Photonic topological metamaterials

Yang, Biao (2018). Photonic topological metamaterials. University of Birmingham. Ph.D.

PDF - Accepted Version

Download (5MB)


Topology, a mathematical concept associated with global perspectives, was found to represent geometric aspects of physics. To date, various topological phases have been proposed and classified. Among them, topological gapless phases focusing on the degeneracies of energy bands serving as the singularities in the momentum space, attract much attention. Especially in the three-dimension, various topological semimetals have been proposed. With unit topological charge ±1, Weyl degeneracies have laid the foundation. Also, they show loads of exotic properties, such as Fermi arcs and chiral anomalies. Being relied on the band topology theory, topological gapless phases have also been transferred into classic systems, such as photonics, acoustics and mechanics.

Here, we experimentally investigated photonic Weyl systems in the photonic continuum media, where electromagnetic intrinsic degrees of freedom play key roles in constructing the state space. Firstly, we researched chiral hyperbolic metamaterials, a type-II Weyl metamaterials, from which we directly observed topological surface-state arcs. Then, we report the discovery of ideal photonic Weyl systems, where helicoid structure of nontrivial surface states has been demonstrated. Finally, we construct photonic Dirac points, through analysing eigen reflection field, we found the correlation of topological charges in momentum and real spaces.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Physics and Astronomy
Funders: Other
Other Funders: China Scholarship Council, The University of Birmingham
Subjects: Q Science > QC Physics
T Technology > TN Mining engineering. Metallurgy


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year