the main prediction of the information 

via desynchronization hypothesis will be tested: Episodic memory reinstatement of 

information-rich content will result in strong power decreases; information about the 

stimulus content should be present in frequency bands that display these power decreases. A 

memory-paradigm to investigate these predictions will elicit reinstatement of information-

rich stimuli. A cued-recall paradigm will separate the perception of content from its 

reinstatement in memory.  Herein, target stimuli will be as naturalistic as possible and have an 

inherent temporal dynamic. Cues, on the other hand, will be simple words.  
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In chapter 2, an EEG study will investigate content specific temporal patterns of activity as 

they are reinstated in a purely memory driven way. To this end participants will associate 

dynamic naturalistic stimuli with simple word-cues. This will be realised in two modalities 

using short video-clips and sound-clips. Upon presentation of the word-cues, participants will 

reinstate vivid representations of the dynamic stimuli from memory. A direct prediction from 

the information via desynchronization hypothesis is that the reinstatement of these 

information-rich stimuli will elicit strong power decreases in the EEG recordings. Importantly 

oscillations that are marked by these power decreases should contain patterns that are 

specific to the content held in memory. This prediction will be tested with a new method that 

combines oscillatory phase coherence with representational similarity analysis. 

Chapter 3 will reanalyse the dataset from chapter 2 to test, whether content specific patterns 

of naturalistic stimuli are maintained during episodic memory formation. In the experiment, 

the association with a cue takes place after the presentation of the naturalistic stimulus. This 

creates a time interval of association, in which the naturalistic stimulus is absent but relevant. 

The information via desynchronization hypothesis predicts again that strong power decreases 

will be associated with successful memory formation; those are indicative of information 

about the stimulus content. Representational similarity of oscillatory patterns will be assessed 

in order to test, whether the association with a dynamic stimulus, yields a detectable 

representation of that absent stimulus.  

Chapter 4 will finally leverage the results from chapter 2 and 3 and track memory replay 

throughout continuous episodes that consist of distinct sub-events. This will clarify the 

temporal dynamics of memory replay, such as its direction and speed. In a behavioural 

experiment and an MEG study subjects will associate word-cues with distinct scenes that 
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form continuous videos (named video-episodes). Later participants will be asked upon the 

presentation of the word-cue, in which exact scene they have learned an association. 

Behaviourally the reaction time to this scene-response will determine the direction and speed 

of memory replay: It should take longer to recall associations that were formed later in the 

video-episode, if replay is forward. The distance between reaction times for early and late 

associations will indicate the speed of replay. In the MEG study, response intervals will be 

fixed; in the response interval, content specific patterns from encoding will be tracked. 

Representational similarity analysis of oscillatory patterns should replicate findings of content 

specific reinstatement in a frequency band that is marked by strong power decreases.  

Tracking those patterns will make it possible to statistically test the direction of replay, which 

could either be forward or backward. Finally the distance between different patterns will be 

assessed. It is hypothesised that memory replay is a flexible mechanism that allows 

participants to jump between salient boundaries in the continuous video-episodes. Therefore 

the skipping between scenes should take place on a faster time-scale than the replay of 

individual scenes. This will be tested by statistically comparing the time of reinstatement 

between distinct patterns from encoding.  

Chapter 5 will summarise and discuss these findings. Finally a first outlook is given, on new 

questions that arise from this research.   
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Chapter 2 – The Temporal Signature of Memories: Identification of a General 

Mechanism for Dynamic Memory Replay in Humans 
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Preface  

The following study was designed to test the prediction that decreases in oscillatory power 

contain information about memory content. Signatures of memory content should be 

detectable in desynchronizing frequency bands when human volunteers recall information-

rich stimuli from memory. This research was published in near identical form in PLOS Biology 

under the title: The Temporal Signature of Memories: Identification of a General Mechanism 

for Dynamic Memory Replay in Humans (Michelmann, Bowman, & Hanslmayr, 2016). 

Contributions 

The experiments were conceived and designed by SM and SH. SM performed the 

experiments.  

All data analysis was performed by SM under supervision of SH, the manuscript was written 

by SM under supervision of SH and HB. 
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Abstract 

Reinstatement of dynamic memories requires the replay of neural patterns that unfold over 

time in a similar manner as during perception. However, little is known about the mechanisms 

that guide such a temporally structured replay in humans, because previous studies either 

used unsuitable methods or paradigms to address this question. We here overcome these 

limitations by developing a new analysis method to detect the replay of temporal patterns in 

a paradigm that requires participants to mentally replay short sound or video clips. We show 

that memory reinstatement is accompanied by a decrease of low frequency (8 Hz) power, 

which carries a temporal phase signature of the replayed stimulus. These replay effects were 

evident in the visual as well as in the auditory domain and were localized to sensory specific 

regions. These results suggest low frequency phase to be a domain general mechanism that 

orchestrates dynamic memory replay in humans.  
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Introduction 

Episodic memories are dynamic, multisensory events that are coded in our memory system. If 

you remember the last time you had dinner at your favourite restaurant you will probably 

recall the person you were with, the music playing in the background and the smell and taste 

of that delicious food. Whenever we re-experience episodic memories this way, the events 

unravel in front of our mind in a temporal order. Even subparts of these episodes, such as the 

movement of lips in a conversation or parts of the background melody, have an inherent 

temporal dynamic to them. Given this abundance of temporal structure in our memories, it is 

rather surprising how limited our understanding is as to how human brains orchestrate such 

dynamic memory replay. Here we address this question for the first time to our knowledge, 

and identify a neural mechanism that carries the temporal signature of individual dynamic 

episodic memories. By cuing dynamic memories of auditory and visual content, we were able 

to detect the presence of phase patterns in the electroencephalographic (EEG) signal which 

indicate the replay of individual auditory or visual stimuli in memory. Temporal signatures 

were carried by a frequency that was markedly similar in two sensory domains (~8 Hz), they 

appeared in sensory-specific regions, and were related to decreases in power in the same 

frequency. 

Previous findings suggest that perception is not continuous but, instead, is rhythmically 

sampled in discrete snapshots guided by the phase of low alpha (~7-8 Hz) (Hanslmayr et al., 

2013; Landau & Fries, 2012; VanRullen et al., 2007), which suggests a pivotal role of low alpha 

phase for providing a temporal structure during perception (Canavier, 2015; Hanslmayr, 

Staresina, & Bowman, 2016; Jensen et al., 2012; VanRullen et al., 2011; Watrous, Deuker, Fell, 
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& Axmacher, 2015). Accordingly, recent studies showed that low frequency phase carries 

reliable information about stimulus content (Ng, Logothetis, & Kayser, 2013; Schyns, Thut, & 

Gross, 2011). This key role of oscillatory phase during perception makes it a prime candidate 

to also organize the replay of neural representations in episodic memory, which is an 

untested prediction to date. 

A ubiquitous electrophysiological signature of successful memory processing is a pronounced 

power decrease in low frequencies, especially in alpha (Burgess & Gruzelier, 2000; Klimesch, 

1997, 1999; Long et al., 2014; Zion-Golumbic et al., 2010). On a theoretical level alpha power 

decreases affect neural processing in two ways. Firstly, they promote increased neural activity 

as reflected by increased neural firing rates and increased BOLD signal (Haegens, Nacher, 

Luna, Romo, & Jensen, 2011; Klimesch, 2012; Zumer, Scheeringa, Schoffelen, Norris, & 

Jensen, 2014). Importantly, even when alpha power is decreased its phase still rhythmically 

modulates firing rates (Jensen et al., 2012). Secondly, alpha power decreases reflect a relative 

de-correlation of neural activity, and thereby index an increase in information coding capacity 

(Hanslmayr et al., 2016). Accordingly, a mechanism by which alpha power decreases allow for 

the temporal organization of information via phase has been proposed in perception (Jensen 

et al., 2012), however, whether memory replay is guided by a similar mechanism is an open 

question (Hanslmayr et al., 2016).  

The reinstatement of neural patterns in memory can be detected with multivariate analysis 

methods like representational similarity analysis (Kriegeskorte, 2008) (RSA). This approach has 

been successfully applied in functional magnetic resonance imaging (fMRI) (Staresina, 

Henson, Kriegeskorte, & Alink, 2012; Wimber, Alink, Charest, Kriegeskorte, & Anderson, 

2015), EEG/MEG (Jafarpour, Fuentemilla, Horner, Penny, & Duzel, 2014; J. D. Johnson, Price, 
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& Leiker, 2015; Kurth-Nelson, Barnes, Sejdinovic, Dolan, & Dayan, 2015; Ng et al., 2013; 

Staudigl, Vollmar, Noachtar, & Hanslmayr, 2015; Wimber et al., 2012) and intracranial EEG 

(iEEG) (Yaffe et al., 2014; Zhang et al., 2015). However, even though some previous studies 

were able to decode information from oscillatory patterns, the mechanism by which 

oscillations carry mnemonic information remains completely unclear. This is because most 

prior studies either settle for classification of reactivated memories and thus do not aim for 

mechanistic explanations of memory replay, or because they use static stimuli and analysis 

procedures.  

We overcome these central limitations by testing whether a temporal signature that is 

present, while a video or a sound clip is perceived is actively reproduced by the brain during 

retrieval. By temporal signature we mean a sequence of electrophysiological activity that is 

specific to an individual stimulus. To this end, we test the mechanistic hypothesis that low 

frequency power decreases are linked with the reinstatement of such stimulus-specific phase 

patterns. A paradigm was used where memories of dynamic content are cued by a static word 

(see figure 102 a-d). In a visual and in an auditory condition, we asked subjects to watch (or 

listen to) 3 second long video or sound clips, and then to associate the respective stimulus 

with a word. Importantly only four videos/sounds were repeatedly associated with different 

words. In the retrieval block we then only presented the word cue (or a distractor word) 

under the instruction to vividly replay the associated video or sound. Note that there was no 

overlap in sensory input between the video/sound and the word, enabling us to investigate 

purely memory driven reinstatement of temporal signatures. 

We hypothesize that we will find content-specific temporal signatures in those frequency 

bands that show pronounced power decreases during episodic memory retrieval (Hanslmayr 
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et al., 2016). Applying the logic of RSA to measures of phase-based similarity, we designed a 

new method that can detect content-specific signatures in neural time series, where the 

exact onset of replay is not known (see figure 101), which is the case in our retrieval phase. To 

our knowledge this is the first time that a method can use oscillatory phase patterns to 

decode content from activity that is not time-locked. We assess reinstatement in the auditory 

and in the visual modality in order to validate our novel, dynamic RSA method and to test for 

a domain general memory replay mechanism. Whole brain activity was measured via high 

density EEG and individual MRIs were collected to increase the fidelity of source localization. 
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Figure 101: Detection of content specific reinstatement of temporal patterns 
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Legend to figure 101: Detection of content specific reinstatement of temporal patterns 

(a) During encoding subjects associated 1 of 4 videos with a different cue word in every trial in 

the visual condition, or they associated 1 of 4 sounds with different cue words in the auditory 

condition (a, left). During retrieval subjects only saw the static word-cue on the screen and 

were asked to recall the corresponding dynamic stimulus (a, right). (b) At every electrode the 

oscillatory phase for a frequency of interest was extracted from the EEG activity. A time 

window from encoding was then selected and the time course of phase in this window was 

compared to retrieval. (c) A sliding window was used to assess the similarity, based on the 

constancy of phase angle differences over time (Single Trial Phase Locking Value (Lachaux et 

al., 2000; Mormann et al., 2000)). This measure made it possible to assess similarity between 

single trials where the strength of similarity ranged from 0 to 1, even though an oscillatory 

pattern was compared. Therefore similarity could be averaged across trials, time and 

participants. To avoid confounds from the response and the response scale, the data was cut 

at the end of the retrieval trial and the window was slid out, back into the prestimulus interval.  

This was done for trial-pairs of same content (e.g. learning A, remembering A) and for trial-

pairs of different content (e.g. learning A, remembering D). (c-d) The difference in similarity 

between pairs of same and pairs of different content was interpreted as evidence for content 

specific reinstatement of temporal patterns. 
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Results 

Behavioural performance 

Behavioural results are shown in figure 102e. In the visual session, participants remembered 

on average 53.92% (s.d. = 17.56%) of the video-clips with high confidence (rating > 4), they 

further remembered 9.97% (s.d. = 7.62%) of the clips with low confidence, however in order 

to increase the signal to noise ratio, hits with a low confidence rating were not included in 

further analysis. In the auditory session, 44.44% (s.d. = 19.8%) of the audio-clips were 

remembered with high confidence, which was significantly less than in the visual condition 

(t23 = -2.81, P = 0.01). An additional 9.06% (s.d. = 6.9%) of the audio-clips were remembered 

with low confidence. In accordance, the number of misses showed a trend to be lower in the 

visual session (mean 25.66%, s.d. = 17.56%) than in the auditory session (31.46%, s.d. = 

19.15%, t23 = -1.91, P = 0.07). Another trend was observed towards a better identification of 

distractor words in the visual session (t23 = 1.92, P = 0.07), where 86.88% (s.d. = 13.03%) of 

the distractors were correctly rejected, while subjects only identified 82.43% (s.d. = 15.86%) 

of the distractors correctly as new words in the auditory session. Keeping with the slightly 

better performance for visual compared to auditory memories, the wrong video clip was less 

frequently selected in the visual (9.4%, s.d = 6.33%) condition, compared to the wrong sound 

clip in the auditory session (14%, s.d. = 9.69%, t23 = -2.86, P < 0.01). 

  



18 

 

Figure 102: Experimental design and behavioural results 
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Legend to figure 102: Experimental design and behavioural results.  

(a-b) Trial sequences are shown for the visual (a) and the auditory session (b). In the encoding-

block (a-b, left) participants were presented with a dynamic stimulus that played for 3 seconds 

and was immediately followed by a word-cue, which was presented for 4 seconds. During 

encoding subjects learned 120 associations between 4 repeatedly shown dynamic stimuli and 

120 different words. At the end of every encoding trial, the perceived difficulty of the 

association was rated on a scale from 1 to 6. In the retrieval-block (a-b, right) subjects only 

saw the static word-cue and were asked to vividly recall the dynamic stimulus, which it was 

associated with. Cues from encoding were mixed with 60 new words that served as distractors. 

Note that during encoding, the word cue was shown after the dynamic stimulus, avoiding 

sensory overlap between encoding and retrieval. Subjects were then asked to indicate the 

stimulus they recalled. Response options (c-d) consisted of 4 small screenshots of the video-

clips in the visual condition (c) and of 4 small instruments, representing the sounds, in the 

auditory condition (d). Additionally the response option “NEW” was presented to indicate that 

the word was not presented in the encoding block (distractor item), the response option “OLD” 

was available to indicate that subjects remembered learning the word, but could not recall the 

content it was associated with. After responding, subjects were asked to rate the confidence in 

their answer on a scale from 1 to 6 (a-b, right). e) Behavioural performance is plotted. Hits are 

trials in which the correct associate was remembered (i.e. video or sound). A rating of high 

confidence was considered a rating > 4. Misses were defined as those trials in which the 

associate was not remembered and as those trials, where a word-cue was wrongly named as a 

distractor. Boxes are 25th and 75th percentiles around the median, whiskers represent 

minimum and maximum, green points are arithmetic means. * p<0.05.  
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Successful memory is associated with low frequency power decreases 

In order to identify oscillatory correlates of memory reinstatement, trials in which subjects 

were presented with a memory cue and strongly reinstated the content (i.e. High Confidence 

Hits) were contrasted with trials in which participants were presented with a distractor item 

and correctly indicated it as a new item (i.e. Correct Rejections). As expected, successful 

memory retrieval was associated with strong power decreases in the low frequencies (<30 

Hz); power increases did not survive statistical testing, including the gamma frequency range 

(up to 140 Hz). The clusters that survived multiple comparisons correction (see methods) are 

shown in figure 103. Stronger power decreases for hits were obtained, when compared to 

correct rejections in the visual (figure 103a, P < 0.001) and in the auditory condition (figure 

103b; P < 0.001). The same results emerged when a contrast was built between High 

Confidence Hits and trials in which subjects failed to remember the corresponding video- or 

sound-clip, that is, when they either failed to retrieve the correct associate, or judged an old 

item as new (see also: contrast of Hits and Misses, below). This further emphasizes the link of 

power decreases to successful memory reinstatement. To identify the frequencies that 

showed the strongest decrease in oscillatory power, the power difference across all 

electrodes and time points in the retrieval interval, was averaged and subjected to a t-test. 

Power decreases peaked at 8 Hz (see figure 103c) when contrasting Hits and Correct 

Rejections in the visual (t23 = -5.2696, P < 0.001) and in the auditory condition (t23 = -3.86, P < 

0.001).  In the visual condition these 8 Hz power decreases displayed a broad topography that 

showed a parietal maximum over the left hemisphere and frontal maxima over both 



21 

 

hemispheres (figure 103d). In the auditory condition, power decreases at 8 Hz were equally 

broad. Maxima were located over left parietal and right frontal regions (figure 103e).  

In order to identify brain regions where power decreases were maximal at 8 Hz, sources of 

the difference between Hits and Correct Rejections were reconstructed for that frequency 

(see methods). Statistical testing was run unrestricted on the whole brain level. After multiple 

comparison correction (see methods) a cluster of significant differences emerged in the visual 

(P < 0.001) and in the auditory condition (P = 0.002). Clusters of power decreases were broad 

and did not show statistical differences between the visual and the auditory condition. In the 

visual condition (figure 103f), the cluster of significant differences spanned parietal, temporal 

and frontal regions of the left hemisphere and mid-frontal and parietal regions of the right 

hemisphere. In the auditory condition (figure 103g), power decreases spanned left parietal, 

temporal, mid-frontal and right frontal regions.  
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Figure 103: Contrast of Hits and Correct Rejections 
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Legend to figure 103: Contrast of Hits and Correct Rejections 

Successful memory reinstatement was associated with a cluster of strong power decreases in 

the lower frequencies (<30 Hz). (a-b). The sum of t-values across all electrodes in the cluster of 

significant differences is plotted in the visual condition (a) and in the auditory condition (b). c) 

The t-statistic of power decreases was averaged over electrodes and time showing a peak at 8 

Hz. (d-e) Topography of power decreases in the visual condition (d) and in the auditory 

condition (e). Power decreases are plotted as t-values of average difference at 8 Hz between 0 

and 4 seconds during retrieval. (f-g) Reconstruction of 8 Hz power difference in source space 

using an ‘lcmv’ beamforming-algorithm in the visual (f) and in the auditory condition (g). 
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Successful memory is associated with decreases in power (contrasting Hits and 

Misses) 

To further explore the correlates of successful memory reinstatement, trials in which subjects 

successfully retrieved the associated content (i.e. High Confidence Hits) were contrasted with 

trials in which subjects could not remember the corresponding dynamic stimulus upon 

presentation of the retrieval-cue (i.e. Misses). The retrieval-cue itself could either be 

recognized as an old word or be mistaken for a new word (distractor) to be considered a Miss. 

In this contrast, only subjects were included for which at least 15 trials remained after 

preprocessing (visual session: N = 19, auditory session: N = 17).  

Consistent with the results from the contrast of hits and correct rejections, successful 

memory retrieval was associated with power decreases in the low frequencies (<30 Hz). The 

clusters, corrected for multiple comparisons, are displayed in figure 104. Stronger power 

decreases for hits were obtained when compared to misses in the visual (Figure 104a, P = 

0.002) and in the auditory condition (figure 104b; P < 0.001). To confirm the frequencies that 

showed the strongest power decrease, differences were averaged across all electrodes and 

time points and subjected to a t-test. The strongest power decreases were observed at 7 Hz 

(see Figure 104c) in the visual (t19 = -3.51, P = 0.001) and in the auditory condition (t17 = -4.59, 

P < 0.001). Following results from the contrast of hits and correct rejections, the differences 

in power between hits and misses at 8 Hz are displayed in figure 104d-e.  

In the visual condition, power decreases at 8 Hz were broad. The topography displayed a 

parietal and a frontal extreme over the left hemisphere (Figure 104d). In the auditory 
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condition the 8 Hz power decreases had a similarly broad topography. Maxima were situated 

over left parietal and central regions (Figure 104e).  

To determine which regions expressed maximal power decreases at 8 Hz, the power of that 

frequency was reconstructed in source space and contrasted between Hits and Misses. 

Statistics were tested unrestricted on the whole brain level. Multiple comparison correction 

(see methods) revealed a cluster of significant differences in the visual (P < 0.001) and in the 

auditory condition (P < 0.001). Clusters of power decreases were again broad and did not 

differ statistically between the two conditions. In the visual condition (Figure 104f) the cluster 

of significant differences traversed parietal, temporal and mid-frontal regions of the left 

hemisphere and mid-frontal and parietal regions of the right hemisphere. In the auditory 

condition (Figure 104g) power decreases included left parietal, temporal and mid-frontal 

regions and central and frontal regions of the right hemisphere that bordered with the 

temporal lobe. 
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Figure 104: Contrast of Hits and Misses 
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Legend to figure 104: Contrast of Hits and Misses 

Successful memory reinstatement was associated with a cluster of broad power decreases in 

the lower frequencies (<30 Hz). (a-b) Sum of t-values across the electrodes in the cluster of 

significant differences for the visual condition (a) and for the auditory condition (b). c) T-

statistic of power decrease, averaged over electrodes and time. (d-e) Topography of power 

decreases in the visual condition (d) and in the auditory condition (e). Power decreases are 

plotted as t-values of average difference at 8 Hz between 0 and 4 seconds during retrieval. (f-

g) Reconstruction of 8 Hz power difference in source space using an ‘lcmv’ beamforming-

algorithm in the visual (f) and in the auditory condition (g). 
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Successful memory is associated with decreases in signal stationarity 

In order to represent information in oscillatory phase, a signal cannot be stationary over time. 

If the time course of activity is relevant for the neural representation of content, one would 

rather expect frequent phase resets (i.e. a complex signal) going along with the 

representation of rich information. To test this requirement, the stationarity of the signal was 

estimated (see methods). Deviation from stationarity, i.e. the complexity of the signal was 

evaluated within each cycle of a frequency using a sliding window approach.  

To measure the signal complexity, the distribution of phase-values within each cycle of a 

frequency was quantified (see methods). Low stationarity values reflect a more complex 

waveform, i.e. higher deviation from a uniform distribution. Average stationarity during the 

whole retrieval interval was then computed for every trial at every frequency. 

Comparing High Confidence Hits with Correct Rejections, a stationarity decrease at 8 Hz, i.e. 

an increase in signal complexity became evident in the visual condition (t23 = -3.01, P = 0.003, 

Figure 105a) and in the auditory condition (t23 = -2.63, P = 0.007, figure 105a), which was 

consistent with the power results.  

The topography of 8 Hz stationarity decreases was broad, spanning most of the scalp in the 

visual condition (Figure 105b). Maxima were located over right parietal and left temporal 

scalp regions. In the auditory condition (Figure 105c) the topography spanned frontal, central, 

parietal and occipital regions, displaying maxima over fronto-central and parietal scalp areas.  

To further examine the correlates of memory reinstatement, the analysis of signal stationarity 

was repeated comparing High Confidence Hits with Misses. Again only subjects were included 
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in the comparison, for which at least 15 trials remained after preprocessing (visual session: N 

= 19, auditory session: N = 17).   
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Figure 105: Stationarity, Hits minus Correct rejections 
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Legend to figure 105: Stationarity, Hits minus Correct rejections 

Successful memory reinstatement was associated with decreases in the stationarity of the 

signal. In the contrast of Hits and Correct Rejections, the decrease peaked at 8 Hz (a). 

Topographies of differences in 8 Hz stationarity are shown on the right in the visual (b) and in 

the auditory condition (c). 
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Results from the comparison of High Confidence Hits and Misses are displayed in figure 106. 

Statistical testing of the average difference revealed a decrease in signal stationarity at 8 Hz 

(an increase in signal complexity) when content was successfully reinstated. This effect was 

found in the visual (t19 = -2.4, P = 0.013, figure 106a) and in the auditory condition (t17 = -2.63, 

P = 0.009, figure 106a). The topography of 8 Hz stationarity decreases was again broad. In the 

visual condition it spanned occipital, parietal, left temporal and left frontal scalp regions. A 

maximum was located over right parietal regions (Figure 106b). In the auditory condition, the 

topography spanned frontal, central, parietal and occipital regions, displaying maxima over 

fronto-central, parietal and occipital scalp areas. Maxima were located over parieto-central 

regions (Figure 106c).  

The result that power decreases go along with higher complexity of the signal, could reflect 

the hypothesized increase in information coding potential. However, the inherent relationship 

between power and signal-to-noise ratio of phase estimates needs to be considered. 

As demonstrated by a simple simulation, under a constant level of noise, lower power leads 

to a less reliable estimate of oscillatory phase and therefore decreases stationarity, and 

increases signal complexity (see next section). Therefore, due to the possible influence of 

noise, higher signal complexity is a necessary, but not a sufficient condition to conclude that 

phase resets carry temporal information. For these reasons, only the temporal pattern 

similarity analysis can provide the crucial link between phase patterns and information 

coding, i.e. determine whether phase trajectories carry content-specific stimulus information 

during memory replay.  
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Figure 106: Stationarity, Hits minus Misses 
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Legend figure 106: Stationarity, Hits minus Misses 

Successful memory reinstatement was associated with decreases in the stationarity of the 

signal. In the contrast of Hits and Misses, the decrease peaked at 8 Hz (a). Topographies of 

differences in 8 Hz stationarity are shown on the right in the visual (b) and in the auditory 

condition (c).  
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Simulation of the relationship between Power and Phase stationarity 

To illustrate the influence of signal to noise ratio (SNR) on the relationship between power 

decreases and phase stationarity, 2 sine waves of 8 Hz frequency, with amplitudes of 1.1 and 

0.9 were created. Their phase at 8 Hz was extracted using a complex Morlet wavelet (see 

methods). As a measure of phase stationarity, the circular variance within each cycle of a 

sliding window was then computed over 4 seconds of the decomposed signal for 100 

simulated trials. In subsequent steps, the data was masked with increasing levels of Gaussian 

noise. The stationarity of the signal was affected by the noise; the circular variance within the 

sliding window decreased with increasing noise, i.e. the signal appeared more complex. 

Importantly this effect was stronger for the signal with the lower amplitude (Figure 107). 

Therefore, differences in circular variance need to be interpreted with caution when two 

signals with different amplitude are contrasted. 
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Figure 107: Simulation of the relationship between signal amplitude, signal complexity (1-

circular variance) and noise 
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Legend to figure 107: Simulation of the relationship between signal amplitude, signal 

complexity (1-circular variance) and noise 

Two sine waves of different amplitude (0.9 green, 1.1 pink) were distorted by adding Gaussian 

noise of increasing strength. The standard deviation of that noise is plotted on the x-axis.  The 

signal complexity of the distorted signal was subsequently assessed as 1 – circular variance 

and is plotted on the y-axis. The complexity of the signal with lower amplitude is more strongly 

affected by noise, demonstrating that signal complexity cannot be assessed independently of 

oscillatory power. 
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Temporal patterns differentiate between content during encoding 

An important requirement for the detection of replay of temporal patterns during memory 

retrieval is that the stimulus content itself elicits a distinct time course of activity in the first 

place, i.e. while being perceived during encoding. In order to test this prerequisite, a modified 

version of the Pairwise Phase consistency (PPC) (Vinck et al., 2010) was contrasted between 

pairs of trials in which the same content was presented and pairs of trials that were of 

different content. This method assesses the degree of phase similarity that is specifically 

shared by trials that are instances of the same stimulus (i.e. content specificity of phase).  

Content specificity of phase was assessed for every frequency band between 1 and 40 Hz. The 

time window for statistical testing was chosen between 500ms pre-stimulus and 3500ms after 

stimulus onset, to account for the temporal smearing of the wavelet decomposition. 

Importantly, the combination of trials was carefully balanced to avoid any possible bias (see 

methods). After correction for multiple comparisons, significant differences were obtained in 

both conditions in the form of two broad clusters in the visual (P < 0.001, P = 0.003, figure 

108a) and one broad cluster in the auditory condition (P < 0.001, figure 108b). Importantly 

the clusters included 8Hz, which showed the strongest memory effects during replay (see 

above). 

We hypothesized to later find reappearing temporal patterns in the frequency band of 8 Hz 

during retrieval, furthermore content specificity during encoding is a requirement for the 

detection of these patterns. For these reasons, temporospatial clusters in the data were now 

identified, in which the 8 Hz time course was maximally content specific. Hence, the statistical 

analysis was now restricted to 8 Hz only. After multiple comparison correction, the cluster at 
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encoding in which content could most reliably be differentiated (i.e. the cluster with the 

lowest p-value) was selected for further analysis.  

In the visual condition, this cluster was identified between -152ms and 564ms (P < 0.001). 

Note that post-stimulus effects are temporally smeared into the pre-stimulus interval due to 

wavelet filtering. One further cluster was observed between 2650ms and 3300ms (P = 0.016).  

In the auditory condition, the most reliable cluster of content specificity was identified in a 

time window between 22ms and 871ms (P = 0.002). Two further clusters were observed 

ranging from 1818ms to 2627ms (P = 0.003) and from 1203ms to 1504ms (P = 0.047). 

Therefore in both domains early and later time windows distinguished between different 

stimuli, reflecting the dynamic nature of the stimulus material. 

A 1 second time window was then defined around the centre of the most content specific 

cluster. In the visual condition, this centre was located at 206ms, thus the window ranged 

from -294ms to 706ms (figure 108c, right). Differences in phase similarity between trials of 

same and different content showed a clear visual topography within this window, i.e. the 

highest t-values were observed over posterior regions of the scalp (figure 108c, left).  

In the auditory condition, the 1 second window was centred at 446ms (figure 108d, right), 

ranging from -54ms to 946ms. The topography of differences within that window showed a 

typical auditory distribution (figure 108d, left), i.e. high t-values were observed at fronto-

central electrodes (Goff, Matsumiya, Allison, & Goff, 1977). 

Sources of the average difference in phase similarity between same and different content 

combinations were reconstructed for the 1 second windows, to identify the origin of content 

specificity in that window. T-tests were corrected for multiple comparisons on the whole 

brain level. In the visual condition, a cluster of significant difference (P < 0.001) emerged in 
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visual regions of the cortex, covering the occipital lobe as well as parts of the parietal lobe 

(figure 108e). The cluster exhibited a peak in the right middle occipital gyrus (MNI: 10; -100; 

10; BA: 18). In the auditory condition, differences in similarity (P = 0.004) were lateralized to 

the right hemisphere which is in line with studies finding lateralization of musical processing 

to this hemisphere (Tervaniemi et al., 2000). Differences covered temporal and frontal areas, 

including primary and secondary auditory processing regions (figure 108f). The auditory 

cluster peaked in right sub-lobar insula (MNI: 40; -20; 0).  

  



41 

 

Figure 108: Content specificity of phase during encoding 
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Legend to figure 108: Content specificity of phase during encoding 

Broad clusters of difference in phase similarity across time, frequency and electrodes were 

observed a) in the visual condition and b) in the auditory condition. T-values were summed 

across electrodes in the cluster to display the results. c-d) Topography of 8 Hz content 

specificity and time course of differentiation c) in the visual condition and d) in the auditory 

condition. The time course (c-d, right) is the t-statistic of averaged content specificity, across 

all electrodes that are included in the strongest cluster. The green window marks the time 

window of 1 second around the centre of the strongest cluster. e) Source reconstruction of 

content specificity in the visual condition and f) in the auditory condition. For consistency, 

sources were tested and plotted on the averaged similarity across the encoding time-window 

of 1 second around the peak of the strongest cluster (green window). Likewise topographies 

(c-d, left) show summed t-values on the scalp of content specificity across this time window. 
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Temporal patterns indicate replay of visual and auditory content 

The crucial quest to identify a replay of temporal patterns from encoding during retrieval is 

challenged by the non-time-locked nature of retrieval. Indeed, replay of memory content 

during retrieval could happen at any point after presentation of the retrieval-cue, with the 

exact onset varying from trial to trial.  Moreover we assumed that any temporal pattern from 

encoding could be replayed at any time during retrieval. 

We therefore developed a procedure that is not affected by these time shifts; specifically we 

assessed the similarity between encoding and retrieval with a sliding window approach. To 

this end, phase similarity between combinations of encoding and retrieval time-windows was 

computed using a variation of the single-trial Phase Locking Value (S-PLV) (Lachaux et al., 

2000; Mormann et al., 2000), namely the similarity of phase angle differences over time (see 

methods). This method is less susceptible to noise and allows for an estimation of similarity 

between two time windows in non-time-locked data. Again, phase-similarity of encoding-

retrieval pairs that were of same content (e.g. perceiving A, remembering A), was contrasted 

with the similarity of pairs, that were of different content (e.g. perceiving B, remembering D).  

The time window that contained the temporal pattern from encoding was selected based on 

the highest content specificity of phase during encoding (see above). The width of the 

window amounted to 1 second (8 cycles) around the centre of the cluster that was located at 

206ms (-294 to 706ms, see figure 108c, right) in the visual condition and at 446ms in the 

auditory condition (-54 to 946ms, see figure 108d, right). Since activity at encoding, under the 

null-hypothesis, would be independent from activity at retrieval, the specific selection of a 
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time window, based on results from encoding, can be used to increase the signal to noise 

ratio, without risking circular inference.  

Phase-similarity to this pre-defined encoding window was now assessed by sliding the 

window over the whole retrieval episode. To slide the window into retrieval the prestimulus 

interval between -500ms and 0ms was used as padding. To slide it out at the end of the trial, 

the prestimulus interval between -1000ms and -500ms was used as padding (this was done 

because later time points were unsuitable for padding due to contamination with similar 

perception and responses). Note that the similarity at time point 0 is then assessed by 

comparing the encoding window to the retrieval window between -500ms and 500ms and 

similarity, at 4 seconds is assessed by comparing the encoding window to the concatenated 

retrieval window of 3500ms to 4000ms and -1000ms to -500ms. 

The phase-similarity of the encoding window to episodes of replay of the same video/sound 

was now contrasted with the phase-similarity to episodes of replay where a different content 

was replayed from memory. The t-statistic was computed for every electrode on the averaged 

difference between same vs. different combinations between 0 and 4 seconds. A cluster-

based permutation test indicated replay of encoding phase patterns during retrieval for both 

the visual (P = 0.002) and the auditory condition (P = 0.01). In the visual replay condition, the 

cluster of significant differences emerged over left parietal regions (figure 109a, right). In the 

auditory replay condition, a cluster of significant differences was observed over right 

posterior temporal areas (figure 109b, left). This signifies strong evidence for mnemonic 

replay of temporal patterns. 
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Figure 109: Encoding-Retrieval similarity 
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Legend to figure 109: Encoding-Retrieval similarity 

a) Topography of visual cluster and time course on electrodes in the cluster. b) Topography of 

auditory cluster and time course on electrodes in the cluster. Electrodes in the cluster and time 

points that exceed threshold are highlighted in green. (c-d) Source reconstruction of encoding-

retrieval similarity between 0 and 4 seconds of retrieval in the visual condition (c) and in the 

auditory condition (d). Statistical testing was run unrestricted on the whole brain level and for 

each condition the maximal cluster (i.e. with the highest summed t-values) was plotted. (e-f) 

Encoding-Retrieval similarity in the cluster (from a-b) between every time point of encoding 

and every time point of retrieval in the visual condition (e) and in the auditory condition (f). 

Clusters of significant differences are unmasked; remaining data is masked with transparency. 

The temporal imprecision of ±500ms is due to the width of the sliding window. The green lines 

in e and f highlight the original time window at encoding that is displayed in a-b (for e-f).  
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To test for frequency specificity, the same analysis was performed for 5 Hz and 13 Hz which 

are approximately in a golden ratio relationship (Pletzer, Kerschbaum, & Klimesch, 2010) to 8 

Hz (i.e. maximally different in phase). Two further control frequencies were tested that 

showed peaks in power decreases in at least one of the conditions, namely 4 and 15 Hz. To 

this end, time windows from encoding were selected with the same criteria as for 8 Hz; 

electrodes for testing were again restricted to the electrodes in the significant cluster from 

encoding. Furthermore, the time window was likewise built from 8 cycles of the 

corresponding frequency. However, no effects were found in the visual or in the auditory 

condition for any of the control frequencies, suggesting that temporal reinstatement of phase 

patterns was specific to 8 Hz.  

The temporal profile of the replay effect was then inspected by averaging phase similarity 

across electrodes within the cluster of significant differences. A t-test was computed at every 

time point, applying a probability of error below 0.01. For visual material, 4 episodes of replay 

could be identified (figure 109a, left), in which a one sided test exceeded the critical threshold 

(t23 = 2.5). These episodes peaked at 203ms (t23 = 3.09, P = 0.003), 547ms (t23 = 2.51, P = 0.01), 

828ms (t23 = 2.75, P = 0.006) and 1844ms (t23 = 3.65, P < 0.001). For the auditory material, 3 

episodes exceeded the critical t-value (figure 109b, right) peaking at 1406ms (t23 = 2.64, P = 

0.007), 3125ms (t23 = 2.7, P =0.006) and 4016ms (t23 = 3.47, P = 0.001).  

To reveal whether the encoding-retrieval similarity effects were maximal in material specific 

(i.e. visual/auditory) brain regions, encoding-retrieval similarity was assessed on the source 

level. Statistical testing was run unrestricted on the whole brain level and for each condition 

the maximal cluster (i.e. with the highest summed t-values) was plotted. For the visual 

material, the strongest cluster of encoding-retrieval similarity showed a peak in the superior 
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parietal lobule (MNI: 20; -50; 60, BA: 7, see figure 109c), overlapping with the similarity 

effects during encoding (compare to figure 108e) and in line with studies finding parietal lobe 

contributions to episodic memory retrieval (Rugg & Vilberg, 2013; Wagner, Shannon, Kahn, & 

Buckner, 2005). For the auditory material, similarity effects showed a peak in the right inferior 

temporal gyrus (MNI: 50; -10; -44, BA: 20, see figure 109d) also overlapping with the similarity 

effects during encoding (compare figure 108f) and in line with previously reported effects on 

memory for music (Groussard et al., 2010).  

Since power decreases at 8 Hz spanned multiple brain regions in the visual and in the auditory 

condition (compare: figure 103 f-g), content specific decreases were still statistically 

unsubstantiated. In order to link phase-based similarity at 8 Hz with the power decreases 

during memory replay, we therefore compared the power-difference at 8 Hz between Hits 

and Correct Rejections (see above) within the regions of visual and auditory “replay”. We 

computed a 2x2 ANOVA contrasting 8Hz power decreases on the source level, with the 

factors Region (visual/auditory) and Condition (visual/auditory). If power decreases are 

relevant for information coding, stronger power decreases should be observed in those 

sensory regions where replay occurred. This hypothesis was confirmed by a significant 

interaction (F1,23 = 6.58, P = 0.017, see figure 110), showing that power decreases in the 

auditory region of interest were stronger during replay of auditory memories, whereas power 

decreases in the visual region of interest were stronger during visual memory replay.   
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Figure 110: The interaction of power decreases with memory replay 
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Legend to figure 110: The interaction of power decreases with memory replay 

Regions of visual and auditory similarity (a) showed a significant interaction with conditions 

(F1, 23 = 6.58, P = 0.017), such that power decreases in the auditory region of similarity were 

stronger in the auditory condition and power decreases in the visual region of similarity were 

stronger during visual retrieval (b). 
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To obtain a further understanding of the temporal dynamics of memory reinstatement, a 

follow up analysis within the electrode-clusters of significant differences was run for all 

combinations of retrieval and encoding time windows, resulting in retrieval time - encoding 

time diagrams (see figure 109e-f). It should be acknowledged that further analyses on this 

cluster will be biased towards being optimal for the time window, on which the electrodes 

were originally identified.  Therefore the results are likely to show more reinstatement of 

phase patterns from early encoding. Primarily this analysis reveals which parts from the 

original sliding window (centred on the most content specific cluster from encoding), 

maximally contributed to the effect, when we tested for content specificity of reactivation 

(e.g. mostly activity from the beginning of the window). Moreover, on a descriptive level this 

analysis gives an idea about which phase patterns from encoding, in addition to the early 

ones, were also reactivated during retrieval.  

It is noteworthy to keep two issues in mind when interpreting these plots. Firstly, similarity 

between two windows will always express temporal smoothing on the diagonal. The diagonal 

width can be seen as an indicator of the length of the episode that was replayed, but it is also 

affected by the length of the sliding window (i.e. longer windows will induce more smearing 

along the diagonal). Secondly the peak in these diagonals indicates which temporal pattern at 

encoding was actually replayed at which retrieval time point. When two time windows are 

aligned and they share a temporal pattern in their first quarter, this pattern would appear 

temporally delayed in a one-dimensional plot; however in two dimensions we can inspect the 

diagonal peak of similarity. 

In the visual condition, a permutation test revealed significant differences in 5 clusters. The 

peaks of the clusters suggested that early, around 141ms, during retrieval, activity from 
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672ms during encoding was reinstated (P = 0.017). At 266ms of the retrieval interval, 

encoding patterns from around 359ms reappeared (P < 0.002), around 719ms, phase patterns 

from 31ms during encoding were reinstated (P = 0.004). Later, during retrieval at 1859ms, the 

phase patterns from 672ms during encoding were detected (P = 0.012) and at 1859ms, the 

activity from 1172ms during encoding showed a similarity effect (P = 0.022).  

In the auditory condition, only 3 clusters could be identified. Peaks within the clusters 

suggested that 1203ms after the onset of the retrieval-cue, content from 15ms during 

encoding was replayed (P = 0.01). Later, at 3781ms, activity from 78ms at encoding 

reappeared (P = 0.017) and finally at 3797ms into the retrieval time, late encoding phase 

patterns from 1765ms could be detected (P = 0.014). Even though results are biased towards 

detecting replay from the early encoding window that served to identify the electrodes on 

which memory replay took place, this analysis could still give an idea of the temporal 

dynamics of reinstatement and show the potential of our method. It was observed that later 

encoding patterns did not appear until later in the retrieval episode, suggesting an ordered 

replay. Furthermore reactivation of visual patterns was observed very early, as was expected 

given recent evidence for early reactivation (Waldhauser, Braun, & Hanslmayr, 2016; Wimber 

et al., 2012), and notably earlier than reactivation of auditory patterns, which is in line with a 

worse memory performance of participants in the auditory condition of this study.  
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Discussion 

In real life, most of our episodic memories are dynamic with an inherent temporal structure 

and are not bound to a single modality. We can re-experience information-rich memory 

traces with auditory and visual content and habitually reinstate these events with an 

abundance of subjective impressions in their correct temporal order. Although some of these 

temporal aspects of memory replay have been investigated in spatial navigation experiments 

in rodents (Ji & Wilson, 2007; Nádasdy, Hirase, Czurkó, Csicsvari, & Buzsáki, 1999; Skaggs & 

McNaughton, 1996), the temporal properties of episodic memory replay in humans were 

largely ignored in previous research. Consequently little is known about the neural 

mechanisms that orchestrate the replay of dynamic memories in humans. 

In the present study, we identified content-specific temporal signatures of individual 

memories in the visual and in the auditory domain. These signatures were specific to a carrier 

frequency of ~8 Hz and could be localized to modality-specific regions, i.e. overlapping with 

those regions that carried the information of the stimuli during encoding. Strikingly, the 8 Hz 

frequency also showed the strongest power decrease during retrieval in both modalities. 

Likewise the power decrease in 8 Hz during retrieval was modulated in a sensory specific 

manner in those regions where memory replay took place, i.e. stronger power decreases in 

the parietal (visual) region during replay of videos and vice versa for replay of sounds in the 

temporal (auditory) region (see figure 110). These findings provide a link to other studies 

where a similar interaction between alpha power decreases and oscillatory phase has been 

proposed to temporally structure perceptual contents (Jensen et al., 2012). In line with these 
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findings our results suggest that similar oscillatory mechanisms which guide perception also 

guide the “re-perception” – that is memory replay – of these sensory events. 

In order to detect the reinstatement of temporal neural patterns that indicate such replay of 

individual memories, we developed a novel dynamic phase based RSA method which is robust 

against variations in the onset of memory replay. This method can therefore be applied in 

conditions when the exact time point of the reinstatement of a neural pattern is unknown, 

like for example during offline replay in resting state or sleep.  

RSA has been previously used to track episodic memories in EEG/MEG (Jafarpour et al., 2014; 

J. D. Johnson et al., 2015; Kurth-Nelson et al., 2015; Ng et al., 2013; Staudigl et al., 2015; 

Wimber et al., 2012) and iEEG (Yaffe et al., 2014; Zhang et al., 2015), however some 

important differences to these studies have to be considered. Firstly, we go beyond mere 

classification of memory content, since we use similarity measures to test a mechanistic 

hypothesis: that alpha power decreases are associated with the reinstatement of temporal 

patterns. Hence we can test whether temporal patterns reappear during retrieval and we can 

link this replay to a specific frequency band. Importantly the detection of temporal patterns 

was only made possible with our dynamic RSA approach.  

Secondly, in our design we carefully avoided any sensory overlap between encoding and 

retrieval. We were therefore able to investigate mechanisms of purely memory driven 

reinstatement, as opposed to studies in which there was a high overlap in sensory stimulation 

between encoding and retrieval (Ritchey, Wing, LaBar, & Cabeza, 2012; Staudigl et al., 2015; 

Zhang et al., 2015). This aspect of our experimental design allows us to conclude that the 

brain actively reproduces a temporal pattern which is specific to a stimulus in order to re-

experience this particular memory.   
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An important open question concerns how the hippocampus is involved in the replay of 

temporal patterns in the cortex as observed here. A critical involvement of the hippocampus, 

and the phase of theta oscillations therein, for memory replay is implicated by recent models 

and frameworks (Hanslmayr et al., 2016; Hasselmo, 2015; Ketz, Morkonda, & O’Reilly, 2013). 

Future studies are required that record simultaneously from both the hippocampus and the 

neocortex to investigate how the reinstatement of the temporal phase patterns described 

here interact with, or rely on, the hippocampus. 

Studying the temporal aspects of memory replay has proven to be difficult because methods 

or stimulus material in previous studies did not allow investigating this question. Overcoming 

these previous limitations, we identified a potential domain general mechanism that 

orchestrates the replay of dynamic auditory and visual memories in humans. Specifically, our 

findings suggest an intimate relationship between power decreases in an 8 Hz frequency and 

a content-specific temporal code, carried by its phase. These results corroborate recent 

theories linking power decreases with the coding of neural information (Hanslmayr et al., 

2016, 2012; Jensen & Mazaheri, 2010). Our findings open up new ways of investigating the 

temporal properties of memory replay in humans, which we only begin to understand. 
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Materials and Methods 

Participants 

24 healthy, right-handed subjects (18 female and 6 male) volunteered to participate. 7 further 

participants were tested, or partly tested, but could not be analysed due to poor memory 

performance (N=2), misunderstanding of instructions (N=2) and poor quality of EEG-recording 

and technical failure (N=3). All participants had normal or corrected-to normal vision. The 

average age of the sample was 23.38 (s.d. = 3.08) years. Participants were native English 

speakers (20), bilingual speakers (2) or had lived for more than 8 years in the UK (2). Ethical 

approval was granted by the University of Birmingham Research Ethics Committee, complying 

with the Declaration of Helsinki. Participants provided informed consent and were given a 

financial compensation of 24£ or course-credit for participating in the study. 

Material and experimental set up 

The cues amounted to 360 words that were downloaded from the MRC Psycholinguistic 

Database (Coltheart, 1981). Stimulus material consisted of 4 video clips and 4 sound clips in 

the visual and auditory session respectively. All clips were 3 seconds long; videos showed 

coloured neutral sceneries with an inherent temporal dynamic, sounds were short musical 

samples, each played by a distinct instrument. In both sessions a clip was associated with 30 

different words. 60 words were reserved for the distractor trials and 12 additional words 

were used for instruction and practice of the task. For presentation, words were assigned to 

the clips or to distractors in a pseudorandom procedure, such that they were balanced for 

Kucera-Francis written frequency (mean = 23.41, s.d. = 11.21), concreteness (mean = 571, s.d. 
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= 36), imageability (mean = 563.7 s.d. = 43.86), number of syllables (mean = 1.55, s.d. = 0.61) 

and number of letters (mean = 5.39, s.d. = 1.24). Furthermore lists were balanced for word-

frequencies taken from SUBTLEXus (Brysbaert & New, 2009). Specifically, “Subtlwf” was 

employed (mean = 20.67, s.d. = 27.16). The order of presentation was also randomized, 

assuring that neither the clips and their associates, nor distractor words were presented more 

than 3 times in a row or in temporal clusters. The presentation of visual content was realized 

on a 15.6 inch CRT-monitor (Taxan ergovision 735 TC0 99) at a distance of approximately 50 

centimetres from the subjects eyes. The monitor refreshed at a rate of 75 Hz. On a screen size 

of 1280 x 1024 pixels, the video clips appeared in the dimension of 360 pixels in width and 

288 pixels in height. ‘Arial’ was chosen as the general text-font, but font-size was larger during 

presentation of word-cues (48) than during instructions (26). In order to reduce the contrast, 

white text (rgb: 255, 255, 255) was presented against a grey background (rgb: 128, 128, 128). 

Auditory stimuli were presented using a speaker system (SONY SRS-SP1000). The 2 speakers 

were positioned at a distance of approximately 1.5 meters in front of the subject with 60 

centimetres of distance between the speakers. 

Procedure 

Upon informed consent and after being set up with the EEG-system, participants were 

presented with the instructions on the screen. Half of the subjects started with the auditory 

session, the others were assigned to undertake the visual task first. Both sessions consisted of 

a learning block, a distractor block and a test block. The sessions were identical in terms of 

instructions and timing and differed only in the stimulus material that was used. During 

instruction, the stimulus material was first presented for familiarization and then used in 



58 

 

combination with the example words to practice the task. Instructions and practice rounds 

were completed in both sessions.  

As a way to enhance memory performance, participants were encouraged to use memory 

strategies. The suggestion was to imagine the word in a vivid interaction with the material 

content, yet the choice of strategy remained with the subject. In the learning block, 120 clip-

word sequences were presented. Each sequence started with a fixation cross that was 

presented in the centre of the screen for 1 second, then the video-clip played for 3 seconds. 

In the auditory condition, the fixation cross stayed on the screen and the sound-clip played 

for 3 seconds. Immediately after the clip, a word cue was presented in the centre for 4 

seconds, giving the subject time to learn the association. After that, an instruction requested 

to subjectively rate on a 6 point scale how easy the association between the clip and the word 

was. After a press on the space bar, this scale was shown. Equidistant categories were 

anchored with the labels “very easy” and “very hard”; those labels were displayed at both 

ends above the scale. Participants used six response buttons to rate the current association 

(see figure 102).  

In the distractor block, subjects engaged in a short unrelated working memory task, namely 

they counted down in steps of 13, beginning from 408 or 402 respectively. After 1 minute the 

distractor task ended. Following a short self-paced break, subjects refreshed the instructions 

on the retrieval block.  

In this block, either a cue or a distractor was presented upon a button press on the space bar. 

Subjects were instructed to try to vividly replay the content of the corresponding video-clip or 

sound-clip in their mind upon presentation of the cue. The word stayed on the screen for 4 

seconds, giving the subject the opportunity to replay the memory. Finally, a fixation cross was 
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presented for a varying time window between 250 and 750 milliseconds to account for 

movement and preparatory artefacts, before the response scale appeared on the screen. 

The response-scale consisted of 6 options. 4 small screen shots of the videos or 4 black and 

white pictures of the featured instruments were presented in equidistant small squares of 

30x30 pixels. Additionally, the options “new” and “old” were displayed in the form of text at 

the most left and most right position of the scale (see figure 102 c-d). Subjects could now 

either indicate the target (video/sound) they just replayed, by pressing the button 

corresponding to that clip. Instead, subjects could also indicate that the word was a distractor 

by pressing the button corresponding to the option “new”, or they would simply indicate that 

they remembered the word, but could not remember the clip it was associated with. In this 

last scenario subjects would press the button corresponding to “old”. The positions of “old” 

and “new” at the end of the scale, as well as the permutation of the 4 target positions in the 

middle of the scale were counterbalanced across participants. Finally, after making a decision, 

a further six point rating scale was presented on which subjects could rate the confidence in 

their response. Again a scale with equidistant categories was presented ranging from “guess” 

to “very sure”. An additional possibility was to press “F2” in case of an accidental wrong 

button press. In this case, the whole trial was discarded from analysis. Following the retrieval 

block, individual electrode positions were logged allowing for a break of approximately 30 

minutes before beginning the second session. In addition to the 2 experimental sessions, all 

participants came to a separate session to record anatomical MRI-scans at the Birmingham 

University Imaging Centre (https://www.buic.bham.ac.uk/). This was later used to facilitate 

source localization (see below). 

https://www.buic.bham.ac.uk/
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Data Collection 

The recording of behavioural responses and the presentation of instructions and stimuli were 

realized using Psychophysics Toolbox Version 3 (Brainard, 1997) with MATLAB 2014b 

(MathWorks) running under Windows 7, 64 Bit version on a desktop computer. Response 

buttons were “s, d, f, j, k, l” on a standard “QWERTY” layout. Buttons were highlighted and 

corresponded spatially to the response options on the screen, so participants didn’t have to 

memorize the keys. To this end, the shape of corresponding fingers was also displayed under 

the scale. To proceed, participants used the space bar during the experiment. Physiological 

responses were measured with 128 sintered Ag/AgCl active electrodes, using a BioSemi 

Active-Two amplifier, the signal was recorded at 1024 Hz sampling rate on a second computer 

via ActiView recording software, provided by the manufacturer (BioSemi, Amsterdam, 

Netherlands). Anatomical data was acquired using magnetic resonance imaging (MRI) (3T 

Achieva scanner; Philips, Eindhoven, The Netherlands), electrode positions were logged with a 

Polhemus FASTRAK device (Colchester, VT, USA) in combination with Brainstorm (Tadel, 

Baillet, Mosher, Pantazis, & Leahy, 2011) implemented in MATLAB. 

Preprocessing 

The data was preprocessed using the Fieldtrip toolbox for EEG/MEG-analysis (Oostenveld, 

Fries, Maris, & Schoffelen, 2011). Data was cut into trial-segments from 2 seconds pre-

stimulus to 4.5 seconds after stimulus onset (i.e. onset of the clip at encoding and onset of 

the word at retrieval). The linear trend was removed from each trial and a baseline correction 

was applied based on the whole trial. Trials were then downsampled to 512 Hz and a band-

stop filter was applied at 48-52, 58-62, 98-102 and 118-122 Hz to reduce line noise at 50 Hz 
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and noise at 60 Hz; additionally a low-pass filter at 140 Hz was applied. After visual inspection 

for coarse artefacts, an independent component analysis was computed. Eye-blink artefacts 

and eventual heartbeat/pulse artefacts were removed, bad channels were interpolated and 

the data was referenced to average. Finally, the data was inspected visually and trials that still 

contained artefacts were removed manually. MRI scans of each participant were segmented 

into four layers (brain, cerebrospinal fluid, skull and scalp) using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/) in combination with the Huang toolbox (Huang et al., 

2013). On this basis, a volume conduction model was created with the Fieldtrip ‘dipoli’ 

method; individual electrode positions were aligned to the head model for every participant. 

Behavioural analysis 

For behavioural analysis, correct trials were defined as those of the retrieval phase in which 

the target was correctly identified and the confidence rating of the response was high (5 or 

6). Trials were defined as correct rejections if a distractor-word was correctly identified as 

new; misses were defined as trials in which a cue-word was incorrectly identified as a new 

word or the response “old” was given to indicate that the subject recognized the word, but 

could not remember the target video or sound it was associated with. Hits of low confidence 

were not considered in subsequent analyses. Furthermore, selections of the wrong clip as 

well as accidental presses of the wrong button and distractor trials that were not recognized 

as distractors were discarded from further analysis.  
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Power analysis 

Power at retrieval was determined by multiplying the Fourier-transformed data with a 

complex Morlet wavelet of 6 cycles. Raw power was defined as the squared amplitude of the 

complex Fourier spectrum and estimated for every 4th sampling point (i.e. sampling rate of 

128 Hz). For each contrast (i.e. hits vs. misses, or hits vs. correct rejections), baseline 

normalization was performed separately. Therefore, a baseline was computed as the average 

power between -1 and 4 seconds of all trials within the contrast (Long et al., 2014). Every trial 

was then normalized by subtracting the baseline and subsequently dividing by the baseline 

(activitytf – baselinef)/baselinef, where t indexes time and f indexes frequency. The relative 

power was calculated for all frequencies between 1 and 40 Hz. 

Phase stationarity 

For every frequency between 2 and 40 Hz, the stationarity of phase was defined within a 

sliding window of one cycle (see Supporting Information). Phase was estimated by multiplying 

the Fourier-transformed data with a complex Morlet wavelet of 6 cycles. The complex signal 

was then divided by its amplitude to standardize its power to 1. At every time point, the 

deviation from an even circular distribution within one cycle around this point was assessed, 

i.e. the circular variance (CV) of phase over time was computed. CV was interpreted as a 

measure of signal stationarity, since a perfectly stationary signal has an even distribution over 

one cycle and the circular variance within the cycle is maximal (i.e. reaches 1, see figure 111). 

Phase stationarity was baseline corrected in the same way as oscillatory power. A baseline 

was computed as the average stationarity between -1 and 4 seconds of all trials within the 

contrast. Every trial was then normalized again by subtracting the baseline and then dividing 
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by the baseline (stationaritytf – baselinef)/baselinef, where t indexes time and f indexes 

frequency.   
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Figure 111: Circular variance within a sliding window of one cycle as a measure of signal 

stationarity 
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Legend to figure 111: Circular variance within a sliding window of one cycle as a measure of 

signal stationarity. 

The figure shows a time course of phase angles (black line) and its stationarity. The phase 

angles are taken from complex values of unit length, which approximate an oscillation at 2 Hz. 

These take values between π and –π on the y-axis. The circular variance within a sliding 

window of 1 cycle (i.e. 500ms for 2 Hz) describes the stationarity of this oscillation. When the 

signal is stationary and there are no phase resets, the circular variance reaches 1. A phase 

reset, on the other hand, causes a decrease in circular variance.  
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Content specificity of phase at encoding 

While participants learned the associations in the encoding block, they repeatedly saw 

(heard) the same dynamic stimulus. Content specific properties could consequently be 

identified if they were shared by trials of the same content, but not by trials of a different 

content. 

Hence, content specific phase was assessed by contrasting the phase-similarity between pairs 

of trials, in which the same content was presented, with the phase-similarity of an equal 

number of trial-pairs that were of different content. To achieve this, trials were grouped and 

combined in a random, but balanced way (see below). For each pair of trials, the cosine of the 

absolute angular distance was then computed and finally averaged across all (same or 

different) combinations (Vinck et al., 2010). 

This resulted in an average similarity value at every time point, at every electrode and in every 

frequency of interest. This similarity was derived separately for the same pairs and for the 

different pairs and could consequently be subjected to statistical testing in order to define 

content specificity of phase. 

Importantly, the way of combining the trials can result in bias. For this reason, the trial 

combinations were randomly selected in a carefully balanced way (figure 112). Firstly, the 

trials were grouped into four sets that were of the same content (SE1-4), e.g. the same video. 

These sets were then recombined such that each set of content, say A, could be paired with a 

unique set of mixed content (say, B, C, and D) that was equal in size, i.e a contrast-set (CE1-4). 

To make this possible, some trials were discarded from further analysis (figure 112a-b).  
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In order to form pairs of same content, all possible N*(N-1)/2 pairs within each of the four 

stimulus-sets (SE1-4) were built. Then, to form pairs of different content, only N*(N-1)/2 pairs 

between the stimulus-set (SEI) and its contrast-set (CEI) were built. Importantly, wherever the 

second trial in the pairs of same content appeared in several combinations, it was replaced by 

instances of the same exclusive trial from the contrast set, while building the combinations of 

different content (figure 112c).  
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Figure 112: Trial combinations between same and different content during encoding 
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Legend to figure 112: Trial combinations between same and different content during encoding 

Each cell in the upper right regions (green and orange) indicates a pair of trials that are 

compared, i.e. cosine of angular distance. SEk,Tm denotes a trial, where k denotes one of the 

four videos (or sounds), and m a trial of that video (or sound). a) Trials at encoding were 

divided into sets of the same stimulus-content (SE1-4). A contrast set, namely a set containing a 

random selection of trials of different content, was assigned to every stimulus set (CE1-4). b) 

None of the same-content-sets or the contrast-sets shared any trial. The size of each stimulus-

set was the same as the size of its contrast set. To ensure this, some trials were discarded from 

analysis. c) For N trials of content I (in the set SEI), the N*(N-1)/2 unique trial-combinations 

were built. This corresponds to the above diagonal region of a combination matrix (green 

cells). From all the possible combinations of different content, between a trial-set (SEI) and its 

contrast set (CEI), only the combinations above the diagonal were selected (orange cells) for 

contrast. This is equivalent to exchanging one side of the combinatory-pairs that were built 

within a stimulus set (i.e. left matrix), with trials from its contrast set (replacing all instances of 

one trial with instances of a trial from the contrast set). The same-content combinations and 

the different-content combinations of all 4 stimuli were then contrasted 
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Content specific phase similarity between encoding and retrieval 

Participants not only saw (heard) the same dynamic stimulus several times in the encoding 

block, they also repeatedly recalled the same memory content. This made it possible to 

detect content specific properties of memories if they were shared by trials in which the same 

content was learned and remembered (e.g. encoding A, remembering A) but not by trials in 

which different content was learned and remembered (e.g. encoding B, remembering C). 

Content specific phase was consequently assessed by contrasting the phase-similarity 

between encoding-retrieval pairs of same content, with the phase-similarity of encoding-

retrieval pairs that were of different content.  

Again trials were grouped and paired in a balanced randomization procedure to avoid 

potential bias. First the trials at encoding were grouped into four sets that were of same 

content (SE1-4). Likewise, the trials at retrieval were grouped into four sets of same memory 

content (SR1-4). These sets at retrieval were then recombined, such that each set of content A 

could be assigned a unique set of mixed content (B, C, and D) that was equal in size, i.e. a 

contrast-set (CR1-4). To make this possible, some trials were discarded from further analysis 

(figure 113a-b).  
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Figure 113: Trial combinations of same and different content between encoding and retrieval 
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Legend to figure 113: Trial combinations of same and different content between encoding and 

retrieval 

a) Trials were divided into sets of the same stimulus content at encoding (SE1-4) and at retrieval 

(SR1-4). Stimulus content at retrieval refers to the content held in memory. A contrast-set (CR1-

4), namely a set containing a random selection of trials of different content, was assigned to 

every stimulus set (SR1-4) at retrieval. b) The different stimulus-sets at retrieval (SR1-4) as well 

as the different contrast-sets (CR1-4) had no common trials. Furthermore, every stimulus-set at 

retrieval had the same number of trials as its contrast-set. To ensure this, some trials were 

discarded before further analysis. c) The combinations of same content between encoding and 

retrieval consisted of all possible trial-pairs between a set of content I at encoding (SEI) and the 

set of content I at retrieval (SRI). However, combinations containing the same word cue were 

ignored (diagonal grey cells). Combinations of same content therefore correspond to the off-

diagonal of a combinatory matrix (green cells). To build the combinations of different content 

for a stimulus, the trials from the very same set at encoding (SEI) were then combined with all 

trials from the corresponding contrast-set to its content at retrieval (CRI). Combinations on the 

diagonal were ignored accordingly; different content combinations correspond to the off-

diagonal of the combinatory matrix (orange cells). The similarity of same-content pairs was 

finally contrasted with the similarity of different-content pairs for all 4 dynamic stimuli. 
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Encoding-retrieval pairs of same content were then formed by building all possible pairs of 

trials between each set of a content at encoding (SEI) and the corresponding set of this 

memory content at retrieval (SRI). In order to build the pairs of different content, the very 

same set of trials from encoding (SEI) was combined with the corresponding contrast set (CRI) 

at retrieval. Finally, pairs containing the same word-cue were ignored, this occurs, when the 

encoding-trial that was originally associated with a word-cue was combined with the retrieval-

trial in which this cue was actually presented. Accordingly, in the combinations of different 

content, the pair between the discarded encoding trial and a random trial was ignored (figure 

113c).  

Between the pairs of same combinations, a similarity measure of phase was then computed 

(see below) and contrasted with the similarity between the pairs of different content. In order 

to maximize the signal to noise ratio in further analysis several restrictions were applied to 

define frequencies, time-windows, and electrodes of interest. The tested frequency was 8 

Hertz, since both conditions expressed the strongest correlates of memory in this frequency 

band. Furthermore, the time-window at encoding was restricted to a 1 second episode, in 

which phase-patterns were maximally different between the stimuli. The window was defined 

around the centre of the cluster in which phase patterns were most reliably content specific 

during encoding (i.e. the cluster with the lowest p-value). Centring the encoding-window on 

the most content specific time course of activity should increase the sensitivity to detect 

differences from encoding at retrieval. Likewise, the electrodes for further analysis were 

restricted to the electrodes within that cluster (128/128 electrodes in the visual condition and 

107/128 electrodes in the auditory condition). It needs to be emphasized that none of these 

restrictions leads to circular inference, since all of these prior restrictions are independent of 
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the similarity between encoding and retrieval trials. Most importantly phase similarity at 

encoding, under the null-hypothesis, is completely orthogonal to any neural activity at 

retrieval.  

Phase similarity between two windows was then assessed with the Single-trial Phase Locking 

Value (S-PLV) (Lachaux et al., 2000; Mormann et al., 2000). This measure defines similarity 

between two windows (x and y) as the constancy of phase angle difference over time, where 

n denotes the width of the window and 𝜑 is the phase: 

If the two signals are very similar over time, the phase angle differences will not vary much 

(i.e. have low circular variance). In this way, the similarity of two windows can be quantified as 

1 minus the circular variance of phase differences over time. S-PLV has the advantage of 

increased robustness for noisy data at the expense of temporal resolution. For the purposes 

of assessing similarity between two oscillatory patterns, this measure is convenient because it 

affords a high degree of temporal invariance and results in a value between 0 and 1 when two 

oscillatory patterns are compared. Therefore, despite the oscillatory nature of temporal 

patterns in the EEG, this makes it possible to assess the average similarity across time, trials 

and subjects. In their paper, the authors suggest to compute the S-PLV over 6-10 cycles of a 

frequency for a good signal to noise ratio (Lachaux, Rodriguez, Martinerie, & Varela, 1999; 

Mormann et al., 2000), for our purposes, S-PLV was applied to a time window of 8 cycles, 

which resulted in a 1 second window for 8 Hertz. Phase values were extracted by multiplying 

the fourier-transformed data with a complex Morlet Wavelet of 6 cycles. Phase-values were 

𝑆𝑃𝐿𝑉 =  |𝑛−1 ∑ 𝑒𝑖(𝜑𝑥𝑡−𝜑𝑦𝑡)

𝑛

𝑡=1

| 
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then downsampled to 64 Hz. The similarity measure was computed for every pair of trials in 

the combinations of same content and in the combinations of different content. Importantly, 

a sliding window approach was used to account for the non-time-locked nature of the data 

(memory reactivation could happen at any time during retrieval).  

For every combination of trials, this resulted in a single similarity value for every electrode 

and every time point at retrieval, i.e. the similarity to the 1 second encoding window (a 

similarity value at a single time point represented the similarity of the surrounding 1 second 

window at retrieval, to that window from encoding). Additionally, the retrieval window was 

truncated at 4 seconds in order to avoid potential confounds from post-stimulus images or 

responses; to assess similarity at 4 seconds, the time window was instead continued 

beginning from 1 second pre-stimulus (i.e. similarity at 4s reflects the similarity between the 

encoding window and the concatenated window from 3500ms to 4000ms and -1000ms to -

500ms at retrieval). 

In order to test for content specific phase patterns, the difference in similarity between same 

content combinations and different content combinations was averaged across the whole 

retrieval episode (between 0 and 4000ms), which resulted in a single value for every 

electrode for the same content combinations and for the different content combinations. 

Those values were then statistically tested across subjects, controlling for multiple 

comparisons with the fieldtrip permutation procedure (Maris & Oostenveld, 2007a). 

Additionally, 2 control frequencies were tested that were approximately in the golden mean 

ratio (i.e. maximally different in terms of phase) to 8Hz (Pletzer et al., 2010), namely 5 and 13 

Hz, two further control frequencies were tested that showed the next strongest power 

decrease in one of the conditions, namely 4 and 15Hz. Encoding-time windows were defined 
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accordingly for these frequencies as 8 cycles around the centre of the most reliable cluster 

during encoding. 

The electrode clusters of significant differences that resulted for 8 Hz, were subjected to 

further analysis in order to explore the temporal dynamics of reinstatement. In a first step, a 

series of post hoc t-tests was computed on the difference between same and different 

content combinations during every time point of retrieval. This resulted in a time series that is 

comparable to a cross-correlogram and can be interpreted as a time course of reinstatement 

(see figure 109a-b).  

In a further step, the sliding window analysis was repeated with different time windows from 

encoding, however keeping with the electrodes in the cluster of significant differences. 

Thereby, similarity between any two time points could be estimated with a temporal 

uncertainty of +-500ms. The outcome of this analysis was a matrix of similarity between every 

time point at encoding and every time point at retrieval on each of the electrodes in the 

cluster (see figure 109e-f). The difference between combinations of same and different 

content was then averaged across electrodes and tested over subjects. The resulting clusters 

reveal the temporal relationship between presentation at encoding and reinstatement during 

retrieval, however it should be said that tests on this encoding-retrieval-matrix are not 

independent from the original identification of the electrodes.  

Source reconstruction 

To reconstruct the activity on the source level, a linearly constrained minimum variance 

(lcmv) beamforming approach was used as it is implemented in the Fieldtrip toolbox 

(http://www.fieldtriptoolbox.org/). Individual electrode positions were used together with 
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boundary element models that were constructed from individual MRI scans. With lcmv-

beamforming, filters will be more accurate for the data that they were constructed on and 

will also be more accurate if constructed on a long time interval (Van Veen, Van Drongelen, 

Yuchtman, & Suzuki, 1997). This trade-off was addressed by computing each filter around the 

preprocessed data that contributed to the effect being localized. Power differences were 

localized with a filter based on -500ms to 4500ms at retrieval; for the phase similarity at 

encoding, the filters were estimated on the time window between -500ms and 3500ms of the 

encoding trials. Phase similarity between encoding and retrieval was reconstructed with a 

filter based on -500ms to 1000ms at encoding and -500ms and 4500ms at retrieval. Activity 

on 2020 virtual electrodes was thereby reconstructed and the analysis of the data was 

repeated in the same way on the virtual data.  

Statistical analyses 

Behavioural performance 

Behavioural results were compared between the auditory and visual condition with a series of 

paired t-tests. P-values were compared against a Bonferroni-corrected threshold (Bland & 

Altman, 1995), however no specific hypothesis was tested.  

Decreases in power 

To test for differences in baseline corrected power, a paired t-test was first computed for 

every time point and frequency at every channel. For multiple-comparison-correction, a 

random permutation procedure was applied (Maris & Oostenveld, 2007a). This procedure 

sums up neighbouring t-values above a cluster forming threshold and compares the resulting 

clusters’ sizes to the distribution of the maximal cluster sums that are derived, when 
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condition labels are randomly swapped with the Monte-Carlo method. The option for the 

minimum number of channels to be considered a cluster was specified with 3. This attenuates 

the confound coming from spatially high frequency noise only allowing clusters that contain 

at least 3 neighbouring channels above threshold; neighbouring electrodes were derived via 

the triangulation method of the Fieldtrip toolbox (http://www.fieldtriptoolbox.org/). The 

clusters were summed across time, frequency and channels, then labels were permuted 1000 

times; computation of the clusters as well as the testing of the null hypothesis was addressed 

with a threshold for two-sided testing (alpha level of 0.025). Due to computational limitations, 

the power values were downsampled before the unrestricted test across time, electrodes and 

frequencies, such that values were included approximately every 16ms. To further identify 

frequencies with a reliable power difference, a paired samples t-test was computed for every 

frequency on the average power difference across channels and across the whole retrieval 

time window between 0 and 4 seconds (for frequencies below 6 Hz the time window was 

increasingly shorter, since the last point of data was at 4.5 seconds and the power of lower 

frequencies cannot be estimated towards the boundaries of the time window). 

On the source level, the average power values between 0 and 4 seconds were compared for 8 

Hz. Therefore, a t-test was computed for every virtual electrode and an unrestricted 

permutation procedure was run on the whole brain level in the same way as described above 

using 1000 permutations. Neighbouring t-values were now only spatially defined from 

neighbouring virtual electrodes.  

Phase stationarity/signal complexity 

In order to assess whether the frequency specific power decreases resulted in differences in 

phase stationarity, a paired t-test was computed for the average difference in stationarity 
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over time and electrodes (see Supporting Information and figure 105). These values were 

averaged over all data points in the time window between 0 and half a cycle before the end of 

the trial (4 seconds). Following the hypothesized dependency of phase stationarity on the 

power decreases, the frequency with the strongest power decrease was tested first. In 

subsequent tests, p-values were compared against a Bonferroni corrected p-value.  

Phase similarity during encoding 

Phase similarity at encoding was tested in the same way as power. A series of paired t-tests 

was computed to contrast the average similarity of combinations of same content with the 

average similarity of combinations of different content. T-values for every frequency band, 

electrode and time point were then corrected for multiple comparisons in an unrestricted 

cluster-based permutation approach. The cluster permutation compared again the sums of t-

values across frequency, electrodes and time against the distribution of these clusters derived 

via the Monte-Carlo method. Due to computational limitations, the similarity values were 

downsampled only for the unrestricted test across time, electrodes and frequencies, such 

that approximately every 16ms a value was included in the test. A threshold for two-sided 

testing was applied, in order to test against the null-hypothesis. Later, the frequency 8 Hertz 

was tested separately with the same cluster permutation procedure against a one-sided 

threshold in order to identify a temporospatial cluster, in which 8 Hertz phase could 

differentiate content particularly well. On the source level, similarity was averaged over the 

defined one-second encoding window (see above) and contrasted between combinations of 

same and different content with a t-test on every virtual electrode. Multiple comparisons 

correction was performed again on the whole brain level, neighbouring t-values were 

summed and the distribution of resulting clusters was created using 1000 randomly drawn 
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permutations. The probability of the observed cluster was then assessed by comparing its size 

to this distribution, correcting for a threshold of two-sided testing.  

Phase similarity between encoding and retrieval 

The similarity between the encoding-window and the retrieval-episode was tested for 

differences between combinations of replay of the same versus replay of different content. In 

a first step, the average difference between 0 and 4 seconds was contrasted with a paired t-

test on every electrode to test for a general effect. For multiple comparison correction again 

1000 permutations were drawn and observed clusters of summed t-values were tested 

against the distribution of sums under random permutation of conditions; the threshold for 

significance was the p-value for two-sided testing. The test of the effect on the source level 

was small and did not survive multiple comparison correction. However, the maximal clusters 

of neighbouring t-values that exceeded a threshold for single-sided testing were assumed to 

reflect the effect that was significant on the electrode level. Therefore, we used only the 

maximal cluster of differences in source space as a region of interest for further analyses.  

Interaction of power decreases and phase similarity in source space 

These clusters of similarity were then tested for differences in power decreases by summing 

up power differences across all virtual electrodes within each region of interest 

(visual/auditory) in each condition (visual/auditory). Power in these Regions was then 

compared across conditions by subjecting the power decreases in the regions to a 2X2 

repeated measurements ANOVA with the factors Region of Interest and Condition.  

Exploration of encoding retrieval similarity in the cluster of memory-replay 

Finally, on the electrode level, the similarity effect between encoding and retrieval was 

statistically explored. Within the electrode-clusters of significant differences, a series of post-
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hoc t-tests was computed and thresholded with a probability level of 0.01 for a single-sided 

test in order to identify the time windows that caused the similarity-effect. Lastly, the 

Similarity matrices within the clusters of electrodes that indicated encoding-retrieval 

similarity were tested. Neighbouring t-values of difference between same and different 

content combinations were thresholded again at a p-value of 0.01 and summed up, however 

In order to allow for negative effects and rule them out, the threshold was adapted for two-

sided testing. 1000 permutations were drawn and a distribution of the strongest clusters, 

second strongest clusters, etc. was built. The observed clusters were sorted and compared 

against the random distribution of clusters. A liberal approach was adopted, comparing the 

cluster with the highest sum of t-values, to the distribution of the maximal cluster and every 

following cluster to the distribution of next strongest clusters. Critical p-values for significance 

were divided by the number of the cluster (Bland & Altman, 1995). 
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Data Availability 

Group statistical data and analysis scripts of this project are deposited in the Dryad 

repository: http://dx.doi:10.5061/dryad.ch110 (Michelmann, 2016) 

  

http://dx.doi:10.5061/dryad.ch110
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Chapter 3 – Replay of Stimulus Specific Temporal Patterns during Associative 

Memory Formation 
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Preface 

The previous chapter demonstrated that content specific temporal patterns can be detected 

during purely memory driven reinstatement. This reinstatement was linked to decreases in 

oscillatory power at a centre frequency of 8 Hz. Importantly, the experimental paradigm 

clearly separates perception of the dynamic stimuli from memory formation during encoding: 

When the association is formed, only the static word-cue is presented. Arguably, however, 

content specific patterns still need to be present in neural activity, in order to form the 

association between naturalistic stimuli and word-cues. In accordance with the information 

via desynchronization hypothesis, these patterns should again be marked by power decreases 

in the corresponding frequency bands. The following chapter will test this hypothesis on the 

same dataset that was presented in the last chapter. This research was submitted under the 

title: Replay of Stimulus Specific Temporal Patterns during Associative Memory Formation and 

is available in near identical form from biorxiv.org (Michelmann, Bowman, & Hanslmayr, 

2017). At the time of this thesis, the paper was under review.  

Contributions 

The experiments were conceived and designed by SM and SH. SM performed the 

experiments.  

All data analysis was performed by SM under supervision of SH, the manuscript was written 

by SM under supervision of SH and HB. 
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Abstract 

Forming a memory often entails the association of recent experience with present events. 

This recent experience is usually an information rich and dynamic representation of the world 

around us. We here show that associating a static cue with a previously shown dynamic 

stimulus, yields a detectable, dynamic representation of this stimulus in working memory.  

We further implicate this representation in the decrease of low-frequency power (~4-30 Hz) 

in the ongoing electroencephalogram (EEG), which is a well-known correlate of successful 

memory formation. The maintenance of content specific patterns in desynchronizing brain 

oscillations was observed in two sensory domains, i.e. in a visual and in an auditory condition. 

Together with previous results, these data suggest a mechanism that generalizes across 

domains and processes, in which the decrease in oscillatory power allows for the dynamic 

representation of information in ongoing brain oscillations.  
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Introduction 

Not everything we associate in our memory occurs at the same time. When our favourite 

football player is seeing the red card, for instance, we are able to bring this together with the 

events we just witnessed a few seconds before.  Later, we are naturally able to recall all 

relevant information leading to the red card. In order to successfully make this association, 

our brain has to accomplish two things. First, it has to keep track of the past and maintain a 

representation of the events in the ongoing football match and second, form memories in 

which past events are connected to the red card.  Processes during the encoding phase that 

will determine our ability to later remember events can be investigated with the so-called 

subsequent memory paradigm (Paller & Wagner, 2002; Wagner, Koutstaal, & Schacter, 1999). 

Subsequent memory effects refer to neural activity which distinguishes remembered from 

not remembered items at the time of encoding and are well documented in M/EEG and fMRI, 

showing involvement of cortical as well as medial temporal lobe regions (e.g. Long et al., 

2014; Otten, Quayle, Akram, Ditewig, & Rugg, 2006). Concerning M/EEG power, decreases in 

low frequency (<40 Hz) brain dynamics have repeatedly and consistently been related to 

successful memory formation (Hanslmayr & Staudigl, 2014). 

It has recently been proposed that cortical power decreases in the alpha/beta frequency 

range allow for a rich representation of memory content, since a desynchronized system has 

more flexibility to code information over a system of high synchrony. We call this view, the 

information via desynchronization framework (Hanslmayr et al., 2012). Confirming this idea, 

we have shown that sustained power decreases in the alpha band at approximately 8 Hz, 

contain item specific information about the remembered content, when subjects successfully 
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replay dynamic stimuli (i.e. video and sound clips) from memory (Michelmann et al., 2016). In 

this study, we provided direct evidence that power decreases are involved in the 

representation of stimulus specific information (Hanslmayr et al., 2012). Moreover these 

results are well in line with numerous studies showing that perception is not continuous but 

rather is rhythmically sampled at a frequency of ~7-8 Hz (Hanslmayr et al., 2013; Landau & 

Fries, 2012; VanRullen et al., 2007). These outcomes indicate that rhythmic patterns from the 

perception of dynamic stimuli can reappear during internally guided retrieval processes, in 

the absence of the stimuli themselves. Accordingly, these prior findings also suggest the 

possibility that the replay of temporal patterns can be observed in a situation where dynamic 

stimuli have to be maintained internally in working memory.  

To address this question, we here analyse the data during the encoding phase from a 

previous dataset (Michelmann et al., 2016). The paradigm required subjects to associate a 

dynamic stimulus with a static word that was used as a cue in the later retrieval phase. 

Importantly, during encoding the perception of the dynamic stimulus and the presentation of 

the word-cue was temporally separated, i.e. in every trial, one out of four dynamic stimuli was 

followed by a unique word-cue (figure 201, a-b). In a visual condition, these dynamic stimuli 

consisted of four short video-clips, in an auditory session four short sound clips were used. In 

a later retrieval block, participants were presented with the word-cue and were tested 

whether they remembered the associated video/sound clip. 

We hypothesize that, in order to associate the word-cue with the dynamic stimulus, subjects 

maintain (i.e. replay) a sensory representation of the dynamic stimulus in working memory, 

which is why we refer to this phase as the maintenance phase. Using temporal pattern 

similarity analysis, we should therefore be able to detect the replay of these patterns during 
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the maintenance phase, i.e. when the association between a word and the sound/movie is 

formed. In accordance with the information via desynchronization framework, we should 

observe stronger decreases for later remembered versus later not remembered items. This 

subsequent memory effect should be most evident in the frequency band that codes for the 

representation of the dynamic stimulus in working memory, i.e. 8 Hz as per our previous 

findings. Moreover, if power decreases enable a richer representation of the perceptual 

content, we should already observe stronger broad power decreases for later remembered 

compared to later not remembered stimuli during the perception of the dynamic stimulus. 
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Figure 201: Experimental design and behavioural results 
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Legend to figure 201: Experimental design and behavioural results 

Experimental sequence in the visual (A) and in the auditory (B) session. During encoding (A, B 

left), participants perceived a dynamic stimulus that played for 3 s and was then followed by a 

word cue. The cue was presented for 4 s and subjects had to associate the word with the 

dynamic stimulus they just saw. Note that during encoding, the word cue was shown after the 

dynamic stimulus, separating the perception interval from the association interval, therefore 

participants had to maintain a representation of the dynamic stimulus in working memory. 

Participants learned 120 associations between four repeatedly shown dynamic stimuli and 120 

different words. At the end of every encoding trial, they rated the perceived difficulty of the 

association on a scale from 1 to 6. In the retrieval block (A, B right) they recalled the dynamic 

stimulus upon presentation of the word-cue. Cues from encoding were mixed with 60 new 

words that served as distractors. After that, they indicated the stimulus they recalled. 

Response options (C, D) consisted of four small screenshots of the video clips in the visual 

session (C) and of four small instruments, representing the sounds, in the auditory session (D). 

The response option “NEW” represented the distractor, and was available to indicate that the 

word was not presented in the encoding block, the response option “OLD” was available to 

indicate that subjects remembered only the word, but not it’s associate. At the end of every 

retrieval trial a confidence rating was collected on a scale from 1 to 6 (A, B right). (E) 

Behavioural performance for the associations from encoding. Hits are trials in which the 

correct associate was subsequently remembered (video or sound). A rating of high confidence 

was considered a rating > 4. Misses were defined as all trials in which the associate was later 

forgotten. Boxes are 25th and 75th percentiles around the median; whiskers represent 



91 

 

minimum and maximum (disregarding outliers). Green points in black circles are arithmetic 

means small coloured points are single subject values. * p < 0.05 
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Materials and Methods 

Participants 

24 healthy, right-handed subjects (18 female and 6 male) participated in this study. 7 further 

participants were tested, or partly tested, but could not be analysed due to poor memory 

performance (N=2), misunderstanding of instructions (N=2), and poor quality of EEG-

recording and technical failure (N=3). All participants had normal or corrected-to normal 

vision. The average age of the sample was 23.38 (s.d. = 3.08) years. Participants were native 

English speakers (20), bilingual speakers (2) or had lived for more than 8 years in the UK (2). 

Ethical approval was granted by the University of Birmingham Research Ethics Committee, 

complying with the Declaration of Helsinki. Participants provided informed consent and were 

given a financial compensation of 24£ or course-credit for participating in the study. 

Material and experimental set up 

The cues amounted to 360 words that were downloaded from the MRC Psycholinguistic 

Database (Coltheart, 1981). Stimulus material consisted of 4 video clips and 4 sound clips in 

the visual and auditory session respectively. All clips were 3 seconds long; videos showed 

coloured neutral sceneries with an inherent temporal dynamic, sounds were short musical 

samples, each played by a distinct instrument. In both sessions, a clip was associated with 30 

different words. 60 words were reserved for the distractor trials and 12 additional words 

were used for instruction and practice of the task. For presentation, words were assigned to 

the clips or to distractors in a pseudorandom procedure, such that they were balanced for 

Kucera-Francis written frequency (mean = 23.41, s.d. = 11.21), concreteness (mean = 571, s.d. 
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= 36), imageability (mean = 563.7 s.d. = 43.86), number of syllables (mean = 1.55, s.d. = 0.61) 

and number of letters (mean = 5.39, s.d. = 1.24). Furthermore lists were balanced for word-

frequencies taken from SUBTLEXus (Brysbaert & New, 2009). Specifically, “Subtlwf” was 

employed (mean = 20.67, s.d. = 27.16). The order of presentation was also randomized, 

assuring that neither the clips and their associates, nor distractor words were presented more 

than 3 times in a row or in temporal clusters. The presentation of visual content was realized 

on a 15.6 inch CRT-monitor (Taxan ergovision 735 TC0 99) at a distance of approximately 50 

centimetres from the subjects eyes. The monitor refreshed at a rate of 75 Hz. On a screen size 

of 1280 x 1024 pixels, the video clips appeared in the dimension of 360 pixels in width and 

288 pixels in height. ‘Arial’ was chosen as the general text-font, but font-size was larger during 

presentation of word-cues (48) than during instructions (26). In order to reduce the contrast, 

white text (rgb: 255, 255, 255) was presented against a grey background (rgb: 128, 128, 128). 

Auditory stimuli were presented using a speaker system (SONY SRS-SP1000). The 2 speakers 

were positioned at a distance of approximately 1.5 meters in front of the subject with 60 

centimetres of distance between the speakers. 

Procedure 

Upon informed consent and after being set up with the EEG-system, participants were 

presented with the instructions on the screen. Half of the subjects started with the auditory 

session, the others were assigned to undertake the visual task first. Both sessions consisted of 

a learning block, a distractor block and a test block. The sessions were identical in terms of 

instructions and timing and differed only in the stimulus material that was used. During 

instruction, the stimulus material was first presented for familiarization and then used in 
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combination with the example words to practice the task. Instructions and practice rounds 

were completed in both sessions.  

As a way to enhance memory performance, participants were encouraged to use memory 

strategies. The suggestion was to imagine the word in a vivid interaction with the material 

content, yet the choice of strategy remained with the subject. In the learning block, 120 clip-

word sequences were presented. Each sequence started with a fixation cross that was 

presented in the centre of the screen for 1 second, and then the video-clip played for 3 

seconds. In the auditory condition, the fixation cross stayed on the screen and the sound-clip 

played for 3 seconds. Immediately after the clip, a word cue was presented in the centre for 4 

seconds, giving the subject time to learn the association. After that, an instruction requested 

participants to subjectively rate on a 6 point scale how easy the association between the clip 

and the word was. After a press on the space bar, this scale was shown. Equidistant 

categories were anchored with the labels “very easy” and “very hard”; those labels were 

displayed at both ends above the scale. Participants used six response buttons to rate the 

current association (see figure 201).  

In the distractor block, subjects engaged in a short unrelated working memory task, namely 

they counted down in steps of 13, beginning from 408 or 402 respectively. After 1 minute the 

distractor task ended. Following a short self-paced break, subjects refreshed the instructions 

on the retrieval block.  

In this retrieval block, either a cue or a distractor was presented upon a button press on the 

space bar. Subjects were instructed to try to vividly replay the content of the corresponding 

video-clip or sound-clip in their mind upon presentation of the cue. The word stayed on the 

screen for 4 seconds, giving the subject the opportunity to replay the memory. Finally, a 
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fixation cross was presented for a varying time window between 250 and 750 milliseconds to 

account for movement and preparatory artefacts, before the response scale appeared on the 

screen. 

The response-scale consisted of 6 options. 4 small screen shots of the videos or 4 black and 

white pictures of the featured instruments were presented in equidistant small squares of 

30x30 pixels. Additionally, the options “new” and “old” were displayed in the form of text at 

the most left and most right position of the scale (see figure 201C-D). Subjects could now 

either indicate the target (video/sound) they just replayed, by pressing the button 

corresponding to that clip. Instead, subjects could also indicate that the word was a distractor 

by pressing the button corresponding to the option “new”, or they would simply indicate that 

they remembered the word, but could not remember the clip it was associated with. In this 

last scenario, subjects would press the button corresponding to “old”. The positions of “old” 

and “new” at the end of the scale, as well as the permutation of the 4 target positions in the 

middle of the scale, were counterbalanced across participants. Finally, after making a 

decision, a further six point rating scale was presented on which subjects could rate the 

confidence in their response. Again a scale with equidistant categories was presented ranging 

from “guess” to “very sure”. An additional possibility was to press “F2” in case of an 

accidental wrong button press. In this case, the whole trial was discarded from analysis. 

Following the retrieval block, individual electrode positions were logged allowing for a break 

of approximately 30 minutes before beginning the second session.  
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Data Collection 

The recording of behavioural responses and the presentation of instructions and stimuli were 

realized using Psychophysics Toolbox Version 3 (Brainard, 1997) with MATLAB 2014b 

(MathWorks) running under Windows 7, 64 Bit version on a desktop computer. Response 

buttons were “s, d, f, j, k, l” on a standard “QWERTY” layout. Buttons were highlighted and 

corresponded spatially to the response options on the screen, so participants did not have to 

memorize the keys. To this end, the shape of corresponding fingers was also displayed under 

the scale. To proceed, participants used the space bar during the experiment. Physiological 

responses were measured with 128 sintered Ag/AgCl active electrodes, using a BioSemi 

Active-Two amplifier, the signal was recorded at 1024 Hz sampling rate on a second computer 

via ActiView recording software, provided by the manufacturer (BioSemi, Amsterdam, 

Netherlands). Electrode positions were logged with a Polhemus FASTRAK device (Colchester, 

VT, USA) in combination with Brainstorm (Tadel et al., 2011) implemented in MATLAB. 

Preprocessing 

The data was preprocessed using the Fieldtrip toolbox for EEG/MEG-analysis (Oostenveld et 

al., 2011). Data was cut into trial-segments from 2.5 seconds pre-stimulus to 7 seconds after 

the onset of the dynamic stimulus. The linear trend was removed from each trial and a 

baseline correction was applied based on the whole trial. Trials were then downsampled to 

512 Hz and a band-stop filter was applied at 48-52, 58-62, 98-102 and 118-122 Hz to reduce 

line noise at 50 Hz and noise at 60 Hz; additionally a low-pass filter at 140 Hz was applied. 

After visual inspection for coarse artefacts, an independent component analysis was 

computed. Eye-blink artefacts and eventual heartbeat/pulse artefacts were removed, bad 
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channels were interpolated and the data was referenced to average. Finally the data was 

inspected visually and trials that still contained artefacts were removed manually. 

Behavioural analysis 

For behavioural analysis, correct trials were defined as those in which the target was correctly 

identified. The confidence rating of the response was considered as high if a rating of 5 or 6 

was selected. Misses were defined as trials in which a cue-word was incorrectly identified as a 

new word, the wrong clip was selected, or the response “old” was given to indicate 

recognition of the word without remembering the target video or sound it was associated 

with. 

Power analysis 

Oscillatory power was determined by multiplying the Fourier-transformed data with a 

complex Morlet wavelet of 6 cycles. Raw power was defined as the squared amplitude of the 

complex Fourier spectrum and estimated for every 4th sampling point (i.e. sampling rate of 

128 Hz). For the contrast of subsequent hits and subsequent misses, a baseline was computed 

as the average power between -1 and 7 seconds of all trials within the contrast (Long et al., 

2014). Every trial was then normalized by subtracting the baseline and subsequently dividing 

by the baseline (activitytf – baselinef)/baselinef, where t indexes time and f indexes frequency. 

The relative power was calculated for all frequencies between 2 and 30 Hz. 

Phase pattern analysis during perception and maintenance 

While participants learned the associations in the encoding block, they repeatedly perceived 

(saw/heard) the same dynamic stimulus. Content-specific properties could consequently be 
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identified if they were shared by trials of the same content but not by trials of a different 

content. Hence, content-specific phase during perception was assessed by contrasting the 

phase similarity between pairs of trials in which the same content was presented, with the 

phase similarity of an equal number of trial pairs that were of different content. For each pair 

of trials, the cosine of the absolute angular distance was then computed and finally averaged 

across all (same or different) combinations [29]. The average similarity value for same and 

different combinations was subjected to statistical testing across subjects at every time point, 

at every electrode and in every frequency of interest; this contrast embodies content specific 

phase patterns during perception. 

Participants also repeatedly associated the same dynamic stimulus (one of four 

videos/sounds) with a different word cue. Therefore the temporal pattern during perception 

of the dynamic stimulus could be compared to the temporal pattern in different trials in 

which subjects maintained the same dynamic stimulus in working memory. Notably, excluding 

within trial combinations eliminates the potential confound of temporal autocorrelation. 

Likewise the temporal pattern during perception could be compared to trials in which 

subjects maintained a different dynamic stimulus in working memory.  

In this way, the phase similarity between combinations of same content (e.g. perceiving 

content 1, maintaining content 1) was contrasted with the phase similarity between trials of 

different content (e.g. perceiving content 4, maintaining content 2). This contrast reveals 

phase patterns that are specific to the dynamic stimulus which subjects associated with the 

cue. 

To maximize the signal to noise ratio, the following restrictions were applied: The tested 

frequency was 8 Hertz, following our previous results and hypotheses (Michelmann et al., 
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2016); A time-window during perception was centred on the cluster in which phase patterns 

were most reliably content specific during encoding (i.e. the cluster with the lowest p-value) 

and subsequently used in a sliding window approach in order to detect content specific 

patterns. 

Phase similarity between two windows was then assessed with the Single-trial Phase Locking 

Value (S-PLV) (Lachaux et al., 2000; Mormann et al., 2000). This measure defines similarity 

between two windows (x and y) as the constancy of phase angle difference over time, where 

n denotes the width of the window and 𝜑 is the phase: 

 

S-PLV assesses the phase coherence between two time windows and has the advantage of 

increased robustness for noisy data at the expense of temporal resolution. 

(Lachaux et al., 2000) suggest to compute the S-PLV over 6-10 cycles of a frequency for a 

good signal to noise ratio, for our purposes, S-PLV was applied to a time window of 8 cycles, 

which resulted in a 1 second window for 8 Hertz. Phase values were extracted by multiplying 

the Fourier-transformed data with a complex Morlet Wavelet of 6 cycles. Phase-values were 

then downsampled to 64 Hz. The similarity measure was computed for every pair of trials in 

the combinations of same content and in the combinations of different content. Importantly, 

a sliding window approach was used to account for the non-time-locked nature of the data 

(temporal patterns could be present anywhere in the maintenance interval). This resulted in a 

time course of similarity for the combinations of same and of different content. 

𝑆𝑃𝐿𝑉 =  |𝑛−1 ∑ 𝑒𝑖(𝜑𝑥𝑡−𝜑𝑦𝑡)

𝑛

𝑡=1

| 
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The difference in this similarity was first averaged across the whole maintenance episode 

(between 3500 and 7000ms) and then statistically tested across subjects with a random 

permutation procedure based on clusters of summed t-values across electrodes (Maris & 

Oostenveld, 2007a). In a second test, the time courses at every electrode were compared 

with a series of t-tests and subsequently tested with a cluster-based random permutation 

procedure, where clusters were summed across electrodes and time (see also: statistical 

analyses, below). Additionally, a control frequency was tested, namely 6 Hz, based on the 

results from the power analysis. Time windows were defined accordingly for this frequency as 

8 cycles around the centre of the most reliable cluster during perception.  

Statistical analyses 

Behavioural performance 

Behavioural results were compared between the auditory and visual condition with a series of 

paired t-tests. P-values were compared against a Bonferroni-corrected threshold (Bland & 

Altman, 1995), however no specific hypothesis was tested.  

Decreases in power 

To test for differences in baseline corrected power, a paired t-test was first computed for 

every time point and frequency at every channel. For multiple-comparison-correction, a 

random permutation procedure was applied (Maris & Oostenveld, 2007a). This procedure 

sums up neighbouring t-values above a cluster forming threshold and compares the resulting 

clusters’ sizes to the distribution of the maximal cluster sums that are derived, when 

condition labels are randomly swapped with the Monte-Carlo method. The minimum number 

of neighbouring channels to be considered a cluster was specified with 3, which attenuates 
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the impact of spatially high frequency noise; neighbouring electrodes were derived via the 

triangulation method of the Fieldtrip toolbox (http://www.fieldtriptoolbox.org/). The clusters 

were summed across time, frequency and channels, then labels were permuted 1000 times; 

thresholding of the clusters as well as the testing of the null hypothesis was addressed with a 

threshold for single-sided testing (alpha level of 0.05). To identify frequencies with a reliable 

power difference, a paired samples t-test was computed for every frequency on the average 

power difference across all channels and across the whole time window of interest. 

Phase similarity during perception of the dynamic stimulus 

Phase similarity during perception was tested in the same way as power. A series of paired t-

tests was computed to contrast the average similarity of combinations of same content with 

the average similarity of combinations of different content. T-values for every frequency 

band, electrode and time point were then corrected for multiple comparisons in an 

unrestricted cluster-based permutation approach. The cluster permutation compared again 

the sums of t-values across frequency, electrodes and time against the distribution of these 

clusters derived via the Monte-Carlo method. Later, the frequency 8 Hertz was tested 

separately with the same cluster permutation in order to identify a temporospatial cluster, in 

which 8 Hertz phase could differentiate content particularly well.  

Phase similarity between perception and maintenance 

The similarity between the time-window during perception and the maintenance-episode was 

tested for differences between combinations of same and combinations of different content. 

As mentioned above, in a first step, the average difference between 3.5 and 7 seconds was 

contrasted with a paired t-test on every electrode to test for a general effect. For multiple 

comparisons correction, again, 1000 permutations were drawn. Observed clusters of those t-
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values that exceeded the critical threshold were summed across neighbouring electrodes and 

were tested against the distribution of sums under random permutation of conditions. In a 

second step, a paired t-test was computed for every electrode and time point during the 

maintenance interval and differences were again tested with a cluster based permutation 

approach. Now clusters were formed by summation of the thresholded t-values across 

electrodes and time and compared against the distribution of these clusters for 1000 random 

permutations. 

Results 

Behavioural performance 

In the visual session, participants remembered on average 53.92% (standard deviation [s.d.] = 

17.56%) of the video clips with high confidence (rating > 4), and they further remembered 

9.97% (s.d. = 7.62%) of the clips with low confidence (figure 201E). In the auditory session, 

44.44% (s.d. = 19.8%) of the audio clips were subsequently remembered with high 

confidence, which was significantly less than in the visual condition (t23 = -2.81, p < 0.01). An 

additional 9.06% (s.d. = 6.9%) of the audio clips were remembered with low confidence. In 

accordance, the number of subsequent misses was significantly lower in the visual session 

(mean 35.07%, s.d. = 16.43%) than in the auditory session (45.45%, s.d. = 20.27%, t23 = -3.33, 

p < 0.01).  
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Successful memory encoding is associated with low frequency power decreases 

in the visual and auditory condition 

To find correlates of successful memory encoding, the oscillatory power between 

subsequently remembered (hits) and subsequently not remembered (misses) items was 

compared. Specifically, we contrasted trials for which associations were subsequently 

remembered with high confidence, with trials in which the associations were subsequently 

not remembered correctly. In this analysis, only those datasets were used, in which a 

minimum of 15 trials remained for hits or misses after preprocessing (N=18). Two crucial 

episodes for successful memory encoding were tested separately: (i) the time interval in 

which the dynamic stimulus was actually perceived (0 to 3 seconds) and (ii) the maintenance 

interval (3 to 7 seconds), in which the memory formation would be expected to have taken 

place. In the time interval from 0 to 3 seconds, a small cluster of power decreases was 

associated with successful memory in the visual condition; it displayed a trend towards 

significance (p < 0.07, figure 202A, left). Likewise, in the auditory condition a similar cluster of 

power decreases appeared (p = 0.047, figure 202B, left).  

During the maintenance interval (3 to 7 seconds), substantially reduced power in the lower 

frequencies (<30 Hz) was observed for subsequent hits compared to subsequent misses 

(figure 202, middle) in both conditions. In the visual condition, a broad cluster emerged 

where power was significantly lower when tested against random permutations (p = 0.031, 

figure 202A, middle). Likewise a broad cluster of significant power decreases appeared in the 

maintenance interval of the auditory condition (p < 0.003, figure 202B, middle).  
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To identify frequencies that robustly exhibited lower oscillatory power for successful memory 

encoding, the power during the maintenance interval was averaged across all electrodes and 

time points and differences were subjected to a t-test. Following our previous results 

(Michelmann et al., 2016), we expected the strongest power decreases in both conditions to 

peak at 8 Hz. Indeed, a clear peak at 8 Hz was observed in the visual condition (t17 = -2.82, p < 

0.01, figure 202A, middle). In the auditory condition, however, a peak was observed at 6 Hz 

(t17 = -4.45, p < 0.001, figure 202B, middle), yet power decreases also extended to 8 Hz (t17 = -

3.53, p = 0.001). 

For the visual condition, the power decreases at 8 Hz displayed a broad topography with a 

parietal maximum over the left hemisphere (figure 202A, right). Decreases in 8 Hz power 

were similarly broadly distributed in the auditory condition, with maxima over left parietal 

and right frontal regions (figure 202B, right). 

Together, these results confirm the fundamental role of decreases in low frequency 

oscillatory power for the successful formation of memory.  
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Figure 202: Subsequent memory effects in oscillatory power 
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Legend to figure 202: Subsequent memory effects in oscillatory power 

Successful memory encoding was associated with broad power decreases in the lower 

frequencies (<30 Hz) in the visual (A) and in the auditory (B) condition. In the first 3 seconds of 

a trial, when subjects perceived the dynamic stimuli, clusters of broad power decreases in the 

visual (A, left) and auditory (B, left) condition displayed a trend towards significance already 

during this interval. During the association with the word-cue (between 3 and 7 seconds within 

each trial) broad clusters of significant power decreases emerged in both conditions (A, B, 

middle). Time frequency plots show the sum of t-values across the clusters (A and B, left and 

middle panels). The t-value of average power difference across electrodes and time between 3 

and 7 seconds is plotted to the right of the middle panels. Topographies of power decreases 

are plotted on the right as maps of t-values derived from the average power decreases 

between 3 and 7 seconds. 
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Temporal patterns are content specific during perception and can be detected 

during maintenance 

The detection of content specific temporal patterns during the maintenance period 

necessitates that the dynamic stimuli themselves elicit temporally distinct neural responses. 

To address this, we first compared the pairwise phase consistency (PPC) (Vinck et al., 2010) 

between trials in which the same dynamic stimulus was perceived with the PPC between trials 

of different content. Oscillatory phase of the neural responses was specific to the dynamic 

stimuli in two broad clusters in the visual (p < 0.001, p = 0.003, figure 203C) and one broad 

cluster in the auditory condition (p < 0.001, figure 203G), confirming prior reports that the 

content of dynamic stimuli is tracked by the phase of low frequency oscillations (Ng et al., 

2013). Vitally, both clusters included 8 Hz which was the oscillation for which we 

hypothesized to detect the reappearance of temporal patterns in the maintenance period.  

We now identified periods during perception in which the time courses at 8 Hz were 

maximally content specific by restricting the statistical test to 8 Hz only and selecting the 

cluster in which content could most reliably be differentiated during perception (i.e., the 

cluster with the lowest p-value). In the visual condition, this cluster extended from -152 ms to 

564 ms (p < 0.001). Note that post-stimulus effects are smeared temporally into the pre-

stimulus interval because of the wavelet decomposition. The most reliable cluster of content 

specificity in the auditory condition extended from 22 ms to 871 ms (p = 0.002). A further 

cluster in the visual condition was observed between 2,650 ms and 3,300 ms (p = 0.016). In 

the auditory condition further clusters emerged between 1,818 ms and 2,627 ms (p = 0.003) 
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and between 1,203 ms and 1,504 ms (p = 0.047) indicating that in both modalities early and 

later time windows showed content specific temporal patterns.  

For the 8 Hz oscillation, a 1-second wide window was now centred on the cluster that most 

reliably distinguished content during perception (i.e. at 206 ms in the visual condition and 446 

ms in the auditory condition, figure 203A, E). In a sliding window approach, a measure of 

phase coherence (S-PLV (Lachaux et al., 2000)) was then computed between this window and 

every 1-second-wide window between 3 and 7 seconds during the maintenance period (see 

figure 203A-B). For practical reasons, at the end of the trial the window was slid out back into 

the pre-stimulus interval (zero padding could be an alternative but more intricate approach). 

This time course of similarity (phase coherence) was now computed for trial-combinations 

comprising perception and maintenance of the same stimulus and for trial-combinations of 

perception and maintenance of different content. Importantly, the combinations of same 

content were never built within a trial, assuring a balancing of temporal autocorrelation 

between same and different combinations. In a first test, we subjected the average similarity 

across time to a t-test, contrasting same and different combinations at every electrode. A 

cluster-based permutation revealed a significant cluster in the visual condition (p < 0.001), but 

not in the auditory condition. In a follow-up test, we repeated the t-test for every time-point 

at every electrode and summed clusters across time and electrodes. A permutation test 

revealed 2 clusters of significant differences in the visual condition (p < 0.001, p = 0.035, 

figure 203B, D). The first cluster was located over left-frontal regions and extended from 4.8 

to 5.41 seconds after stimulus onset (i.e. 1.8 to 2.41 seconds after the start of the 

maintenance phase). The second cluster was located over parietal and occipital areas, 

extending from 4.97 to 5.34 seconds (1.97 to 2.34 seconds of the maintenance phase, figure 
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203D right). We applied the same approach to the auditory condition; a cluster (p = 0.047) 

emerged over right-frontal regions extending from 4.11 to 4.44 seconds after stimulus onset 

(1.11 to 1.44 seconds of the maintenance phase), even though strictly interpreted, this cluster 

does not exceed a corrected alpha threshold (figure 203F, H right). Finally we also tested the 

frequency of 6 Hz, which showed the most reliable power decrease in the auditory condition, 

however no effects were found. 
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Figure 203: Content specificity of oscillatory phase during perception and maintenance of a 

dynamic stimulus 
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Legend to figure 203: Content specificity of oscillatory phase during perception and 

maintenance of a dynamic stimulus 

Oscillatory phase distinguishes between content during perception (left) and can be detected 

again during maintenance (right). During perception, pairwise phase consistency between 

trial-combinations of same content and combinations of different content was contrasted with 

t-tests (A, C, E, and G). (C) shows these t-values for every time and frequency bin in the visual 

condition, (G) displays the auditory condition. A horizontal slice through these time frequency 

plots is represented in (A) and (E) for the frequency of 8 Hz. The green window denotes the 

time window that was selected in order to detect content specific maintenance in the 

subsequent time interval, where only a static word-cue was presented on the screen. A 

measure of phase coherence over time (S-PLV) was computed between the selected window 

and every time point during the maintenance period (A-B).Importantly this similarity was never 

computed within trials, in order to balance temporal autocorrelations. The result from this 

sliding window approach was tested with a series of t-tests contrasting same and different 

content-combinations (e.g. watching movie 1, maintaining movie 1 vs. watching movie 2, 

maintaining movie 4). (B) and (F) show the time-courses of t-values within the clusters of 

significant differences in the visual (B) and auditory (F) condition. Horizontal bars denote the 

time interval in which clusters emerged with significant differences. (D) and (H) display the 

sum of t-values across the selected time window during perception (D, H, left) and across time 

within clusters, during maintenance (D, H, right). 
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Discussion 

For most of the memories that we form during the day, we rely on rich and dynamic ongoing 

representations of the world around us. At a later point, we then associate these 

representations with distinct events. Both of these properties of our natural experience are 

rarely captured in experiments that investigate episodic memory. First, most studies use non-

information rich stimuli to study memory, like words or pictures, and second material for 

association is usually presented simultaneously.  

In this study, we used a memory task that can mimic memory in a more naturalistic scenario: 

an ongoing representation of an information rich, dynamic stimulus is maintained in working 

memory, in order to be associated with a subsequent event. In one session, subjects 

repeatedly watched one out of four short video clips, which was immediately followed by a 

unique word-cue. In a second session, subjects listened to one out of four sound clips, which 

they subsequently associated with a cue (figure 201). In order to form an association, 

participants had to maintain a representation of the video/sound clip in working memory. 

Investigating the correlates of subsequent memory, we found broad and sustained decreases 

in ongoing oscillatory power to be associated with successful memory formation. These 

power decreases were particularly strong while subjects maintained dynamic representations 

in working memory, namely while they formed the association. Importantly, we found that 

these power decreases carried stimulus specific information in their temporal pattern of 

activity. Specifically, the phase of an 8 Hz frequency, which we previously linked to content 

representation (Michelmann et al., 2016) and where power decreases were strongest in the 

visual condition, was modulated in a stimulus specific way.  
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These results form part of converging evidence for a general mechanism, in which 

desynchronization of brain oscillations in the cortex, indicated by power decreases, allows for 

the rich representation of information (Hanslmayr et al., 2012). Specifically, the decrease in 

oscillatory strength, which also signifies a release from inhibition (Haegens et al., 2011; 

Klimesch, Sauseng, & Hanslmayr, 2007), renders the oscillation less stationary, i.e. less 

predictable. In mathematical terms, this decrease of predictability means an increase in the 

amount of information that can be coded (Hanslmayr et al., 2012; Shannon & Weaver, 1949). 

When we previously observed this mechanism during episodic memory reinstatement, 

oscillatory patterns were localized in sensory-specific areas (Michelmann et al., 2016). In 

contrast, the pattern maintenance observed in this analysis displayed a different, i.e. more 

frontal topography, which is suggestive of working memory processes (e.g. Goldman-Rakic, 

1995). The generalization of this desynchronization-mechanism across different processes is 

further complemented by its generalization across modalities; namely, in this study as well as 

in previous results, we observed oscillatory patterns in desynchronizing brain dynamics for 

visual and auditory stimuli.  

Finally, the frequency band of 7-8 Hz has been previously implicated in the rhythmic sampling 

of perceptual content (Hanslmayr et al., 2013; Landau & Fries, 2012; VanRullen et al., 2007). 

These studies integrate well with our findings and suggest that the 8 Hz frequency temporally 

organizes the representations of stimulus specific information during perception, episodic 

memory reinstatement and working memory maintenance and that decreases in oscillatory 

power allow these temporal patterns to resurface. 

Our results moreover inform current debates about the neural mechanisms underlying 

working memory. While some studies have previously shown that content specific activity 
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patterns can be decoded during working memory maintenance (Fuentemilla, Penny, 

Cashdollar, Bunzeck, & Düzel, 2010; Jafarpour, Penny, Barnes, Knight, & Duzel, 2017), other 

studies suggest that representations in working memory may not always be maintained 

online, but rather latently stored in synaptic weights or even via more complex mechanisms 

(Stokes, 2015). Those representations can then re-emerge when they become task relevant, 

or they can be evoked experimentally by either ‘pinging’ them with unspecific input (Wolff, 

Jochim, Akyürek, & Stokes, 2017) or by stimulating transcranially with a magnetic pulse  (Rose 

et al., 2016). Hence, an important insight from this study is  that a stimulus-representation is 

maintained online in working memory, when an association with this previously shown 

stimulus is formed.  

The method that we used in order to observe these stimulus patterns was specifically tailored 

to the detection of patterns that are dynamic in nature. This is very relevant for studies that 

investigate working memory maintenance because patterns that are involved in the online 

maintenance of representations in Prefrontal Cortex and Parietal Cortex of nonhuman 

primates, have been found to be highly dynamic (Crowe, Averbeck, & Chafee, 2010; Meyers, 

Freedman, Kreiman, Miller, & Poggio, 2008).  

An interesting question that arises from our results is whether the online maintenance of 

temporal patterns is functionally relevant for the successful formation of memories. We could 

demonstrate subsequent memory effects for power decreases here, because a minimum of 

15 trials per condition can yield stable power estimates (Hanslmayr, Spitzer, & Bäuml, 2009). 

We could further link power decreases to the presence of content specific temporal patterns; 

however because the trial count of forgotten associations for most of the subjects was too 

low for stable similarity estimates, it is not clear whether these patterns are functionally 
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involved in memory formation. Specifically, the present study was designed to produce a 

sufficient number of remembered trials and we consequently could not contrast stimulus-

specific temporal patterns between remembered and forgotten associations. Repeating this 

study in a longer and more adaptive design, could therefore allow for the contrast of pattern 

maintenance during successful and unsuccessful memory formation.  

Additionally, future studies should address whether content-specific temporal patterns are 

causally involved in memory formation, either by disrupting content specific temporal 

patterns and therefore tampering with memory formation or even by artificially introducing 

spurious patterns to cause forged associations.  
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Chapter 4 – Speed of time-compressed forward replay flexibly changes in human 

episodic memory 
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Preface 

The previous chapters have established that both, episodic memory formation and retrieval, 

yield detectable representations in brain oscillations. These oscillations are marked by 

sustained power decreases. Some important questions however could not be addressed with 

these data.  

Firstly, participants had variable memory performance in this experiment, resulting in very 

few forgotten associations in some subjects. Therefore, an open question is, whether the 

reinstatement of oscillatory patterns is relevant for successful memory, because pattern 

reinstatement could not be contrasted between successfully remembered and forgotten 

trials.  

Secondly, we asked subjects to replay dynamic stimuli vividly in their mind. A new paradigm 

should elicit reinstatement in a natural way, i.e. without explicit instruction. 

Finally, it was not possible to address the temporal dynamics of memory replay sufficiently. 

Since only patterns from a single time window were tracked, conclusions about temporal 

dynamics of reinstatement remained limited. Specifically, it was not possible to test whether 

overall reinstatement is compressed, i.e. if patterns from different time points during 

encoding reappear in closer temporal distance during retrieval. Additionally it was not 

possible to test whether distinct patterns from encoding remain in the correct temporal order 

when they are reinstated from memory. To this end, the following chapter will make use of 

distinct sub-events within a sequence of natural video-stimuli. These sub-events will then be 

tracked in episodic memory. In a behavioural experiment, this will be investigated via reaction 
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times; in an MEG experiment pattern-similarity will be leveraged. This will clarify the temporal 

dynamics of oscillatory pattern-reinstatement.  

At the time of this thesis, the following chapter was about to be submitted under the title: 

Speed of time-compressed forward replay flexibly changes in human episodic memory in near 

identical form. Co-authors on this paper are Sebastian Michelmann1, Bernhard P. Staresina1, 

Howard Bowman1, 2 and Simon Hanslmayr1, affiliated to: 1. University of Birmingham, School 

of Psychology, Centre for Human Brain Health and 2. University of Kent, School of Computing. 

Contributions 

The experiments were conceived and designed by SM, SH and BPS. SM performed the 

experiments.  

All data analysis was performed by SM under supervision of SH, the manuscript was written 

by SM under supervision of SH, BPS and HB. 
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Abstract 

Remembering information from continuous episodes is a complex task. On the one hand, we 

must be able to recall events in a highly accurate way that often includes exact timing; on the 

other hand, we can somehow ignore irrelevant information and skip to events of interest. We 

here track continuous episodes that consist of different sub-events as they are recalled from 

memory. In behavioural and MEG data, we show that memory replay is compressed and 

forward. We detect neural replay by tracking temporally accurate patterns of activity, yet we 

statistically observe different compression levels in the neural data. Overall reinstatement of 

episodes is faster than their original perception; therein the replay of subevents occurs on a 

slower time-scale than the overall compression level permits. This renders memory replay as 

a flexible process in which participants replay fragments of fine-grained temporal patterns 

and are able to skip flexibly between sub-events.  
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Introduction 

Episodic memory retrieval (Tulving, 1993) is a flexible process that operates at different 

timescales. In some instances, it is crucial for our behaviour to replay mentally events at the 

same speed of the initial experience: Re-enacting a classic movie scene relies on a temporally 

accurate representation of dialogue and events. In other instances it would be highly 

dysfunctional to recall our memories at the same speed they originally unfolded: We have to 

be able to reconstruct how we came to work today without zoning out at our desk for thirty 

minutes and must therefore be able to flexibly adjust the speed of our memory replay.  

Previous studies that related the timescale between retrieval vs. perception of a particular 

event (Arnold, Iaria, & Ekstrom, 2016; Bonasia, Blommesteyn, & Moscovitch, 2016) showed 

that self-reported durations of memory replay are compressed. Findings of replay in rodents 

mirror this compression, but are mostly confined to the sequential reactivation of 

hippocampal place cells (Carr, Jadhav, & Frank, 2011; Foster & Wilson, 2006). One recent 

study observed the reactivation of static representations in oscillatory gamma power (Yaffe, 

Shaikhouni, Arai, Inati, & Zaghloul, 2017) on a faster timescale than during perception; 

however no time dimension was included in stimulus material or task, therefore limiting 

conclusions about replay trajectories. Notably, a recent fMRI study tracked episodic memory 

reinstatement over long episodes (50min) (Chen et al., 2017), finding reappearing spatial 

patterns on a compressed timescale. Importantly, however no study so far has leveraged 

electrophysiology to address directly the temporal dynamics of episodic memory 

reinstatement on a fine-grained temporal scale.  
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It is possible to investigate patterns from perception, as they reappear during memory 

retrieval with the use of multivariate similarity measures (Kriegeskorte, 2008; Nyberg, Habib, 

McIntosh, & Tulving, 2000; Ritchey et al., 2012; Staresina et al., 2012). Their extension to 

electrophysiological methods in humans (Jafarpour et al., 2014; Kurth-Nelson et al., 2015; 

Michelmann et al., 2016; Sols, DuBrow, Davachi, & Fuentemilla, 2017; Staudigl et al., 2015; 

Wimber et al., 2012; Yaffe et al., 2014) could now allow for the time resolved investigation of 

memory replay. Electrophysiological correlates that have been implicated in the 

representation of stimuli in perception and memory include the amplitude of high 

frequencies (Staresina et al., 2016; Yaffe et al., 2014, 2017; Zhang et al., 2015) and the phase 

and amplitude of low frequencies (Michelmann et al., 2016; Staresina et al., 2016; Staudigl et 

al., 2015). Importantly simultaneous EEG and multi-unit recordings in primates demonstrate 

an intimate relation between neural firing and the phase of slow oscillations in the EEG (Ng et 

al., 2013) during the perception of natural stimuli. This means that temporal properties of 

spiking neurons are reflected in the shape of waveforms (see also (Belluscio, Mizuseki, 

Schmidt, Kempter, & Buzsáki, 2012; Schyns et al., 2011)) and that similarity in oscillatory 

phase captures similarity of underlying neural activity (Michelmann et al., 2016; Ng et al., 

2013; Schyns et al., 2011).  

Importantly the notion of compression seems to be at odds with the observation of temporal 

similarity between perception and memory (Michelmann et al., 2016; Staudigl et al., 2015; 

Wimber et al., 2012; Zhang et al., 2015). A similar temporal pattern in memory implies that 

fragments of activity reappear at roughly the same speed. It is therefore unclear how these 

findings integrate into the temporal dynamics of mnemonic representations observed in 

behaviour. Investigating trajectories during memory replay requires a paradigm that prompts 
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participants to evoke continuous representations with distinct subevents from memory. This 

will make it possible to track fragments of these representations in episodic memory via 

multivariate analysis methods.  

To this end, we asked subjects to associate static word-cues with ‘video-episodes’ consisting 

of a sequence of three distinct scenes. The three dynamic scenes thus formed a continuous 

six-second-long video. In encoding-trials, we presented a word-cue during one of the scenes. 

This allowed us to prompt memory replay in a natural way, i.e. we asked participants to recall 

in which of the three scene-positions they had learned an association during encoding. After 

completing this part of the task, we asked about the video-episode itself and confirmed 

correct memory. In a behavioural experiment, we investigated direction and speed of replay 

via measuring reaction times to the scene-position response. In a separate MEG study, we 

leveraged the content specific phase patterns that each scene elicited and used them as 

handles to track the speed of replay of the video-episodes. If memory replay were indeed 

compressed, we expected to find evidence for this compression in reaction times and in the 

reinstatement of neural patterns. This replay should be either forward or backward. In line 

with previous findings (Michelmann et al., 2016; Staudigl et al., 2015; Wimber et al., 2012; 

Zhang et al., 2015) we expected to find evidence for reactivation of temporal patterns, 

signifying replay at the same speed for fragments of neural activity. We further hypothesized 

that the rift between accurate representations and overall compression would be due to a 

flexible mechanism that allows subjects to skip between sub-events, as they replay episodes. 

Therefore, replay within sub-events should occur at a slower pace, whereas skipping between 

sub-events should occur fast.   
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Results 

Reaction times in behavioural experiments suggest compressed and forward 

memory-replay 

In the behavioural experiment, participants associated word-cues with one of three scenes 

within video-episodes (figure 301a). We used four continuous video-episodes, each consisting 

of three individual dynamic scenes. A trial-unique word-cue appeared in one scene during a 

video-episode. After a brief distractor task (figure 301b) subjects performed, in alternation, 

either a cued-recall (CR) retrieval task or an associative-recognition (AR) task (figure 301d, 

top). The AR task was included as a control condition, because active replay is arguably not 

required for recognition. In the CR blocks we presented participants with the word-cues 

(figure 301d, top-left). Their task was to recall the scene-position that was associated with the 

word-cue as quickly as possible. In AR blocks, subjects successively saw the word-cues 

superimposed on screenshots from encoding (figure 301d, top-right) and were asked to 

decide as quickly as possible, whether this association was intact or rearranged (figure 301d, 

top-right).  

To address the direction and speed of memory replay, reaction times (RTs) at retrieval were 

compared between associations that were learned in the first, second and third scene-

position of a video-episode. We only used RTs for correct hit trials (correct recall in CR and 

correctly recognized intact associations in AR blocks) and excluded trials in which the subjects 

were wrong or guessed (see Supplemental Information for the same analysis including correct 

guesses). This resulted in a 3x2 repeated measures ANOVA with the factors position and 
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condition. Data from the CR task (figure 301d, left) indicated compressed replay in the 

forward direction. A significant main effect of position (F1.85, 42.48 = 5.884, p = 0.007, log-RT: 

F1.79, 41.26 = 3.375, p = 0.049) as well as a position by condition interaction (F1.75, 40.34 = 5.9, p = 

0.008, log-RT: F1.76, 40.58 = 5.606, p = 0.009) were obtained. Both effects were driven by 

forward replay in the cued-recall condition (ANOVA: F1.79, 41.19 = 9.082, p = 0.001, log-RT: F1.60, 

36.90 = 8.207, p = 0.002): During encoding, individual scenes of each video-episode lasted 2 

seconds. During CR retrieval, however, associations that were learned in the first scene-

position of a video-episode (mean RT = 2.5s) were recalled on average 116ms faster than 

associations that were learned in the second scene-position (t23 = -1.870, p = 0.037, log-RT: t23 

= -2.4, p = 0.012). Associations that were learned in the second scene-position (mean RT = 

2.617s in CR) were recalled on average 176ms faster than associations that were learned in 

the third scene-position (t23 = -2.767, p = 0.006, log-RT: t23 = -2.274, p = 0.016, (mean RT = 

2.793s in CR)). The replay of the video-episodes was therefore compressed during CR, which 

replicated findings from a behavioural pilot experiment (see Supplemental Information). The 

average RT difference of 146ms per position corresponds to a compression factor of 13.7 

during replay.  

Might the effects be due to asymmetrical encoding of scene-positions? That is, one could 

argue that associations have a higher saliency when presented in the first scene-position, 

leading to higher confidence and shorter RTs during retrieval. Additionally, subjects can take 

more time to rehearse early associations during the remainder of the video-episode, perhaps 

resulting in the weakest memory trace for the last scene. Importantly, however, if the serial 

position merely affects the overall strength of the memory trace in our paradigm, we should 

observe comparable effects on cued recall (CR) and associative recognition (AR). Conversely, 
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if the effect is contingent on the need to mentally replay scene after scene, serial position at 

encoding should only exert an effect on the CR task. 

Importantly, no differences in reaction times between scene-positions were evident in the AR 

task (figure 301d, right; ANOVA: F1.64, 37.66 = 0.708, p = 0.472, log-RT: F1.61, 36.95 = 0.793, p = 

0.435, pairwise comparisons of positions: all ps > 0.199, all BF01 > 2.158). Together with the 

significant position by condition interaction, this confirms that the position effect on RTs is 

specific to the CR task and rules out a saliency-based explanation. Finally, we observed a 

significant main effect of condition with unscaled (F1.00, 23.00 = 62.349, p < 0.001) and log-

transformed (F1.00, 23.00 = 95.036, p < 0.001) reaction times. This was due to faster RTs in 

associative-recognition blocks (t23 = -7.896, p < 0.001, log-RT: t23 = -9.7487, p < 0.001). Taken 

together these results are evidence that successful recall of elements from a continuous 

video-episode relies on compressed forward replay. 
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Figure 301: Experimental design and behavioural results 
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Legend to figure 301: Experimental design and behavioural results 

(a) During encoding subjects repeatedly saw one out of four video-episodes. In one of three 

scenes, a word-cue appeared in the centre of the screen. (b) In the distractor block participants 

identified either the bigger or the smaller one of 2 simple sums. (c) In the MEG experiment 

participants saw the static word-cue during retrieval for 3.5 seconds, followed by a fixation 

cross for 250ms - 750ms. Subsequently they first picked the scene-position in which they 

learned the association and then confirmed the correct video-episode. (d) In the cued-recall 

(CR) condition of the behavioural experiment (left) participants selected the correct scene 

position as quickly as possible during retrieval. In an associative-recognition (AR) control 

condition (right) they decided whether the presented association (word superimposed on a 

screenshot) was intact or rearranged. In CR blocks, subjects were faster to recall an 

association that was learned in earlier scene-positions during encoding (bottom left). 

Importantly, in the control condition they performed the same encoding task and needed 

source memory for AR retrieval, however no modulation of reaction times was found. The y-

axis denotes the difference to each participant’s average reaction time in the respective 

condition. Spaghetti-plots show individual subjects. Boxplots are 25th and 75th percentile and 

the median; whiskers are maxima and minima, excluding outliers. Red dots within the boxplots 

depict the arithmetic mean. Significant differences are marked with a star, n.s. denotes non-

significant in a post-hoc paired t-test comparison.   
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Broad decreases in oscillatory power accompany successful memory 

reinstatement 

Successful memory reinstatement was associated with strong and sustained decreases in 

oscillatory power. Successfully remembered associations were those trials, in which subjects 

knew that they had identified the correct scene and the correct video-episode. Those trials 

were contrasted with the trials in which subjects either indicated a guess, or in which they 

selected the wrong scene-position and/or video-episode. A broad cluster emerged, in which 

oscillatory power was significantly lower when memory-retrieval was successful (pcluster < 

0.001, figure 302, middle). This cluster included a sustained power-decrease in the lower 

alpha band. In a series of post-hoc t-tests, the same contrast was now tested on averaged 

oscillatory power across time and sensors. Inspection of t-values confirmed a local peak at 8 

Hz (t22 = -3.367, p = 0.001, figure 302, right) which we previously linked to replay during 

episodic memory reinstatement (Michelmann et al., 2016). In order to derive the topography 

for the average power decrease at 8 Hz across time, a separate t-test was computed on every 

sensor. Maximal t-values were located over central sensors extending over right parietal 

sensors. The average power at 8Hz was next contrasted at every virtual sensor, resulting in an 

estimate of the spatial extent of power decreases in source space. Bilateral central and 

occipito-parietal areas as well as the medial temporal lobe displayed power decreases at this 

frequency (Figure 302, left). These findings replicate our previous findings of broad power 

decreases with a sustained decrease at 8Hz, in a paradigm that prompts subjects to replay a 

dynamic stimulus from memory.  
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Figure 302: Oscillatory correlates of successful memory 
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Legend to figure 302: Oscillatory correlates of successful memory 

Successful memory was associated with broad decreases in oscillatory power. The middle 

panel shows the t-values averaged across time and sensors within the significant cluster. Low 

frequencies displayed a sustained effect over time. T-tests of the average power decrease 

across time and sensors expressed two local peaks in t-values, at 8 and 14 Hz (right panel). The 

topography of t-tests for the 8 Hz frequency at every sensor included central sensors and 

extended over right parietal sensors (right panel, top). Source reconstructions of the average 

power at 8Hz revealed power decreases on bilateral central and occipito-parietal areas as well 

as the medial temporal lobe.  
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Low frequency phase patterns from encoding reappear during successful 

memory retrieval  

In the MEG experiment, participants performed the same CR task as in the behavioural 

experiment, with the only difference being that they gave responses after the word-cue 

disappeared (figure 301c). In a first step, we asked whether perceptual content could indeed 

be distinguished based on oscillatory phase. To this end, we compared the inter-trial phase 

coherence (ITPC) between encoding-trials that we grouped according to their video-content, 

with the ITPC between trials that we grouped randomly. This has been used previously to 

reveal the content specific entrainment of cortical rhythms to naturalistic dynamic stimuli 

(Michelmann et al., 2016; Ng et al., 2013). The four video-episodes showed reliably 

distinguishable phase patterns during encoding (pcluster < 0.001, figure 303a, left and middle). 

The significant cluster contained robust differences in the lower frequencies and showed a 

maximum over occipito-parietal sensors (figure 303a, middle). Consistent with our previous 

results (Michelmann et al., 2016), strongest differences were observed at the onset of each 

scene. Importantly, the 8 Hz frequency band was included in the cluster, which was previously 

linked to the reinstatement of phase patterns (Michelmann et al., 2016). Testing the 8 Hz 

phase differences on the source level revealed one broad cluster of content specificity during 

encoding (pcluster < 0.001). Averaging t-values across this significant cluster over time revealed 

highest values in occipital and parietal locations (figure 303a right). Together, these results 

show that every sub-scene within the video-episodes was associated with a content specific 

fingerprint in oscillatory phase, which was maximal in a parieto-occipital region. In the 
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following, we used these sub-scene specific phase patterns at 8 Hz as handles to track replay 

in memory.  

In a first step, we tested whether 8 Hz phase-patterns of the video-episodes were reactivated 

in memory. Therefore, we first contrasted phase-similarity between encoding-retrieval 

combinations of the same video-episodes (e.g. watching video A, recalling video A) with 

encoding-retrieval combinations of different video-episodes (e.g. watching video A, recalling 

video B). Similarity between encoding and retrieval phase patterns was analysed by a sliding-

window approach (window size = 1 sec.), retaining a time resolved measure of memory replay 

(Lachaux et al., 2000; Michelmann et al., 2016; Mormann et al., 2000) (see figure 303c). On 

the source level, analysis was restricted to an anatomically defined occipito-parietal region of 

interest (ROI) following the results from the encoding phase and previous studies showing 

memory replay in these regions (Albers, Kok, Toni, Dijkerman, & De Lange, 2013; Ekman, Kok, 

& de Lange, 2017; Ji & Wilson, 2007; Michelmann et al., 2016) (figure 303b). Evidence for 

replay was found for hit trials (Hits; pcluster = 0.034; supplemental figure 306a, also see 

supplemental figure 306b for unmasked maps of t-values), suggesting that replay of video-

episodes can be tracked in the phase of an 8Hz oscillation. Notably, we found no such replay 

effect for Misses, i.e. trials in which subjects either guessed, or did not remember the correct 

scene-position and/or video-episode. Furthermore, a direct contrast between Hits and Misses 

revealed significantly stronger replay for Hits compared to Misses (pcluster = 0.030, figure 

303d), demonstrating the functional significance of this pattern-reinstatement for memory.  
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Figure 303: Reinstatement of oscillatory patterns from encoding 
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Legend to figure 303: Reinstatement of oscillatory patterns from encoding 

(a) During encoding, the different video-episodes elicited content specific phase patterns. The 

left panel shows the averaged t-values across sensors in the cluster of significant content-

specificity. Topographies in the middle are t-values within the same cluster, averaged across 

time and across all frequencies (top) or only for 8 Hz (bottom). Both topographies show 

maximal values over occipital and parietal sensors. The right panel shows the average t-values 

across time on virtual sensors, within the temporo-spatial cluster of significant differences at 

8Hz. Occipital and parietal sensors expressed the maximal t-values. (b) Occipito-parietal region 

of interest (ROI) that we used for statistical testing of content-specific reactivation. (c) Time 

course of content specific phase during encoding, averaged across the ROI. Below, the sliding 

window approach is illustrated, in which all possible time windows from encoding were 

compared to each retrieval time window in phase coherence. Subsequently combinations of 

same and different content combinations were contrasted. (d) Cluster of significant differences 

between content-specific reactivation for successfully remembered and forgotten associations.   



135 

 

Compressed forward replay flexibly changes  

Motivated by the above findings, we next addressed directly the question of direction and 

speed of replay, by statistically comparing at what time during retrieval, distinct phase 

patterns from encoding tend to reappear. We wanted to know if the phase-similarity to 

earlier encoding patterns was distributed more towards earlier times during retrieval than the 

phase-similarity to later encoding patterns. We therefore divided the encoding interval into 6 

non-overlapping windows, centred at 0.5, 1.5, 2.5, 3.5, 4.5, and 5.5 seconds, then we derived 

and compared their distributions of phase-similarity across retrieval (figure 304a, left).  

To test the direction of replay statistically across subjects, we used the following approach: 

We cumulated the similarity distributions across the whole retrieval time. This resulted in the 

cumulated similarity (CS) for every subject and every encoding-window. Similarity started at 

the beginning of the retrieval interval with a value of zero. It ended at the end of the retrieval 

interval, with a value of one (figure 304c). If phase-similarity to an encoding-window “A” 

cumulates earlier than phase-similarity to an encoding-window “B”, then the cumulated 

similarity for “A” is higher compared to “B” and consequently “A” is replayed earlier during 

retrieval than “B”. In other words, when the CS of one phase-pattern is higher than the CS of 

another, then the evidence for replay of that phase-pattern is leading over the other at that 

point. If, however replay of a phase-pattern is lagging behind the replay of another, the CS 

should be lower at that time point. We tested this relation statistically at every time point by 

comparing the cumulated similarity across all windows for each subject. The overall tendency 

is tested best by fitting a line across all six encoding windows. A negative slope indexes 
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forward replay, since earlier windows have higher values in the CS than later windows, a 

positive slope signifies backward replay. 

Results revealed significant forward replay in two time windows (i.e. 135ms to 1919ms, and 

3458ms to 3473ms after cue presentation, see Online Methods for some notes of precaution 

regarding the interpretation of the exact time-window). We can therefore conclude that 

there is a dominance of early encoding-patterns in early time points at retrieval relative to 

late encoding-patterns, which supports the notion of forward replay (see also Supplementary 

Information for further evidence supporting forward replay).  

Notably the content specific reactivation that we found in temporal patterns signifies that 

subjects replay fragments of the video-episode at roughly the same speed as during encoding. 

We hypothesized that this rift between locally accurate replay and globally compressed replay 

was possible through the flexible skipping between salient elements (e.g. sub-events). We 

therefore wanted to test whether within sub-events (i.e. scenes) the compression level of 

neural replay was statistically weaker.  

To this end, we extended the method of fitting a line across CSs to compare the compression 

of replay within individual scenes (i.e. within sub-events) to the overall compression level. 

Specifically, calculating the slope of the fitted line allows for an estimation of the speed of 

replay. This slope indicates the lag between replayed patterns in the retrieval interval, such 

that steep slopes indicate a long lag (i.e. slow replay). We fitted a separate line for each pair 

of encoding-windows that belonged to the same scene across their respective CSs and 

averaged the slopes across the three lines. The time interval between 442ms and 2350ms 

displayed slopes significantly below zero, confirming forward replay within scenes. More 

importantly, between 550ms and 2350ms at retrieval, slopes of windows within a scene were 
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significantly steeper (i.e. replay was slower) compared to the slope obtained across all 

encoding-windows (figure 304e). This means that, when participants replayed the first and 

second part of a scene, this replay was less compressed than we expected from the global 

compression level of the whole video-episode. Consequently, this also means that subjects 

did not replay every scene successively in every trial and not at the same speed. Taken 

together, these results show that memory replay does not occur at a constant speed; instead, 

the speed of replay seems to change flexibly depending on the replayed interval (figure 304b, 

right). We repeated these tests with those trials in which subjects did not remember the 

correct positional-scene or video-episode; however, we found no significant time-points for 

any of the contrasts, which demonstrates the implication of these replay effects in memory. 

In a further control analysis, we excluded the first 800ms of the retrieval interval for the 

similarity analysis in order to rule out that event related fields (ERFs) were driving similarities. 

Again, we found significant negative slopes between 812ms and 1212ms and slower replay 

within scenes in that window.  

These results statistically support a flexible forward replay strategy. Via cross-correlations, we 

next derived a descriptive measure of the delay between the six sub-events during flexible 

memory replay (550ms-2350ms). The cross-correlation was computed on pairs of averaged 

and smoothed similarity distributions (figure 304b), which retained a time lag value for every 

combination of the six sub-events. The adaptive replay that we found is also visible in the 

pattern of time lags and can be illustrated with shorter lags between sub-events that belong 

to different scenes compared to sub-events that belong to the same scene (figure 304b, 

right). In contrast, to illustrate a strict and inflexible forward replay strategy, lags between the 
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sub-events should increase linearly according to their position at encoding (illustrated in 

figure 304b, right).   



139 

 

Figure 304: Chronometry of memory replay 
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Legend to figure 304: Chronometry of memory replay 

a) The 6 non-overlapping time windows from encoding illustrated next to a video-episode 

(left). The average similarity densities to these windows are on the right. The blue bar denotes 

where replay was significantly slower within scenes (see e). (b) Cross correlations of similarity 

densities within this window show the adaptive pattern. In this, lags between windows within 

scenes are bigger than lags between windows across scenes (right, top); with strict forward 

replay, all scenes would be replayed in order (right, bottom). (c) Illustration of the cumulative 

similarity (CS) approach used to test replay-dynamics. If evidence for a window statistically 

precedes evidence for another during retrieval, its cumulated similarity is higher. (d) Average 

slope of lines fit across all windows’ CS, for each subject and time point. Negative slope 

indicates that earlier encoding-windows have higher CS values and signify forward replay. (e) 

Contrast of average slopes from the average fit across windows within scenes and a fit across 

all windows, supporting an adaptive replay framework. The blue bars in d and e denote 

significance. 
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Time course of replay and further evidence for forward replay 

We further investigated the time-course of reinstatement of the video-episodes. To this end, 

we computed a t-test of content-specificity at every time point during retrieval; precisely we 

assessed the average content-specificity across the whole ROI (figure 305a). Three peaks 

emerged at 442ms (t22 = 2.363, p = 0.014), 1042ms (t22 = 2.022, p = 0.028) and at 2163ms (t22 

= 2.258, p = 0.017). Interestingly the last peak corresponds roughly to the period in which we 

observed average reaction times in the behavioural experiments. 

Next, we further pursued forward replay. Following the behavioural results, we predicted that 

subjects replay overall more of the video-episodes when they have to recall later scene-

positions (figure 305b, left). We reasoned that subjects accumulate evidence in a forward 

direction, until the correct association is identified. In the behavioural experiments, this would 

cause the increase in RT for associations that were learned later during encoding. Hence, in 

analogy to the analysis of the behavioural experiment, we split the retrieval trials according to 

the remembered scene-position. We assessed the average similarity to all sub-scenes in the 

corresponding video-episodes from encoding and compared it between trials: We contrasted 

trials in which an association from the first, second or third positional-scene of a video-

episode was remembered. In this overall similarity to the corresponding video-episode should 

be higher, when participants recalled associations from later scene-positions. In a first ANOVA 

there was no significant difference in similarity depending on the remembered scene-position 

(F1.83, 40.31 = 2.384, p = 0.109, linear contrast: F1, 22 = 3.63, p = 0.07). There was, however, 

significantly less similarity to encoding, in trials in which subjects remembered an association 

from the first positional-scene compared to trials in which the third scene was recalled (t22 = -
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1.909, p = 0.035, figure 305b). Note that this is equivalent to testing the hypothesis of a linear 

increase (i.e. directed linear contrast) with planned contrasts in the ANOVA. 
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Figure 305: Time course of reinstatement and forward replay in ROI 
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Legend to figure 305: Time course of reinstatement and forward replay in ROI 

(a) Time course of replay tested across the ROI. Three peaks are evident at 442ms, 1042ms 

and 2163ms. (b) Illustration of forward replay in which an association from the first, second or 

third scene was remembered (left) and difference to average similarity to encoding across the 

ROI (right, error bars are standard error of the mean). This shows higher similarity to encoding 

when associations from the third vs. first scene were remembered.  
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Discussion 

In this study, we tracked the replay of continuous episodes from memory. To this end, we 

used a novel paradigm in which participants associated unique word-cues with one out of 

three distinct scenes in seamless video-episodes. We prompted replay by asking volunteers, 

in which exact position (1, 2, or 3) they had learned each word-cue. Evidence in behavioural 

and neural data indicated that replay of memories takes place in a forward direction and at a 

compressed speed, i.e. memory replay was faster relative to perception. Notably, on a neural 

level we found indications for different speeds of replay: Fragments of temporal patterns 

reappeared at the same speed and the speed of replay within sub-events (i.e. scenes) of 

continuous video-episodes was slower than the overall compression level.  

Importantly our finding of different compression levels implies that memory replay acts in a 

flexible way. The rift between the slower speed of replay within scenes and the overall 

compression is an aggregated observation that cannot hold on a single trial level. Specifically, 

it signifies that replay is not a simple concatenation of fragments because in a single trial, the 

sequential replay of three scenes would take longer than the overall compression permits. 

Consequently, participants must be able to skip between replayed fragments; importantly on 

average, the skipping between sub-events must take place on a faster temporal scale than the 

skipping within sub-events. A plausible interpretation of the observed pattern is therefore 

that replay of relevant information is initiated from the boundaries between scenes and that 

participants can flexibly skip between them. Event boundaries (Radvansky & Zacks, 2017) 

have been previously shown to trigger replay events during memory encoding (Sols et al., 

2017). They could therefore also serve as starting points during memory retrieval, to initiate 
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the replay of information on a fine-grained temporal scale.  Mechanistically the hippocampus 

has been suggested to preserve the temporal order of experiences (Davachi & DuBrow, 2015) 

and interactions between the hippocampus and visual cortex have been observed during 

memory replay in sleeping rodents (Ji & Wilson, 2007). In our data we consistently found 

reinstatement of fine-grained temporal patterns in sensory-specific regions (Michelmann et 

al., 2016). It is therefore possible that the hippocampus exerts control over sensory areas, 

when those regions realize the vivid reinstatement of sensory information. Specifically 

information-rich and temporally accurate representations could rely on sensory cortices 

whereas the hippocampus initiates replay, based on a sparse code (Hanslmayr et al., 2016). At 

first glance, the reinstatement of temporal patterns is also at odds with the observation of 

compression in general. An important implication from our findings is therefore that the 

temporally accurate reinstatement of patterns must be limited to fragments of the original 

perception. In other words, subjects probably omit non-informative (possibly redundant) 

parts of the video-episodes and therefore replay a shorter episode in memory, which contains 

less information. Previous work on mental simulation of paths supports this interpretation. 

The duration that participants take to mentally simulate a path increases, when this path 

includes more turns (Bonasia et al., 2016). In the same way, the duration of replay might 

depend on the overall number of relevant elements within a video-episode.  

Another crucial result from our experiments is the forward direction of replay. This finding is 

in line with recent studies showing anticipatory activation of familiar paths in the visual cortex 

(Ekman et al., 2017) and evidence of forward replay of long narratives (Chen et al., 2017). 

Notably in the rodent literature, the task of spatial navigation appears to determine whether 

replay is backward or forward. At the end of a path awake rodents replay in a backward 
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fashion (Foster & Wilson, 2006), whereas animals that plan the path towards a goal display an 

anticipatory activation of place-cells in the forward direction (A. Johnson & Redish, 2007).  

Task requirements in our design could indeed have prompted participants to go mentally 

through the video-episodes in a forward manner. Speculatively, other designs (e.g. tasks 

requiring recency judgements) might therefore cause a backwards replay. This would be well 

in line with the flexibility in memory replay that we observed in the neural data, since a 

flexible mechanism could arguably guide replay in a forward and backward direction when 

skipping through events. An interesting additional question arising from this is, whether 

replay of fine-grained temporal patterns in the cortex can also be backwards. 

Importantly our study also demonstrates how one can investigate these open questions. The 

design that we used to trigger the replay of distinct sub-events in a continuous episode can 

easily be adapted to a working memory context and our method to track oscillatory patterns 

allows for the investigation of replay in working memory, during rest and during sleep. We 

have repeatedly shown how to use the similarity in oscillatory phase to track content-specific 

reactivation, even when the exact onset of memory-reactivation is unknown. We here 

extended our previously developed method (Michelmann et al., 2016) to track distinct sub-

events from continuous representations: In a statistically robust way we aggregated evidence 

across several repetitions and compared their distribution across time.   

This investigation of temporal dynamics during human episodic memory replay has only 

recently become an option, when the tracking of multivariate patterns was extended to 

human electrophysiology (Jafarpour et al., 2014; Kurth-Nelson et al., 2015; Michelmann et al., 

2016; Sols et al., 2017; Staudigl et al., 2015; Wimber et al., 2012; Yaffe et al., 2014). 

Leveraging a novel paradigm in combination with a method that can detect the individual 
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fingerprints in oscillatory patterns, we were now able, to observe for the first time to our 

knowledge, the fine-grained dynamics of memory replay on a behavioural and on a neural 

basis.  Our data render memory replay as a flexible process, namely the compression level 

varies within replayed episodes: Some fragments reappear on a timescale that resembles the 

original perception and replay is less compressed within sub-events of continuous episodes, 

which suggests that participants were able to flexibly skip between sub-events during 

memory replay.  
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Methods 

Participants 

Balancing pilots 

For each of the 2 pilot experiments that served to balance the video material, 18 subjects 

were tested (36 total). In the first balancing pilot, 16 female and 2 male, right handed subjects 

participated that were on average 18.67 years old (youngest: 18, oldest: 20). In the second 

balancing pilot, 15 female and 3 male right handed subjects were tested. Their average age 

was 21.39 years (youngest: 18, oldest: 47). 2 additional subjects were tested in balancing pilot 

2, however their behavioural performance was at chance and they were excluded from the 

analysis.  

Behavioural pilot and experiment 

For the behavioural pilot 12 subjects (8 female, 4 male) participated that were on average 

22.58 years old (youngest: 19, oldest: 29). 2 of the female participants were left handed, the 

rest were right handed. Data from 24 right handed volunteers (18 female, 6 male) was 

acquired for the behavioural experiment. The average age of this sample amounted to 22.79 

years (youngest: 20, oldest 34).  

MEG experiment 

For the MEG experiment 24 volunteers (13 male, 11 female) participants were tested. 

Subjects were between 18 and 34 years old (mean: 23.92 years). 6 participants were left 

handed, 18 participants were right handed. 1 of the 24 subjects was excluded after pre-

processing because of a persistent electrical artefact in the data that could not be removed 

with filtering.  
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6 additional subjects (4 female, 2 male) aged 19 to 28 years (mean: 22) were recorded but 

not analysed; they were discarded from analyses due to the following reasons: 2 subjects 

moved excessively throughout the recording session (maximal movement: 1.8 cm and 2.7 

cm), 1 subject moved excessively throughout the session (maximal movement 1.4 cm) and fell 

asleep during the experiment. 1 subject felt unwell and aborted the experiment after approx. 

10 % of the recording session, 1 subject only completed approx. 70 % of the recording session 

and moved more than 2 cm throughout the experiment. Finally 1 subject was lost due to 

technical failure during the recording. After preprocessing, the maximal movement of 

included participants across all trials (i.e. the range of all positions) was on average 5.89mm 

(s.d. = 2.62, min = 1.69, max = 9.09).  

All included and excluded participants in the pilot studies, behavioural experiments and the 

MEG experiment, were native English speakers. Before participation they were screened for 

any neurological or psychiatric disorders. Their informed consent was obtained according to 

the ethical approval that was granted by the University of Birmingham Research Ethics 

Committee (ERN_15–0335A), complying with the Declaration of Helsinki. 

Material and experimental set up 

Videos 

For each of the balancing pilots, a total of 12 short video-clips were used. Videos stemmed 

from a pool that was provided by Landesfilmdienst Baden-Württemberg, Germany, some of 

them were additionally edited. Each video-clip was a 2-second-long coloured, dynamic scene 

that featured a single action (i.e. a ship sailing or a diver jumping into the water). During the 

task, video-clips were always superimposed with a transparent text box (white box with alpha 
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value 0.9) in which the word-cue could appear. According to the behavioural results from 

balancing pilot 1, we edited or changed some of the scenes before the second balancing pilot. 

The final video-clips were 12 different scenes that belonged to four general topics. For the 

behavioural experiments and the MEG experiment the video-clips were then grouped into 

four seamless sequences of frames that formed a video-episode (i.e. a sequence of three 

scenes that belong to a general topic and form a short story). The 3 scenes of each video-

episode were clearly distinguishable.  

According to the second balancing pilot, scenes that were assigned to be in 1st, 2nd or 3rd 

position of video-episodes, did not differ significantly in difficulty (percent correct responses), 

when associated with a word-cue. Pairwise comparisons with t-test of positions 1 and 2 (t17 = 

0.86, p = 0.4), 2 and 3 (t17 = 0.15, p = 0.88) and 1 and 3 (t17 = 1.4693, p = 0.16) and Bayes-

Factor analysis supported the null Hypothesis of no difference between positions. This was 

supported either by substantial (BF01>1.6) or strong (BF01>3.3) evidence for the comparison of 

positions 1 and 2 (BF01 = 2.97) of positions 2 and 3 (BF01 = 4.07) and of positions 1 and 3 (BF01 

= 1.65). Importantly reaction times in the second balancing pilot did not differ significantly 

between the video-clips that we finally assigned to be in position 1, 2 or 3. Pairwise 

comparisons with t-test of assigned positions 1 and 2 (t17 = -0.59, p = 0.56), 2 and 3 (t17 = -

0.31, p = 0.76), and 1 and 3 (t17 = -1, p = 0.33) and Bayes-Factor analysis supported the null 

Hypothesis for the comparison of positions 1 and 2 (BF01 = 3.53) of positions 2 and 3 (BF01 = 

3.95), and positions 1 and 3 (BF01 = 2.67). 

Word-cues 

Word-cues were downloaded from the MRC Psycholinguistic Database (Coltheart, 1981). For 

the balancing pilots, we divided 540 word-cues into 18 lists. Those lists did not differ in 
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Kucera-Francis written frequency (mean = 20.80, s.d. = 8.55), concreteness (mean = 506.50, 

s.d. = 90.07), imageability (mean = 521.04, s.d. = 69.51), number of syllables (mean = 1.63, 

s.d. = 0.68), number of letters (mean = 5.61, s.d. = 1.42) or word-frequencies taken from 

SUBTLEXus  (mean = 15.22, s.d. = 14.07); specifically, “Subtlwf” was used (Brysbaert & New, 

2009). In the balancing pilots, 12 of the lists were associated with a video-clip and 6 of the 

lists were assigned to become a distractor word. Across subjects each list was associated with 

every movie once and served as a distractor word six times. This was done to additionally 

control for list specific effects across subjects. An additional 9 words were randomly selected 

for practice. 

For the behavioural pilot, the behavioural experiment and the MEG experiment, we divided 

360 word-cues into 12 lists. Those lists were likewise balanced for Kucera-Francis written 

frequency (mean = 20.41, s.d. = 7.47), concreteness (mean = 518.72, s.d. = 78.39), 

imageability (mean = 530.78, s.d. = 60.17), number of syllables (mean = 1.56, s.d. = 0.62), 

number of letters (mean = 5.44, s.d. = 1.30) and word-frequencies taken from SUBTLEXus  

(mean = 15.07, s.d. = 13.04); again, “Subtlwf” was used (Brysbaert & New, 2009). Across 

participants each of the lists was associated with every video-clip twice. An additional 6 words 

were randomly selected for practice. 

Response scales 

To create the response scales (see figure 301c-d), we took Screenshots from the video-clips. 

In the balancing pilots, we adjusted brightness and contrast, so that no screenshot appeared 

more salient. For the behavioural pilot, the behavioural experiment and the MEG experiment 

the numbers 1, 2 and 3 were framed by a square which resembled a frame from an old film. 

Those represented the first response options, i.e. the choice between scene 1, scene 2 or 
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scene 3. For the second response, i.e. the response about the correct video-episode, the 3 

screenshots from the concatenated video-clips were presented next to each other for each of 

the 4 choices. In the control condition of the behavioural experiment, the response option 

intact/rearranged was realized with a screenshot which was of the same size as the videos 

during presentations. This screenshot was superimposed by a transparent textbox containing 

a word-cue. The words intact and rearranged were displayed at the left and right of the 

textbox as response options. The left/right position of these options was balanced across 

participants. 

Behavioural setup 

Visual content was presented on an LED monitor (Samsung syncmaster 940n at a distance of 

approximately 60 cm from the subject’s eyes. The monitor was set to a refresh rate of 60 Hz. 

On a screen size of 1280 x 1024 pixels, the video-clips had the dimension of 360 pixels in 

width and 288 pixels in height on the screen. “Helvetica” was chosen as the general text font, 

font size was set to 22 for instructions and to 28 for word-cues. Black text (rgb: 0, 0, 0) and 

movies were presented against a white background (rgb: 255, 255, 255). 

MEG setup 

MEG was recorded at the Sir Peter Mansfield Imaging Centre (SPMIC) in Nottingham, UK. 

Subjects performed the experiment in a seated position at a distance of approximately 60 cm 

from a white screen. The image was projected onto the screen using a PROPixx projector 

(VPixx Technologies, Saint-Bruno, Canada) that operated at a refresh rate of 60Hz and a 

resolution of 1920 x 1080 px. The projected image appeared at a size of approx. 40 x 22.5 cm 

on the screen. Accordingly, the video-clip appeared in a dimension of approx. 15 x 12 cm. An 

eye tracker (EyeLink 1000 plus, SR Research, Ontario, Canada) was placed in front of the 
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screen. The tracker was mounted in an upwards facing orientation, slightly below the visible 

display, on a small wooden board. In this setup it tracked the subject’s left eye from below 

and from a distance of approximately 55 cm.  

Procedure 

Balancing pilots 

The balancing pilots were realized to ensure that no material specific differences between the 

first, second or third position of a video-episode were to be expected in the following 

experiments. To this end, the considered video-clips were presented as single scenes during 

learning blocks, where they were superimposed by a transparent text box, containing a word-

cue. Upon informed consent and completion of screening questionnaires, participants sat 

down in front of the screen and received a standardized instruction for the task. All subjects 

saw the video-clips for familiarization and completed a practice version of the task before 

starting. Participants performed 15 runs of an encoding block, in which their task was to 

vividly associate the word-cue with the corresponding video-clip, a short distractor block, in 

which they did some easy math and a retrieval block in which they retrieved the associated 

video-clips as quickly as possible, whilst presented with a word-cue.  

During encoding a fixation cross was displayed for 2 seconds. Then the video-clip and word-

cue played for 2 seconds. Finally a fixation cross appeared again for 2 seconds. In every 

encoding block each video-clip was presented twice amounting to a total of 24 trials in every 

block. The video-clips were presented in a balanced but randomized order such that no movie 

was presented more than 2 times in a row.  
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In the distractor block subjects solved simple math problems. For 45 seconds they were either 

presented with the word bigger or with the word smaller and two single digit sums (e.g. 4+5 

and 3+2). Their task was to select the correct sum (i.e. either the bigger or the smaller sum). 

Feedback was given in the form of the words “correct” and “wrong” appearing in green and 

red respectively on the screen. 

For each retrieval block the current 24 cues were mixed with 12 new distractor words in a 

randomized way, such that items corresponding to the same video-clip or targets 

corresponding to a distractor did not appear more than 2 times in a row. 

In the retrieval block subjects were asked to select the video corresponding to the word-cue 

as fast as possible. The target (i.e. the screenshot from the correct clip) and two lures (two 

screenshots from a different clip) were presented on three positions around the word-cue. 

The positions formed a triangle with equal distance from the centre to the left and right and 

2/3 of that distance above the word-cue. In addition to those three response options, a 

question mark was displayed below the centre of the screen. This response option was 

available in order to indicate that no video-clip-screenshot was identified as the correct 

target. 

In order to control for effects from specific screen positions, the mapping of targets to 

positions was randomized but balanced, such that the target was presented on every position 

8 times. To control for item specific effects, the two lures that were presented with the target 

were assigned, such that every video-clip-screenshot served four times as a lure to a target 

and the same screenshot was never on both lure-positions. The 12 additional distractor words 

were, by definition, only paired with lures, we balanced the random mapping, such that every 

video-clip-screenshot served once as a lure on every position.  
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In order to respond, participants placed the index finger of their dominant hand on the 

number 2 of the numeric keypad of the keyboard. The index finger rested there as long as no 

response was required. When presented with the cue-word subjects could either press one of 

the numbers 4, 6 and 8 which corresponded spatially to the response options (screenshots) 

on the screen and were in approximately the same distance from the starting position 

(number 2), or they could press 0 which corresponded to the question mark. Available 

buttons were highlighted with coloured stickers to facilitate orientation.  

Whilst presented with the word-cue, subjects had maximally 4 seconds to select their answer. 

At the end of every retrieval block participants were reminded that associations from the 

previous block were now irrelevant and had the opportunity to take a self-paced break. 

Behavioural pilot and behavioural experiment 

In the behavioural pilot, subjects saw video-episodes that consisted of 3 distinct scenes. 

Those scenes comprised of the video-clips from balancing pilot 2, which ensured that no 

material specific differences were to be expected between position 1, 2 and 3 of the video-

episodes; not in memory performance and most importantly not in reaction time. Participants 

first completed the screening questionnaire and gave informed consent. After instruction 

with the task, they saw the video-episodes twice for familiarization and were instructed to 

pay attention to their 3-scene-structure, such that they could confidently identify the first, 

second and third scene of each video-episode.  

After a short practice version of the task, the experiment started. It was again a sequence of 

encoding, distractor and retrieval blocks. In each encoding block subjects learned a series of 

associations. They first saw a fixation cross on the screen for 2 seconds. After that one of the 

four video-episodes played for 6 seconds. During this video-episode a transparent textbox 
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was overlaid on the video. In one of the three scenes, a word-cue appeared in the textbox 

and disappeared again with the end of the scene. Subjects were instructed to form a vivid 

association between the word and the precise scene of the video-episode, such that they 

could later recall that exact scene and video-episode upon presentation with the word-cue. 

We randomized the presentation of the associations in a balanced way, such that no video-

episode was presented more than twice in a row and a word-cue did not appear in the same 

position more than twice in a row. Additionally every position within every video-episode was 

associated with a word cue once within 12 subsequent associations.  

After each video-episode a fixation-cross showed for 1 second then subjects rated the 

plausibility of the association between word-cue and scene. Three response options were 

labelled with “not plausible”, “plausible” and “very plausible” and could be selected with the 

buttons 4, 5 and 6 on the numerical pad of the keyboard. The plausibility rating served to 

keep participants engaged in the task and support memory formation. In the distractor block, 

subjects were presented again for 45 seconds with simple math problems and had to decide 

which one of two single digit sums was either bigger or smaller. For the retrieval block the 

word-cues were now randomized again in a balanced way, such that word-cues 

corresponding to the same video-episode regardless of position, or to the same position 

regardless of video-episode, did not appear more than twice in a row.  

Retrieval block started with a fixation cross, displayed for 2 seconds. Then a word-cue 

appeared in the centre of the screen and the three framed numbers appeared on a triangle 

around the word-cue. Participants were instructed to select, as quickly as possible, in which of 

the three scenes they learned the word. For this choice they only saw the numbers 1, 2 and 3; 

after they made this choice, screenshots forming the four video episodes appeared in the 
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four corners of the screen. Participants were asked to indicate now, to which of the four 

episodes the selected scene belonged. The position of the numbers 1, 2 and 3 as well as the 

mappings of the four screenshot-sequences to the screen positions were randomized in a 

balanced way, namely all possible permutations of 1, 2 and 3 were randomly mapped onto 

the three positions within 6 subsequent trials and all possible permutations of the four 

positions of the video-episode screenshots were used within 24 trials. This was done to 

control for any potential effects from specific screen positions on reaction times or position 

specific response preferences. In order to respond, volunteers were asked to place the index 

finger of their dominant hand on the number 5 of the numerical pad on the keyboard. The 

surrounding numbers 4, 6 and 8, which form a triangle around the number 5 were highlighted 

with red stickers and served as the response options for the scene-response (first response: 1, 

2 or 3). Those buttons corresponded spatially to the position of the permuted numbers 1, 2 

and 3 on the screen. Accordingly the buttons 1, 7, 9 and 3 which form a square on the 

numerical pad, were available for the second response which informed about the correct 

video-episode. Importantly subjects were instructed to make all responses with the index 

finger of the dominant hand and go back to the starting position after every response, i.e. 

leave the finger resting on the button 5. At the end of every retrieval trial, a scale appeared 

on which subjects rated the confidence in their response. Three options were labelled with 

“guess”, “sure” and “very sure” and corresponded to the buttons 4, 5 and 6 on the numerical 

pad. 

Participants performed a variable amount of runs of encoding, distractor and retrieval blocks 

that varied in length according to their individual memory performance. The first block 

comprised of 24 items, subsequently its length was adjusted. If more than 70% of items were 
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recalled correctly in the last block (i.e. correct scene and movie were selected), 12 items were 

added to the next block, if less than 50% were recalled correctly, 12 items were removed 

from the following block. All blocks comprised at least of 12 associations that had to be 

learned all participants completed 360 trials in total. 

In the final behavioural experiment subjects performed exactly the same task as in the 

behavioural pilot experiment, however, every other block was performed with a different 

retrieval task. Specifically subjects performed the same learning paradigm, yet they did 

alternating retrieval blocks of cued-recall (CR, see above) and associative recognition (AR). In 

the AR blocks subjects were presented with a screenshot of a single video-clip, representing 

one of three scenes within a video-episode. The centre of the screenshot was again 

superimposed with the transparent textbox containing one of the previously learned word-

cues. The association between word-cue and video-clip could either be intact, i.e. the word 

was learned in this exact position within the video-episode, or it could be rearranged. In the 

latter scenario, a different video-clip from the same video-episode was superimposed by the 

word-cue. This means that word-cues were either presented in the correct position or in the 

wrong position within the video-clip. Participants were again instructed to decide as quickly as 

they could, whether the association was intact or rearranged. Block-size was adjusted in the 

same way with percent of correct responses measured as 200*(Hits - False Alarms)/N, with 

Hits being the number of correctly identified intact associations and False Alarms referring to 

the number of rearranged associations that were declared intact and N referring to the 

number of trials in the last block. Response buttons for the intact/rearranged choice were 4 

and 6 on the numerical pad, which are in equal distance from the number 5, where the index 

finger of participants’ dominant hand rested comfortably at the beginning of each trial. After 
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the experiment participants answered a few interview questions regarding eventual strategies 

and their subjective experience of the task. 

MEG experiment 

In the MEG experiment volunteers learned associations between video-episodes and word-

cues in the same way as in the behavioural experiment. Memory retrieval was similar to the 

behavioural pilot experiment (i.e. a cued-recall task); however a fast response was not 

required (see below). Upon informed consent and screening questionnaires, participants 

received the instructions for the task on a laptop outside the scanner. They familiarized 

themselves with the video-episodes twice, paying close attention to their structure. It was 

ensured that every participant was able to identify the three different scenes of a video-

episode. In a short practice, they performed a block of encoding, distractor and retrieval with 

the six example words. The head-localization coils of the MEG system were attached to the 

participants’ head and their positions were logged along with the shape of participant’s head 

(see Data Collection). Subsequently volunteers were seated in a comfortable position under 

the MEG helmet. Subjects used a single button on each of two response pads with their left 

and right index finger. After the eye tracker was mounted and calibrated, the experiment 

started.  

The MEG experiment was again a sequence of encoding, distractor and retrieval blocks. In 

each encoding block subjects learned a series of associations between scenes in video-

episodes and unique word-cues. Participants first saw a fixation-cross on the screen for 1 

second. After that one of the four video-episodes played for 6 seconds overlaid with a 

transparent textbox. In one of the three scenes of the video-episode, the unique word-cue 

appeared in the textbox and disappeared again with the end of the scene. The task was again 
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to form a vivid association between the word and the precise scene of the video-episode, to 

recall later the exact scene and video-episode, when only presented with the word-cue.  

After the video-episode, the fixation-cross appeared again for 500ms. Finally, the two 

response options ‘plausible’ and ‘not plausible’ appeared on the left and right of the screen. 

Subjects used the left or right button to indicate whether the association between video-

scene and word-cue was plausible to them. This task kept participants engaged and 

supported their memory performance.  

The order of presentation was randomized in a balanced way: no video-episode was 

presented more than twice in a row and a word-cue did not appear in the same position more 

than twice. Additionally every position within every video-episode was associated with a word 

cue once within 12 subsequent associations. In the distractor block, subjects solved simple 

math problems for 45 seconds: They had to decide which one of two single digit sums was 

either bigger or smaller, using a left or right button press. For the retrieval block the word-

cues were now randomized again in a balanced way, such that word-cues corresponding to 

the same video-episode regardless of position, or to the same position regardless of video-

episode, did not appear more than twice in a row.  

Trials of the retrieval block started with a fixation cross that was displayed for 1 second. Then 

a word-cue appeared in the centre of the screen for 3.5 seconds. In this time interval subjects 

remembered in which exact scene they had seen this word. After a random time interval 

between 250ms and 750ms the response scale appeared. The time interval for retrieval was 

chosen based on reaction-time data from the behavioural experiments, such that participants 

could comfortably remember the correct association. The first response option required the 

selection of the correct scene. To this end pictograms featuring the numbers 1, 2 and 3 were 
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displayed on the top of the screen. The mapping of the numbers 1, 2 and 3 to the three 

screen-positions was randomized in a balanced way such that all possible permutations 

appeared within 6 subsequent trials.  Participants could now move a red square, which 

framed the current selection. By pressing the left button they changed their selection by 

moving the frame clockwise. This selection was confirmed by pressing the right button. Note 

that this button assignment ensured that subjects would always prepare the same response 

during the retrieval trial, regardless of the memory content. This is important to control for 

trivial but systematic differences that correlate with memory content in the retrieval interval.  

After the position was selected, the two other position pictograms were overlaid with 

transparency (alpha = 0.9), such that the selected option remained highlighted on the screen. 

The concatenated screenshots from the video-episodes appeared below the position-

pictograms and the red selection frame could be moved clockwise with the left button. Again 

the selection was confirmed with the right button. To ensure that subjects tried to recall the 

correct position as soon as they were presented with the word-cue (and did not wait until the 

response scale was presented), there was a time limit of 4 seconds to select the correct 

position and again to select the correct movie. To allow for flexibility due to hasty or 

imprecise selections, 200ms were added to this time limit, whenever the selection-frame was 

moved. Participants did not know about this increment; all participants selected their 

responses quickly but not hastily. If the time limit was exceeded, the message ‘too slow’ 

appeared at the centre of the screen for 5 seconds. Altogether the time limits were designed, 

such that subjects could comfortably remember the correct association during the 

presentation of the word-cue, and were eager to select the two responses straight away. 

After the associated video-episode was selected, unselected response options were overlaid 
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with transparency for 300ms, then the two options ‘guess’ and ‘know’ were presented on the 

screen to give the participant the opportunity to communicate whether the selected answers 

were based on a guess. 

Participants performed a variable amount of runs of encoding, distractor and retrieval blocks. 

The blocks varied in length according to their individual memory performance. The first block 

comprised of 24 items, subsequently its length was adjusted. If more than 90% of items were 

recalled correctly in the last block (i.e. correct scene and movie were selected), 24 items were 

added to the next block, If more than 70% of items were recalled correctly, 12 items were 

added to the next block, if less than 50% were recalled correctly, 12 items were removed 

from the following block, if less than 40% were recalled correctly, 24 items were removed. All 

blocks comprised at least of 12 associations that had to be learned; all participants learned 

and recalled a total of 360 associations. 

Data Collection 

Stimulus presentation and the collection of behavioural data was realized on a standard 

desktop computer running MATLAB 2014b (MathWorks) under Windows 7, 64 Bit version. 

Stimuli were presented through the Psychophysics Toolbox Version 3 (Brainard, 1997).  In the 

behavioural experiments, responses were collected from button presses on the numerical 

pad of a wired keyboard (Model 1576, Microsoft Corporation, Redmond, US). In the MEG 

experiment, fibre optic response pads were used.   

Neurophysiological data were collected with 275-channel CTF MEG (CTF, Coquitlam, BC, 

Canada) at the Sir Peter Mansfield Imaging Centre (SPMIC) in Nottingham, UK. The system 

was used in third-order gradiometer configuration, recording at a sampling frequency of 600 
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Hz over the whole duration of the experiment. Three localization coils that were attached to 

the participants’ left preauricular point (LPA), right preauricular point (RPA) and to a point 

slightly above the nasion (NAS) were energized during the recording session. This was done to 

localize the head position relative to the sensors. 

Head digitization was collected with a Polhemus ISOTRAK device (Colchester, Vermont, USA). 

A minimum of 500 points on the scalp were logged relative to the positions of the three 

fiducial points (LPA, RPA, NAS). Individual anatomical data was acquired via magnetic 

resonance imaging (MRI) (3T Achieva scanner; Philips, Eindhoven, the Netherlands) with an 

MPRAGE sequence covering the whole head at 1mm3 resolution.  MRIs were either measured 

at the SPMIC or at the Birmingham University Imaging Centre (BUIC).  

For 17 of the included subjects (23), eye tracking (Eyelink 1000 Plus, SR Research, Ontario, 

Canada) was recorded on a separate Computer provided by the manufacturer at a sampling 

rate of 2000 Hz. The data was additionally written into 3 analogue input channels of the MEG 

system via the EyeLink Analog Card. The eye tracker was used in remote mode tracking the 

pupil and corneal reflection with a 16mm lens. It was calibrated and validated using 13 points 

on 80% of the screen, which contained all of the task relevant information.  

Analysis of Reaction Times 

We defined reaction time (RT) as the time to the first response after onset of the word-cue. 

All RTs faster than 200ms were considered implausible and discarded from further analysis. 

Additionally RTs that were 2.5 standard deviations above the mean RT were discarded. The 

means of remaining RTs were then tested statistically. To account for the non-normal 
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distribution of RTs (Ratcliff, 1979), all statistical tests are also reported for log-transformed 

RTs.  

Preprocessing of Neural Data 

The data was preprocessed in MATLAB 2015a (MathWorks) with a combination of functions 

from the Fieldtrip toolbox for EEG/MEG analysis (Oostenveld et al., 2011) and custom written 

scripts.  

For the sensor level analysis the 3rd order gradiometer correction was first applied, then the 

continuous recording was filtered with a Butterworth IIR filter of 4th order with a stopband of 

49.5 to 50.5 and its harmonics (99.5 - 100.5, 149.5 - 150.5, 199.5 - 200.5, and 249.5 - 250.5) 

to reduce the line noise artefact. Additionally the data was filtered with a stopband of 59 – 60 

to attenuate noise with a centre frequency of 59.5 Hz.  

Subsequently the data was segmented into trials that started 1.5 seconds prior to video-onset 

and ended 7.5 seconds after video-onset at encoding. Trials at retrieval started 1.5 seconds 

prior to the onset of the word-cue and ended 5 seconds after onset of the word-cue. The 

dataset was combined with the downsampled and segmented trials from the eye tracking.  

To remove activity from eye blinks and noise, and to detect heartbeats, Independent 

Component Analysis (ICA) was used (Delorme & Makeig, 2004). For the computation of the 

ICA unmixing matrix, trials containing coarse artefacts or showing strong muscle activity were 

heuristically excluded. Additionally the data was downsampled to 250 Hz and cut to 1 second-

long segments; the obtained unmixing matrix was then applied to the original trials.   

When possible, we compared independent components with the eye tracking data; we 

removed those components that picked up eye-blinks or eye-movement related activity. 
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Additional components that picked up channel-noise or electrical noise were likewise 

removed from the data. Components which contained a clear R-wave of the QRS complex in a 

heartbeat were stored for later peak-detection and regression; the remaining components 

were projected back to a channel representation.  

Finally, all data was inspected visually and trials containing artefacts were removed from later 

analysis. After visual inspection 84.26 % (S.D. = 8.29 %) of trials remained.  

Heartbeats were removed with a regression based approach: An iterative peak detection 

algorithm was applied to the ICA-component showing the clearest R-wave. It served as a 

proxy for ECG. This was done only for the remaining trials after visual inspection. Before peak-

detection the heartbeat-component was highpass-filtered (4Hz, 4th order Butterworth). The 

peak detection algorithm first calculated a plausible maximum of heartbeats that were not to 

be exceeded. The signal was z-scored and thresholded. Local peaks were detected by finding 

local maxima in clusters of z-scores that were above threshold. Subsequently the threshold 

was lowered up to a z-score of 2. With lowering threshold, increasingly bigger areas around 

the peaks were excluded from further peak detection. If the maximum number of plausible 

peaks was exceeded the threshold was no longer lowered. A heartbeat template was now 

created by averaging 500ms long segments around the peaks. Gaps in the continuous 

recording were subsequently zero-padded in order to convolve the component with the 

template. Peak detection was then repeated on the convolved time course and a new 

template was built from these peaks for subsequent convolution (Tal & Abeles, 2013). After a 

few repetitions the template converged and the resulting peaks were controlled manually, 

even though errors rarely needed to be corrected.  
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Instead of simply subtracting the mean template from the data, the trials were now split into 

four big segments and a general linear model (GLM) was built around the peaks in each 

segment. A high pass filter (1Hz, 4th order Butterworth) was applied to the data, only for the 

purpose of fitting the model. The GLM consisted of a separate repeated measure factor for 

each time point in the heartbeat, beginning 280ms before the peak and ending 720ms after 

the peak. Additionally a separate factor was included for every heartbeat, which modelled the 

offset between 280ms pre-peak and 720ms post-peak. Furthermore an offset factor for the 

overall segment was included. The solved model was then applied to every channel. The data 

model ŷ was built by using only the repeated measure factors which modelled each time 

point within the heartbeat (i.e. the beta weights for offsets were set to 0). After visual 

inspection, this resulting model of the heartbeat was subtracted from each original channel.  

For the source level analysis the anatomical data was first aligned to the digitized head 

positions. This was done by extracting the surface of the head from the anatomical MRI; in a 

first step a rough alignment was done manually, then the Iterative Closest Point (ICP) 

algorithm implemented in fieldtrip was used to match the surface to the point-cloud of the 

head digitization, finally this solution was controlled and eventually corrected again manually. 

The transformation to the aligned space was subsequently applied to the segmentation of the 

brain, which was likewise extracted from the anatomical images. To correct for head 

movements, the average head positions within the trials were first clustered, such that one 

positional-cluster was built for every 10 trials. Subsequently a separate lead field was 

computed for every cluster and then averaged to obtain an average lead field across all trials 

for each participant (Stolk, Todorovic, Schoffelen, & Oostenveld, 2013). Importantly ‘all trials’ 

refers to the trials that were included in a given contrast (e.g. for the contrast of Hits and 
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Misses at retrieval, encoding trials were not included in the computation of the lead field). 

Before the source level analysis, the 3rd order gradiometer correction was applied to the cut 

raw-data, lead fields were adjusted accordingly. Finally the data was demeaned and bandpass 

filtered between 4 and 15 Hz. The position of virtual sensors in individual brains was derived 

from a 1 cm spaced grid, which was placed 6mm below the surface of the cortex into the MNI 

brain and then spatially warped into individual brains. This was done via the inverse of the 

transformation describing their normalization and resulted in 1407 individual virtual sensor 

positions which were anatomically equivalent. Finally, to reconstruct activity on virtual 

sensors a linearly constrained minimum variance (lcmv) beamforming approach, 

implemented in the Fieldtrip toolbox (Oostenveld et al., 2011), was used. Filter coefficients 

were again computed on all data in a given contrast.  

Analysis of oscillatory power 

To estimate oscillatory power at retrieval, the Fourier-transformed data was multiplied with a 

complex Morlet wavelet of six cycles. This was done in steps of 10ms for every full frequency 

between 2 and 40Hz. The raw power was then obtained from the squared amplitude of the 

Fourier spectrum. Across all trials within the contrast (i.e. Hits and Misses), a baseline was 

computed as the average power between 1 second pre-stimulus and 4 second after stimulus 

onset (Long et al., 2014). Trials were then normalized by subtracting the baseline and dividing 

by it (activitytf − baselinef)/baselinef, with t indexing time and f indexing frequency. 
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Region of Interest (ROI) 

An occipito-parietal region of interest (ROI) was derived from the AAL atlas (Tzourio-Mazoyer 

et al., 2002). To obtain the ROI in form of a group of virtual sensors, the sensor-positions in 

MNI-space were assigned to the nearest described AAL-region, based on their Euclidean 

distance. The occipito-parietal ROI comprised of bilateral AAL-regions: angular gyrus, calcarine 

sulcus, cuneus, inferior occipital cortex, inferior parietal lobule, lingual gyrus, middle occipital 

gyrus, precuneus, superior occipital gyrus, superior parietal lobule, supramarginal gyrus. 

Content specific oscillatory phase at encoding 

During encoding participants repeatedly watched the same video-episodes. Hence, it was 

possible to assess content specific properties if they were more similar between trials of same 

content than between trials of different content. In order to determine whether the ongoing 

oscillatory phase was specific to individual perceptual content, trials were grouped into 4 sets 

according to the video-episode that was perceived. The complex Fourier spectrum was again 

derived by multiplying the Fourier-transformed data with a complex Morlet wavelet of six 

cycles. Then, inter-trial phase coherence(Tallon-Baudry et al., 1996) (ITPC) was computed 

across the trials of same content (i.e. for each of the four trial-groups). This was done at every 

full frequency between 2 and 40 Hz in steps of 10ms starting 1 second before the onset of the 

video-episodes and ending 7 seconds after the offset of the video-episodes. Following that, 

the trials were shuffled and grouped randomly into 4 sets of mixed-content-trials. Sets were 

of equal size to the 4 sets of same-content-trials. Again ITPC was computed separately for 

each of the 4 sets. To balance the contribution of the 4 sets, a Rayleigh Z-correction was 

applied with N*ITPC2, where N refers to the number of trials in a set. Finally the corrected 
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ITPC was averaged across the 4 sets in the ordered and in the shuffled condition. Their 

difference indicated content specificity of phase which could be statistically tested (Busch, 

Dubois, & VanRullen, 2009; Ng et al., 2013).  The analysis in source-space was done in the 

same way using the virtual sensors; however the frequency was restricted to 8 Hz.  

Content specific phase similarity between encoding and retrieval 

The reactivation of temporal patterns was estimated on virtual sensors for the frequency of 8 

Hz. To this end, the oscillatory phase coherence between encoding and retrieval was 

contrasted between trial-combinations of same content (e.g. watching video-episode A, 

recalling video-episode A) and random trial-combinations of different content (e.g. watching 

video-episode A, recalling video-episode B). The combinations were balanced, such that in 

both conditions (same vs. different combinations) exactly the same trials were used in the 

same amount of combinations. We only changed the pairing between encoding and retrieval 

trials. For each trial-combination, 1-second long windows from the encoding trial were now 

compared to every time point at retrieval starting at the onset of the word-cue and ending at 

its offset after 3.5 seconds. This comparison was done with a sliding window approach. As a 

metric of phase-similarity, the phase coherence across time (Lachaux et al., 2000; 

Michelmann et al., 2016; Mormann et al., 2000) (i.e. across the 1 second window) was 

computed. All possible windows from encoding were used in this sliding window approach, 

with the first window ranging from 0 to 1 seconds and the last window ranging from 5 to 6 

seconds during the video-episode (compare figure 303 d). Note that the response scale set on 

between 250ms and 750ms after the word-offset, additionally the first response-scale did not 

contain content-information (only the numbers 1, 2, and 3) and all responses required a 
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button-press on the left button. Therefore no confounds from the response interval were 

expected to bleed into the tested interval. Oscillatory phase was estimated by multiplying the 

Fourier-transformed data with a complex Morlet wavelet of six cycles in steps of 15.6ms 

consistent with our previous analyses (Michelmann et al., 2016). The average similarity 

between all time-windows and combinations was subsequently averaged to derive a single 

value of similarity for combinations of same content and a single value for combinations of 

different content at each virtual sensor. Note that this method (Michelmann et al., 2016) 

enables the investigation of highly dynamic patterns in a robust way, because a measure that 

captures dynamic changes in ongoing oscillations is accumulated across encoding time, 

retrieval time and ten thousands of trial-combinations. 

Time courses of Replay 

To observe the temporal scale of reactivation, the distribution of similarity to the 

remembered stimulus content (i.e. phase coherence) across retrieval was compared between 

different sliding windows from encoding. By definition a distribution is normalized to an area 

under curve of 1 and therefore accounts for differences in total similarity between windows. 

To robustly compare the distribution of similarity between 6 non-overlapping windows, 

phase-coherence was cumulated across time, such that at the beginning of the retrieval time 

zero similarity to all windows was present and at the end of retrieval (i.e. at 3.5 seconds after 

word onset) 100 % of similarity was reached. This made it possible to compare at each time 

point, whether the similarity to a window had come up earlier than to another window. In 

other words: If patterns from window “A” tend to appear earlier than patterns from window 
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“B” across subjects, then the cumulated similarity to window A should be statistically higher 

than the cumulated similarity to window “B”, at several time points.  

In order to test for a general tendency for forward replay, a line was fitted across all 6 

windows and tested against a slope of 0. Hence a negative slope of this line means that earlier 

windows from encoding appear earlier during retrieval. In order to test the hypothesis that 

the replay of individual scenes takes places on a slower timescale, 3 lines were fitted across 

the 2 non-overlapping windows within each scene, and their slope was averaged. If the 

average slope of these 3 lines is more negative than the slope of the line across all windows, 

then replaying individual scenes takes place on a slower temporal scale.  

Importantly this way of cumulating the similarity distributions allows for robust testing across 

subjects, at the expense of introducing temporal dependencies between time points. 

Specifically, if more similarity to a window is present at an early point this can propagate to 

later points, if similarity thereafter increases at the same speed for all windows. In another 

scenario, similarity to a window could only appear late during retrieval. This means that other 

windows would lead during the whole retrieval interval, which is correct, however one should 

not interpret the fact that in this scenario some windows are already leading over others at 

very early retrieval. The extent of significant time intervals should therefore be interpreted 

with caution. Another disadvantage of this method is that the slope is interval scaled and its 

absolute value is not interpretable.  

In order to quantify the actual lag between time windows from encoding descriptively, the 

distributions of similarity were averaged across subjects and smoothed with a moving average 

kernel of 250ms, to attenuate noise. The cross-correlation between distributions was then 

computed to estimate the lag between them: The shape of one similarity distribution is 
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matched to another. This was done within the time interval in which the slowing down of 

replay was observed; specifically in which the slope for lines fitted within a scene was 

significantly more negative than the slope across all windows (i.e. between 550ms and 

2350ms at retrieval).  

Statistical analyses 

Behavioural performance and Reaction times 

Behavioural performance was tested with a repeated-measures-ANOVA, on the percent of 

correct responses. Post-hoc tests were then performed with 2 separate ANOVAs for the final 

behavioural experiment and with a series of one-sample t-test (see Supplemental 

Information). 

RTs in the balancing pilots were first contrasted with one-sample t-tests. In order to 

statistically test the null hypothesis the Scaled JZS Bayes Factor (Rouder, Speckman, Sun, 

Morey, & Iverson, 2009) to the one-sample t-tests was computed. RTs in behavioural pilot 

experiment were compared with a repeated-measures-ANOVA with the factor position (1, 2 

and 3). In the final behavioural experiment, a 2x3-repeated-measures-ANOVA was computed 

with the factors retrieval task (cued-recall vs. associative recognition) and position (1, 2, and 

3). Post-hoc tests were then performed with 2 separate ANNOVAs. Reaction times for the 3 

different positions were subsequently compared with a series of post-hoc one-sample t-tests. 

Greenhouse-Geisser correction was used with all ANOVAs, null-effects of interest were tested 

with Bayesian t-tests (Rouder et al., 2009). 
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Content specific oscillatory phase at encoding 

Content specific phase at encoding was statistically tested by contrasting average ITPC across 

arranged groups with the average ITPC across shuffled groups. This was done with a series of 

t-test at every time point between 0 and 6 seconds after onset of the video-episode, at every 

frequency between 2 and 40 Hz and at every sensor. Multiple comparison correction was 

done via Monte-Carlo permutation of contrast labels as implemented in the fieldtrip toolbox 

(Maris & Oostenveld, 2007b; Oostenveld et al., 2011). 3-dimensional clusters and cluster-

sums were formed across time, frequency and sensors. The cluster-forming threshold 

corresponded to the critical t-value (alpha < 0.05) of a single-sided one-sample t-test, 1000 

random permutations were drawn. On the source level content specific phase was assessed 

for the frequency of 8Hz. Again the ITPC of arranged groups and the ITPC of shuffled groups 

were contrasted with a one sample t-test that was computed at every time point and every 

virtual sensor. Clusters were summed across neighbouring sensors and time points in 1000 

random permutations. To obtain time courses within the parieto-occipital ROI, t-values were 

averaged across all virtual sensors within the ROI.  

Content specific phase similarity between encoding and retrieval 

Based on previous results (Michelmann et al., 2016), statistical testing for content specific 

reactivation was done for the frequency of 8 Hz, restricted to an occipito-parietal region of 

interest (ROI) derived from the AAL atlas (Tzourio-Mazoyer et al., 2002). Averaged similarity 

values of encoding-retrieval combinations were contrasted between combinations of same 

content and combinations of different content. This was done with a one-sample t-test on 

every virtual sensor within the ROI. Subsequently t-values were thresholded with a t-value 

corresponding to a one-sided alpha value of 0.05; clusters were built across neighbouring 
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virtual sensors. Statistical testing was done again via 1000 random permutations. A series of 

post-hoc t-tests was done on every time-point at retrieval in order to estimate the 

contribution to the effect from encoding windows (see supplemental figure 306a)  

Time courses were obtained by averaging across the ROI, which allows for an unbiased 

investigation of the time-courses of reactivation (see figure 305a). Importantly, the cluster 

correction approach results in a biased noise-distribution within the cluster of significant 

reactivation. This renders the interpretation of its shape and any post-hoc analysis on sensors 

within the cluster problematic (Maris & Oostenveld, 2007b), see also (Kriegeskorte, Simmons, 

Bellgowan, & Baker, 2009). Since 86.46% of the t-values in the ROI were positive, we 

therefore decided to average across all virtual sensors within the anatomical ROI for the 

analyses of all time courses that were statistically tested.  

Likewise, similarity densities were computed on the averaged similarity values across all 

virtual sensors within the ROI. The cumulated similarity density distributions for 6 non-

overlapping encoding-windows were obtained for every subject. Consequently at every 

retrieval time-point a line could be fitted across 6 values for every subject. The slope of that 

line was subsequently subjected to a t-test against 0 across all subjects. The resulting time-

course of t-values across the whole retrieval time was finally subjected to a multiple 

comparisons correction by controlling the false discovery rate (Benjamini & Hochberg, 1995). 

The average slope fitted across two windows each (windows within scenes) was statistically 

tested against the slope across all encoding windows with a series of one-sample t-tests. T-

values were obtained again at every time point during retrieval and the false discovery rate 

was controlled in order to correct for multiple comparisons. To estimate at which time-points 

reinstatement could be detected best (figure 305a), a series of one-sample t-tests was 
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computed at every retrieval time point, between encoding-retrieval similarity of same 

content combinations and encoding-retrieval combinations of different content 

combinations. Finally, the average similarity to all encoding time points was compared within 

the ROI, between trials in which an association from the first, second or third scene was 

recalled (figure 305a b). This was done with a repeated-measures-ANOVA with the factor 

position and pairwise post-hoc t-tests. 

Oscillatory power  

Baseline corrected oscillatory power was contrasted on the sensor level with a series of one-

sample t-tests. Multiple-comparison correction was realized with a cluster-based Monte-Carlo 

permutation as implemented in the fieldtrip toolbox (Oostenveld et al., 2011). 1000 

permutations of contrast-labels were used; the clusters were formed from neighbouring 

values below a threshold (see below). Neighbouring values were derived across time from 0 

to 4 seconds after the onset of the word-cue, across frequency from 2 to 40 Hz and spatially 

across sensors  The threshold was the t-value which corresponds to a threshold of alpha = 

0.05 for a single sided test.  The maximal cluster-sum of real data was then compared to the 

distribution of maximal cluster-sums under random permutations. In order to find the most 

robust frequencies that showed oscillatory power decreases, a t-test was computed for the 

average power difference across time (0 – 4s), sensors and frequencies. On the source level, 

baseline-corrected power at 8 Hz was averaged over time between 0 and 4 seconds and 

subjected to a one-sample t-test. Multiple comparison correction was addressed with the 

same cluster-based permutation approach; however, clusters were formed across 

neighbouring virtual sensors.  
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Supplemental Information 

Behavioural performance  

In the behavioural pilot experiment, participants recalled the correct position and video-

episode in 72.29% (SD = 11.69%) of the trials. A main effect of position indicated decreasing 

performance when an association had been learned in a later scene of a video-episode 

(ANOVA: F1.27, 13.95 = 4.988, p = 0.036, means:  74.86%, 72.29%, 69.72%); post-hoc tests 

indicated that only associations from the first position were recalled more often than 

associations from the third position (t11 = 6.27, p < 0.001). 

In the alternating blocks of the behavioural experiment, participants recalled on average 

69.47% (SD = 23.21%) of the correct word-scene associations in cued-recall (CR) blocks. They 

further recognized 90.27% (SD = 10.74%) of intact associations (Hits) and erroneously named 

12.40% (SD = 14.38%) of rearranged associations intact (False Alarms) in an associative-

recognition (AR) blocks. Performance in CR (i.e. percent correct responses) and in AR (i.e. 

percent Hits minus percent False Alarms) was compared with a 2x3 ANOVA. This revealed a 

significant main effect of condition (F1, 23 = 38.30, p < 0.001), driven by a better performance 

in the associative-recognition blocks (t23 = 6.189, p < 0.001) and a significant factor position 

(F1.84, 42.24 = 1.145, p = 0.002, interaction condition with position n.s.). This was driven by a 

slightly better performance in the cued-recall condition, for associations that were learned in 

the second position of a video-episode (ANOVA: F1.58,36.24 = 2.794, p = 0.086, position 1 vs. 2: 

t23 = -2.804, p = 0.02, position 2 vs. 3: t23 = 1.961, p = 0.062) and a worse performance in 

associative-recognition for associations that were learned in the third position (ANOVA: 

F1.86,42.68 = 5.552, p = 0.008, position 2 vs. 3: t23 = 3.879, p < 0.001, all other ps > 0.14). 
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In the MEG experiment subjects remembered on average 63.54% (SD = 11.768%) of 

associations, excluding guesses. After preprocessing on average 200.348 trials (SD = 38.645) 

remained for known correct associations and an additional 116 trials (SD = 39.425) were 

guessed or incorrect responses. 

Reaction time in the behavioural experiment (including correct guesses) 

The analyses of reaction times were repeated including those trials in which participants 

indicated that they had guessed the response. The 2x3 ANOVA of RTs revealed a significant 

main effect of condition (F1.00, 23.00 = 66.254, p < 0.001, log-RT: F1.00, 23.00 = 98.52, p < 0.001) 

driven by overall faster reactions in the associative-recognition condition (t23 = -8.14, p < 

0.001, log-RT: t23 = -9.619, p < 0.001). A significant main effect of scene-position (F1.90, 43.67 = 

5.304, p = 0.010, log-RT: F1.87, 43.09 = 2.823, p = 0.074) and the interaction of scene-position 

with retrieval-condition (F1.96, 45.11 = 5.041, p = 0.011, log-RT: F1.89, 43.39 = 5.771, p = 0.007) 

were both due to a strong forward replay effect in the cued-recall condition (ANOVA: F1.80, 

41.36 = 8.796, p = 0.001, log-RT: F1.64, 37.82 = 8.304, p = 0.002). Specifically, associations that 

were learned in the first scene-position of a video-episode (mean RT = 2.5 sec) were recalled 

on average 132ms faster than associations that were learned in the second scene-position (t23 

= -1.752, p = 0.047, log-RT: t23 = -2.127, p = 0.022). Associations that were learned in the 

second scene-position (mean RT = 2.617 sec) were recalled on average 170ms faster than 

associations that were learned in the third scene-position (t23 = -2.864, p = 0.004, log-RT: t23 = 

-2.539, p = 0.009).  

In the AR condition, subjects performed the exact same encoding task, which also required 

source-memory. Importantly, no differences in reaction times were evident between 
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associations that were learned in the first, second or third position during encoding (ANOVA: 

F1.44, 33.09 = 0.185, p = 0.759, log-RT: F1.52, 35.05 = 0.591, p = 0.515, pairwise comparisons of 

positions: all ps > 0.5, Bayes-Factor supporting the null Hypothesis: position 1 vs. 2, BF01 = 

3.771, position 2 vs. 3, BF01 = 4.466, position 1 vs. 3, BF01 = 4.504, log-RT: all ps > 0.39, 

position 1 vs. 2, BF01 = 3.688, position 2 vs. 3, BF01 = 3.317, position 1 vs. 3, BF01 = 4.048).   

Reaction times in the behavioural pilot  

In the behavioural pilot experiment, participants associated word-cues with one of three 

scenes within video-episodes (figure 301a). Four continuous video-episodes each comprised 

of three individual scenes. A trial unique word-cue appeared in one scene during a video-

episode. After a brief distractor task (figure 301b) a cued retrieval task (figure 301d, top-left) 

was conducted where participants were presented with the word cues. Their task was to 

recall the scene-position that was associated with the word-cue as quickly as possible. After 

that, participants indicated which video-episode out of four was associated with the word. 

Faster reaction times to associations that were associated with early position compared to 

later positions were observed (ANOVA: F1.40, 15.41 = 4.257, p = 0.045, ANOVA of log-

transformed RTs: F1.58, 17.38 = 4.903, p = 0.027). On average, reaction times (RT) to first scene-

positions were faster than RTs to second scene-positions (2.044 vs. 2.212 sec., t11 = -3.558, p 

= 0.005, log-RT: t11 = -3.626, p = 0.004), and trended to be faster than for third scene-

positions (2.221 sec, t11 = -2.05, p = 0.065; log-RT: t11 = -2.227, p = 0.048). RTs for second 

scene-positions were only numerically, but not significantly, faster compared to third scene-

positions. These results suggest that memory replay is forward and compressed. During 

encoding, individual scenes of each video-episode lasted 2 seconds. During retrieval, 
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however, subjects took on average 167.8ms longer to recall an association from the second 

scene-position and an additional 10ms longer to recall an association from the third scene-

position. Importantly, these effects cannot be explained by material specific differences 

between positions, because pilot experiments ensured that there were no differences in RTs 

when the scenes from position 1, 2 and 3 were associated with a word-cue in isolation (see 

Online Methods).  

Reinstatement of encoding patterns and further evidence for forward replay 

Overall we found a cluster of significant evidence for the reactivation of phase patterns from 

encoding during retrieval for hit trials (Hits; pcluster = 0.034; supplemental figure 306a, 

supplemental figure 306b for unmasked maps of t-values). In this, we wanted to assess how 

much each sub-part from the video-episodes contributed to this effect. To this end, we 

computed a series of post-hoc t-tests for every encoding time-window. We obtained the 

highest t-values for the reinstatement of earlier time-windows during encoding 

(Supplemental figure 306a, right).  

If participants start to replay from the beginning of a video-episode and typically progress 

until they have the correct word-scene association in memory, then early time windows from 

encoding should be reactivated more often and more thoroughly (see above), therefore this 

pattern is consistent with forward replay. 
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Supplemental figure 306: Content specific pattern reinstatement 
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Legend to supplemental figure 306: Content specific pattern reinstatement 

a) Cluster of significant reactivation of phase-patterns from encoding for successfully 

remembered associations (left) and contribution to effect (right). Early encoding windows 

express the highest t-values and contribute more to the effect than later ones. (b) Unmasked 

map of t-values for reactivation of phase-patterns from encoding in successfully remembered 

trials. 
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Chapter 5 – General Discussion 

The presented studies have consistently demonstrated the tracking of content specific 

patterns in brain oscillations. Reinstatement of oscillatory patterns was localized in sensory 

specific cortices; mechanistically, it was linked to memory related decreases in oscillatory 

power at a centre frequency of 8Hz. These findings were possible with a new methodological 

approach: Representational Similarity Analysis (RSA) is combined with measures of phase 

coherence to track content specific oscillatory patterns. These patterns were detected during 

episodic memory formation and retrieval. Eventually, these methods were extended and 

combined with a new paradigm: Memory replay was elicited in a natural way that allowed for 

the tracking of sub-events within continuous episodes. Behaviourally, reaction times showed 

that memory replay is forward and faster than the original perception (i.e. memory replay 

was compressed). On a neural level, the distribution of phase similarity to different sub-

events showed that memory replay is forward and that the speed of memory replay is 

flexible. Specifically, participants replay fragments of activity at the same speed and can skip 

between replayed elements. This skipping was faster between distinct sub-events than within 

these events.  

Methodological advances  

The method that was introduced in this thesis tracks oscillatory patterns with a combination 

of phase coherence and RSA. It is unique in leveraging fine-grained temporal patterns of 

activity that are confined to an oscillation. Primarily, it is therefore useful to test hypotheses 

regarding the role of specific oscillations for distinct mental states. In theory, all measures 

that are used to assess connectivity between channels are suited as a similarity metric for 

RSA. They can be chosen based on considerations that typically go into the choice of a 
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connectivity metric (Greenblatt, Pflieger, & Ossadtchi, 2012). Their properties will determine 

the interpretation of results. A very similar method, for instance, is the correlation of power 

spectra in combination with RSA (Staresina et al., 2016). This method is rather directed at 

overall spectral changes, whereas phase coherence may be the preferred similarity metric, if 

fine-grained temporal patterns are tracked.  

A crucial strength of the presented method is the ability to track oscillations when the onset 

of their reappearance is unknown. In the described studies, the retrieval of an associate in a 

cued-recall paradigm happened upon presentation of a word-cue. The exact time point of 

memory retrieval however was variable. For this reason, a metric of phase coherence was 

chosen that assesses connectivity over a time window in a way that is robust to time shifts 

(Lachaux et al., 2000; Mormann et al., 2000). This consideration of onset is critical, when 

similarity between oscillating time series is assessed. The cross-correlation between two 

oscillations, for instance, will itself be an oscillation. Across time, it can therefore average to 

zero, even when patterns are similar. On the other hand, if two patterns are thought to occur 

at the same time, metrics that factor in time shifts, like pairwise phase consistency (PPC) 

(Vinck et al., 2010), may arguably be more sensitive.  

Several other methods have recently been introduced to track content specific patterns in 

electrophysiology. An important distinction therein, is which patterns of activity are leveraged 

to distinguish mental states. Temporal patterns (Michelmann et al., 2016; Staresina et al., 

2016; Staudigl et al., 2015), spatial patterns (Fuentemilla et al., 2010; Jafarpour et al., 2014; 

King & Dehaene, 2014; Wolff et al., 2017) or spatiotemporal patterns (Lu, Wang, Chen, & Xue, 

2015; Sols et al., 2017) of activity can be differentiated. The pattern that is used for analysis 

will in the end determine the interpretation of significant findings: If content specific spatial 
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patterns are tracked, the conclusions derived from differentiable states is that distinct 

topographies underlie these mental states at a given time point (Stokes, Wolff, & Spaak, 

2015). Crucially, the method presented in this thesis, specifically leverages information that 

can only be measured with electrophysiological methods, namely fine-grained temporal 

patterns. For this reason, it can provide qualitatively new information, i.e. more than just a 

time-resolved extension of spatial similarity. 

Importantly, the way in which content can be differentiated based on neural activity will 

partly depend on the stimulus material. The Parahippocampal Place Area (PPA) (Epstein & 

Kanwisher, 1998) and the Fusiform Face Area (Kanwisher, McDermott, & Chun, 1997) have a 

functional preference to process places and faces. It is therefore likely that a condition that 

requires the processing of places and a condition that requires the processing of faces are 

marked by distinct topographies. The distinction of temporal patterns on the other hand 

implies that at a given location (i.e. sensor or electrode), unique time courses of activity are 

present. Arguably, temporal similarity measures will therefore have a higher sensitivity to 

distinguish dynamic stimuli. Importantly, temporal and spatial similarity measures will 

partially capture the same signal (Staudigl et al., 2015), i.e. spatial and temporal patterns in 

the EEG and MEG are entangled (Cohen, 2011). In general, it is important to consider stimulus 

material and the method to detect content specific patterns carefully, based on the 

hypothesis that is being investigated.  

Support for the information via desynchronization hypothesis 

The most robust finding throughout this thesis is support for the information via 

desynchronization hypothesis (Hanslmayr et al., 2012): A relation between decreases in 

oscillatory power and the representation of information was consistently demonstrated. 
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Successful memory of information-rich naturalistic stimulus material elicited particularly 

strong desynchronization in the presented studies. Crucially, these power decreases were 

linked to the reappearance of content specific oscillations that were localised in sensory 

specific cortices. In this thesis, the first demonstration of this principle in chapter 2 relied on 

strong memory traces. These were achieved via explicit instructions to replay content vividly. 

Furthermore the analysis was confined to associations that were remembered with high 

confidence. Eventually, in chapter 4 a new paradigm elicited memory reinstatement in a 

natural way; a homogeneous memory performance was achieved with a design that adapted 

to individual performance. Consequently, it was possible to contrast the pattern 

reinstatement of successfully remembered and forgotten associations and demonstrate the 

relevance of content specific oscillations for successful memory. Overall, content specific 

oscillations were linked to power decreases in two studies that used different recording 

methods, i.e. EEG and MEG. Additionally, power decreases in a visual and auditory modality 

contained content specific oscillations during two processes, namely episodic memory 

formation and retrieval. 

From the data presented in this thesis, it can therefore be concluded that decreases in 

oscillatory power are not just a by-product of memory but are rather involved in the 

reinstatement of content representations from memory.  

In order to specifically test the hypothesis that desynchronizing frequencies contain 

information, the analysis was confined to oscillatory patterns. Clearly, however, oscillations 

reappearing in sensory cortices are not the only patterns that are reinstated in episodic 

memory. Information about reinstated content can be detected with other measures (Kurth-

Nelson et al., 2015; Lu et al., 2015; Staresina et al., 2016; Yaffe et al., 2014, 2017; Zhang et al., 
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2015) and in other regions (Ritchey et al., 2012; Staresina et al., 2012). An important open 

question is consequently, how the cortical reinstatement of oscillatory patterns, that is linked 

to power decreases, integrates with other patterns that are reinstated. Specifically, the 

overall mechanism that functionally enables the brain to learn and retrieve episodic 

memories may represent information in different ways and at different levels of abstraction.  

The Hippocampus, for instance, has been proposed to code information sparsely (Lisman & 

Jensen, 2013; McClelland, McNaughton, & O’Reilly, 1995; Norman & O’Reilly, 2003). It is 

therefore possible that representations are spectrally and functionally transformed in this 

region, but they still express similarities of recorded brain activity between encoding and 

retrieval (Staresina et al., 2016, 2012). In line with this, a recent extension of the information 

via desynchronization hypothesis (Hanslmayr et al., 2016) states that information rich content 

is coded in desynchronized patterns in the alpha beta frequency band; those desynchronized 

representations rely on the Neocortex whereas the Hippocampus provides a sparse code that 

relies on synchronized activity in the theta and gamma  band (Lisman & Jensen, 2013), and 

serves to bind representations together.  

A centre frequency of 8 Hz 

Interestingly, the frequency band that was consistently linked to reinstatement of content 

specific phase patterns was centred at 8 Hz. Consistent with the information via 

desynchronization hypothesis, the 8 Hz frequency band displayed strong power decreases 

throughout different studies and contrasts. Studies that find memory related power 

decreases however often report stronger effects in the upper alpha and beta band 

(Hanslmayr & Staudigl, 2014; Hanslmayr et al., 2012), which is at odds with the finding of 8 Hz 
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in this thesis.  A prime candidate to explain this difference to other memory experiments is 

the use of information-rich dynamic stimuli in this thesis. 

While the 7-8 Hz frequency band has been previously implicated in the rhythmical sampling of 

continuous perception (Hanslmayr et al., 2013; Landau & Fries, 2012), we implicated this 

band for the first time in the reinstatement and maintenance of episodic memories of 

naturalistic stimuli (Staudigl & Hanslmayr, 2018). An 8Hz oscillation could therefore be 

required to temporally structure and coordinate information-rich continuous reinstatement. 

Alternatively, the reinstatement of oscillatory patterns could extend to other frequencies but 

was simply not detected in the presented studies: Even though control analyses were 

performed in other frequency bands, it is still possible that factors like the signal to noise ratio 

moderate the sensitivity of the presented method. Currently, however, it remains an open 

question, why specifically the 8 Hz frequency band was consistently implicated in the 

representation of information. 

Flexible forward replay  

Finally, it was possible to leverage similarity in oscillatory patterns to track the reinstatement 

of distinct sub-events, when continuous representations were replayed from memory. This 

replay was forward in behavioural data; in the neural data the statistical relation between 

phase-patterns during memory replay supported a forward direction at a compressed level. 

These different speeds that were observed suggest a flexible mechanism that allows us to skip 

between accurately represented fragments of activity in a forward direction.  

Interestingly, data from animal studies suggests that even the direction of neural replay is not 

fixed but rather task dependent (Foster & Wilson, 2006; A. Johnson & Redish, 2007). 
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Speculatively, flexibility in replay could therefore also change the direction of replay, 

depending on the task demands.  

Mechanistically, previous studies and theories have implicated the Hippocampus as a 

structure that is in control of timing in memory (Davachi & DuBrow, 2015; Heusser, Poeppel, 

Ezzyat, & Davachi, 2016; Lisman & Jensen, 2013; Sols et al., 2017), yet, the observed flexible 

patterns were located in sensory cortices.  A possible explanation for these discrepancies is 

that the hippocampus initiates reinstatement in sensory areas, when the vivid reinstatement 

of sensory information is required. This explanation is well in line with a framework, in which 

the Neocortex represents information-rich content that is bound together in the 

Hippocampus (Hanslmayr et al., 2016). An important future question is therefore, how the 

Hippocampus and the Neocortex interact during episodic memory reinstatement, specifically 

whether the Hippocampus exerts flexible control over sensory regions, when the vivid 

reinstatement of patterns is required.  

Possible clinical relevance  

An important open question is how these findings integrate in a clinical context, specifically 

how patients might benefit from this research in the future. Several parallels can be observed 

between these studies and the memory related post-traumatic stress disorder (PTSD). PTSD 

patients often report vivid unwanted replay of previous experiences that resemble their 

original experience, i.e. intrusions (Friedman, Resick, Bryant, & Brewin, 2011). The naturalistic 

stimulus material that was used in this thesis and the vivid reinstatement thereof can be 

considered an approximation of such vivid intrusions in an experimental setting. 

Interestingly, the finding of replay in the cortex fits nicely into the framework of a dominant 

theory that addresses intrusions in PTDS patients: The dual representations theory of PTSD 
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(Brewin, Gregory, Lipton, & Burgess, 2010) proposes that a verbally accessible memory 

system relies on the hippocampus and supports the controlled access to memory in the 

context of narratives, whereas the situationally accessible memory system (SAM) relies on 

sensory cortical areas. Intrusions are suggested to arise within the SAM. This mirrors the 

presented finding of temporally precise pattern replay in sensory specific cortices. 

Another interesting link regards eye movement desensitization and reprocessing (EMDR) 

(Shapiro, 2001). EMDR is an effective treatment approach for PTSD and usually relies on eye 

movements that are carried out while the patient recalls traumatic memories. Eye 

movements are known to elicit saccade-evoked potentials (SEPs) (Burdette, Walrath, Gross, 

James, & Stern, 1986). Speculatively, these SEP could therefore interfere with traumatic 

intrusions: A mechanistic hypothesis would be that SEPs reset the phase of ongoing 

oscillations in visual regions which interferes with the vivid representation of traumatic 

memories.  

Conclusion 

Decreases in low frequency (<30 Hz) power are a well-known correlate of successful memory 

encoding and retrieval (Hanslmayr et al., 2012; Long et al., 2014; Zion-Golumbic et al., 2010). 

This thesis demonstrates their role in the representation of information: A new method made 

it possible to show that memory related power decreases harbour information about the 

content of memory during episodic memory encoding and retrieval. This information in 

oscillations, marked by power decreases, was finally tracked in memory. Replay of sub-events 

in continuous episodes was forward and its speed was faster in memory than during 

perception. This result was further supported by behavioural data. Finally, the tracking of 

replayed patterns in memory demonstrated that subjects can skip flexibly between sub-
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events of continuous episodes and slow down when they replay uninterrupted segments. This 

renders episodic memory as a dynamic process in which power decreases harbour content 

specific patterns that are reinstated in a flexible way.   
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