Stress analysis and aerodynamic optimization of small-scale compressed air turbines

Daabo, Ahmed Mahmood Abdullah (2018). Stress analysis and aerodynamic optimization of small-scale compressed air turbines. University of Birmingham. Ph.D.

[img] Daabo18PhD.pdf
PDF - Accepted Version
Restricted to Repository staff only until 1 January 2021.

Download (23MB) | Request a copy

Abstract

This study aims to enhance the performance of the solar heater, consisting of parabolic dish concentrator and thermal receiver, as well as the expander, Small Scale Turbines SSTs. Using an advance ray tracing technique, OptisWorks software, both; a small scale parabolic dish concentrator and thermal cavity receiver were developed and optically enhanced.

Simultaneously, small scale axial and radial turbines were developed using meanline approach and 3D CFD modelling using ANSYS CFX software. Then, the stator and the rotor of the SSRT were parametrized using two optimization techniques of multi-objective Genetic Algorithm optimization.

To examine the SSRT mechanical design reliability, finite element analysis was utilised to determine the values and the locations of each; stresses, deflection and minimum allowed cycle number for the rotor.

Consequently, to reduce the Von Mises stresses and deflections and increase the minimum number of cycles on both the rotor shaft and blades, multidisciplinary optimization was conducted to ensure better structural performance without influencing its aerodynamic performance.

Comparing numerical and experimental, results showed that the maximum deviation in predicting the compressed air outlet temperature for the thermal receiver was less than 5%. Also, the deviation in SSRT efficiency and power output were about 16% and 14% respectively.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Mahmoud, SaadUNSPECIFIEDUNSPECIFIED
Al-Dadah, RayaUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Mechanical Engineering
Funders: None/not applicable
Subjects: T Technology > TJ Mechanical engineering and machinery
URI: http://etheses.bham.ac.uk/id/eprint/8449

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year