Functional analysis of the toll receptor protein family and their downstream signaling pathways in the central nervous system of Drosophila

Anthoney, Niki Cathryn (2017). Functional analysis of the toll receptor protein family and their downstream signaling pathways in the central nervous system of Drosophila. University of Birmingham. Ph.D.

[img] Anthoney17PhD_optimised.pdf
PDF - Accepted Version
Restricted to Repository staff only until 11 July 2021.

Download (13MB) | Request a copy

Abstract

Cell number plasticity drives organismal growth, and is coupled in the CNS to the emergence of neural circuits, ensuring appropriate function. In mammals, neurotrophins promote cell survival via Trk and p75\(^{NTR}\) receptors or induce cell death via p75\(^{NTR}\) and Sortilin. In \(Drosophila\), DNTs bind Toll receptors promoting cell survival, but whether they regulate cell death within the CNS remains unknown. I show Toll receptors have distinct and overlapping spatial and temporal expression and functions. Driving RNAi knockdown and overexpression of each Toll, I show that different Toll receptors are required in glia for adult locomotion; in neurons for the regulation of VNC size; and to induce cell survival or death in distinct contexts. I focused on the signalling mechanisms downstream of Toll-6. My data show DNT-Toll-6 signalling switches between promoting cell survival or death via NFkB, ERK, or JNK signalling. These outcomes depend on the cleavage state of the DNT, time and available downstream adaptors. Toll-6 induces cell survival via MyD88 and cell death via dSarm, and these alternative outcomes depend on Weckle. Altogether, my data contribute to showing that the Toll receptors, DNTs and downstream signalling adaptors constitute a novel mechanism of cell number plasticity within the CNS.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Hidalgo, AliciaUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Life & Environmental Sciences
School or Department: School of Biosciences
Funders: Biotechnology and Biological Sciences Research Council
Subjects: Q Science > QH Natural history > QH301 Biology
URI: http://etheses.bham.ac.uk/id/eprint/7343

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year