Atmospheric processing of aerosols

Davidson, Nicholas Mark (2018). Atmospheric processing of aerosols. University of Birmingham. Ph.D.

PDF - Accepted Version

Download (6MB)


The chemistry of aerosol particles is critical to the influence said particles have over human health, air quality and the distribution of nutrients across the world. Current models estimate that windborne dust represents the movement of thousands of teragrams of solid material of varying composition and solubility across continents and into the world’s oceans. Understanding the composition and surface reactivity of anthropogenic particles from industry, agriculture and vehicle emissions is vital to understanding their potential impact on the world, and the structure and behaviour of inhalable pharmaceuticals is a strong determinant of their efficacy.

The following work examines a broad selection of natural and anthropogenic particulate samples with synchrotron-based techniques, including analysis of ship emissions collected directly from stacks for the first time. The effect of simulated atmospheric acid processing on the solubility of iron on coal fly ash is evaluated, and optical trapping is used in conjunction with analytical techniques to observe the influence of relative humidity on the properties of pharmaceutical aerosols and aqueous droplets containing fluorescent protein solutions.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
College/Faculty: Colleges (2008 onwards) > College of Life & Environmental Sciences
School or Department: School of Geography, Earth and Environmental Sciences
Funders: Natural Environment Research Council
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Q Science > QD Chemistry
T Technology > TD Environmental technology. Sanitary engineering


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year