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ABSTRACT 

 

This thesis consists of two main elements: the analysis of field measurements of velocity and 

resistance in a river, undertaken over a three year period, and numerical modelling of open channel 

flow.  An Acoustic Doppler Current Profiler (ADCP) was used to measure the spatial distribution of 

velocity in two cross sections of a small meandering river (River Blackwater, Hampshire) during 

inbank, bankfull and overbank flow conditions.  The same reach of the river had been previously 

studied over a number of years, as well as investigated on a 1:5 scale physical model, making it 

possible to compare the flow structure in the river and in the physical model.   

 

A new measurement procedure and data processing methodology were developed for ADCP 

measurements, suitable for use in times of flood.  Methods for orientating the measured velocity 

data and reducing the velocity fluctuations in the data, due to their instantaneous random nature, 

are described.  The post processed data has been verified against 300s time-averaged velocity data at 

several locations along the cross sections, and also against ADV measurements obtained under the 

same flow conditions.  The approach of averaging several transect data together has successfully 

reduced the noise in the ADCP velocity data.  The field data indicates incremental rises in Ud with 

rising water level, while the opposite is true for the physical model data.  Key similarities and 

differences between the secondary flow patterns in the river and model have been identified.   

 

The discharge capacity of the main river channel is significantly reduced during summer months, due 

to seasonal growth in vegetation, reaching a minimum in August.  The gradient of the stage-

discharge rating curve for summer months can be seven times larger than that for the winter 

months.  The falling limbs of the rating curve have a higher discharge capacity than the rising limbs 

for summer months (June/July to October/November).  An attempt was made to predict the stage-

discharge relationship for overbank flow conditions using a quasi 2D RANS model, SKM (Shiono and 

Knight Method).  SKM is shown to be capable of simulating the lateral distribution of the depth-

averaged streamwise velocity in the river and physical model with reasonable accuracy, subject to 

appropriate choice of three calibration parameters.   

 

The research shows that the ADCP has a great potential for obtaining accurate 3D velocity data in 

rivers during flood events, and that the SKM is a useful modelling tool.  The importance of taking into 

account the effect of vegetation when undertaking engineering design has been demonstrated.
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Q  mean discharge of a set of transects  (m
3
s

-1
) 

QCS cross section discharge, determined using the methodology outlined in chapter 

4 

(m
3
s

-1
) 

ΔQ  difference between the discharge of a transect and the mean discharge of a set 

of transects from one cross section measurement  

(m
3
s

-1
) 

T total cross section traverse time  (s) 

T temperature  (
o
C) 

U average streamwise velocity with respect to averaging time  (ms
-1

) 

Ud depth-averaged streamwise velocity  (ms
-1

) 

Us  water surface velocity measured using LS-PIV  (ms
-1

) 

u streamwise velocity  (ms
-1

) 

u’ streamwise velocity fluctuations  (ms
-1

) 

umax  maximum streamwise velocity  (ms
-1

) 

u*  shear velocity  (ms
-1

) 

V average lateral velocity with respect to averaging time  (ms
-1

) 

Vd depth-averaged lateral velocity  (ms
-1

) 

Vi  
 

the sum of velocity components normal to the element sides
 

(ms
-1

) 

VSO  relative velocity between sound source and observer  (ms
-1

) 

bV   mean vessel-velocity vector  (ms
-1

) 

fV  mean water-velocity vector  (ms
-1

) 

Vm mean water velocity in the first or the last segment  (ms
-1

) 

v  lateral velocity  (ms
-1

) 

v’ lateral velocity fluctuations  (ms
-1

) 

W  average vertical velocity with respect to averaging time  (ms
-1

) 

Wd  depth-averaged vertical velocity  (ms
-1

) 

w lateral velocity  (ms
-1

) 

w’ vertical velocity fluctuations  (ms
-1

) 

wi   weighting parameter point i to the interpolation point  (m
-2

) 

y lateral distance  (m) 

z distance to the channel bed  (m) 
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z0 roughness length  (m) 

 

 

Greek symbols 

 

α angle between the velocity vector and the transducer beam  (
o
) 

Γ secondary flow parameter  

∆x the spatial separation of the sampling points (m) 

εt eddy viscosity  (m
2
s

-1
) 

εyx depth-averaged eddy viscosity  (m
2
s

-1
) 

η coefficient used in the analytical solution of the SKM  

η Kolmogorov microscale (m) 

κ von Karman’s constant  

λ dimensionless eddy viscosity  

ξ coefficient used in the analytical solution of the SKM  

µ dynamic viscosity  (Nsm
-2

) 

ν kinematic viscosity (m
2
s

-1
) 

 fluid density (kgm
-3

) 

τ laterally averaged boundary shear stress  (Nm
-2

) 

τb bed shear stress  (Nm
-2

) 

τo boundary shear stress (Nm
-2

) 

τw wall shear stress  (Nm
-2

) 

θ angle between water velocity and boat velocity (
o
) 

ω coefficient used in the analytical solution of the SKM  
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LIST OF ABBREVIATIONS 
 

DNS Direct numerical simulation  

DTM Digital Terrain Model  

EA Environment Agency  

EG Electromagnetic gauge  

FCF Flood Channel Facility (UK)  

LES Large eddy simulations  

RANS Reynolds-averaged Navier Stokes Equation  

RMSE Root Mean Squared Error  

SKM Shiono and Knight Method  

SM Stationary measurements  

TA Transect averaging  

TIN Triangular Irregular Network  
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1 INTRODUCTION 
 

1.1 Research background 

Flooding has been one of the most significant natural disasters around the world.  Floods and 

hydrological-related disasters have occurred more than any other types of natural disasters 

worldwide. Annually, they have also affected the life of more than 100 million people and caused 

damages worth more than US$ 19 billion between 2000 and 2007 (see Figure 1.1).  In the UK context, 

flooding is not a new issue either.  A recent independent report (Pitt, 2008) indicates that the year 

2007 was the wettest summer in the UK, causing 13 deaths, 7,000 people to be rescued and 55,000 

properties to be flooded.  It was also reported that almost half a million people were left without 

mains water or electricity, the largest loss of essential services since World War II.  The estimated 

cost for the insurance industry was over £3 billion, making the summer flood of 2007 in the UK to be 

the most costly in the world that year.  The social and economic impacts caused by floods and other 

weather catastrophes have been increasing over the last 58 years (see Figure 1.2), and further 

increase is expected in the future due to climate change. 

 

In order to respond to the future flood-related challenges in the UK, the government Foresight ‘Flood 

and Coastal Defence Project’ (Foresight, 2010) aims to produce a long term (30 - 100 years) vision of 

flood and coastal defence in the whole of the UK that is robust, takes account of the many 

uncertainties, and can be used as a basis to inform policy and its delivery.  One of the key issues 

related to this is the uncertainty in determining discharges in rivers during flood, an issue that was 

also ranked as a key research area by another recent government report (Defra, 2002).  Accurate 

determination of discharge (volume of water flowing per second) during floods may lead to an 

improvement in the accuracy of flood risk mapping, and thereby potentially decrease the loss due to 

flooding.   

 

The practice of mapping the risk of flooding is usually undertaken by means of numerical modelling.  

In this context, typical numerical models try to model the interaction between the flow parameters, 

such as stage (the depth of flow) and discharge, and the factors that affect the flow itself, for a given 

set of boundary conditions at the inlet and outlet of the reach being modelled.  The flow in a river is 

affected by the resistance, turbulence, the drag forces caused by any emergent or submerged 

vegetation and any hydraulic structures present.  All of these physical effects are often represented 
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by a so called “calibration parameters”.  As suggested from the name, calibration parameters require 

a specific calibration process in order to produce accurate results.  The role of measurement data 

becomes important at this point since the calibration process requires verification that is done by 

assessing the closeness of the numerical model results to the measured data.   

 

Among the numerical models available is the Shiono & Knight method (SKM) (Shiono and Knight, 

1988; 1991).  The SKM has been shown to be capable of predicting the lateral distribution of 

streamwise velocity in open channel with a good accuracy, and is relatively easy to use when 

compared to full 2D or 3D models.  For these reasons, it has been adopted by the UK’s Environment 

Agency for use within the recently developed ‘Conveyance Estimation System and Afflux Estimation 

System’ (CES-AES) software (McGahey, 2006; Flow Database at the University of Birmingham, 2009).   

 

A particularly important aspect that needs to be taken into account when modelling flood events is 

the overbank flow features, which are far more complex than those occurring during inbank flow 

conditions.  Recent laboratory research on floodplain hydrodynamics has shown that flow resistance 

is caused by high levels of turbulence, large planform or horizontal eddies and secondary flow in the 

vicinity of main channel/floodplain boundaries in straight channels (Shiono & Knight, 1991; Ervine et 

al., 2000; Ikeda, 2001; Spooner & Shiono, 2003; Abril & Knight, 2004).  The flow in two-stage 

meandering channels is even more complex, due to the complex system of secondary flow cells 

driven by turbulence, centrifugal forces and floodplain flows entering the main channel at the cross-

over (Shiono & Muto, 1998; Ervine et. al., 1993).  Furthermore, the existence of vegetation in the 

main channel and floodplain cannot be ignored as they may significantly affect the flow also.  In 

order to accurately predict the stage in natural rivers, it is therefore imperative to understand these 

complex flow features which may exist, measure the relevant parameters and then to correctly 

represent these flow features in the model.   

 

Field data availability is clearly crucial for understanding the complex flow mechanism in rivers during 

overbank flow conditions.  The challenge posed in measuring field data, apart from its high 

operational cost and safety concerns, is the considerable difficulty in obtaining reliable data during 

flood events, since conventional measurement instruments, such as propeller, electromagnetic 

flowmeter or floats, are generally not designed to operate under such extreme conditions.  

Furthermore, given the unpredictability of floods, it is often difficult to predict exactly when and 

where flood will occur and as a result, it may require years in order to obtain flood data.  
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Figure 1.1 Natural disasters impacts by disaster sub-group: 2008 versus 2000-2007 annual average 

(Rodriguez et al., 2009) 

 

 

Figure 1.2 Great weather catastrophes 1950-2008 (Munich RE, 2009) 
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Figure 4.40 View of CS 2 at various dates. 

  

  

Figure 4.41 View of CS 4 at various dates. 

Flow direction 
16/1/2008 16/1/2008 

18/2/2008 10/2/2009 

18/2/2008 

10/2/2009 10/2/2009 

16/1/2008 
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Figure 4.42 View of CS 1 during 10/2/2009 measurements. 

 

4.7.3 Statistical stability of the streamwise velocity at various depths 

Figures 4.43 and 4.44 illustrate the variation of the averaged streamwise velocity and the 

corresponding standard deviation for different averaging periods for the CS 2 inbank case.  Similar 

figures for other cases are presented in Appendix I.  The standard deviations of streamwise velocity 

were computed based on the following equation: 

 

2
( )

( 1)

ix x

n
σ

−
=

−

∑
 

(4.11) 

 

where : 

 σ = the standard deviation of n population 

 xi = velocity at i ensemble 

 x  = mean velocity from n population 

 n = number of samples 

 

Only data in bins 3 to 5 bins for each stationary measurement are presented in order to ease 

interpretation.  In general, the average streamwise velocity with respect to averaging time (will be 

referred as U in throughout this chapter) for various depths becomes stable (i.e. does not appear to 

exhibit changes with respect to average time) within 300 seconds or less.  There are bins in which U 

does not seem to become stable and converge to a constant value, which indicates a degree of non-

stationarity of the flow at that particular bin position (e.g. bin 0.46m at a distance from the left bank 

Looking downstream Upstream CS 1 
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(DL) = 2.50m in Figure 4.43).  However, the number of data contained in such bins is small and as 

such does not significantly affect the overall results.   

 

Higher standard deviations of streamwise velocity tend to occur in bins near the channel bed for 

inbank and bankfull conditions, e.g. Figure 4.44.  However, this was not observed during overbank 

flow, which can be attributed to the larger bin size used during overbank measurements that 

resulting in a larger averaging area.  The magnitude of middle column standard deviation from all 

measurements was nearly half of that observed by Stone & Hotchkiss (2007) using a Rio Grande 

ADCP with also 5cm bin size (Table 4.8).  This is somewhat surprising, since the Rio Grande ADCP is 

apparently more advanced than the StreamPro ADCP.  The measurements were conducted in a river 

with similar depth to that of River Blackwater (see Table 4.8).  Szupiany et al. (2007) reported a 

standard deviation of 0.067 to 0.139ms
-1

 for measurements in a large river using a Sontek aDp (Table 

4.8).  However, the bin sizes used for those measurements (50 and 75cm), were far larger than the 

ones used on the current project.    
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Figure 4.43 Mean streamwise velocity at various depths with respect to averaging time, measured 

at various distances from left bank at CS 2 (18/08/2008 - inbank). 
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Figure 4.44 Mean standard deviation of streamwise velocity at various depth with respect to 

averaging time, measured at various distances from left bank at CS 2 (18/08/2008 - inbank). 
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Source Bin size (cm) σUd (ms
-1

) Ud (ms
-1

) ADCP model Avg. time (mins.) 

Stone & Hotchkiss (2007) 5cm 0.262 - 0.282  0.671 - 0.841  1200kHz RDI Rio Grande 20. 

Szupiany et al (2007) 50cm  0.102 - 0.139  0.93 - 1.18  1000kHz Sontek aDp 10 

  75cm 0.067 - 0.089  1.01 - 1.20  1000kHz Sontek aDp 10 

Marsden (2005) 3cm 0.18  0.30  2400kHz RDI StreamPro n/a 

 5cm 0.14  0.30 2400kHz RDI StreamPro n/a 

 7cm 0.11  0.30  2400kHz RDI StreamPro n/a 

  10cm 0.08  0.30  2400kHz RDI StreamPro n/a 

Table 4.8. Standard deviation of ADCP velocity observed by several researchers. 

 

4.7.4 Statistical stability of depth-averaged velocity in three directions 

In general, an averaging time of 300s appears to be adequate to stabilize the depth-averaged velocity 

all three directions and their corresponding standard deviations at various lateral distances in cross 

sections 2 and 4 (Figure 4.45 and Appendix II).  The standard deviation of horizontal velocities is 

generally within the range of 0.1 to 0.2ms
-1

 while the standard deviation of vertical velocities is 

generally 2 to 4 times lower.  In some of the cases for inbank and bankfull flows, there is tendency 

that the standard deviations of Ud, Vd and Wd are higher at lower Ud magnitudes (Figure 4.45, 

Appendices II-1, II-2 and II-3).  However, this tendency is more difficult to identify during overbank 

flows, e.g. at DL = 4.35m in Appendix II-3, the standard deviations of the horizontal velocities are 

nearly 1.5 times those at other locations in the cross section.  Furthermore, the general trend of U 

with respect to time is similar to the trend of its averaged depth-averaged value (Figure 4.45).  This is 

also valid for the other cases in both cross sections (Appendices II-1 to II-5). 

 

The magnitudes of depth-averaged streamwise velocity and the corresponding standard deviation at 

300s averaging, 
_300dU

 
and

 _ 300dUσ  are presented in Tables 4.9 – 4.14.  The values of 
_ 300 _ 300/

dU dUσ at 

300s averaging range from 12 to 1008%.  However, values of this parameter greater than 100% are 

only found to occur when 
_300dU  is less than or equal to 0.13ms

-1
.  In general, 

_ 300dUσ tends to 

decrease at a very small rate with the increase in 
_300dU .  As a consequence, 

_ 300 _ 300/
dU dUσ

 
becomes 

larger at low velocities.  The parameter 
_ 300 _ 300/

dU dUσ  gradually decreases with _300dU  and stays 

under 22% for _300dU  ≥ 0.68 ms
-1

.  For 0.22 < _300dU  <0.57 ms
-1

 the value of 
_ 300 _ 300/

dU dUσ  varies 

from 59 to 27%.  
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Figure 4.45 Mean Ud, Vd and Wd (left) and their standard deviation (right), with respect to 

averaging time, measured at various distances from left bank at CS 2 (18/08/2008 - inbank). 

 

DL (m) Ud (ms
-1

) σUd (ms
-1

) σUd/Ud (%) 

1.00 m 0.02 0.19 1008 

1.75 m 0.02 0.16 728 

2.50 m 0.08 0.17 214 

3.25 m 0.09 0.16 166 

4.00 m 0.11 0.14 120 

4.75 m 0.22 0.13 58 

5.35 m 0.22 0.13 58 

 

Table 4.9 Ratio of mean standard deviation and mean velocity after 300s averaging for velocity in 

streamwise direction for CS 2 data (18/8/2008 - inbank). 

 

DL = 7.35 m 




