Real time measurement of oxygen by integrating a clark sensor with low cost printed circuit board technology and solid electrolyte membrane

Niazi, Ayda (2016). Real time measurement of oxygen by integrating a clark sensor with low cost printed circuit board technology and solid electrolyte membrane. University of Birmingham. Ph.D.

[img]
Preview
Niazi16PhD_Redacted.pdf
PDF - Redacted Version

Download (6MB)

Abstract

A prototype of a miniaturized Clark type electrochemical oxygen sensor integrated with a 3D printed in vitro cell culturing platform is designed and developed for the purpose of monitoring the cellular oxygen consumption by the solution flowing through the cultured cells on the platform. Oxygen respiration indicates a cell's metabolic activity, so by measuring a chemical's oxygen content as it passes through a cell chamber, we can measure that chemical's potential effectiveness. This miniature micro sensor is designed and fabricated on a printed circuit board for the first time and integrated with a solid electrolyte membrane and 3D printed cell culturing platform to ensure robustness, low manufacturing cost and good electrical conductivity for sensing. Hence the sensor is aimed at enabling the pharmaceutical industry to rapidly test chemical products on animal and cancer cells; and has been designed to be low cost and suitable for mass production.
The presented oxygen sensor configuration consists of two identical series of working, reference and counter microelectrodes. The solid polymer electrolyte membrane, Nafion (perfluorosulfunic acid membrane, DuPont Company) removed requirement for extra humidification and increased the shelf life of the sensor. The sensitivity of the oxygen sensor was tested in different oxygen concentration in gas and liquid states and was calibrated with measurements from a Portable Multi-Gas analyzer and a dissolved oxygen analyzer. The prototype can detect the small changes in oxygen concentration in the range of 0 to 5 μA current and has a response time of less than 5 seconds.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Anthony, CarlUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Mechanical Engineering
Funders: None/not applicable
Subjects: T Technology > TJ Mechanical engineering and machinery
URI: http://etheses.bham.ac.uk/id/eprint/6817

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year