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ABSTRACT I 

ABSTRACT 

This thesis aims to illustrate and expand the in-depth knowledge required to better understand 

the wash process occurring inside automatic dishwashers (ADWs) by studying the different 

mechanical and chemical factors involved. 

The project started with the analysis of the water motion via Positron Emission Particle Tracking 

(PEPT). Tests showed that the initial distribution of water occurs via coherent jets from the 

nozzles in the spray arms. From a particular position, a jet follows a defined trajectory that can 

be estimated by using trigonometric principles. Also, these impact locations only represent a 

small fraction of the inner volume of the appliance. A mathematical model was then built to 

investigate the design factors associated with this phenomenon. Three dimensionless numbers 

were defined: the time efficiency factor (!!"#) to evaluate the time a specific jet is impacting a 

crockery element; the impact length efficiency factor (δ) to measure the coverage produced; 

and the overall efficiency parameter (α) that combines both previous factors.  

Egg yolk was selected as the soil material to study. Experiments in small scale were done using 

the scanning Fluid Dynamic Gauge (sFDG). By applying Partial Least Squares (PLS) 

methodology, temperature and mainly pH were identified as the main contributors to the initial 

hydration-swelling. Enzyme level, the frequency factor (ratio of time an external mechanical 

action is applied over the sample), and again temperature, showed a noticeable effect during 

removal. A novel algorithm was introduced to model the behaviour observed. Swelling was 

described using a non-linear partial differential equation. That allowed the introduction of 

‘theoretical layers’ (number of virtual layers in which the soil thickness is divided). sFDG 

experiments identified two different mechanisms of cleaning: shear stress removal and soil 

dissolution. Both were modelled empirically and incorporated to the algorithm. The ‘theoretical 

layers’ previously defined were removed over time as cleaning occurred. Therefore, the 

simulations of cleaning and thickness changes over time were possible.  

Finally, an image analysis system was designed to online evaluate cleaning in ADWs. Results 

were compared with simulations performed from the swelling-removal algorithm. Good 

predictions were obtained for most of the cases studied indicating the success in the 

development of a first ‘full-scale’ predictive model. 
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NOMENCLATURE IV 

NOMENCLATURE 

Symbol 

a Nozzle-sample surface separation. 

A Cross sectional area. 

C Mass concentration expressed as dry basis moisture content (water mass uptake / dry sample 
mass). 

C0 Initial moisture content (water mass at ‘time 0’/ dry sample mass). 

d Separation between plates. 

dc Characteristic dimension of a rectangular duct. 

dirx x-axis direction vector component. 

diry y-axis direction vector component. 

dirz z-axis direction vector component. 

!! Duct diameter. 

!! Tracer diameter. 

Dcr Diameter of a crockery element. 

DPL Diamater of a plate. 

DDW Depth of a dishwasher. 

DNZ Nozzle diameter. 

D Generic effective diffusion coefficient. 

D0 Maximum effective diffusion coefficient. 

DF Effective diffusion coefficient for Fick’s equation. 

DL Effective diffusion coefficient for linear poroelasticity theory. 

DNL Effective diffusion coefficient for non-linear poroelasticity theory. 

EA Activation energy. 

f Frequency function. Step function (0 or 1). 

F Deformation gradient. 

g Gravitational acceleration. 

GSM Shear modulus. 

GFE Gibbs free energy. 

h Height. 

ℎ! Initial thickness. Thickness at time ‘t=0’. 

ℎ!"# Sample thickness at dry state. 

ℎ !   Thickness at time ‘t’.  

ℎ !  Normalised thickness at time ‘t’. 

ℎ! Thickness at equilibrium. 

Hcr Height of a crockery element. 

HDW Height of a dishwasher. 

i Counter. 

Jz Diffusion flux. 



NOMENCLATURE V 

k, k’ Constants incorporating characteristics of macromolecule and penetrant system. 

kds Removal rate by soil dissolution. 

kss Removal rate by shear stress action. 

Ld Length of a rectangular duct. 

Limpact Impact distance on plates. 

! Mass flow rate. 

!! Initial sample mass. Sample mass at time ‘t=0’. 

!!"# Dry sample mass. 

! !  Total sample mass at time ‘t’. 

! !  Normalised sample mass at time ‘t’. 

!! Total sample mass at equilibrium (t=∞). 

n, n’ Diffusional exponents. 

N Number of polymer chains per unit volume. (nº chains/m3). 

Nts Normalised start time of application of shear within an interval. 

Nte Normalised end time of application of shear within an interval. 

P Pressure. 

Q Volumetric flow rate in the tube. 

r Radial distance. 

R Gas constant. 

R2 Coefficient of determination. 

RFJ Film jump radius. 

RNZ Radial nozzle position. 

RPL Radial plate position. 

*R Nozzle-Plate relative position. 

Rw External circumferential radius. 

s Nominal stress. 

St Stokes number. 

S Swelling function. 

SS Shear Stress function. 

SD Soil Dissolution function. 

t   Time.    

ts Start time of application of shear within an interval. 

te End time of application of shear within an interval. 

tvis Time travelling in vision area. 

T Temperature. 

Timpact Time impacting plates. 

v Fluid velocity. 

W Free energy function of the gel. 

WDW Width of a dishwasher. 

Wd Width of a rectangular duct. 



NOMENCLATURE VI 

WG Gravity flow film width. 

WR Rivulet flow film width. 

Ws Width of a surface. 

x,y,z Cartesian coordinates. 

ximpact Impact locations on x-axis 

yimpact Impact locations on y-axis 

zimpact Impact locations on z-axis 

xPL Width plate position. 

yPL Depth plate position. 

zPL Height plate position. 

znz Height nozzle position. 

Z Frame at z-axis. 

 

 

Greek Symbols 

α Overall efficiency. 

β β!; β!  Angular position of a nozzle at any time.  

!!" Angle at which a nozzle enters the defined vision area. 

!!"# Angle at which a nozzle exits the defined vision area. 

δ Effective impact length. 

Γ Wetting rate 

∆! Time step. 

∆! Thickness step. 

θjet Theta angle (x-y angle) 

λ Stretch in uniaxial direction (thickness at time ‘t’ / dry state thickness). 

λ0 Initial stretch in uniaxial direction – Initial swelling ratio (initial thickness / dry state thickness). 

λ∞ Stretch at equilibrium – Equilibrium swelling ratio (equilibrium thickness / dry state thickness). 

!! Chemical potential at the initial state. 

µ Chemical potential of the solvent in the environment. 

! Chemical potential of the gel. 

!! Fluid viscosity. 

ρjet Rho angle (radius-z angle) 

!! Tracer density. 

!!" Density of the wash solution. 

τ Characteristic time scale of diffusion. 

!! Particle response time. 

!! Fluid response time to an external disturbance. 

!!"# Effective impact time in vision area.  

!!"# Effective impact time per lap. 



NOMENCLATURE VII 

!!"## Shear stress imposed at the sample surface. 

! Poisson’s ratio (measurement of stretch changes). 

!! Time length of the interval. 

χ Flory-Huggins parameter (interaction between the solvent and the polymer). 

ω Spray arm rotation rate.  

Ω Volume of a solvent molecule. 
 

 

Abbreviations 

ADW Automatic Dishwasher. 

AHAM Association of Home Appliance Manufacturers. 

ß-lg ß-lactoglobulin. 

CFD Computational Fluid Dynamics. 

CFT Centre For Testmaterials. 

CIE Commission on Illumination (as stands for the original French). 

CIP Cleaning In Place. 

DAED Diacetyl ethylene diamine 

DFBI Dynamic Fluid Body Interaction. 

DNA Deoxyribonucleic acid. 

DOE Design Of Experiments. 

HDL High-Density Lipoproteins. 

LDL Low-Density Lipoproteins. 

NMR Nuclear Magnetic Resonance. 

PAP Phthalimidoperhexanoic acid 

PDE Partial Differential Equation. 

PEPT Positron Emission Particle Tracking. 

PLS Partial Least Squares. 

PVA Polyvinyl alcohol. 

RGB Red-Green-Blue. 

RS Response Surface. 

sFDG Scanning Fluid Dynamic Gauge. 

SRI Stain Removal Index. 

STTP  Sodium Tripolyphosphate 

TACN 1,4,7-triazacyclononane 

TAED Tetraacetyl ethylene diamine 

VIP Variable Importance Plot. 

VOF Volume of Fluid. 

WPI Whey Protein Isolate. 
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INTRODUCTION 1 

1.1. CONTEXT  

Since the last half of the 20th century, the use of household appliances has increased 

considerably. They have helped with daily home tasks and have contributed to a more efficient 

use of time. According to a recent study of consumers in the UK, the use of automatic 

dishwashers shows important advantages in time and water savings (Berkholz et al., 2010). For 

a standardised load (EN 50242), the study reported a mean water and energy consumption of 

49.2 (±27.9) litres and 1.7 (±1.0) kWh for hand washing, while for automatic dishwashing these 

values were reduced to 13.2 (±1.7) litres and 1.3 (±0.1) kWh. Time spent to load and unload the 

dishes to the appliance was 9 minutes on average. On the contrary, 60 minutes were required 

to completely clean them by hand. 

 

It is estimated that 42% of homes in the UK have an automatic dishwasher (Mintel Group, 

2011). If there are approximately 25 million homes (BBC, 2005), and it is assumed that a 

complete washing cycle is run daily with an estimated use of water of 13 litres, the amount of 

water used per year reaches approximately 50 millions m3. This is equivalent to the volume of 

13,000 Olympic swimming pools. Thus, important costs and environmental benefits will be 

achieved by reducing the amount of water, chemistry or waste produced during a typical 

cleaning cycle.  

 

Despite its common use, cleaning processes occurring inside automatic dishwashers (ADW) 

are not simple nor well understood. Scientific information related to dishwashers is scarce and 

mostly associated to energy consumption and water savings (Asteasu et al., 1993; De Paepe et 

al., 2003; Weiss et al., 2010). Dishwashers are complex systems in which a combination of 

chemistry, temperature, water flow and inner properties of soils are evolving dynamically during 

a wash cycle. Four areas can be identified: (1)dishwasher design and operation parameters, 

(2)dishwasher load and type, (3)types of food soils and (4)detergent formulation. Water represents 

the key element linking all four areas together. It is responsible for influencing the total cleaning 

time as it distributes detergent components and provides the mechanical force to remove soils. 

A detailed study of the characteristics of an ADW is necessary to build the in-depth knowledge 

and fully understand the wash process. 
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1.2. PROJECT OBJECTIVES 

The project aims to reduce the existing gap in current knowledge for a typical cleaning cycle in 

automatic dishwashing. The development of new tools, methods and models will help the 

optimisation and integration of mechanical and chemical factors involved. More specifically, 

project deliverables are:  

          

1. To describe water motion phenomena. The understanding of flow fields and water 

mechanical action inside an ADW is a fundamental stage to increase current 

knowledge.  

2. To understand and model the influence of mechanical design factors on water 

distribution. Highlighting current design constraints will help to establish action steps to 

optimise chemical formulation and mechanical design. 

3. To use existing tools or to develop new ones to analyse cleaning online. This aims to 

incorporate time as a factor in the analysis of cleaning performance within ADW. 

Current cleaning evaluation is based on measurements at the end of the cleaning cycle, 

thus no information is collected during the process. 

4. To develop fundamental and statistical cleaning models incorporating all physical and 

chemical factors highlighted as important. The integration of mechanical and chemical 

parameters and the use of a theoretical background will help to understand their 

interactions and influence at each stage of a typical cleaning cycle.  

 

1.3. RELEVANCE FOR INDUSTRY 

A first evaluation of physical and chemical aspects in a typical ADW wash cycle reveals a clear 

need for optimisation. Appliance manufacturers design cleaning cycles to give the optimum 

mechanical performance with very little consideration on the chemical aspect of cleaning. 

Moreover, detergent companies design current formulations in a way that all chemical agents 

are released together once the tablet dispenser opens. In addition, drain stages are frequent 

during typical wash cycles, thus chemistry added is eliminated to a large degree. The carryover 

of wash solution after a drainage process is typically between 0.3 to 0.5 litres (Letzelter, N. 

(2015, Personal communication). Inefficiencies arise as the integration of chemical and 
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mechanical actions is not done in parallel. There are multiple appliances manufacturers 

developing unique appliances’ designs and cycles, while different detergent companies develop 

their own formulated products. However, there is no combined front-to-end design process. As 

a result, an optimum performance is hard to achieve.  

 

A similar analogy is found in computer industry. Multiple hardware providers (HP, Acer, Lenovo, 

Samsung…) need software developers (Windows, Linux) to work correctly. The performance 

optimisation in this environment is complex as hardware components need to interact with 

software elements, each of them designed independently. In this context, appliances 

manufacturers could be seen as hardware providers while detergent companies as software 

suppliers. Both are required to perform a complete cleaning of the toughest soils found. 

 

Additionally, industry standardised cleaning tests (AHAM, 1992) only evaluate the performance 

of an appliance or detergent once the cleaning cycle is finished. Timescale is not considered. 

Therefore, the introduction of time as a factor and the necessity of understanding the limitations 

and interactions of mechanical and chemical components become obvious.  

 

1.4. STRUCTURE OF THIS DISSERTATION 

Chapter 2 reviews the state-of-art in current automatic dishwashing technology. It explains the 

stages commonly found in a wash cycle, the main features of an ADW and the future trends in 

industry. The literature review also focuses on cleaning mechanisms and principles. From a 

mechanical perspective, impingement jets are explained. Fundamentals on the characteristics 

of different soils, main components included in current formulated detergents and their relation 

to mass transfer and chemical reaction phenomena leading to removal are commented as well.  

 

Chapter 3 focuses on the materials and methodology used during the realisation of the 

experimental work. It describes the commercially available ADW considered as the unit 

operation to study. A technical egg-yolk soil is also introduced as a representative protein-based 

stain typically used in product development tests. Different research techniques are also 

presented. Positron Emission Particle Tracking (PEPT) is described as the technique selected 
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to analyse water motion in a typical wash cycle. Data processing is explained on a step-by-step 

basis as a particular approach is considered. Its results support a Computational Fluid Dynamic 

(CFD) model developed by the appliance manufacturer. CFD methodology is also explained. 

Scanning Fluid Dynamic Gauge (sFDG) is introduced as a small-scale technique to study 

swelling and removal mechanisms in protein-based soils. In parallel, gravimetric studies are 

considered to support sFDG findings. The statistical methodology based on Partial Least 

Squares (PLS) method to develop dynamic models is also presented. Finally, a waterproof 

camera used for the online evaluation of cleaning inside an ADW is introduced. Experimental 

conditions selected and operational procedures are described for each of the techniques given.  

 

Chapter 4 begins the experimental work section with the description of water motion using 

Positron Emission Particle Tracking (PEPT) as a technique. Results show the typical water 

pattern produced as described by the motion of the radioactive tracer. Impingement jets 

trajectories are characterised. Velocity flow fields are given in the form of Eulerian contour plots 

and different factors such as pump speed, packing and detergent used are studied. 

Computational Fluid Dynamics data is also compared with PEPT data. The concluding 

discussion establishes the limitations of both techniques (PEPT and CFD) and shows the 

foundational principles of current automatic dishwashing processes.  

 

Chapter 5 describes the development of a mathematical model to understand the influence of 

the main mechanical design parameters on water distribution via impingement jets. The chapter 

presents the basic principles of ADW’s design by applying geometry and trigonometry 

fundamentals. The assumptions made are based on results provided from PEPT experiments. 

The methodology developed includes the identification of the main design factors and the 

introduction of dimensionless numbers to evaluate design efficiency. A generic case study is 

presented to analyse the effect of some key parameters affecting water distribution. Optimum 

designs for the case study given are also calculated. The concluding remarks summarise the 

main constraints existing in current ADW design. Extensions on the model are also presented to 

address for the issues highlighted.  
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Chapter 6 focuses on the analysis and modelling of swelling and removal mechanisms 

occurring in technical protein-based soils. Factors analysed involve temperature, chemistry (pH, 

Enzyme), shear stress and frequency of application of shear stress. The use of Partial Least 

Squares (PLS) as a modelling tool is presented to initially evaluate a Design of Experiments 

(DOE) approach to measure the thickness evolution of the samples using the sFDG. The main 

parameters affecting each of the phenomena seen (swelling and removal stages) and their 

interactions over time are also identified. Studies on swelling phenomenon are further 

expanded. Specific studies undertaken in egg yolk technical samples using both the sFDG and 

gravimetric tests are also reported. Degrees and rates of swelling obtained from both 

techniques are compared. Four different theories are considered to evaluate data: power law 

model, Fick’s second law and linear and non-linear theories based on poroelasticity theory. 

Effective diffusion coefficients are reported and compared. Finally, the initial modelling work is 

expanded by introducing a mathematical swelling-removal model for the sFDG. A case study is 

shown to ease the understanding on the development of the model and its functionality. A 

mathematical equation is proposed to explain the phenomena occurring. Swelling and removal 

mechanisms are modelled independently and further integrated via the developed algorithm. 

Simulations results, including thickness predictions and other outputs, are shown as examples 

of the benefits provided by the model. The concluding remarks summarise the importance of 

understanding cleaning constrains in protein-based soils and the main factors affecting each of 

the cleaning stages. 

 

Chapter 7 concludes the experimental work. Initially, results from the waterproof camera to 

continuously assess for cleaning inside an ADW are presented. The effect of temperature, pH 

and the level of enzyme on the removal of egg yolk technical soils are reported. Models 

developed throughout the thesis are compiled and used together to build predictions on full-

scale results. A comparative from these models and full-scale results are finally presented.  

 

Chapter 8 discusses project conclusions and gives future recommendations. The Appendix 

section compiles main MATLAB® codes used for the analysis of the data and includes the 
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description and methodology of another technique developed to evaluate cleaning in 

carbohydrate-based soils.  

 

1.5. DISSEMINATION OF RESULTS 

Results obtained through this research have been published as follows:  

Peer-review journals 

• Pérez-Mohedano, R., Letzelter, N., Amador, C., VanderRoest, C. T., & Bakalis, S. 

(2014). Positron Emission Particle Tracking (PEPT) for the analysis of water motion in a 

domestic dishwasher. Chemical Engineering Journal, 259, 724–736. doi: 

10.1016/j.cej.2014.08.033 

• Pérez-Mohedano, R., Letzelter, N., & Bakalis, S. (2014). Development of a swelling-
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2.1. THE AUTOMATIC DISHWASHER 

The invention of automatic dishwashing dates back to the mid 19th century. In 1850, Joel 

Houghton first patented a wooden device, hand-powered, that splashed water onto the dishes. 

It was the first concept of a semi-automatic dishwasher, however it was hardly workable. Later 

on in 1865 Levi A. Alexander patented an upgraded machine (Alexander, 1865). The device, 

also hand-powered, consisted in a circular wooden rack where dishes were placed. It was 

sealed to prevent any leakage to the exterior and water was splashed to the dishes from the 

top. The concave bottom part allowed an easy drainage of the wash liquor. It was not until 1887 

when the first fully automatic dishwasher was invented. Josephine Cochran, a wealthy woman 

worried about the preservation of her china, patented an automated appliance to clean dishes. 

The invention consisted in a motor-powered appliance that rained down soapy water into 

different compartments where crockery was placed. The device was exposed in 1893’s World’s 

Columbian Exposition in Chicago, gaining recognition and commercial success (D’Ambrosio, 

2011).  

 

Modern dishwasher features were incorporated in 1924 by Livens William Howard (Howard, 

1924). The improvements consisted in the utilisation of rotating arms to spread water, heating 

and drying (later in 1940) elements, household water piping and electrical energy input. Despite 

the significant advances, it was not a commercial success. In the 1950s, household appliances 

became smaller, cheaper and therefore, more affordable. It was then when the use of these 

machines started within the middle classes. Since then, multiple manufacturing companies have 

grown the business.  

 

Current Automatic Dishwashers’ (ADWs) penetration rate is quite spread among developed 

countries. 78% of US households own a dishwasher while the distribution is more 

inhomogeneous in Europe: 77% Germany, 52% France, 49% Spain, 42% UK or 25% Turkey 

(Mintel, 2011). This compares with the averaged 2% penetration rate for developing countries, 

indicating significant growth potential.  
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Contemporary automatic dishwashing technology consists of the distribution of water via the 

formation of jets on rotating spray arms. Crockery items are placed typically in two baskets 

located at the bottom and middle part of the dishwasher. Large and heavy items such as 

saucepans, bowls and dinner plates are typically placed at the lower basket. Delicate glassware 

and small items are usually located at the medium/upper basket. Cutlery is loaded in special 

designed trays found at the top, door or at the bottom crockery basket. Detergent is placed in a 

dispenser compartment found at the door (Dixon, 2009). Figure 2.1 shows these main elements 

in a commercially available ADW.  

 

 

 

 

Figure 2.1. Schematic of an Automatic Dishwasher. Image retrieved from Miele G1222C model 

operating instructions (Miele, 2011). 

 

A typical cleaning wash cycle consists of a series of rinse and main wash stages in which the 

degetergent is released from its compartment and temperatures are varying during the length of 

the cycle. Figure 2.2 illustrates the temperature profile of water and cumulative water inlet of a 

typical wash cycle and the actions occurring at a given time. Temperature was measured at the 

bottom, next to the filter combination, with the aid of waterproof digital thermometers. 
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Figure 2.2. Temperature profile of water and cumulative water inlet in a typical ADW wash cycle. 

 

A great performance of an ADW would involve the complete cleaning and drying of a wide 

variety of items in the least time possible and consuming low amounts of water and energy. The 

result is influenced by the water coverage and physical energy input (which depends on the 

appliance design), the distribution of items (partially user-dependant) and the performance of 

the formulated detergent used. As environmental concerns arise, a reduction of water and 

energy consumption is being imposed. Consequently, a reduction of cycle lengths is also 

occurring. New trends seen in the market aim to solve these issues by better distributing water 

using newly designed spray systems.  A double rotating spray arm system by Frigidaire® claims 

four times better coverage than traditional spray arms. The design involves a circular spray arm 

rotating around its axis while this turns in circles around the dishwasher (Frigidaire, 2014). The 

use of a sweeping water-wall at the bottom where jets are reflected also claims better coverage 

(Samsung, 2014). The issue between a rectangular distribution of crockery and a circular 

distribution of water seems to be addressed in this case.  
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2.2. FACTORS AFFECTING CLEANING 

2.2.1. Impingement jets  

Rotating jet spray arms are used to distribute water in ADWs. Water jets are also widely used in 

manufacturing industry for cleaning purposes. Its use has been strengthened for tanks and 

other vessels via the development of spray balls (Jensen, 2011). The coverage produced on the 

surface by the water jets and the shear stress thus generated are believed to be key factors for 

the effectiveness of cleaning (Wang et al., 2013a). The impact of an impinging jet over a flat 

vertical surface makes the liquid move outward radially in a thin film at high velocity. After some 

distance ‘RFJ’, the fluid forms a thicker film as it reaches the film jump. The film jump is defined 

as the point where a fast moving liquid converges with a small velocity profile area, producing a 

sudden decrease in its velocity and thus, an abrupt increase in the liquid height. Then, the liquid 

drains downwards and forms a falling film of certain width. The term film jump is differentiated 

from the traditional hydraulic jump as the latter typically refers to the transition region over 

horizontal surfaces, where gravity does not affect the fluid flow (Liu and Lienhard, 1993).  

 

Net contributions from gravity, surface effects and the inclination of the impingement coherent 

jets create a range of downflow behaviours (Wang et al., 2013b; Wilson et al., 2012). Figure 2.3 

shows three common types known as ‘gravity flow’, ‘rivulet flow’ and ‘dry patch’. The latter two 

cases are undesirable for cleaning purposes.  

A 

 

B 

 

C 

 

Figure 2.3. Drainage flow patters after impingement of a jet over a vertical surface. Black dot represents 

impingement point. A – Gravity flow. B – Rivulet flow. C – Dry patch. Legend: RFJ = Radius of the film 

jump; RW = Radius of the corona at the impingement level; WG = Gravity flow film width; WR = Rivulet flow 

film width. Definitions and schematics were retrieved from Wilson et al. (2012) and Wang et al. (2013b) . 
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• Gravity flow: The liquid drains as a thin film with a width ‘WG’. This width is related to the 

maximum liquid radius at the impingement proximities. Gravity contributions dominate 

over surface effects.  

• Rivulet flow:  The liquid film shrinks and forms one or more tails of width ‘WR’. Surface 

tension effects are in the range of gravity contributions.  

• Dry patch: The falling film splits into two. Again surface tension effects are equally 

important than gravity contributions.  

 

Morison & Thorpe (2002) analysed the wetting patterns generated by a horizontal jet produced 

through a sprayball and its impact over a vertical surface. A parameter called ‘Wetting rate’ 

(Γ=!/!!) was defined as the mass flow rate (!) required to completely wet a surface of width 

‘Ws’. The authors found that an increase in temperature decreased the wetting rate. The 

viscosity reduction produced by increasing temperature makes the fluid move faster as a thinner 

film. In consequence, a higher wet width for the same mass flow was produced, giving a lower 

wetting rate value.  

 

These studies were extended initially by Wilson et al. (2012), where a model of the radial flow 

zone and subsequent downfall film was developed. ‘Gravity flow’ and ‘rivulet flow’ patterns were 

analysed. The use of dimensionless correlations allowed the calculation of the wetted width for 

a given flow rate. Flow patterns produced by inclined impinging water jets over vertical surfaces 

were also reported by Wang et al. (2013b). Studies were also performed on the flow patterns 

generated by horizontal jets impinging on angled surfaces (Wang et al., 2014). The work 

expanded previous models by incorporating the effect of gravity and the impingement jet 

inclination angle. Flow rates used were higher (up to 480 l/h and jet velocities of 10.6 m/s) and 

close to those used in industrial cleaning devices. A circular jet impinging obliquely to a flat 

surface produces an elliptical radial flow zone. Experiments demonstrated that for low flow 

rates, film patterns created were sensitive to the nature of the soil, whereas this effect was 

negligible at high flow rates. Moreover, Wang et al. (2013a) evaluated the effect of surfactants 

on impingement flow and estimated the distribution of shear stress over the different flow areas. 

A significant effect by the surfactant on the downwards film shape was reported, promoting 
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‘gravity flow’. Shear stress values showed a significant difference between the outward radial 

flow and the falling film.  

 

Within ADWs, impinging jets may impact the different surfaces at a wide range of angles. 

Overall, the same principles are applied. Also, other water distribution patterns are produced:  

splashing of water due to a jet breaking or falling film generated due to the accumulation of 

water from top positions. These aspects are hardly quantifiable, and therefore the scope of this 

work will be focused only on jets movement and characterisation.  

 

Different angles of ejection are obtained by varying the design of the individual nozzles present 

in a spray arm and by changing the pump pressure. This produces different ejection paths 

depending on the nozzle considered. Also, the spray arm rotation rate is a consequence of the 

total torque generated. Generally, the presence of one or more ‘driving nozzles’ at the bottom of 

a spray arm creates a net force due to the reaction force (third Newton’s law) that is produced 

on the spray arm once the water is ejected. 

 

Work on cleaning of soft soil layers produced by coherent jets impinging vertically on horizontal 

surfaces and horizontally on vertical surfaces has also been reported recently by Wilson et al. 

(2014). Three different soil-substrate systems were evaluated: (i) PVA glue on glass and 

polymethylmethacrylate (Perspex), (ii) Xatham gum on stainless steel and (iii) petroleum jelly on 

glass. Results showed a rapid adhesive removal from the impingement location to further radial 

positions, being the rate of removal proportional to the flow momentum. An important difference 

in cleaning rates between the inside and outside areas of the film jump was also observed. For 

the first two cases, removal was achieved all over the flow pattern once the absorption of water 

and the subsequent weakening of the soil structure occurred. However, the petroleum jelly 

showed no cleaning outside the film jump. The force imposed by the water film was insufficient 

to produce removal. This highlighted the important role of the nature of the soil in cleaning 

operations. The model was recently extended to incorporate the effect produced by a constantly 

moving impingement jet (Wilson et al., 2015). 
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2.2.2. Soil nature and characterisation 

Foods are complex examples of soft condensed matter (Mezzenga et al., 2005; van der Sman 

and van der Goot, 2009; Van Der Sman, 2012). Their physical and chemical properties show a 

strong dependence on moisture content (Labuza and Hyman, 1998). State diagrams 

characterise the different states of a food sample as a function of water content and 

temperature (Rahman, 2006). It allows the identification of not only phase changes, but also of 

internal changes within a phase. An important region to look up in these systems is the glass 

state and the glass transition temperature. Glass state is commonly found at low temperatures 

and low water content regions. Materials in this state are hard and fragile. When increasing the 

water content and temperature, a transition from glass to rubber state occurs. This phenomenon 

is a second-order thermodynamic transition. The discontinuity does not happen at a constant 

temperature (i.e. boiling water) but at a range of temperatures (the first derivate is not zero, but 

the second is). Rubber state is characterised by being softer and with lower mechanical 

strength than the glass state. This is a consequence of the increase in molecular mobility and 

the decrease in viscosity. These changes might not only affect the shelf-life or texture of 

different foods, but also the energy input needed when cleaned from hard surfaces (Liu et al., 

2006b) 

 

Main food soils found in ADWs can be categorised in four different groups: protein-based, 

carbohydrate-based, lipid-based and mineral-based types. 

 

2.2.2.1. Protein-based soils 

Proteins are large polyamide chains characterised by the presence of peptide bonds. Their 

molecular weight can range from hundred to millions of Daltons. They are typically presented in 

folded complex networks where the primary, secondary and subsequent bonding structures are 

organised in a unique way (Phillips and Williams, 2011). They present a wide functionality in 

nature. Proteins conforms the basic structure of DNA, biological catalysts (enzymes), plants or 

microorganisms. Among food, examples with high protein content are: egg, milk, meat, cheese 

or nuts. Figure 2.4 illustrates the peptide bond formation or hydrolysis process and a schematic 

of a polypeptide chain. 
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A 

 

B 

 

Figure 2.4. A – Peptide bond formation and hydrolysis. B – Schematic of an extended polypeptide 

bond. Figure was retrieved from Petsko and Ringe, (2004). 

 

Cleanability of protein-based food soils is complex. Highly attached layers are formed through 

thermal and drying processes requiring a special treatment for their removal. These problems 

have been widely studied in milk industry where specific cleaning-in-place (CIP) actions take 

place (Fryer et al., 2006). Typically, a CIP sequence involves the following cycles (Goode et al., 

2010): (i) rinse stage to remove those low attached substances, (ii) detergent wash to 

chemically attack the soil, (iii) post rinse to eliminate soil and detergent residues, (iv) sanitization 

to avoid microbial contamination and (v) final rinse to prepare the system for its restart. The 

detergent stage is typically done by circulating alkali-based solutions.  
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Specifically for ADW, egg yolk soil represents a challenge. This material is highly difficult to 

remove from a hard surface when dried and is one of the typical consumer complaints within the 

automatic dishwasher industry (DuPont, 2012). Burnt-on type of soils (Sen et al., 2014) also 

present highly difficult solutions. Therefore, these types of soils are commonly used in technical 

test to evaluate the performance of different detergent formulations. Apart from alkaline 

conditions, current detergent formulations incorporate specially designed enzymes to address 

these issues.  

 

2.2.2.2. Carbohydrate-based soils 

Carbohydrates are simple organic compounds based on the empirical formula CX(H2O)Y 

(Daintith and Martin, 2010). They range a wide variety of food constituents: from the simplest 

ones known as sugars to more complex structures such as starches or celluloses. In nature, 

their functionality is to store energy in living organisms. Some examples of carbohydrate-based 

foods are rice, bread, potatoes, pasta or tomatoes.  

 

These components are hydrophilic and commonly easy to clean. They typically do not require 

external agents to be removed. However, denaturation and ageing processes can lead to 

undesirable foodstuff conditions, increasing the cleanabilty issues. Drying or Maillard reactions 

(IFIS, 2009), produced as a consequence of high temperatures, result in highly attached soil 

layers over a substrate. These Maillard reactions involve reducing sugars in multiple reactions 

with proteins. The chemical paths followed have not been fully described yet due to the 

complexity of the process. Caramelization, non-enzymatic browning and changes in aroma and 

texture are direct consequences of this phenomenon (Arnoldi, 2001).  

 

2.2.2.3. Lipid-based soils 

Lipids are carbon chains insoluble in water. They are also commonly known as fats. Complex 

structures are found as esters of long-chain fatty acids. Simple structures also exist as smaller 

chains without fatty acids (Daintith and Martin, 2010). Oils, dairy products, mayonnaise and 

other oil-in-water emulsions are examples of food containing lipids. Their main functionality in 

living organisms is to store energy, but they are also present in cell membranes or as vitamins. 
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Their hydrophobicity represents a challenge when cleaning. The use of surfactants is required 

to create micelles and remove the fatty content from water.  

 

Also, the removal of burnt-on/baked-on fat type of food soils represent another difficult task in 

ADW industry. These residues can be found in pans or cooking items where high temperature 

conditions occur. Typically fat structures burn and adhere heavily to the surface of the crockery 

item. High mechanical energy input from water jets and enzymatic treatment is required in order 

to achieve a complete cleaning (Ali et al., 2015).  

 

2.2.2.4. Mineral-based soils 

Minerals are inorganic compounds containing ions. Their presence is common in a wide variety 

of foods and additives, such as table salt, fruits or regenerative drinks. They are important to 

grow, maintain and repair living cells. Their presence in automatic dishwashing produce the 

formation of dry films or spots on the glassware at the end of a wash cycle. However, the 

cleaning challenge provided by these compounds does not come directly from foodstuff. Hard 

waters containing ions (i.e. Ca2+ or Mg2+) need to be treated during the cleaning cycle to avoid 

this issue. Chemical builders are typically use to encapsulate and remove these ions and to 

softer the water.  

 

2.2.3. Formulated cleaning products 

Commercially ADW’s formulated cleaning products were firstly introduced in the 1950’s 

(Procter&Gamble, 2014). Initially, detergents were sold as powders during 25 years. These 

products gave good cleaning but were used in high quantities and produced some damage in 

glassware and diverse crockery elements after repeated cycles. These were highly alkaline 

(understood as the stoichiometric sum of bases in the solution) and incorporated phosphates. At 

the end of 1980’s, liquid detergents were marketed. Alkalinity was reduced and product became 

less aggressive to preserve crockery quality. In the early 1990’s, compact powders were 

introduced. These became more environmentally friendly as alkalinity was again reduced and 

first commercially available cleaning enzymes were incorporated. However, consumers tended 

to overdose thus the price per wash cycle increased. Concentrated liquids were later on 
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developed. pH was reduced and became less of an irritant though the problem of overdosing 

still persisted. Finally, unit dose and tablets were commercialised. Different powder and liquid 

compartments were created to preserve chemistry quality (i.e. separate enzyme from bleach 

components to avoid its denaturation). The overdosing problem was also addressed as 

detergent quantities were standardised. These commercial standards are still preserved 

nowadays. Current detergent formulations encompass a wide range of ingredients (Tomlinson 

and Carnali, 2007).  They can be grouped according to the role they play during a wash cycle. 

Main components found are: 

 

• Buffers. These chemicals aim to maintain pH. At high pH, swelling and gelification 

phenomena in protein and starch-based soils occur. Cohesive forces are reduced as a 

consequence of the lower bonding energy density. The number of bonds per unit 

volume decreases when volume increases. Hydrolysis reactions on protein-based soils 

(Mercadé-Prieto et al., 2007a) and the deprotonation of hydroxyl groups which cross-

link starch network (Carnali and Zhou, 1997) might also happen if conditions are 

adequate. Thus, a further reduction in the cohesiveness of the soil is also possible. The 

presence of negative charge ions in solution also charges negatively glass and ceramic 

items. This produces a reduction in the adhesive forces between the soil and substrate 

which eases the removal using the mechanical forces provided by the ADW. Main 

formulations used to boost pH are based on carbonate, bicarbonate and silicates. The 

use of silicates act as inhibitors of metal corrosion by creating a passive layer. 

However, these compounds are known to deteriorate china items. Overall, buffer level 

should also preserve enzyme stability, bleach performance and minimise the 

environmental impact. 

 

• Builders. The main functionality of a builder component is the removal of hardness ions 

(Ca2+ and Mg2+).  At basic conditions, calcium ions can bridge protein-based soils to 

stainless steel substrates and hydrolysed starches to glass or ceramic. These ions can 

also form precipitates that adhere to washware creating unwanted films or deposits that 

affect the shine and final look of these items. The removal of mineral-based soils, such 
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as tea deposits, is also aided by the presence of builders in the detergent. These 

compounds are typically deprotonated acids and can be classified in three categories 

depending on the chemical route they use (Broze, 1999): formation of precipitates such 

as sodium carbonate or potassium oleate; ion exchange mechanism, mainly produced 

by zeolites; and sequestrant builders such as phosphates, polycarboxylates or citrates. 

These latter are the most commonly used due to the cost, availability and chemical 

performance. Current regulations towards zero phosphate formulas are generating a 

trend for these components disappear from commercial detergents.  

 

• Antiscalants. These components specifically aim to avoid the formation of calcium 

carbonate (CaCO3) and calcium phosphate (CaPO4) precipitates on glassware. High pH 

found in wash conditions can lead to the formation of supersaturated calcium carbonate 

which precipitates and forms deposits. Antiscalants are clearly related to builders 

components. Typically, chemicals such as sodium tripolyphosphate (STTP) were used 

due to their high Ca2+ building capacity. However, the move towards none phosphate 

formulations is enhancing the filming problem again. Mechanisms involved are based 

on electrostatic forces where bulk solution ionic strength and particle diameters play an 

important role in the process (Riley and Carbonell, 1993). 

 

• Bleaches. Their aim is to perform a germicidal action and to remove tea stains. The 

mechanism occurring during their reaction is a nucleophilic attack to a molecule double 

bond. The sanitization process is also enhanced by the high temperatures found in a 

typical ADW wash cycle. For detergency purposes, two big groups of bleach systems 

can be identified: active chlorine compounds and oxygen systems. The first were used 

initially, however they were incompatible with enzymes, presented non-ionic surfactants 

degradation and self-storage stability. They are characterised by the production of 

ROCl molecules in solution. The second group (oxygen systems), also known as 

oxidising bleaches are the ones used nowadays. They can be divided as well into three 

smaller categories: peroxide sources; peracids and their precursors; and catalysed 

systems of previous groups. Peroxide sources are characterised by the presence of the 
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active group –O-O-H which dissociates to form O-O-. Their kinetics is slow below 60ºC 

and high pH levels are also necessary for an optimum performance. Peracid precursors 

are added into the formulation to speed-up kinetics. The principal compound used is 

TAED (tetraacetyl ethylene diamine) which forms peracetic acid and DAED (diacetyl 

ethylene diamine) in its reaction with a peroxide group. For lower pH conditions, the use 

of PAP (phthalimidoperhexanoic acid) has also been considered. The use of catalysed 

systems in commercial applications has been developed recently. Mn Me TACN (1,4,7-

trimethyl-1,4,7-triazacyclononane) is the first peroxide catalyst attempt in industry.  

 

• Surfactants. The use of surfactants in ADW detergents targets different functions: 

control of foaming during the wash cycle, increase the wettability of the crockery items 

and minimise the segregation of powder components. Excessive foaming in an ADW 

can cause a malfunction of the spray arms as bubbles are displaced to the pump, 

reducing the flow rate and decreasing the wash efficiency. Surfactants added to ADW 

formulations typically perform an antifoaming or defoaming action. In the presence of 

high contents of protein-based soils, excessive foam can be produced. By controlling 

this phenomenon, a proper operation of the machine is guaranteed. Also, the presence 

of surfactants lowers the water surface tension, thus increases the wettability of the 

different items. This promotes a reduction in the spots/films created at the end of the 

wash cycle. However, the particular nature of the surfactants used in ADW’s detergents 

makes them to reduce the surface tension to values between 40-45 mN/m, while for 

hand-washing, values between 26-30 mN/m are achieved. Typical surfactants used are 

non-ionic compounds that must be analysed in terms of their solubility. That is 

characterised by a threshold temperature known as cloud point. This means that above 

the cloud point, the solution becomes turbid, as a consequence of a phase separation 

where a richer water phase with low surfactant content and a richer surfactant phase 

with low water content are formed. This produces problems of detergent solubility when 

high temperatures (above the cloud point) are achieved. In consequence, surfactants 

used are aimed to dissolve within the range of temperatures typically found in ADWs. 

Chemical ways to produce surfactants involve the condensation reaction between 
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ethylene oxide and an organic hydrophobic group, a condensation between aliphatic 

alcohols and ethylene or propylene oxides or the co-formation of 

polyoxyethylene/polyoxypropylene block copolymers.  

 

• Enzymes. They are required to enhance soil hydrolysis and increase washing 

performance. Enzymes are commonly found across automatic dishwashing industry 

nowadays (Aehle, 2007; Olsen and Falholt, 1998). The low levels set in formulation 

made possible their inclusion in commercial detergents. Enzymes help the reduction of 

wash times, lower the required pH and provide a more environmentally friendly effluent. 

Enzymes used in ADWs industry should comply with the following properties: perform 

correctly in a wide range of temperatures (20ºC to 70ºC) and with an optimum 

temperature performance around 60ºC; show high activity at basic conditions; be stable 

in the presence of other detergent ingredients; and target a wide variety of soils. Two 

major groups of enzymes are used in ADW industry: proteases and amylases. 

Proteases aim to enhance the hydrolysis of peptide bonds from protein-based soils (i.e. 

egg yolk). Typical commercially available proteases belong to the serine family and the 

subtilisin sub-group (Tavano, 2013). The reaction mechanism is described by an initial 

adsorption of the enzyme molecule onto the soil surface, followed by the reaction with a 

protein peptide bond to conform a metastable intermediate product. This complex 

molecule is later on disintegrated back to give the enzyme molecule and the protein 

with a hydrolysed peptide bond. The same enzyme molecule can still be catalysing 

subsequent reactions without leaving the soil surface. Amylases aim to enhance the 

hydrolysis of starch-based soils (i.e. pasta). They target (1à4) glycosidic bonds and 

catalyse their hydrolysis reaction. The reaction mechanism is similar than for proteases, 

distinguishing between α–amylases that target bonds in the middle of the chain and ß-

amylases that target end bonds of the starch chain. Both types of enzymes require free 

Ca2+ ions for an optimum performance. They also offer good stability in powders whilst 

amylases show higher instability than proteases in liquid products. The type of cleaning 

produced is a layer-by-layer removal of the soil. The evolution of these enzymes is 
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critical in the progress of the detergent industry. With the aid of computational programs 

and new technologies, the development of new molecules can occur much faster.  

 

Overall, formulated cleaning products need to comply with the following (Fuchs, 1981):  

• Provide good cleaning by removing all sort of foodstuff. 

• Prevent spotting or filming on glassware and dishes.  

• Avoid the deterioration/marking of crockery. 

• Operate in a wide range of temperatures and water hardness.  

• Produce low foaming during a wash cycle. 

• Present a satisfactory shelf-life.  

 

2.3. CLEANING MECHANISMS 

To remove soft soil deposits off a hard surface it is necessary to overcome the cohesive forces 

that bind the soil together and the adhesive forces that bind the soil to the substrate. Factors 

affecting the effectiveness of the removal include: the nature and state of the soil to physical 

and chemical factors such as flow rate (shear stress applied), concentration of chemicals (pH, 

enzymes) or temperature (Wilson, 2005).  

 

Fryer & K.Asteriadou (2009) proposed a classification for cleaning phenomena based on types 

of soils and mechanisms of removal. Soils were classified based on their physical properties, 

ranging from low viscosity fluids to cohesive solids. Cleaning fluids were classified from water at 

ambient to hot chemicals. The cleaning mechanism occurring varies depending on the case 

given: a fluid mechanic removal happens when fluid flow is enough and no chemicals are 

needed. However, a diffusion-reaction removal involves the presence of chemicals. Different 

dynamic processes might occur in parallel, involving mass transfer from the bulk of wash 

solution to the soil, a subsequent diffusion of the actives species, the change of the soil inner 

properties due to chemical reactions and the increase in moisture content (phase changes). 

This leads to a weakening of the soil structure that facilitates the cleaning process. Once the 

soil molecules are disengaged, a reverse mass transfer phenomena occurs. Released particles 
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must travel to the boundary soil-wash solution layer and then be completely removed.  The rate 

limiting stage controls the total removal time.  

 

Particularly, for protein-based soils, three stages can be identified in the cleaning process (Bird 

and Fryer, 1991):  

 

1) Swelling: An initial swelling process occurs when the soil and the wash solution are put 

into contact. The diffusion of the liquid containing the active species causes the increase in 

thickness of the soil.  

 

2) Erosion: Once the active species (e.g. enzymes) have had enough time to act and the 

increase in moisture content has weakened the soil structure, the removal of the substance 

starts to occur. A constant removal rate is reached for constant cleaning conditions. Swelling 

might still be occurring in parallel.  

 

3) Decay: In the final stages of the removal process, adhesive forces become important. 

For protein-based soils, adhesive forces are typically higher than cohesive forces (Liu et al., 

2006a). Therefore, higher energy input is required to remove the same soil amount. If cleaning 

conditions are invariant, then the removal rate is reduced in this latter stage until cleaning is 

complete.  

 

Extensive research has been done to study swelling and dissolution mechanisms on simple and 

common protein soil deposits such as ß-lactoglobulin (ß-lg). Studies performed (Mercadé-Prieto 

et al., 2007a) showed the presence of a dissolution threshold below which the gel swelled but 

did not dissolve. This threshold is dependent on pH and the volume fraction available inside the 

protein network. It establishes the limit for the stability and dissolution of these protein gels. 

When pH was increased, charges on the polymer chain increased and swelling was promoted. 

A significant swelling degree occurred above pH 10. However, when salts were added and the 

ionic strength increased, a screening effect between cations from solution and the polymer 

network occurred and swelling degree decreased. pH and volume fraction thresholds were 



LITERATURE REVIEW 23 

suggested when the dissolution of ß-lg occurred at different rates for different pH and solution 

ionic strengths. The importance of swelling was highlighted. Dissolution occurred when pH was 

high enough (pH threshold) and a certain degree of swelling was achieved (volume fraction 

threshold).  

 

pH threshold was studied in detail (Mercadé-Prieto et al., 2007b). A sharp transition in the 

dissolution rate was found between pH 11 and 12. The disruption of non-covalent intermolecular 

bonds due to alkali denaturation was established as the main dissolution mechanism. This 

disengagement was favoured by the repulsion produced as the number of charges increased 

and the unfolding of the protein structure occurred. Dissolution rates also varied for different 

protein structures obtained (i.e. length of protein aggregates), which in essence were dependent 

on the temperature of formation of the gel and the gelation time (Mercadé-Prieto et al., 2006).  

 

The volume fraction threshold was also explored (Mercadé-Prieto et al., 2009, 2007c). For the 

same pH, higher concentrations of salts produced a repulsion effect due to the presence of 

more counter ions in the network. Screening effect lowered swelling degree thus less space 

was available. Therefore the dissolution rate of the polymer chain reduced. The 

disentanglement process (reptation of the polymer chains) was proposed as the dissolution rate 

limiting removal mechanism. At high pH (pH > 13.3) an anomalous behaviour was also 

observed (Mercadé-Prieto et al., 2007c, 2006). A maximum pH for dissolution was found and 

the dissolution rate decreased with the increase of pH beyond that point. Also, the dissolution 

rate was not uniform and dropped over time. To explain this, it was proposed that a reduction in 

the free volume in the gel network occurred due to the high concentration of cations from the 

alkaline solution (typically NaOH). Transport of the disengaged molecules outside the affected 

gel network was restricted. As penetration of alkaline solution occurred, shrinking of the gel 

happened and mobility of the protein molecules was reduced.  

 

Therefore, the work also expanded the limiting criteria for the dissolution and removal of protein 

based soils. Three scenarios were established including the effect on removal of an external 

mechanical action (a flow over the soil sample) (Mercadé-Prieto et al., 2006). The first one 
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considered high temperature, low dissolution pH and a minimum flow. In this case, results 

suggested that the rate limiting stage was a mass transfer process. The diffusion of sodium 

hydroxide molecules into the network or the protein diffusion into the bulk solution were 

considered as the two possible limiting mechanisms. The second case assumed high 

temperatures and high pH. For a low flow, the diffusion of the disengaged molecules into the 

bulk solution was established as the rate limiting stage. However, for a high flow the extra 

mechanical action enhanced the removal rate and the limiting stage was the reaction-controlled 

formation of small aggregates. Finally, a third case considered mild conditions of temperature 

and pH. For high flow, the erosion of the swollen layers occurred and the kinetics of swelling 

was considered as limiting mechanism. Similar studies were also performed on slightly more 

complex protein systems (Whey Protein Isolate/Concentrate) (Saikhwan et al., 2010). Work 

reported different swelling behaviours depending on the complexity of the protein gels. Fickian 

to more linear diffusion profiles were observed. 

 

Modelling cleaning processes over time is a complex task as different transport mechanisms 

are combined. Not many attempts have been considered so far and semi-empirical approaches 

are frequent. Dürr & Graßhoff (1999) developed a two-parameter exponential type model as an 

easy-to-use tool to predict cleaning. A specific time constant was defined as the time required to 

reach 63.2% of total removal. As a second parameter, a logarithmic-type slope characterising 

cleaning behaviour was also defined. The model showed high flexibility for describing different 

cleaning patterns. It was further expanded (Dürr, 2002) to re-appraise the model approach by 

using a Weibull distribution analysis.  

 

Xin et al. (2004) proposed a mathematical model for the removal of milk protein deposits. 

Disengagement of protein molecules and subsequent mass transfer to the bulk of the wash 

solution (boundary layer) were considered to be the rate limiting stages. The initial swelling 

stage was constrained to occur before a ‘reptation time’ was reached and no cleaning was 

observed during this period. The ‘reptation time’ is linked to the initial time required for the first 

molecules to disengage. A first-order equation was proposed to characterise the removal rate 

and a disengagement rate constant introduced. This constant was considered as a function of 
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the volume fraction of the disengaged protein molecules at the soil-solution interface. As the 

rate limiting stage is the movement of these molecules to the interface and their subsequent 

detachment, a critical concentration would be reached in this area and a constant removal rate 

obtained. This agreed with the results seen in experiments. Finally, the decay stage was 

modelled as a function of the surface area of the remaining film. By integrating the three steps, 

good correlations (no error given) were obtained with experimental data.  

 

2.4. DIFFUSIONAL THEORIES 

Across the different mechanisms highlighted previously, swelling phenomena represents the 

activating stage for cleaning to occur in protein-based soils. Penetration of the active species is 

necessary to perform an optimum clean. The reader must differentiate between degree of 

swelling and kinetic of swelling when a hydration phenomenon with an associated change in 

thickness occurs. Degree of swelling indicates the net increase in volume occurring in the 

sample over time. A swelling-ratio coefficient, typically defined as the ratio between the 

thickness at equilibrium and the thickness at dry state of the sample, is used to characterise this 

process. Kinetic of swelling relates to the speed at which the equilibrium is reached. It is 

typically characterised by a diffusion coefficient (Ganji, 2010). 

 

Numerous approaches have been done to model the swelling/hydration phenomena in different 

foods. They can be listed as a function of the complexity of the equations and approach used. 

There are empirical models that fit experimental data (Chen et al., 2007; Davey et al., 2002; 

Kruif et al., 2015; Malumba et al., 2013); theoretical approaches to estimate intrinsic parameters 

(i.e. diffusion coefficients) (Bakalis et al., 2009; Bello et al., 2010; Oztop and McCarthy, 2011); 

theoretical models fully developed and validated (Briffaz et al., 2014; Chapwanya and Misra, 

2015); or other theoretical models developed for the simulation of swelling using advanced 

computational systems (Mitchell and O’Brien, 2012; Van Der Sman, 2014). 

 

A classification depending on the rate limiting stage was proposed by Alfrey et al. (1966). A 

Case I or Fickian diffusion occurs when the solvent diffusion rate is clearly slower than the 

network relaxation rate. Relaxation time describes the time required for the sample network to 
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accommodate to the increase in liquid content. It is related to the transition from glass to rubber 

state of the sample. A Case II or Non-Fickian transport process takes place when liquid mobility 

is much higher than the structure relaxation time (Thomas and Windle, 1982, 1980). In between 

these two extreme cases, an anomalous transport can also be defined. Liquid movement and 

relaxation time are in the same order of magnitude.  

 

Four different diffusional theories are presented next. They show an increasing complexity and 

provide different information regarding the dynamics of the diffusion process. Different 

subscripts will be used to distinguish the different diffusion coefficients estimated from each 

theory. The solutions to each of the equations next shown can be found in Chapter 3, section 

3.10. 

 

2.4.1. Power-law model 

Peppas & J.L.Sinclair (1983) presented a semi-empirical equation (Eq. 2.1) to assess the type 

of transport occurring in one-dimensional (thin slabs) isothermal processes. The equation is 

valid for the first 60% of the mass uptake ! !
!� < 60%  under perfect sink conditions (i.e. 

infinite supply of solvent).  

 

! !
!!

= !!!      Eq. 2.1 

Where:  

• ! !   = Total sample mass at time ‘t’.  

• !�  = Total sample mass at equilibrium (t=∞).  

• k  = Constant incorporating characteristics of the macromolecule and the 

penetrant system. 

• t  = Time. 

• n  = Diffusional exponent.  

 

Depending on the value of the diffusional exponent ‘n’, any transport mechanism can be 

identified. Table 2.1 illustrates the different cases.  
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Table 2.1. Types of mass transport as function of the diffusional exponent ‘n’ value. Coefficients are valid 

for one-dimensional (slab geometry) isothermal processes. 

TYPE OF TRANSPORT DIFFUSIONAL EXPONENT (n) TIME DEPENDENCE 

Fickian Diffusion (Case I) 0.5 t1/2 

Anomalous transport 0.5 < n < 1 tn-1 

Non-Fickian transport 
(Case II) 1 Time independent 

 

Different geometries (other than the slab) or in particular, the increase of thickness of the 

sample when hydrating, can lead to a variation in the estimated values of ‘n’ (Peppas and 

Brannon-Peppas, 1994). The increase of thickness over time implies longer distances for a 

solvent molecule to travel, but also higher holding capacity of the sample, as the volume 

achieved at equilibrium is higher. The presence of a higher number of solvent molecules implies 

an extra resistance for the network to adapt to the changes. In consequence, its relaxation time 

increases with the increase of swelling-ratio. Other factors affecting the diffusional exponent ‘n’ 

are the use of monodisperse or polydisperse solvent systems. In the presence of a particle size 

distribution in the solvent, small molecules are able to diffuse faster through the sample network 

at early stages, but the equilibrium might be delayed as larger molecules move slower in the 

final stages. A change in the assumption of boundary perfect sink conditions can lead to 

variations in the diffusional exponent ‘n’ as well. This assumes an instantaneous equilibrium 

between the solvent and the top layer of the sample once they come into contact. However, 

even though the equilibrium might be reached fast, it cannot be instant.  

 

Eq. 2.1 was also adapted in this work to fit thickness data by replacing mass by height. The 

analogue expression is shown in Eq. 2.2.  

 

! !
!!

= !′!!′      Eq. 2.2 

 

Where:  

• ℎ !   = Thickness at time ‘t’.  

• ℎ�  = Thickness at equilibrium (t=∞).  
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• k'  = Constant (for thickness data). 

• t  = Time. 

• n'  = Diffusional exponent (for thickness data). 

 

2.4.2. Fick’s second law 

If Fickian diffusion is the predominant type of transport, Fick’s second law (Eq. 2.3) can be used 

to fit experimental data (Bird et al., 2007). Eq. 2.3 describes the uniaxial concentration change 

over time occurring for a thin slab geometry.  

 

!"
!" = !!

!!!
!"!      Eq. 2.3 

 

Where:  

• C = 
! !
!!"#

 = Mass concentration (expressed relative to the initial dry weight of 

the soil).  

• !!"#  = Dry sample mass. 

• t  = Time  

• DF  = Effective diffusion coefficient for Fick´s equation. 

• z  = Uniaxial diffusion direction. 

 

A series of assumptions are typically made when this equation is used (Sam Saguy et al., 

2005). The most common ones involve:  

• No other transport mechanisms are considered (e.g. capillarity). 

• The effective diffusion coefficient is constant and independent of the moisture content in 

the network. 

• Only the diffusion of unreacted liquid is modelled. 

• The initial moisture content in the network is uniform (i.e. isotropic state). 

• No resistances to the flux are found at the top layer and therefore the equilibrium occurs 

instantly. 
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• Swelling or shrinkage phenomena are typically not considered.  

• The geometry is simplified to slab, spheres or cylindrical shapes. 

• Heat transfer equations are commonly ignored. 

 

In a diffusion process with a change in volume (thickness) of the sample, boundary conditions 

are constantly varying. If the degree of swelling reaches a significant level (e.g. doubles up), 

and this is not considered by the model, wrong conclusions can be made when analysing the 

results. The assumption of molecular incompressibility (additive volumes) can relate the 

thickness change with the mass gained for a uniaxial swelling case via a density relationship. 

This is expressed in Eq. 2.4.  

 

!! = ! ! −!! =  !! ∙ ! ∙ ℎ ! − ℎ!     Eq. 2.4 

Where: 

• ! !   = Total sample mass at time ‘t’.  

• !!  = Initial sample mass. Sample mass at time ‘t=0’. 

• !! = Density of the fluid. 

• A = Cross sectional area. 

• ℎ !   = Thickness at time ‘t’.  

• ℎ!  = Initial thickness. Thickness at time ‘t=0’.  

 

The incorporation of Eq. 2.4 into Eq. 2.3 allows the calculation of diffusion profiles considering 

moving boundaries. 

 

2.4.3. Linear poroelasticity theory 

More complex theories have been developed to study the swelling kinetics of polymer gels. 

Classical Biot’s theory of poroelasticity (Biot, 1941), adapted from Gibbs (1906), in combination 

with statistical mechanics (Flory and Rehner Jr., 1943) has been used extensively to analyse 

solvent migration in polymer systems (Hong et al., 2009). At time zero, the polymer network is 

considered to be stress free, isotropically swollen and at a constant chemical potential (µ0). In 

the presence of an adequate solvent, a chemical potential gradient is established and a flux of 
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the solvent into the network is created. This results in a deformation gradient in the network, 

which can be correlated with the concentration distribution if molecular incompressibility is 

assumed. The theory is developed for neutral gels, thus interaction effects between solvent ions 

and the gel are not considered. The constitutive equations are linearized at the vicinities of the 

initial state, when small perturbations happen. The increase of thickness over time for the case 

of constrained swelling to one direction is expressed as shown in Eq. 2.5 (Yoon et al., 2010). 

The right side of the equation is formed by two terms. The first one indicates the total thickness 

change at equilibrium (Eq. 2.6). The second is related to the dynamics of the diffusion process 

(equilibrium ratio achieved at any time) and ranges from 0 to 1. The effective diffusion 

coefficient (DL) is included in the characteristic time scale of diffusion (!=hdry
2/DL).  

 

Δℎ ! = ℎ ! − ℎ! =
1−2! !−!0 ℎ0
2 1−! !!"Ω · 1 − 8

!2
1

2!+1 2 !"# − 2! + 1 2 !2!
4!

∞
!=0  Eq. 2.5 

 

∆ℎ!!"  =  ℎ! −  ℎ! = 1−2! !−! ℎ0
2 1−! !!"Ω     Eq. 2.6 

Where:  

• ℎ !   = Thickness at time ‘t’.  

• ℎ!  = Initial thickness. Thickness at time ‘t=0’.  

• ℎ!  = Thickness at equilibrium. 

• υ  = Poisson’s ratio (measurement of stretch changes). 

• µ0  = Chemical potential at the initial state. 

• µ  = Chemical potential of the solvent in the environment. 

• GSM  = Shear modulus. 

• Ω  = Volume of a solvent molecule. 

• t  = Time  

• τ = hdry
2/DL = Characteristic time scale of diffusion. 

• ℎ!"# = Sample thickness at dry state. 

• DL  = Effective diffusion coefficient. 
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This theory has been reported to be limited to small deformation cases (Bouklas and Huang, 

2012). For more detailed information in the mathematical development, the reader is referred to 

Yoon et al. (2010). 

 

2.4.4. Non-linear poroelasticity theory 

Hong et al. (2008) developed a non-linear approach that combines a non-equilibrium 

thermodynamic theory with a Fickian kinetic law to analyse the diffusion of small molecules into 

a neutral polymer gel. Mass transport was analysed together with the deformation of the 

polymer. The authors considered a field of markers (Z) along the network of the gel, which 

provides an initial reference state. As the polymer swells, the markers (Z) move and a 

deformation gradient (F) is established. A nominal stress (s) is then defined to comply with the 

on-going forces and to give a force balance in the network. It defines a ‘field of weights’. They 

also consider a flux of solvent molecules into the gel at a given chemical potential (µ) such that 

the concentration (C) of these molecules in the polymer would be a function of the flux and the 

stretch given. This motion defines a ‘field of pumps’. A free-energy function of the gel W(F,C) 

can be given as the combination of the deformation and the concentration gradients. The gel, 

the ‘field of weights’ and the ‘field of pumps’ form a thermodynamic system. Thus, the free 

energy of the system (GFE) can be given by the sum of the free energy of the polymer and the 

potential energy for both the deformation and concentration fields. Overall, thermodynamics 

laws are applied !!!" !" ≤ 0  and the energy of the system should never increase.  

 

The assumption of molecular incompressibility was also considered when looking specifically 

into the gel. Therefore, all volumetric change given in the system is due to the 

absorption/desorption of the solvent molecules in the network. By applying Flory & Rehner Jr. 

(1943) theory, the stretch in the polymer network can be calculated for any direction. The theory 

considers the free energy of the gel as a combination of two molecular processes: stretching of 

the network and the mixing of the small solvent molecules with the polymer. Intrinsic properties 

of the solvent and polymer are included: 
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• N = Effective number of polymer chains per unit volume of the polymer (nº 

chains/m3 polymer). It is defined as a constant value and refers to a reference 

condition at dry state. 

• Ω = Volume per solvent molecule (m3/solvent molecule).  

• χ = Flory-Huggins parameter (interaction between the solvent and the polymer). 

 

The kinetics of the solvent molecules were considered to follow a Fickian diffusion model. It is 

characterised by a diffusion coefficient, DNL, which is isotropic and independent of the 

concentration and deformation gradients. In a swollen gel, the main resistance found for a 

molecule to diffuse comes from other solvent molecules, as they are the major component in 

the system. Resistance between the polymer network and the solvent molecules are lower 

except at the initial stage. Therefore, the theory considers a liquid diffusing into itself. The flux is 

a function of the chemical potential gradient available in the system.  

 

By considering a uniaxial swelling (constraint in 2 directions) and an isotropically initially swollen 

state, the stretch of the network as a function of time and position is given by Eq. 2.7.  

 

!!! !"!" = !!" !!" ! ! !"
!"     Eq. 2.7 

 

Where: 

! ! =  1
!02!4

− 2! !02!−1
!0
4!5

+ !Ω
!02!−1 !2+1

!02!4
   Eq. 2.8 

 

Where: 

• DNL = Effective diffusion coefficient. 

• λ  = Stretch in uniaxial direction (thickness at time ‘t’ / dry state thickness). 

• λ0  = Initial stretch in uniaxial direction (initial thickness / dry state thickness). 

 

 

 



LITERATURE REVIEW 33 

The total thickness of the sample can be calculated as: 

 

ℎ ! =  ! !, ! !"!!"#
!      Eq. 2.9 

 

Where: 

• ℎ !   = Thickness at time ‘t’.  

• ℎ!"#  = Layer thickness in the dry state. 

 

Also, an algebraic equation (Eq. 2.10) relates the equilibrium swelling ratio, !!, with λ0, N, Ω 

and χ as follows:  

 

 !" !02!∞−1
!02!∞

+ 1
!02!∞

+ !
!02 !∞ 2 +

!Ω
!02

!! − 1
!∞ = 0  Eq. 2.10 

A relationship between the diffusion coefficients calculated through both linear and non-linear 

approaches is given by the following equation (Eq. 2.11):  

 

!!" =  !!
! !0∗

      Eq. 2.11 

Where:  

 !!∗ =  !0+!∞2       Eq. 2.12 

This theory was further expanded to incorporate the effect of different charges in the gel 

(polyelectrolytes) and the mobility of different ions across the network (Hong et al., 2010) but it 

was not considered in this study.  

 

2.4.5. Temperature dependence 

For the case of the diffusion of a fluid into a solid, the effective diffusion coefficient at different 

temperatures typically follows an Arrhenius equation (Mehrer, 2007) (Eq. 2.13). 

 

! =  !! · !
!!! !"     Eq. 2.13 
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Where:  

• D  = Effective diffusion coefficient. 

• D0 = Maximum effective diffusion coefficient.  

• EA = Activation energy. 

• R = Gas constant 

• T = Temperature.  

 

2.5. SUMMARY 

Cleaning in ADWs involves a wide range of areas of knowledge that must be joined together: 

distribution of water and mechanical cleaning via coherent jets, detergent formulations 

(chemical cleaning) and type of food soils. Detergent formulations have made important 

progress in the past 25 years as the research in food technology has expanded and the 

development of advanced designed enzymes were introduced to the market. Describing the 

interactions between detergent chemistry and type of food soils is becoming more important 

both in industrial and household scales. The idea is to drive this knowledge to propose 

optimisation scenarios resulting in important cost savings and more environmentally friendly 

processes. Understanding cleaning mechanisms and its evolution over time seems essential to 

achieve that aim. ADW design has remained almost invariant during the same period of time. 

Their evolution has mainly focused on reducing water and energy usage, with its correspondent 

positive environmental impact, but without focusing on a better distribution of water and 

integration with detergents. However, in the past few years there has also been significant 

progress in modelling the cleaning occurring via impingement jets. This could be implemented 

in newly design appliances. The state of the art in the field of automatic dishwashing clearly 

lacks an integrated study that combines the physical and chemical processes occurring. There 

is a necessity of deeply understanding the fundamental knowledge and principles involved.  
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3.1. INTRODUCTION 

This chapter provides detailed information on the different equipment and materials used. It also 

explains the methodology followed for the experimental set-up as well as the different factor 

levels selected in each of the studies considered. Firstly, it introduces the ADW used as a unit 

operation of study. Typical technical protein-bases soils are also presented as the soil system 

evaluated. The various analytical methods considered are explained next. Finally, the different 

design of experiments implemented for the study of protein-based soils behaviour under a 

range of alkaline and cleaning conditions are detailed. 

 

3.2. AUTOMATIC DISHWASHER (ADW) UNIT 

Water motion experiments via Positron Emission Particle Tracking (PEPT) (Chapter 4) and 

cleaning studies on a full scale ADW (Chapter 7) were carried out in a customised Whirlpool 

(DU750) dishwasher with internal loading area dimensions of 560 x 500 x 620 mm (Width x 

Depth x Height). The interior consisted in two baskets to place the crockery, a cutlery basket 

situated at the door and three spray arms (lower, medium and upper) to distribute water. The 

software controlling the different washing cycles was modified to offer different water pump 

speeds and the selection of the spray arm ejecting water. Washing time of the customised 

cycles could be up to 3 hours. The heating element was also controlled by the programming 

software, allowing to set-up temperature profiles for the running cycle. Figure 3.1 illustrates the 

ADW model used and its view of the interior.  

A 

 

B 

 
Figure 3.1. Whirlpool DU 750 Automatic Dishwasher. A – Front view. B – Interior view. 
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3.3. TECHNICAL SOIL 

Egg yolk was chosen as the food material subjected to study. As discussed in Chapter 2, these 

soils represent a challenge within ADW industry, as they are particularly hard to remove. It is a 

complex mixture of proteins and lipids. Its typical dry composition comprises 33% of proteins, 

62.5% of fats, less than 3.5% of minerals and 1% of carbohydrates approximately (Mine and 

Zhang, 2013). Despite the larger proportion of fats, samples are considered protein-based as 

their physico-chemical properties depend on the protein network that forms the main structure. 

Egg yolk is formed by high (HDL) and low-density (LDL) lipoproteins consisting on spherical 

particles that surround a lipid core. LDLs are the essential components that allow the 

emulsification of egg yolk due to their amphiphilic properties. Also, preheated samples above 

70ºC have been reported to form a gel system due to the aggregation of protein networks 

occurring at high temperatures (Denmat et al., 1999; Tsutsui, 1988). At alkaline conditions, the 

network hydrates and swells.  

 

Samples were obtained from Centre for Testmaterials (product DS-22/DM-22, C.F.T, BV, 

Vlaardingen, the Netherlands). They were made by spraying layers of egg yolk over a stainless 

steel or melamine base. Stainless steel substrate was used for scanning fluid dynamic gauge 

and gravimetric experiments as a completely flat and non-swellable surface was needed. 

Melamine substrates were used in tests in the ADW unit due to the white background required 

for colour measurements. Samples were kept in a fridge at temperatures below 5ºC until its 

usage. Size of the tiles were 120 mm x 100 mm with an approximate egg yolk mass of 1.75 g 

(±0.04 g) and an estimated initial thickness of 68 µm (±14 µm). The initial thickness was 

estimated by extrapolating the data obtained from scanning Fluid Dynamic Gauge (sFDG) 

experiments.  

 

The initial moisture content was obtained by weighing 3 samples before and after they were 

deposited in a vacuum oven at 60ºC during 24 hours (Booth, 2003). 0.11 grams (±0.03 g) were 

lost as an average during this process. Therefore, the initial moisture content (C0) was 

estimated as 0.067 g. water / g. dry sample. The amount of water initially present in the samples 

corresponds to a layer thickness of 9 µm. 
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Tiles were found to have slight different behaviour among batches. According to the supplier, a 

batch consisted of products prepared at the same time and with the same expiration date (6 

months). As the length of the experimental work exceeded the expiration date periods, different 

batches were purchased over time. Two stainless steel batches (DS-22) were used for 

experiments shown in Chapter 6, while one melamine batch (DM-22) was used for experiments 

in Chapter 7. Among the stainless steel batches, the differences highlighted are reported in 

Chapter 6 where the data gathered is analysed. 

 

3.4. POSITRON EMISSION PARTICLE TRACKING (PEPT) 

3.4.1. Technique principles 

For the analysis of fluid motion, the University of Birmingham has developed a technique called 

Positron Emission Particle Tracking (PEPT), which enables non-invasive 3D spatial detection of 

a radioactively labelled particle (tracer). One of the greatest advantages of this technique is that 

it can be used for the analysis of flow within opaque systems containing metals (Parker et al., 

1993)  

 

These tracers are prepared by bombarding water in the Birmingham ‘in-house’ cyclotron 

producing the following reaction: 

 

    16O + 3He à 18F + neutron 

 

18F is an unstable element that decays by positron emission (ß-decay). Its half-life is 

approximately 110 min. These positrons are annihilated with surrounding electrons, generating 

emissions of back-to-back 511 keV gamma rays that can be detected. These gamma rays are 

emitted in couples with an angle of approximately 180 degrees and have the ability to penetrate 

both opaque fluids and thick metals (up to 10 cm thick) 

 

To perform an experiment, a small (~250 to 600 µm) isokinetic radioactive tracer is placed into 

the system to study and a sensitive camera follows its movement. These particles are designed 

to be sufficiently small and insufficiently dense as to be considered isokinetic with most viscous 
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fluid flows. The PEPT camera consists of two parallel detectors with an effective area of 600 x 

300 mm2. Each detector is able to accurate determine the 2D spatial impact location of the 

gamma rays generated by the tracer. The emission angle of approximately 180 degrees makes 

possible to apply a triangulation method and determine the 3D spatial location of the radioactive 

tracer over time. The accuracy of the method can be as low as less than a millimetre with a time 

resolution of milliseconds.  

 

Figure 3.2 illustrates the sequence followed to the 3D spatial detection of the radioactive tracer.  

A 

 

B 

 

C 

 

Figure 3.2. Schematic of the sequence followed to the 3D spatial detection of the radioactive tracer. A – A 

positron-emitting tracer is placed in the system between PEPT cameras. B – A positron particle annihilates 

with an electron. C – Back-to-back gamma rays are generated after the annihilation process and are 

detected by the two cameras. 

 

Throughout the years, the technique has been used successfully in a wide range of 

experimental set-ups. Barigou (2004) gave a good overview of the capabilities of PEPT. As an 

example, a widely studied field has been mixing systems. Bakalis et al. (2004) were able to 

measure velocity distributions of different viscous fluids within a pipe. Extensive research has 

also been done in rotating systems (Ingram et al., 2005; Parker et al., 1997), such as in 

tumbling mills (Bbosa et al., 2011), or for studying the segregation of different sized particles 

(Ding et al., 2002). Additionally, PEPT has been recently used to characterise the motion of 

textiles in a front-loading washing machine showing its capability to describe flow in household 

appliances (Mac Namara et al., 2012).  
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3.4.2. Experimental procedure 

Particularly, for the studies of water motion in an ADW, a radioactive tracer having a size 

between 250 µm – 400 µm was used per experiment. Tracers were made using the resin ion-

exchange procedure explained in Parker & Fan (2008). They were coated with blue paint to 

enhance their visibility and to prevent the spread of activity in the aqueous environment. Each 

tracer was introduced at the beginning of every experiment in the bulk of water that remains at 

the bottom of the dishwasher.  

 

Given the flexibility provided by the customised Whirlpool ADW, different tests conditions could 

be analysed. Table 3.1 shows those variables controlled that were considered. Combinations of 

them were studied during the realisation of these tests. 

 

Table 3.1. Experimental variables considered for PEPT experiments. 

VARIABLE CONDITION 

Pump speed 

High 

Medium 

Low 

Presence of Load 
‘No load’ 

‘With load’ 

Detergent Use 
‘No detergent’ 

‘With detergent’. 
 

 

5 litres of water were added at the beginning of each test with a temperature varying between 

18-20 ºC. The water-heating element was disabled, as the purpose of the experiments was not 

to analyse the effect of temperature. Variations in water density and viscosity, which could affect 

the flow, were negligible in the range of temperatures used. They were measured and remained 

constant through the cycles. A typical concentration of 3.4 g/l of powder detergent was used to 

identify the effect of cleaning formulation with flow. The lower spray arm was selected to be the 

only one spraying water due to the constraints in the field of view of PEPT cameras. Also, as at 

the edges of the cameras the quality of the data can be highly compromised (Parker et al., 

1993), only the flow between the lower and medium spray arm was analysed.  
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When needed, crockery was distributed in two baskets situated at different heights. Figure 3.3 

illustrates the ADW set-up between the two PEPT cameras, the distribution of crockery and the 

coordinate system used as a reference. The origin of it was located at the middle bottom side of 

the ADW, in line with the axis of rotation of the spray arms.  

A 

 

B 

 

Figure 3.3. A - Dishwasher in between PEPT cameras. B - Dishwasher loaded with crockery 

and coordinates reference system. 

 

Commercially available crockery used was a combination of 12 dinner plates (Dcr = 270 mm), 24 

dessert plates (Dcr = 160 mm), 12 teacups (Dcr = 70 mm; Hcr = 60 mm), 12 glasses (Dcr = 65 mm; 

Hcr = 120 mm) and 12 bowls (Dcr = 120 mm), that are used in standardised AHAM (Association 

of Home Appliance Manufacturers) industry tests. Loading of the dishwasher took place 

according to the method: dinner plates and dessert plates were placed in the lower basket and 

small crockery items in the upper basket (AHAM, 1992).  

 

The ability of a tracer to follow the fluid flow was characterised by the Stokes number (Eq. 3.1): 

 

!" =  !!!!     Eq. 3.1 

 

Where: 

• !! =
!!·!!

2

18·!!
 = Particle response time.      Eq. 3.2 

• !! =  !!!  = Fluid response time to an external disturbance.  Eq. 3.3 
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Where: 

• !!  = Tracer density. 

• !!  = Tracer diameter.  

• !!  = Fluid viscosity. 

• !!  = Duct diameter.  

• v = Fluid velocity.  

 

For St < 1, the particle is considered to follow closely the fluid streamlines while for St > 1, 

particle’s inertia forces will start to influence particle’s movement (Schetz and Fuhs, 1996). 

 

For these calculations, the worst cases were considered for every experimental setup: highest 

particle diameter (dp = 400 µm) and highest velocities found experimentally (v). Tracers’ 

densities (ρs) were ∼1100 kg/m3 and water viscosity (µf) was ∼0.001 Pa·s. To calculate the 

characteristic dimension of the spray arm, a rectangular duct was assumed (dc = 

2LdWd/(Ld+Wd)) with Ld = 0,01 m and Wd = 0,035 m. The characteristic dimension in the ejection 

step was assumed to be the most common nozzle diameter (0.002 m) in the design of the lower 

spray arm. For the down flow over the walls or plates, the characteristic dimension was 

interpreted as the thickness given when a homogeneous distribution of the amount of ejected 

fluid (not at the bottom or in the internal pipes) was covering all those surfaces (estimated 

thickness = 0.0009 m). Table 3.2 summarises maximum Stokes numbers calculated for every 

condition.  

 
Table 3.2. Stokes values. 

 
HIGH PUMP 

SPEED 
MEDIUM 

PUMP SPEED 
LOW PUMP 

SPEED 

Spray Arm 1.1 0.88 0.63 

Ejection 39.1 26.1 13.0 

Down flow over 
walls/plates 10.3 

 

Results showed low values for the spray arm flow, which agreed with the isokinetic assumption. 

For the ejection part and downfall stages, higher values than 1 were found. A deviation of the 
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particle’s behaviour from the fluid flow was therefore expected. The higher density of the tracer 

might make the particle exhibit higher resistance in the ejection path and to travel within the 

lowest layers (slower) of the fluid film during the downfall. However, the ejection step was very 

rapid in time, as it will be discussed in Chapter 4, section 4.5.1, and the deviation due to the 

inertia forces of the particle was assumed negligible.  

 

3.4.3. Data Analysis 

3.4.3.1. Pre-processing 

Raw data obtained with PEPT consists of two-dimensional locations corresponding to the 

position of gamma-ray detections in each of the cameras. A series of algorithms were used to 

transform the original data with the aim of increasing the quality of the analysis carried out later. 

Thus, the logic behind this process focused on, firstly, transforming the data into three-

dimensional locations, and then, on enhancing the quality of it by reducing its noise via 

smoothing and selective linear interpolation methods.  

 

A previously developed algorithm (Parker et al., 1993) was used to transform this initial raw data 

into three dimensional tracer locations. Another algorithm was then developed to process the 

obtained positions. The steps taken were as follows: 

 

I. An initial step removed all data with a spatial location error higher than 3 mm. 

Remaining data was hereinafter filtered out if its spatial location error was higher 

than the average spatial error value plus two times the standard deviation of the data 

not filtered initially.  

II. Data was further smoothed following the procedure below: 

a. Initially, moving average intervals of	5 to 25 points were created with respect to 

a central point (Po). 

b. These intervals were then fitted using 1st, 2nd and 3rd order polynomial 

equations (based on least squares method) and a new central point obtained 

(Pnew). 
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c. Then, for every specific combination of intervals sizes and fitting orders a matrix 

was created with new central points (Pnew) for each original location. Distances 

between consecutive points were calculated and associated to every 

combination. The one that showed the smallest standard deviation was the 

combination selected at the end of the process and its new central points 

replaced the original data. 

d. As a restriction criterion, data was only smoothed if the 3D spatial distance 

within the moving average interval was less than 30 mm and/or if time 

difference for consecutive points was less than 0.1 seconds.  

 

Figure 3.4 shows an example of the smoothing process for a small amount of data. A new 

central point (black dot) is created for the case of an interval of 9 points (blue-green dots) and 

the use of a 2nd order polynomial equation (green dash-line). The new central points (red dots) 

for that combination are shown as well. The figure also shows the data not modified due to the 

application of the restriction criteria (coincidence of blue and red dots).  

 

 

Figure 3.4. Smooth data example. Blue dots – Original Raw data; Red dots – New smoothed data; 

Blue-Green dots – Interval example (n=9); Green dot – Interval central point (P0); Black dot – New 

central point (Pnew); Dotted green line – Second order polynomial fitting for interval considered. a, b, 

c and d refer to the explanation just given in section II. 
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III. It was expected to get fast moving tracers at the water jets. Due to the constant data 

acquisition time of PEPT cameras, the number of data points was lower at that 

stage. To solve a similar problem (systems with a wide range of velocities), Chiti et 

al. (2011) applied a selective linear interpolation method. The authors achieved a 

more homogeneous spatial distribution of data points and increased the quality of 

the results. With that in mind, the application of this interpolation algorithm was used 

for spatial distances of consecutive locations between 5 mm to 20 mm. These 

values were chosen to be half and double the cell size (10 mm) for further Eulerian 

analysis. When spatial distances were smaller than the low limit, no need for 

generating new points was required as data spatial distribution was good enough. 

When, on the contrary, spatial distances were bigger than the high limit, important 

errors could have been introduced due to the linear trajectory considered for the 

interpolation.   

 

3.4.3.2. Lagrangian velocities 

Lagrangian velocities were estimated according to the method used by Mac Namara et al. 

(2012). A ‘best fit’ second order polynomial line was generated for every data point as a function 

of time and then, the gradient of which was used as the Lagrangian velocity of the tracer. These 

values were optimised by taking different intervals of size ‘n’, where ‘n’ is the number of points 

used, and minimising the least squares error in the velocity calculation.   

 

Depending on the situation, ‘n’ value can be high or low. If the tracers were moving in a straight 

line, a high value of ‘n’ would give a more accurate velocity. Whereas, if there was a sudden 

change in the trajectory, as for example in the spray arm ejection area (nozzles), less points 

would be required to accurately follow this change. Illustrations can be found in the paper cited 

above. 
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3.4.3.3. Eulerian analysis 

Eulerian velocity data was represented graphically in a user-defined 2D cell grid, which divided 

the loading area into cells of equal size (10 mm). Lagrangian velocities were time-weighted 

average throughout each cell providing time independent Eulerian velocity values.  

 

Considering the rotation of the spray arm, data was represented using a cylindrical coordinate 

system. Angular projection was disregarded, as the ejection pattern is not modified at different 

angular positions. This allowed a simpler way to look at the data: a 2D grid representation of it 

as a function of the tracer distance from the rotation axe (middle of the spray arm) and its height 

was possible. Figure 3.5 illustrates this transformation process.  

 
Figure 3.5. Schematic of ejection patterns. 

 

Residence time plots represent the average time the tracer stays in every cell. These values 

were calculated as the tracer cumulative residence time divided by the number of passes.  

 

3.5. COMPUTATIONAL FLUID DYNAMICS (CFD) 

Computational Fluid Dynamics (CFD) complemented PEPT studies. The appliance 

manufacturer generated simulated data in an effort to correlate real experiments with computer 

modelling. PEPT data was used to refine and validate CFD results provided.   

 

For this study, an unsteady state Eulerian multiphase model with VOF (volume of fluid) was 

considered. A Dynamic Fluid Body Interaction (DFBI) module was used to simulate the motion 

of the spray arm in response to the pressure and shear forces that the fluid exerted. The 
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rotational motion around the vertical axis was made free, while the motion over other axes was 

constrained. The moment of inertia was defined for the spray arm and the values were 

calculated in Pro-E software. The mass flow condition was applied at the inlet of the spray arm. 

A volume mesh was generated with polyhedral and prism layers, giving a total number of 

elements of 5 million. The time step size was kept constant at 10-4 sec. The simulation was run 

in Star-CCM+ with parallel processing on a cluster with 96 processors for 48 hrs. Post-

processing was also done in Star-CCM+.  

 

The current simulation was carried out only for the lower spray arm with an empty (no dish-load, 

racks & silverware basket) dishwasher. Firstly, the flow field was developed through VOF 

multiphase simulation for two rotations of the spray arm. Then, a Lagrangian multiphase particle 

tracking was performed by using water particles (with all their physical properties defined). 

Particle diameters were decided based on water flow rate. Particles were sent through the inlet 

of the spray arm and tracked through each nozzle. The same coordinates system was created 

in Star-CCM+ as for PEPT experimental setup. Cartesian coordinates (x, y & z) of path traced 

as well as the velocity component associated to every location were recorded for each particle. 

A total number of 106 particles were sent through the inlet of the spray arm. A comparison 

between PEPT and CFD data is reported in Chapter 4, section 4.6. 

 

3.6. SCANNING FLUID DYNAMIC GAUGE (sFDG) 

Scanning Fluid Dynamic Gauge (sFDG) was the technique selected for the analysis of the 

cleaning evolution of technical protein samples in a small-scale and controlled environment.  

 

3.6.1. Technique principles 

Figure 3.6 shows a picture and a schematic of the sFDG. 
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Figure 3.6. Schematic of the scanning Fluid Dynamic Gauge (sFDG). 

 

The technique measures the change in thickness of an immobile soil sample submerged in a 

wash solution, in situ and in real time (Gordon et al., 2010). The soil sample is placed in the 

upper tank and a nozzle is sited on top of it. A gravity-controlled flow rate is created through the 

nozzle and is maintained constant over time. Any change occurring in the sample, as a 

consequence of its contact with the wash solution and the surface shear stress generated by 

the gauging fluid, produces a variation in the soil thickness (swelling or removal). A highly 

precise motor moves the nozzle up and down (z-axis) to compensate for this change and its 

consequent effect on the flow rate through nozzle. The variation in height is recorded through a 

data logger to a computer and transformed to the thickness of the soil. Programmable routines 

can be loaded via LabViewTM. The nozzle can track different locations over time and at different 

frequencies (scanning mode) as the system is equipped with two motors to move the upper tank 

in the ‘x’ and ‘y’ directions.  
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For different experimental runs, different solutions can be prepared in the lower tank. A 

peristaltic pump and a magnetic stirrer continuously mix the liquid through the system. The 

temperature of the liquid is also controlled by the presence of a water bath. Shear stress profiles 

generated over the sample can be changed by varying the height of the lower tank or the 

diameter of the nozzle, producing different flow rates through the nozzle. The shear stress 

applied at any time is calculated by the software controlling the sFDG according to Eq. 3.4 

(Chew et al., 2005).  

 

!!"## =  !!
3!

4! ! 2
2
1
!     Eq. 3.4 

 

Where:  

• !!"##  = Shear stress imposed at the sample surface.  

• !!     = Fluid viscosity. 

• Q        = Volumetric flow rate in the tube. 

• a         = Nozzle-sample surface separation.   

• r        = Radial distance.  

 

The following parameters can be studied: temperature, chemistry (pH, enzyme level, 

surfactants…), shear stress and frequency of application of the shear stress over a single point 

(frequency factor). The frequency factor is defined as the ratio of time the gauging fluid is 

imposing a surface shear stress on a particular location over the total experimental time. For 

more specific information, the reader is referred to (Gordon et al., 2012a; Tuladhar et al., 2000, 

2002).  

 

3.6.2. Experimental procedure 

Thickness measurements over time were obtained by using the sFDG. 5 litres of deionised 

water were used in each experimental run. This corresponds to the typical amount of water 

present in an ADW during a main wash cycle. The length of the experimental runs was up to 3 

hours.  
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The water hardness was set at 8.5 US gpg (4.4·10-3 M) with 0.236 g/l of CaCl2·6H20 and 0.076 

g/l of MgCl2·6H20 (molar ratio between CaCl2·6H20 and MgCl2·6H20 was 3:1). Before running 

the experiments, all chemicals were added to the lower tank and stirred and recirculated 

through the system for 10 minutes. Temperatures in both tanks were monitored constantly with 

the aid of waterproof digital thermometers.  

 

To provide the necessary pH, buffer solutions were prepared and pH measured with a pH meter 

(product Orion 4 Star™, Thermo Scientific Orion).  

 

• For pH 9.5, 0.112 g/l of Na2CO3 and 0.150 g/l of NaHCO3 were used ([Na2CO3] = 1.10 

mM and [NaHCO3] = 1.80 mM). 

• For pH 10.5, 0.106 g/l of Na2CO3 were added ([Na2CO3] = 1.00 mM). 

• For pH 11.5, 0.13 g/l of NaOH were added ([NaOH] = 3.25 mM).  

 

A detergent formulated protease was selected as the enzyme to study. The material was 

provided internally by Procter & Gamble. They were supplied as prills and were dissolved in 

water before adding them to the bulk solution.  

 

Different shear stresses were established by varying the height of the lower tank in the sFDG 

and the diameter of the nozzle used (1 mm or 2 mm). Ranges of shear stresses imposed were 

from 12 to 65 Pa. Also, shear stress over the different locations analysed was applied at 

different frequencies. The frequency factor can range from 0% to 100%. A value of 0% indicates 

no external action on the sample during the experimental time, while a value of 100% 

establishes a continuous application of shear stress on the sample during the length of the 

experiment.  
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3.6.3. Typical thickness profiles. Data handling.  

Figure 3.7 represents a typical thickness profile for a pure swelling process.  

 

A 

 

B 

 

Figure 3.7. Typical thickness profile for swelling phenomenon. A – Raw data values and polynomial fitting 

for a single location in the run at 50ºC, pH = 10.5, [Enzymes] = None, Shear Stress Frequency = 8.5%, Net 

Shear Stress = 24 Pa. B – Averaged fitted experimental results and error bars for the four locations 

analysed in the experimental run. 

 

Figure 3.7A illustrates thickness values of a single location for a test at 50ºC, pH 10.5, with no 

enzymes added and a shear stress applied of 24 Pa at a frequency of 8.5%. sFDG raw data 

consists of thickness values grouped at different times per location. The dispersion of each 

group per location corresponds to the frequency at which shear stress is applied. To determine 

the variability within each sample, a polynomial correlation was established for each of the 

locations studied (red line). Thickness values were calculated then at fixed times (i.e. every 

minute). The degree of the polynomial fit was set as the lowest possible to give an accurate 

fitting (R2 > 0.98), being always 6th order or lower. The use of this approach also allowed the 

comparison of measurements from different repetitions. Data fitted for specific times and for 

different samples can be further averaged. Figure 3.7B shows the averaged fitted data from all 

the six locations studied in the example and their triplicates results. By obtaining thickness 

values at fixed times, building mathematical models is also simplified. The same approach was 

used for all the experimental cases studied.   
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3.7. GRAVIMETRIC TESTS 

Gravimetric tests were done to correlate swelling studies from sFDG (Chapter 6, section 6.3). 

They were conducted in the upper tank of the sFDG apparatus. Samples were placed on the 

soil platform without any gauging action occurring. They were taken out at specific times for 

their weight measurement: 3, 6, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 150 and 180 

minutes. Prior to the measurement, the base was dried and the excess surface water was 

removed by soft-shaking the tiles 10 times. They were weighed on a digital scale (product 

EP201, Ohaus) with an error of ±0.01 g. Once an experiment was completed, the tile was 

cleaned, dried and weighed again so the net sample mass could be estimated. 

 

3.8. STATISTICAL METHODS 

3.8.1. Partial Least Squares (PLS).  

Statistical analyses were carried out by using JMP® software (v. Pro 11.1.1). Partial Least 

Squares was the method selected to analyse output data from the scanning Fluid Dynamic 

Gauge (Chapter 6, section 6.2). This technique is a regression method typically more robust 

than classical principal components approaches (Geladi and Kowalski, 1986). It was initially 

developed for its use in econometric studies and further expanded to chemical applications. In 

order to gain a better insight on the method development and principles, the reader is referred 

to Wold (1985). 

 

The method bases its analysis on creating alternative factors that are linear combinations of the 

input parameters (Xs) and interactions. The criterion to obtain these factors is to maximise the 

covariance existing between them and the output(s) responses (Ys). When constructing the 

model, software requires the input of different model effects. Depending on the experimental 

design selected, the availability of more or less interactions is possible. PLS approach used a 

NIPALS (Non-linear Iterative Partial Least Squares) algorithm (Geladi and Kowalski, 1986) to 

build the model, which reduced the computational time by only considering the first few principal 

components. 
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This method offers a quick and reliable prediction model and incorporates dynamic responses 

to the analysis. Thus, rather than single outputs, the technique enables the processing of time-

evolving results (single points vs. curves responses). 

 

As alternative information, different plots were built to prove the consistency of the analysis, the 

significance of the different factors analysed (overall and at a specific time) and the predictions 

given by the developed model.  

 

• Scores plots: they represent the different X factors scores against the Y scores. Score 

values are typically related with the sensitivity of the different X factors extracted. These 

plots are used to identify any cluster of data that could be considered odd. A linear 

tendency indicates no unusual observations within the data set.  

 

• Variable Importance Plot (VIP): it indicates how significant a factor or interaction is 

independently of the fitting method used and the model construction effects. This type 

of plot illustrates the time-weighted contribution to the response analysed of the 

different factors considered. This means that the overall contribution of a factor to the 

response is shown, but not its impact at a specific time. A red dashed line is typically 

drawn at a Variable Importance score of 0.8, indicating the limit below which a variable 

is a candidate for deletion in the model (Eriksson et. al, 2006). 

 

• Spectral profilers: Using PLS as a modelling technique for time-evolving responses 

allows spectral profilers to be made. This tool creates interactive response curves 

rather than single output predictions. Therefore, the time evolution of a system studied 

can be predicted quickly as a function of the different inputs considered. The effect of 

the different factors at different times and their interactions can also be observed from 

these graphs. 

 

• Normalised effect plot: JMP software also discretises and normalises each effect 

studied along the different time responses obtained. These plots represent the 
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significance of each factor over time. Values are normalised between -1 to +1. A 

negative value indicates a negative effect on the response while a positive value 

indicates the opposite. The closer the value to -1 or +1, the higher the influence of a 

factor at that time. 

 

3.8.2. Response surface (RS). 

Response Surface (RS) models were built to estimate removal rates in full-scale tests (Chapter 

7, section 7.3.1). The RS methodology consists of the empirical modelling of one or more 

responses as a function of the different input factors (Bezerra et al., 2008). The methodology 

combines mathematical and statistical techniques to build the final predictions. Depending on 

the main factors and interactions considered, linear, quadratic of higher degree functions are 

inputted to describe the system. The term ‘response surface’ was selected as the graphical 

representation of the model built simulates a curve that adapts to the different input data.  

 

3.9. KINETICS AND DEGREE OF SWELLING 

The kinetics (time to equilibrium) of both sFDG and gravimetric data was studied through a 

dimensionless approach. Data was transformed and normalised by applying Eq. 3.3 and Eq. 

3.4: 

For sFDG data:   ℎ ! = ℎ ! −ℎ0
ℎ∞−ℎ0      Eq. 3.3 

For Gravimetric data:  ! ! = ! ! −!0
!∞−!0

    Eq. 3.4 

 

Where:  

• ℎ !   = Normalised thickness at time ‘t’. 

• ℎ !   = Thickness at time ‘t’.  

• ℎ!  = Initial thickness. Thickness at time ‘t=0’.  

• ℎ!  = Thickness at equilibrium. 

• ! !   = Normalised sample mass at time ‘t’. 

• ! !   = Total sample mass at time ‘t’.  
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• !!  = Initial sample mass. Sample mass at time ‘t=0’. 

• !!  = Total sample mass at equilibrium (t=∞). 

 

The new relative values (0-1 scale) indicate the equilibrium degree achieved at any 

experimental time. The approach makes all experiments comparable independently of the 

degree of swelling. By plotting thickness dimensionless values versus gravimetric ones for pairs 

of data at the same experimental time, a graphical comparison is also possible. Data from both 

experimental techniques is in agreement if they follow a line with a slope of 1 and the intercept 

is at 0. This means that the same equilibrium degree is achieved at the same time 

independently of the technique used. The addition of a time-based scale to the figures, also 

allowed the comparison of the time to the equilibrium for the different experimental conditions. 

Figure 3.8 represents a schematic of the possible scenarios. 

 

 

Figure 3.8. Dimensionless comparative approach. 

 

The black line represents a line which slope equals to 1. Distortions are highlighted when values 

are found above or below it. For pairs of data found above the line, the theoretical equilibrium 

would be reached faster by sFDG tests than by gravimetric measurements. Thickness relative 

increase would be much higher than water uptake for the same experimental conditions. The 

opposite case would happen when values are seen below the line.  
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To study the degree of swelling, the comparison was done in absolute values. To do so, mass 

was estimated from the thickness data (sFDG) by applying Eq. 2.4 and values were directly 

compared. 

 

3.10. SOLUTION OF EQUATIONS FROM DIFFUSIONAL THEORIES 

Equations from Fick’s second law (Eq. 2.3 and Eq.2.4) were solved via an algorithm developed 

in MATLAB® (see Appendix A.3) by applying a forward finite difference method. It was 

assumed that the bottom face of the sample (! = 0) was attached to a rigid surface with no 

diffusion occurring at this position. Also, the top face ! = ℎ !  was considered to be freely 

exposed to the solvent. Thus, liquid penetration occurred from top to bottom. The sample was 

considered to swell uniformly in one direction (!), with a constrained or negligible lateral stretch. 

At each time step, swelling of the sample (Eq. 2.4) was incorporated and the total thickness was 

discretised again to compute for this change. The assumption of an instantaneous equilibrium at 

the boundary layer between the network and the fluid together with a zero flux at the bottom 

layer were considered as boundary conditions. Additionally, the diffusional coefficient was 

assumed to be constant and independent of the moisture gradient. The initial condition 

assumed a homogeneous distribution of the initial moisture content within the sample. The 

boundary and initial conditions are expressed as follows:  

 

• Initial Condition:   ! = 0 → ! = !! 

• Boundary Condition 1:  ! ! = ℎ ! = !!" 

• Boundary Condition 2:  ! = 0 → !"
!" = 0 

 

The effective diffusion coefficient values (DF) were calculated by minimising the error between 

experimental and numerical results.  

 

The estimation effective diffusion coefficients from linear poroelasticity theory (DL) (Eq. 2.5) was 

also carried out by minimising the error between experimental and numerical data. Parameters 

included in the first term (!, !, !!") on the right side were not estimated as the rheological 
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characterisation of the soil samples was out of the scope of this study. Knowing these 

parameters was not necessary as the thickness increase between the equilibrium and the initial 

conditions (Eq. 2.6) was estimated from experimental data.  

 

Finally, the same assumptions used for Fick´s second law were considered to solve the 

equations from non-linear theory (Eq. 2.7 to Eq. 2.12). A forward finite difference method was 

used to determine a solution for Eq. 2.7. The initial condition assumed an isotropically swollen 

state with an initial swelling ratio of !!. Boundary conditions established the instantaneous 

equilibrium at the top surface ((BC1: ! ! = ℎ ! = !!) and the condition of zero flux at the 

bottom surface (BC2: !! ! = 0 = 0). After a long time ! →�  the system evolved to an 

equilibrium state (! = !!). Stretch profiles obtained (!) were integrated over the layer thickness 

in the dry state (ℎ!"#) by applying Eq. 2.9 to calculate net thickness values over time. Finally, 

Eq. 2.10 was used to relate the equilibrium stretch (!!) with λ0 and other intrinsic parameters: 

N, Ω and χ. 

 

Three variables were unknown: Flory-Huggins parameter (χ), the effective number of polymer 

chains per unit volume of the polymer (N) and the non-linear effective diffusion coefficient (DNL). 

To estimate them, an iterative process between the two available equations (Eq. 2.7 and Eq. 

2.10) was established. The range of values considered was 10-13 to 10-9 m2/s for DNL, 0 to 1.2 for 

χ, and 1025  to 1028 for N, according to previously reported values in literature (Hong et al., 

2009). The estimation process started by obtaining stretch profiles (! !, ! ) using Eq. 2.7 for 

multiple combinations of the three unknown variables. These results were then used to 

calculate thickness values over time by applying Eq. 2.9. Finally, experimental and predicted 

values were compared and a coefficient of determination (R2) calculated. Additionally, it was 

checked that Eq. 2.10 gave a value close to zero. From an assumed value of N, χ could be 

estimated and vice versa. However, this would not take into account any experimental error in 

 !! and !! and would reduce the number of possible combinations. Therefore, a sensitivity 

analysis was performed in order to define an acceptable margin around zero that satisfies Eq. 

2.10. The iteration showing the highest coefficient of determination (R2) and satisfying the 

margin error was the chosen solution.  
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Figure 3.9 illustrates, for different iterations, the coefficient of determination (R2) calculated and 

the left side value from Eq. 2.10.  

 

 

Figure 3.9. Variability of the iterations. Coefficients of determination 

(R2 – y-main axis) estimated by using Eq. 2.7 and Eq. 2.9 and values 

from the left side of Eq. 2.10 (y-secondary axis) for different iterations. 

 

Local maximums were seen for R2. The first term of Eq. 2.9 oscillated around values close to 0, 

except for some iterations where it increased suddenly to values up to 1. As the range given 

was around 1, a threshold value of 0.12 (black line) was established as a margin error. This was 

in accordance with the experimental error (~12%) calculated. This margin allowed most of the 

combinations possible between and χ and N in the range considered for each factor.  

 

3.11. IMAGE ANALYSIS (IA) 

Image analysis was carried out in full-scale tests (Chapter 7, section 7.2) for the cleaning 

evaluation of technical protein-based soils. 

  

3.11.1. Technique principles 

When possible, visual techniques always represent an alternative to measure cleaning. 

Traditional approaches are based on individual visual judgements that tend to be very 

subjective. To avoid this, the International Commission on Illumination (CIE as it stands for its 

original French title ‘Commission lnternationale de I'Eclairage’) (CIE, 2014) developed a colour 
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space named CIELAB (Tkalcic and Tasic, 2003). The space introduces three vectors to 

describe colours: a luminance vector (L) and two chromatic components (a & b). It was 

designed as a quantitative measurement of colour equivalent to the human eye. The main 

characteristic is that the human visual perception is highly correlated with the Euclidean 

distance between two defined positions in the L*a*b reference space. The introduction of 

CIELAB space established a more consistent way to visually characterise cleaning as 

reproducibility increased.  

 

Figure 3.10 shows the schematic representation of the L*a*b colour space defined.  

 

 

Figure 3.10. Schematic representation of the CIELab colour 

space. 

 

Pictures are typically taken in RGB colour spectra, where a particular colour is expressed by a 

combination of the three primary colours: Red, Green and Blue (Sharifzadeh and Clemmensen, 

2014). RGB spectrum is a device-dependent colour space and therefore alternative set-ups are 

not comparable. Contrarily, CIELAB (or commonly know as L*a*b) colour scale is a device-

independent colour space, thus the use of this method is more suitable. The range of the 

luminosity vector (L) goes from 0 to 100, while the range of ‘a’ and ‘b’ vectors go from -128 to 

+128. The colour contrast between two different points given is calculated as the Euclidean 

distance between them. Therefore, it can be expressed as follows:  

 

!"#$%&'$ =  ∆! ! + ∆! ! + ∆! !    Eq. 3.5 
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3.11.2. Camera kit 

A waterproof camera was the tool used to gathered online images through the wash cycle. A 

waterproof torch with good resistance to high temperatures was also used as the light source 

inside the ADW. Specific details on the design and set-up of the camera kit have been 

intentionally avoided to preserve its confidentiality. The system aimed to evaluate the cleaning 

evolution of technical CFT tiles.  

 

3.11.3. Experimental procedure 

Full scale cleaning tests studied temperature, pH and enzyme level effects on egg yolk samples 

over a melamine substrate. The customised Whirlpool ADW was programmed to run at two 

constant washing temperatures (30ºC and 55ºC) with only the lower spray arm ejecting water. 

Three different pH values (9.5, 10.5 and 11.5) were selected. The same protease as for sFDG 

experiments was used and three different concentrations established: 0.02 g/l, 0.06 g/l and 0.10 

g/l. The camera, torch and CFT sample were placed in the dishwasher at the back-left side of 

the lower basket. Experiments were done for a spray arm rotation rate of approximately 35 rpm. 

The length of the cycles was up to 2 hours without any initial or final rinse stage. The torch light 

was set at its lowest intensity and lit up at least 15 minutes before the start of any experiment to 

compensate for its initial decay in intensity (Schubert, 2006). Deionised inlet water was 

preheated in an external tank at the desired temperature so no extra heating effort from the 

dishwasher was needed. The water hardness was initially established at 8.5 US gpg (4.4·10-3M) 

by following the same procedure as for sFDG tests. Chemistry required was added at the bulk 

water at the bottom once the dishwasher finished filling it up. Chemicals were mixed during 5 

minutes before the camera, torch and CFT sample were placed internally. Pictures were taken 

every 5 seconds and information collected until the camera shut down (typically 65-70 minutes). 

Triplicates were done for each experimental condition considered. Once a experiment was 

completed, images were loaded to a computer for further processing.  
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3.11.4. Image processing and data analysis 

A customised software was used to analyse the pictures taken during a test. Initially, the 

software requires the selection of the area of interest (tile area) to crop the images around it. 

Typical cropped areas were 1250 x 750 pixels approximately. Cropped images were evaluated 

by transforming their initial RGB colour values into L*a*b ones (Jin and Li, 2007). The white 

colour reference was established by selecting the picture of a completely cleaned tile. Colour 

contrasts between the white reference and images taken at different times were then estimated. 

A Stain Removal Index (SRI) scale was defined as expressed in Eq. 3.6 (Neiditch et al., 1980). 

The definition established a range of values between 0 and 100. A value of 0 indicates no 

cleaning (or colour change) when compared to the initial soiled tile. A value of 100 indicates a 

complete cleaning or complete colour matching with the ‘cleaned white tile’ used as a reference. 

As the initial colour starting point might differ from tile to tile, pure contrast changes are not 

comparable. By normalising the values with regard of the initial colour contrast, a homogeneous 

scale was then obtained. The representation of the SRI over time allowed the estimation of 

cleaning rates. The slope of the curve represents the cleaning percentage change over time 

(i.e. %/min). 

 

!"# % =  !"#$%&'$ !=0− !"#$%&'$ !=!
!"#$%&'$ !=0

· 100       Eq. 3.6 

 

As cleaning was evaluated by comparing all the area of interest, average values of L, ‘a’ and ‘b’ 

vectors were calculated per cropped image. This reduced the noise and the computational cost.  

 

3.12. DESIGN OF EXPERIMENTS 

Swelling and removal studies in protein-based samples (Chapter 6) were initially performed by 

establishing different Design of Experiments (DOE). A first approach considered the 

development of statistical models on the data collected via sFDG. Swelling mechanism was 

further studied in detail by correlating sFDG and gravimetric data. The following describes the 

experimental design selected for each of these cases. 
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3.12.1. Dynamic Statistical models 

Two different approaches were considered. Firstly, only swelling phenomenon was analysed via 

sFDG. Screening studies showed no decrease in thickness without the addition of enzymes, 

except at high alkaline and temperature conditions (i.e. 55ºC and pH 11.5). A 3 level full-

factorial DOE was established to study the influence of temperature and pH as main 

contributors to swelling. pH levels were: 9.5, 10.5 and 11.5. Temperatures levels selected were: 

30ºC, 42.5ºC and 55ºC. These ranges were within typical values in an ADW wash cycle. Net 

shear stress applied and the frequency factor were considered to have a negligible influence 

over the initial (most important) stage of the swelling process (i.e. first 30 minutes). A total 

number of 9 experiments were run. 4 different locations were studied in each experimental run. 

The position of the nozzle changed every minute and shear stress over a particular location was 

applied for approximately 30 seconds in intervals of 4 minutes. This corresponded to a 

frequency of application of shear stress of 12.5%. Shear stress imposed over the tile was 18 

Pa. No enzymes were added. Figure 3.11 illustrates the locations studied over the samples. 

 

 

 
POINT X (mm) Y (mm) 

1 -20 20 

2 20 20 

3 20 -20 

4 -20 -20 

Figure 3.11. Schematic of points analysed while using sFDG. 

 

A second DOE was developed to incorporate the removal stage in the analysis of the soil 

evolution. A 22 experiments custom-design was established. Temperature and pH ranges 

remained the same. Enzyme levels were set between 0.02 g/l and 0.10 g/l, being the 

commercial formulated level somewhere in between these concentrations. Shear stress 

imposed was established from 12 Pa to 65 Pa. This matched the lowest and highest shear 

stress exerted by the gauging fluid. Frequency factor ranged from 8.5% to 100%. A frequency 

factor of 8.5% was set by tracking 6 different locations per sample. As the nozzle needed time 

to move from one location to another, the imposition of external shear stress lasted again 

approximately 30 seconds per location. The scanning sequence was repeated every 6 minutes. 
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A frequency factor of 100% means that the nozzle was sited over a single location for the 

duration of the experiment. Figure 3.12 shows a schematic of the movement of the nozzle for 

each of the extreme frequency factors considered.  

 

A 

 

B 

 

POINT X (mm) Y (mm) POINT X (mm) Y (mm) 

1 -30 20 1 0 0 

2 0 20    

3 30 20    

4 30 -20    

5 0 -20    

6 -30 -20    
 

Figure 3.12. Experimental set-up for different frequencies of application of shear 

stress. A – Six points analysed for frequency factor at 8.5%. Movement of the nozzle 

from point to point occurred every minute. B – Single location analysed for frequency 

factor at 100%. Nozzle was constantly sited on top of the location studied. 

 

Table 3.3 summarises the two different experimental approaches taken: 

 

Table 3.3. Summary of the two different Design of Experiments considered. 

MODEL FACTORS RANGE 
CONSIDERED 

TYPE OF 
DESIGN 

Swelling 
(Nil enzyme) 

Temperature 30ºC – 55ºC Full Factorial 
(9 experiments) pH 9.5 – 11.5 

Swelling 
+ Removal 

(With enzymes) 

Temperature 30ºC – 55ºC 

Custom design 
(22 experiments) 

pH 9.5 – 11.5 

Enzyme 0.02 g/l – 0.1 g/l 

Shear Frequency 8.5% - 100% 

Shear Stress 12 Pa – 65 Pa 
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3.12.2. Swelling studies 

Temperature and pH were selected as the factors to study for both sFDG and gravimetric tests. 

Preliminary statistical studies showed that the effect of pH on swelling was higher than 

temperature. Therefore, for the design of the experiments 3 levels were selected for pH (9.5, 

10.5 and 11.5) and 2 levels for temperature (30oC and 55oC). This resulted in a combination of 

6 different set-ups as shown in Table 3.4. Triplicates were measured for each case and the 

order of the experiments randomized. Tests were run for 180 minutes.  

 

Table 3.4. Design of experiments for swelling studies. 

EXPERIMENT TEMPERATURE pH 

1 30ºC 9.5 

2 55ºC 9.5 

3 30ºC 10.5 

4 55ºC 10.5 

5 30ºC 11.5 

6 55ºC 11.5 
 

For the sFDG runs, 4 points were analysed per sample to asses the variability within a tile. The 

frequency factor was again set about 12.5% of the total experimental time. Shear stress applied 

over the samples was kept constant at 18Pa. Gravimetric tests were performed according to the 

procedure explained in section 3.7. 
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4.1. INTRODUCTION 

In this chapter, Positron Emission Particle Tracking (PEPT) is used for the analysis of water flow 

in a typical dishwasher. The description of water flow in ADWs is critical to create the 

foundational knowledge required to link physical and chemical phenomena as water is the key 

element driving both. A typical water sequence is determined and Lagrangian velocities 

estimated. Eulerian flow-field studies are performed to determine velocity profiles and residence 

time distributions over the inner volume of the ADW. Finally, PEPT data is compared with 

Computational Fluid Dynamic (CFD) data at the same experimental conditions. ADWs show the 

peculiarity of not being completely filled with water. Therefore, this study can also be used as a 

proof of concept for similar systems (i,e. sprinklers or pipe cleaning spray-balls). This chapter 

also aims to understand the role that direct impingement jets might have on cleaning 

phenomenon in these appliances. 

 

4.2. MOTION OF THE TRACER PARTICLE 

Figure 4.1 shows a typical tracer path sequence. 

 

 

Figure 4.1. Time series of a typical tracer path during an interval of 40 seconds in 

a wash cycle. 

 

The rapid increase in ‘z’ direction indicates an ejection from the lower spray arm and the 

decrease the downfall. The tracer was ejected every few seconds and appeared to follow a 

straight line (see further section 4.3). Sometimes, parts of the particle paths were missing (i.e. 
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time = 25s.), as particle locations could not be accurately detected. Above 400 mm, the tracer 

was outside the field of view of PEPT cameras and locations were not collected either. Most of 

the time the tracer was located at negative ‘z’ values, which corresponds to the bulk of water 

remaining at the bottom of the dishwasher. 

 

Figure 4.2 describes the different steps of a typical ejection. 

 

 A B 

1 

 
 

2 

 
 

 
Figure 4.2. Typical water sequence inside an ADW.  1 - ‘No load’; 2 - ‘With load’; A- 3D plot 

scattered over time; B – Time sequence scattered over velocity. 

 

Regardless of the presence of load (crockery and cutlery), the same pattern was observed: 

namely movement inside the pump and spray arm, ejection, impact on the wall or crockery, 

downfall (either over crockery, walls or free falling) and back to the bulk of water. The time scale 

of the process was typically less than 3 seconds and the highest velocity values were found 

upon ejection. 
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The ‘downfall over plate’ stage (Figure 4.2B2) happened within tenths of a second. The 

residence time is of importance in terms of the mechanism of transfer of surfactant/enzymes 

over the soils. As the amount of water present is not constant, cleaning phenomena are likely to 

differ from situations where soils are submerged constantly in cleaning solutions. 

 

4.3. CHARACTERISATION OF JETS 

Figure 4.3 represents the path typically followed by the tracer during its movement inside the 

spray arm and the subsequent ejection from three different points of view. 

 

        A 

 

       B 

 

         C 

 

Figure 4.3. Typical water jet path. A – Front view. B – Side view. C – Plan view. 

 

Plots illustrate that, once water was ejected, the tracer moved in a straight line, with no effect on 

its trajectory from the rotation of the spray arm. This suggests that the rotational inertia given 

can be disregarded with respect to the vertical and radial components (considering a cylindrical 

coordinates system). Therefore, specific locations are targeted from specific ejection points. For 

a given time, jets trajectories can be considered as fixed vectors. A complete and continuous 

coverage of all areas with direct impingement jets was also impossible due to this fact. Jets 

impact a specific location with a frequency related to the rotation rate of the spray arm. 
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Figure 4.4 shows the fitting of a 3D line over multiple particle locations corresponding to a water 

jet ejection. 

A B 

  

Figure 4.4. A – 3D fitting of tracer locations in an ejection stage. B - Histogram error values for the fitting 

of all ejection paths obtained. 

 

The analysis was done before the ‘smoothing’ and ‘interpolation’ steps (see Chapter 3, section 

3.4.3), so any artificial change in the data that can cause interactions in the linearity was 

avoided. Linear fitting was done by obtaining the line with the lowest error of approximation. 

This error was calculated as the sum of all orthogonal distances (represented in Figure 4.4A by 

the red lines) from the different tracer locations to the line and dividing this value by the number 

of locations considered. Therefore, an average distance error per tracer location was estimated 

for a single ejection analysed. Figure 4.4B shows a distribution of the averaged distance errors 

calculated for all the ejections seen. Most of the error values were found to be lower than 2 mm, 

with the highest concentration seen at values around 1 mm. These error distances fell within the 

inner tracer error per location as commented in Chapter 3, section 3.4.1. The low error values 

obtained agreed with the assumption of linearity in the water path once it is ejected.  

 

In Figure 4.5, a photo taken using a high-speed camera shows the path that a single jet follows 

inside an ADW. Photos were taken through a Perspex® window replacing one of the sides of a 

commercially available dishwasher. The linearity in the jet trajectory was again observed.  
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Figure 4.5. High-speed camera capture 

from the inside of an ADW. 

 

4.4. EULERIAN ANALYSIS 

As spray arms in ADWs rotate around a fixed axis, cylindrical coordinates were used in the 

following analysis. A symmetry problem is spotted as loading of crockery occurs along a 

rectangular symmetry while the distribution of water is produced in a cylindrical-rotational way. 

This issue is commented in more detail in Chapter 5.   

 

4.4.1. Velocity profiles 

Figure 4.6 illustrates velocity contours for different experimental conditions. Data was grouped 

as a function of the different steps of the sequential process explained in section 4.2. As for a 

fixed cell location up-flow and down-flow movement might co-exist, plots were divided in two 

rows to avoid any distortion in data analysis. Contours from tracer locations corresponding to 

the motion in the spray arm, injection and upward movement are shown in the first row, while 

contours from tracer down-flow movement and stay in the bulk of the water at the bottom are 

shown in the second row. Velocity values are given in absolute terms for an easier comparison. 

In the first row, tracer movement was ascending (ejection step) and followed the positive 

direction of the height axis. In the second row, tracer movement was the opposite and followed 

the negative direction of the height axis. Velocity colour map scale was set to be the same for 

all plots shown, being the upper limit the highest velocity found over all experimental conditions. 
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In the first row, spray arm area is shown at heights below 30 mm. Above this height, velocity 

contours represent the tracer ejection movement. The impact of a water jet on surfaces was 

hard to characterise through these experiments, as the number of points collected for this 

phenomenon was quite small. For those experiments with ‘no load’, impact areas were found in 

dishwasher walls, that is, at high radial distances. However, with presence of load, impacts 

could happen anywhere, producing high distortions on data results (combination of high velocity 

values for ejections and low velocity values for impacts). As a consequence, impact data was 

removed to preserve quality in the analysis. A small gap in coverage at around 100 mm (radial 

position) can be observed in Figures 4.6A & 4.6B (first row). The specific design of the spray 

arm was responsible of this. The consequence was that water arriving at those areas did not 

come directly from a jet but from water being splashed or during the subsequent downfall stage. 

 

Pump speed effect over the ejection velocity can be seen in Figures 4.6A, 4.6B & 4.6C (first 

row). Tracer velocity increased for higher pump speeds as expected. Contours can be 

considered highly homogeneous over the whole ejection area (above 30 mm) and are not a 

function of the radial distance. A velocity transition was observed at the vicinity of the ejection 

points (heights between 30 mm to 50 mm). This effect will be analysed in detail in section 4.5.2. 

 

In the second row, water downfall over the wall was found at high radial distances. From the 

Stokes number analysis, the tracer particle could be considered in this stage as a small soil 

substance and conclusions still can be made. Low velocity values, corresponding to a dark blue 

colour, were seen. At lower radial values, two behaviours can be identified depending on the 

presence of load or not. In Figures 4.6A & 4.6B (second row), and for cases where crockery 

was not present, tracer downfall inevitably followed a free falling movement driven by gravity 

from the roof of the dishwasher (pale blue to green colour). The same pattern was obtained 

independently of the pump speed, suggesting that the effect of the pump energy input is 

negligible over the downfall stages.  
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When crockery was present, tracer downfall velocities were reduced significantly, matching 

those velocities found at the walls for ‘no load’ conditions. Therefore, a system ‘with load’ can 

be seen as a succession of small walls grouped together. In Figure 4.7, the velocity colour map 

scale was adapted for a typical experiment ‘with load’. The upper limit in the scale was re-set to 

the highest velocity found in that contour plot to allow for a better distinction between areas in 

the downfall step.  

 

 

Figure 4.7. Eulerian velocity plot for downfall stage. Experimental 

conditions: High pump speed, with load & with detergent. 

 

The lowest velocity values were found at a low height, corresponding to the bottom of the plates 

situated in the lower basket. Low velocity values were also found at the edge of PEPT cameras 

(∼400 mm) where the top basket was located. From top positions, the tracer fell down and 

increased its velocity (from 400 mm to 200 mm). As it went down the likelihood to impact a plate 

increased. Once the impact happened, a reduction in velocity occurred (40 mm to 200 mm). A 

sharp transition in velocity can be seen at heights around 200 mm. In this lower velocity area, 

the tracer downfall velocity did not seem to change significantly. The high homogeneity found 

suggests that the distribution of shear stresses (mechanical energy input) over the crockery was 

low. Tracers were washed down at a very low speed even though they were gravity-aided. High 

velocity profile areas occurring before the film jump might had been very localised and spaced 

in time, thus they did not influence averaged results. Other factors affecting the low tracers’ 

velocities could be the inner curvature of plates at their edges, which made the slope smaller; 

flow resistance forces from tracers; or the higher packing factor at low heights due to the 
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presence of both dinner plates (Dcr=270mm) and dessert plates (Dcr=160mm), which made less 

water reach those areas.  

 

Finally, the use of detergent did not seem to affect significantly the flow inside a dishwasher. 

Comparing Figure 4.6C & 4.6E, one would not observe any significant difference on the range 

of velocity values. Less data was obtained for case E due to a lower radioactivity of the tracers 

used. 

 

4.4.2. Residence times 

Residence time plots indicate the average absolute time the tracers spent in every cell location. 

These plots aid to highlight those ‘dead zones’ of the system in which the fluid flow is low in 

comparison to the average of the system. This time is a function of the tracer velocity but not 

the number of tracer passes. Figure 4.8 shows a contour plot of residence time for a typical 

dishwasher set-up, with load and detergent, and for the down-flow stage. 

 

 

Figure 4.8. Residence time contour for down-flow movement. 

Experimental set-up: low pump speed, with load & with detergent. 

 

Regions with higher residence times were found again on walls and crockery areas. The tracer 

seemed to stay longer at the lower heights of walls (i.e. z < 100 mm) and at the edges of the 

bulk of water that remained at the bottom of the dishwasher (i.e. R ≈ Rmax). These zones had 

very low velocity and were stagnant areas. At heights between 10 mm to 100 mm, 

corresponding to high packing ratio areas, high residence times were observed as well. These 
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regions might potentially enhance chemical processes as the contact between soils and 

chemicals is produced for longer. They also combined low mechanical input from the appliance.  

 

4.5. CFD & PEPT DATA COMPARISON 

4.5.1. Eulerian comparison 

Figure 4.9 shows Eulerian velocity contours for (A) CFD and (B) PEPT data. Experimental and 

simulated conditions were: medium pump speed, ‘no load’ and ‘no detergent’. The same 

division between up-flow and down-flow was also carried out. 
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Figure 4.9. Eulerian velocity plots for CFD & PEPT data. A – CFD data. B – PEPT data. 

Experimental conditions: Medium pump speed, ‘no load’ and ‘no detergent’. 
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In the first row, which contains the spray arm and ejection steps, a similar distribution of water 

was observed. PEPT data is noisier than CFD, as a consequence of the variability and 

perturbations occurring in real-life experiments. The gap in water distribution seen in PEPT data 

at around 100 mm of radial distance was also observed for CFD data. Also, CFD plot shows 

another distribution gap at around 150 mm. Slight velocity differences were also observed in the 

vicinity of spray arm ejections (around 30-40 mm). While CFD data showed a sudden change in 

velocity as the water exits the spray arm, the velocity profile estimated using PEPT data was not 

so abrupt. This phenomenon will be discussed in more detail when analysing individual particle 

paths in the following section.  

 

In the second row of Figure 4.9, velocity contours representing the down-flow stage are shown. 

In CFD simulations (A) it was not possible to distinguish the flow down the sidewalls. An 

analogy for this flow would be raindrops falling down a window: wide range of velocities 

depending on the amount of water falling. At low radial distances, free falling movement was 

captured by CDF. Although a homogeneous range of velocity was obtained over most of the 

area, higher velocity values were found for PEPT data. 

 

4.5.2. Particle paths comparison 

Figure 4.10, first row, represents a velocity comparison for spray arm particle paths locations. 

Red colour represents PEPT data, while CFD data is shown in blue colour. In column A, all 

tracer velocities associated to every location were represented in a histogram. The figure shows 

good initial agreement in terms of velocity distributions. Mean values, represented by both 

dotted lines, show a slight higher average velocity for PEPT data. In column B, individual 

particle locations and its associated velocity can be seen. As radial distance increased, PEPT 

tracer velocity tended to increase as well. CFD data was more uniform, in agreement with a 

typical Hagen-Poisseuille velocity profile (Bird et al. 2007). As a consequence, less overlap 

between PEPT and CFD data occurred. This slight increase in PEPT tracer velocity suggests 

that the sudden acceleration effect produced at the nozzle exits might had affected the velocity 

of the tracer as it passes close to those areas. In column C, a statistical t-test comparison is 

shown. The bell-shaped curve represents all variability within CFD values. For data not to have 
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a statistical significant difference, the red line, representing the average PEPT data, should be 

contained within the curve. This statistical difference is explained by the lack of lower PEPT 

velocity values at high radial distances. It is in agreement with the data shown in both columns 

A and B. 

 

 A B C 

S
P

R
A

Y
 A

R
M

 

  

 

U
P

-F
LO

W
 

  

 

D
O

W
N

-F
LO

W
 

  

 

 Figure 4.10. Comparison between PEPT & CFD data. First row - spray arm data. Second row – 

upflow data. Third flow – downflow data.  A – Velocity histograms. B – Particle paths. C – Statistical 

t-test analysis. Red colour – PEPT data; Blue colour – CFD data; Red and blue dotted lines in 

column A represent average velocity values for PEPT and CFD data respectively. Black dotted line 

in column B represents gravity deceleration expected. 

 

In Figure 4.10, second row, a similar comparison for particle velocities in the up-flow stage can 

be seen. In column A, velocity distributions obtained during the ejection step were in good 

agreement, with a slight higher average velocity for PEPT data. In column B, particle velocities 

as a function of height position are shown. The highest velocity values for PEPT data were 
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found at higher axial distances than for CFD data. This is a consequence of the fitting routine 

applied to calculate Lagrangian velocities explained in Chapter 3, section 3.4.3. Moving 

intervals of a defined number of data points were always taken to find the ‘best fit’ line for a 

central tracer location. Whenever there was an abrupt change in the tracer velocity or in its 

direction, as it occurred at the nozzle exits of the spray arm, a delay in the velocity change was 

introduced. The routine always took low velocity locations from the inside of the spray arm to 

estimate velocities near the outlet of the nozzles, even though the defined number of data 

points was small. As a consequence, velocity values were calculated by using low and high 

velocity tracer locations. Therefore, a lag effect was introduced. The delay in the response from 

the tracer particle highlighted with the Stokes number was a factor as well of the deviation found 

in this area. Tracer responded later to an external disturbance when compared to water 

particles.  

 

The abrupt velocity change seen for CFD data at the water jet exits was due to the application 

of Bernoulli’s equation (Eq. 4.1) in the computer model. As the height difference from the inside 

of the nozzle to the outside was negligible, the change in velocity given was a function of the 

pressure difference. Changing the diameter of the nozzles can also change the ejection 

velocity. The bigger the outlet area, the slower the ejection velocity to maintain a constant flow 

rate. 

!!
!! +

!
!!"!

+ ℎ = !"#$%&#%     Eq. 4.1 

 

Outliers from PEPT data can also be seen. These are represented by those locations outside 

the main cloud of points and are responsible of the variability of PEPT data. They appeared 

when the tracer travelled at high velocities and PEPT cameras could not collect enough data 

points or when the radioactivity of the tracer was not high enough. Processing routines were not 

able to correct entirely the presence of these points. Limitations in the field of view of PEPT 

cameras were also observed. No locations were collected at height positions above 400 mm.  

 

Gravity deceleration is represented by the black dotted line. It can be seen that for both types of 

data, the deceleration was higher than the expected by only gravity action. Air resistances for 
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water simulated particles and tracer movement on the ejection may explain the deceleration 

observed. 

 

In column C, a statistical t-test to compare both data sets is shown. The bell-shaped curve 

represents the variability within CFD data. A significant difference was obtained as the red line, 

representing the average PEPT velocity value, was found at the right side of the curve. The 

difference was produced by the lack of PEPT data above 400 mm. Lower velocities expected 

above this height were not found and this increased PEPT tracer velocity average value. 

 

Finally, in Figure 4.10, third row, the comparison was done for the down-flow stage. Only free 

fall data was used. A significant difference was observed in the histogram shown in column A. 

Although the distribution shape was similar, there was a clear displacement from CFD data to 

PEPT data. PEPT data showed higher downfall velocities than those predicted by CFD. In 

column B, representing particle locations and its associated velocities, PEPT cloud of points 

was found at higher velocities than CFD cloud. No PEPT data was again observed at heights 

above 400 mm. At height positions lower than 20 mm, the velocity of PEPT tracer decreased as 

they reached the bottom part of the dishwasher. A smooth velocity transition was again 

observed, which relates to the constraints of the processing routine used. As the tracer reached 

the bulk of the water at the bottom, its velocity should have decreased sharply. Gravity 

acceleration is shown as the black dotted line. The line indicates that an initial velocity from the 

roof of the dishwasher is necessary to match PEPT data. This suggests some energy carryover 

of the tracer after the impact on the top. No clear reason was found to explain this phenomenon. 

Inner elasticity of the tracer might have produced a bouncing off effect at the roof of the 

dishwasher. In column C, the statistical t-test comparison shows a significant difference 

between CFD and PEPT data as expected.  

 

In Table 4.1, absolute mean values and standard deviations were calculated for every 

distribution shown before. Results matched well for the spray arm and ejection steps and 

differences were found in the downfall part. 
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Table 4.1. Velocity mean and standard deviations values for PEPT and CFD data. 

STEP / TYPE 
OF DATA 

PEPT CFD 
MEAN STD MEAN STD 

Spray Arm 1.60 0.43 1.43 0.45 
Ejection 7.69 3.16 7.24 2.30 
Downfall 5.05 2.12 3.31 0.97 

 

4.6. ALTERNATIVE ANALYSIS 

4.6.1. Velocity characterisation in the spray arm 

In Figure 4.11, the time the tracers spent inside the spray arm is shown as a function of the 

radial position from which they were ejected. Data from four different experimental set-ups was 

represented: (A) High pump speed, no detergent; (B) Medium pump speed, no detergent; (C) 

Low pump speed, no detergent; (D) Low pump speed, detergent. Each data point shown 

represents a single pass of a tracer through the spray arm. A linear trend was obtained for each 

of the experimental conditions. Lines were forced to pass through the origin as time zero was 

considered the time at which the tracers entered the spray arm (distance travelled equal to 

zero). By calculating the slopes, the average velocity of the tracer inside the spray arm was 

estimated. 

 

 

Figure 4.11. Radial distance travelled by the tracers vs. Time in spray arm until 

ejection. A – High pump speed, no detergent; B – Medium pump speed, no 

detergent; C – Low pump speed, no detergent; D – Low pump speed, detergent. 
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Table 4.2 shows a comparison between the averaged velocity estimated using all Lagrangian 

data available for each case (method A) and the velocity values calculated through this 

alternative method (method B):  

 

Table 4.2. Average velocity comparison inside the spray arm between the two methods. Standard error 

deviation and goodness of fit are shown in brackets for Method A and B respectively. Method A – 

Averaged velocity from all Lagrangian data points for each experimental set-up; Method B – Velocity 

estimated by dividing the distance travelled by a tracer in the spray arm before ejected and the time taken. 

EXPERIMENT 
/ TYPE OF 

DATA 

HIGH PUMP 
SPEED 

MEDIUM 
PUMP SPEED 

LOW PUMP 
SPEED 

LOW PUMP 
SPEED 

NO DETERGENT WITH 
DETERGENT 

Method A 
1.67 m/s  

(Std = 0.68) 
1.17 m/s  

(Std = 0.58) 
0.71 m/s  

(Std = 0.35) 
0.75 m/s  

(Std = 0.34) 

Method B 
1.67 m/s 

(R2 = 0.83) 
1.18 m/s 

(R2 = 0.78) 
0.79 m/s 

(R2 = 0.66) 
0.75 m/s 

(R2 = 0.79) 
 

The different pump speeds had a noticeable effect. As pump head increased, the slopes of the 

trend lines, and therefore, their average velocity values increased as well. The effect of 

detergent on flow is proved again negligible. Both lines obtained at same pump speed (A & D) 

did not show variance in the slope given and they overlapped well.   

 

4.6.2. Comparison of Lagrangian and Eulerian data based histograms  

Two different sources of data can be used to build velocity histograms: Lagrangian data 

(particle paths) or Eulerian data (time-average data in a discretised space).    

 

Some characteristics from velocity histograms based on Lagrangian data are:  

• A Higher number of data points are used compared to Eulerian data histograms, as all 

individual particle locations are considered. 

• Time is an important factor. The amount of data generated could be higher or lower 

depending on the resolution of the data collection equipment and the decay on the 

activity of the tracer. 

• Spatial distribution of data may result in areas with higher concentration of points. 

Therefore, the histogram distribution can vary as a function of these specific regions.   
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Some characteristics from histograms based on Eulerian data are: 

• A lower number of data points is used. Lagrangian data is time-weighted average and 

just one value is taken per cell location.  

• Spatial distributions effects are removed due to the averaged data value in every spatial 

location. 

• Time effect is removed as well. The inputted data is time-weighted per cell. Therefore, 

time error factor is minimised.  

 

Figure 4.12 shows a velocity histogram built from Lagrangian and Eulerian PEPT data. Data 

corresponds to the ejection step at high pump speed, ‘no load’ and ‘no detergent’ conditions. 

Eulerian data was previously shown in Figure 4.6B and Lagrangian data in Figure 4.10, 

second row 

. 

 

Figure 4.12. Velocity histogram comparison between Lagrangian 

and Eulerian PEPT data for the up-flow stage. Experimental 

conditions: High pump, no load and no detergent. 

 

Results did not show significant differences between data sources when velocity distributions 

were plotted. This indicates that the spatial distribution of data points was highly homogeneous, 

which increases the reliability on CFD and PEPT data comparisons done and on the histogram 

velocity analysis explained next. 
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4.6.3. PEPT data histogram comparison: effect of pump speed 

In Figure 4.13, a velocity histogram analysis was done to compare velocity distributions for the 

different pump speeds used experimentally: low, medium and high. Data was divided in three 

main steps: spray arm movement (A), ejection (B) and downfall (C). As detergent use was 

proved to not affect flow, it was not considered as an influential factor in the following analysis. 

Ejection and downfall plots were made by inputting Eulerian data. However, it was not possible 

to construct Eulerian-based histograms for the spray arm step. As the geometric space was 

very small in that area, it would have required smaller cell sizes to generate enough Eulerian 

information. This would have made cells even smaller than the location error associated with 

PEPT data.  

 

A B C 

   

Figure 4.13. Velocity histograms for PEPT experiments. A – Spray Arm. B – Ejection. C – Downfall. 

Experimental set up: Red: High pump speed, no load & no detergent. Blue: Medium pump speed, no load 

& no detergent. Green: Low pump speed, with load & with detergent. 

 

Figure 4.13A shows a comparative velocity histogram for the spray arm stage. Pump speed 

affected the velocity flow and distributions became wider as velocity was increased. This agrees 

with the application of Navier-Stokes theory for the inner flow in ducts. Either for laminar (linear 

profile) or turbulent flow (parabolic profile) theory predicts a maximum velocity value at the 

centre of the pipe and a reduction of it as it moves to the proximities of the pipe wall. Thus, the 

higher the velocity achieved, the wider the distribution. As histograms have a normal distribution 

shape, peaks relate to the average velocity estimated. 
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In Figure 4.13B, a comparative histogram for the ejection step can be observed. Again, the 

effect of pump speed in velocity flow is shown. As mentioned before, the impact stage on the 

experimental set-up ‘with load’ was removed to increase the quality of the data. A wider 

distribution was seen for the case of high pump speed, as velocities reached were higher. In 

every case, distributions mix the initial acceleration period to reach the maximum velocity and 

the subsequent deceleration. 

 

Finally, Figure 4.13C illustrates a comparative histogram for the down-flow stage. The same 

bimodal distribution was observed for both high and medium pump speeds with ‘no load’. This 

suggests that pump speed had no effect in this latter stage of the water sequence. The two 

possible ways for the tracer to fall in an empty dishwasher can be also inferred from data: free 

falling and downfall along the walls. The bump at lower velocities corresponds to the downfall 

along the walls while the bump at higher velocities indicates a free falling movement. For data 

‘with load’, the distribution was highly displaced towards values close to zero, suggesting that 

the effect of load packing slowed the tracers in their move to the bottom. This also indicates the 

low mechanical input provided by the ADW to haul soil particles. Shear stresses generated by 

the water must had been low as tracers were washed down very slowly.  

 

4.7. SUMMARY 

Water motion inside a household ADW was described via PEPT. Data processing introduced a 

newly developed algorithm to enhance data quality by including smoothing and interpolation 

routines.  

 

Analysis of the data showed how a typical water sequence can be divided into the following 

stages: movement inside pumps and spray arms, ejection, impact, downfall (over walls, 

crockery or free falling) and residence in the bulk water remaining at the bottom.  

 

Jets paths were determined to follow a straight line for a fixed position and time, so their study 

can be discretised and analysed as a vector problem. Therefore, a specific dishwasher location 

is impacted at a frequency rate related to the rotational speed of the spray arms.  
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The Eulerian velocity analysis showed that the highest velocities over the whole sequence were 

found on the ejection stage. Energy provided by the pump was the main factor affecting 

velocities in the spray arm and ejection stages, although its influence was shown to be 

negligible during the downfall process. At this latter stage, the main difference in flow was found 

in those areas with high packing density of crockery, where there was little space for the tracer 

to move. The low velocity profiles seen suggest a low shear distribution over most of the 

crockery loaded as tracers were washed down very slowly. The homogeneous low velocity 

profile found in crockery areas also suggested a small coverage from the high velocity water 

films (before film jump) generated after the impact of jets over different crockery surfaces.  

 

Residence time analysis highlighted lower wall areas and edges of the bottom bulk of water as 

those areas where tracers stayed for longer, and therefore, that can be considered as stagnant 

zones. Some high residence values were also found in crockery areas with high packing 

density. This could benefit chemistry availability and interaction with soils in those zones. 

 

A comparison between PEPT and CFD data was done for a case with an empty dishwasher (no 

load or basket in the inner volume). Good agreement was achieved for spray arm and ejection 

steps. However, differences appeared in the downfall free falling profile. A hypothesis is that 

PEPT tracers bounced off at the roof of the dishwasher creating a higher velocity profile than 

predicted by CFD. Finally, alternative analyses showed a negligible effect of detergent on the 

water flow.  

 

Other factors that might be of interest in future work, but not explored in here, are the density 

and viscosity of the wash solution, which could affect the velocity, residence time and shear 

stress profiles generated over different items. Results and conclusions made through this 

chapter are used in the following chapter to develop a mathematical model that describes the 

effect of different design parameters (dishwasher dimensions, spray arm design or crockery 

distribution) on the water sprayed in different dishwasher areas, impact frequencies and direct 

impingement coverage of crockery.  



 

 

CHAPTER 5 

 

ADWs DESIGN AND ITS INFLUENCE ON 

WATER DISTRIBUTION 
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5.1. INTRODUCTION 

This chapter develops a mathematical model to describe and predict the distribution of water via 

coherent jets. The new method is based on geometric and trigonometric principles. The work 

also aims to understand current ADW design limitations with the analysis of different design 

parameters that affect the distribution of water. To compare results from multiple design 

combinations non-dimensionless and dimensionless output parameters are defined. The 

methodology shows the benefit of being a simple and quick (quicker than CFD) tool to 

understand design constrains and to predict jet trajectories.  

 

5.2. METHODOLOGY 

5.2.1. Assumptions 

The methodology developed assumes that the initial distribution of water around the inner 

volume of the dishwasher occurs via coherent jets formed as the water goes through the 

different nozzles. Coherent jets were characterised previously (see Chapter 4) via Positron 

Emission Particle Tracking (PEPT) and observed thanks to the high-speed camera Image 

Analysis (Figure 4.5) . Also, this phenomenon is also reported later in Chapter 7, Figure 7.8. 

The subsequent spread of water via breakage of those jets after impacting different surfaces 

and the waterfall created in some areas is not considered here due to the significant complexity 

that arises. The methodology attempts to evaluate only the distribution of water until the impact 

of those jets.    

 

The analysis considers circular plates of different diameters with no shape, that is, completely 

flat. This is the simplest geometry possible to start formulating the method. These plates are 

theoretically placed vertically at different locations in the dishwasher. They will be referred to as 

‘analysed plate(s)’. Impacts are studied as the intersection projection of a jet over the plane 

generated by the analysed plate. As coherent jets are assumed (negligible changes on their 

diameter once ejected and no breakage of them), a single impact point occurs at a defined 

nozzle position, design and spray arm location in the ADW. As the spray arm rotates, more 

impact points are defined.  
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5.2.2. Definition of variables 

Initially the system needs to be parameterised. The different design variables comprehend 

various elements such as dishwasher internal dimensions, spray arm design or plates 

(crockery) characteristics. Table 5.1 summarises the design inputs considered. 

 

Table 5.1. Definition of input parameters. 

 

The particular design of ADWs arises two different types of symmetries: a Cartesian distribution 

of crockery and a cylindrical distribution for the spread of water. The origin of any coordinate 

system is located at the bottom centre of the dishwasher, in line with the rotational axis of the 

spray arm. To describe the results, a series of non-dimensionless and dimensionless 

parameters are introduced. They can be divided into ‘time factors’ and ‘spatial factors’. First 

ones are related only to time and the second ones to geometry parameters. All the variables 

defined take as a reference one complete rotation of the spray arm. In Table 5.2, the outputs 

considered and their definitions are shown: 

 

 Type Name Symbol 

IN
PU

TS
 

Dishwasher internal 
dimensions 

Width WDW 

Depth DDW 

Height HDW 

Spray arm design 

Radial nozzle position RNZ 

Height nozzle position zNZ 

Nozzle diameter DNZ 

Theta angle (x-y angle) θjet 

Rho angle (Radius-z angle) ρjet 

Spray Arm Rotation Rate ω 

Plates characterisation 

Plate Diameter DPL 

Width Plate position xPL 

Depth Plate position yPL 

Height Plate position zPL 

Radial Plate Position RPL 

Separation between plates d 

Nozzle-Plate Relative position 
(RNZ – RPL)/ RPL 

*R 
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Table 5.2. Definition of output variables. *A complete description of the different outputs definitions is given 

after Figure 5.1. 

 Type Name Symbol Definition* 
O

U
TP

U
TS

 

Non-
dimensionless 

Time travelling in vision area tvis 
(!!"- !!"#) / ω 
Appendix A.2 

Time impacting plates Timpact Appendix A.2 

Impact distance on plates Limpact Appendix A.2 

Dimensionless 

Effective impact time in vision 
area !!"# Timpact / tvis 

Effective impact time per lap !!"# Timpact / tlap 

Effective impact length ! Limpact / DPL 

Overall efficiency ! τvis · δ 

 

Figure 5.1 illustrates a visual representation of the input and output parameters defined.  

A 

 

B 

 
C 

 

Figure 5.1. Schematic representation of inputs and outputs parameters. Origin (O) is located at the bottom 

centre of the dishwasher. A – Plan view; B – Front view; C – Nozzle design. 
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The path of the jets produced from different nozzles is characterised by a direction vector. This 

indicates the 3D trajectory the coherent jet will follow. It depends on the design of the nozzle 

and can be expressed in polar coordinates. An angle theta (θjet) is defined as the angle the jet 

has in the x-y plane (plan view). Another angle, rho (ρjet), is defined as the angle between the x-

y plane and z-axis (front view). The combination of both gives the 3D projection that describes 

the trajectory of the jet.   

 

‘Vision area’ is considered as the space between the analysed plate and the previous plate 

sitting in front of it (see Figure 5.1A). The time a nozzle is travelling within that vision area (tvis) 

per spray arm rotation represents the maximum time a jet is likely to impact the analysed plate. 

It is assumed that any jet standing out of the vision area will not hit the analysed plate. As the 

trajectory of a nozzle travelling within that area is circular, tvis is a function of the angular 

positions at which the nozzle enters (!!") and exits (!!"#) the defined ‘vision area’ and the 

rotational speed of the spray arm (ω). Two other non-dimensionless parameters are also 

defined: the total time a jet is directly impacting the plate per rotation (Timpact) and the length 

(Limpact) covered by the impact (see mathematical definitions in Appendix A.2).  

 

However, the introduction of dimensionless parameters allows a wider and homogeneous 

comparison between different cases. The rotational rate (ω) of a spray arm is traditionally linked 

with its design and flow rate (not considered). Typically, this factor is fixed for a specific ADW 

model and cycle. It influences by definition the ‘time travelling in the vision area (tvis)’ and also 

the ‘time impacting the plates (Timpact)’. For a given spray arm design and plate position, the 

increase in the rotational rate reduces both tvis and Timpact. To eliminate the influence of this 

factor, an effective impact time (in the vision area) is introduced (!!"#) as a dimensionless 

parameter. It is defined as the ratio between Timpact and tvis. The range of !!"# varies from 0 to 1. 

Overall, ω affects the frequency of impact (how often a new impact happens on the same item), 

but not the ratio of ‘net impact time over maximum impact time per rotation’ established by !!"#. 

Also, an effective impact time per lap can be defined (!!"#) as the ratio between Timpact and a lap 

time (tlap). Due to the impossibility of a jet to impact continuously a specific analysed plate for a 
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rotation, the value of !!"# will never be as high as one. It represents the ratio of time the jet is 

impacting the analysed plate per rotation, that is, its frequency.  

 

A similar approach is considered to eliminate the influence of the plate diameter (DPL). An 

effective impact length (!) is defined as the ratio of length covered by the impact of the jet 

(Limpact) and the diameter of the analysed plate (DPL). It also ranges from 0 to 1. A value of 1 

would indicate that the jet is impacting an equivalent length to the plate diameter.  

 

The introduction of !!"# and ! to characterise the time and geometrical phenomena establishes 

an easy way to compare information within different ADWs. Cases can occur where !!"# values 

are high while ! values are low, indicating a continuous impact of a jet over the analysed plate 

but at a very specific area. The opposite case can also occur: low values for !!"# with high 

values for !, indicating a good coverage of the jet but for a minimal impact time. To correlate 

both phenomena, an overall efficiency (!) is defined as the relationship between !!"# and !. It 

again ranges from 0 to 1. A value closer to 1 would indicate the best case scenario, where the 

jet is both impacting the maximum length possible and for the maximum available time. 

 

5.2.3. Case study: computational experimental design 

In order to understand the influence of different input parameters to the outputs already defined, 

a computational experimental design was conducted. Five input parameters were studied: plate 

diameter, separation between plates, nozzle-crockery relative position, theta and rho angles 

(nozzle design). Different levels were assigned and a full factorial design was followed. Table 

5.3 illustrates a summary of the levels studied:  
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Table 5.3. Levels of the different inputs selected for computational experimental design studied. 

VARIABLE TYPE NAME SYMBOL UNITS LEVELS 

Plates 

Characterisation 

Plate 
Dimension DPL mm 100 - 150 - 200 - 250 

Separation 
between 

plates 
d mm 10 - 20 - 30 - 40 - 50 - 60 - 70 - 80 - 

90 - 100 

Spray Arm 
Design 

Radial 
nozzle 

position 
RNL mm 10 - 40 - 70 - 100 - 125 - 150 - 180 - 

210 - 240 

Theta angle θjet 
Degree

s 
1 - 20 - 50 - 70 - 80 - 85 - 90 - 95 - 

100 - 110 - 130 - 160 - 179 

Rho angle ρjet 
Degree

s 
10 - 30 - 45 - 60 - 70 - 75 - 80 - 85 - 

89 

 

Inputs not analysed were set to typical design values. Table 5.4 shows those fixed values used. 

 

Table 5.4. Fixed values for inputs not selected for the computational experimental design. 

VARIABLE 
TYPE NAME SYMBOL VALUE 

Dishwasher 
dimensions 

Width W
DW

 540 mm 

Depth D
DW

 500 mm 

Height H
DW

 620 mm 

Spray arm 
design 

Nozzle diameter D
NZ

 2 mm 

Spray Arm Rotation 
Rate ω 30 rpm 

Plates 

Width plate position xPL 125mm 

Depth plate position yPL 0 mm 

Height plate position zPL 50 mm 

 

Dishwasher dimensions only constrain the number of plates or crockery items that can be 

loaded and their locations. The analysed plate was located at the mid-right side of the bottom 

rack (125, 0, 50) as seen in Figure 5.1A. This established symmetries between the different 

positions of the nozzle in the spray arm and plate itself. In Figure 5.1B it can be observed how 

the different nozzles can either be centered related to the plate or shifted to the right or left. The 

gap between the lower spray arm and the bottom of the plate was 20 mm. The spray arm height 
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position was 30mm (zNZ = 30 mm). Its rotational speed (30 rpm) was within the values typically 

found in commercially available ADWs.  

 

A total number of 42,120 design combinations were analysed, obtaining as a result values for 

the output parameters defined in Table 5.2. Information gathered was represented using ‘Box 

Plots’, which grouped data for each of the factor levels and indicated the tendency in the 

variation of the outputs via median and quartile representations. Results are shown in section 

5.4. 

 

The routine developed can also be used to determine optimum cases and the projection pattern 

for a fixed set of conditions given.  

 

5.3. PROJECTION PATTERN EXAMPLES 

Figure 5.2 illustrates an example of a range of jet patterns that can be produced. 

 

A 

 

B 

 

C 

 

Figure 5.2. Schematic of different projection examples. Each line represents the projection of a jet over 

the plane formed by the analysed plate. Analysed plate is represented by the circle at the right side of the 

graph. A – Colormap scale based on time impacting plates, Timpact(s); B – Colormap scale based on impact 

distance on plates, Limpact(mm); C – Colormap scale based on global efficiency value (α). Jets are 

numbered from left to right. 

 

The design information as well as the results are compared in Table 5.5. All examples were set 

for the same separation between plates (d = 20 mm) and different nozzles were placed along 

the length of the spray arm. Theta and rho angles from nozzle design were varied in a wide 
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range of values. The diameter of the analysed plate was 250 mm (DPL = 250 mm) and the 

rotational speed 30 rpm (1 rotation = 2 seconds). Jets are numbered from left to right. 

 

Table 5.5. Example of various designs and their calculated results. 

INPUTS OUTPUTS 

#	

SEPARATION	
BETWEEN	
PLATES	

(d	[=]	mm)	

NOZZLE	
POSITION	
(RNZ	[=]	
mm)	

NOZZLE	
–PLATE	
REL.	
POS.	

(*R)	

THETA	
ANGLE	

(θjet		[=]	
degrees)	

RHO	
ANGLE	

(ρjet		[=]	
degrees)	

tvis (s) Timpact 
(s) 

Limpact 
(mm) 

!!"# ! ! 

1	 20 40 -0.68	 90 85 0.1667 0.1303 178.8 0.78 0.72 0.56 

2	 20 60 -0.52	 20 60 0.1082 0.0935 97.7 0.86 0.39 0.34 

3	 20 150 0.2	 130 89 0.0426 0.0069 244.5 0.16 0.98 0.16 

4	 20 240 0.92	 179 30 0.0266 0.0046 227.1 0.17 0.91 0.16 

 

The first jet shows good coverage of the plate (Limpact = 178.8 mm / ! = 0.72) and also a fairly 

high effective impact time (Timpact = 0.1303 s / !!"# = 0.78). A theta angle value of 90 degrees 

makes the jet impact the analysed plate with very little displacement in the x-direction. Also, a 

rho angle design of 85 degrees lets the jet travel high enough to reach top areas of the 

analysed plate. For the second jet, a displacement on the impact trajectory to the right is seen 

as a consequence of a theta angle of 20 degrees. The use of a lower value for rho (60 degrees) 

does not allow the jet to travel high and therefore less distance is covered (Limpact = 97.7 mm / ! 

= 0.39). However, the jet manages to impact the surface of the analysed plate during most of 

the time travelling within the vision area (Timpact = 0.0935 s / !!"# = 0.78). This represents a case 

where a jet impacts a very specific area for longer times. For the third jet, the trajectory followed 

is influenced by a rho angle design value of 89 degrees. This causes the jet to hit a large 

distance on the analysed plate (Limpact = 244.5 mm / ! = 0.98) providing a good coverage. 

However, the impact occurs for a very short period of time (Timpact = 0.0069 s / !!"# = 0.16). It can 

be seen how the jet manages to reach the ceiling of the dishwasher, meaning that no impact is 

happening on the analysed plate during that time. Also, a displacement of the jet trajectory to 

the left could be expected because of a theta design angle of 130 degrees. This is not produced 

as a consequence of the high value of rho angle. Finally, the influence of theta angle design is 

shown for jet number four. A value of 179 degrees makes the jet trajectory to travel left on the x-
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direction. A similar consequence than the case before is produced: good coverage (Limpact = 

227.1 mm / ! = 0.91) but for short times (Timpact = 0.0046 s / !!"# = 0.17). The jet trajectory is 

almost parallel to the x-z plane formed by the analysed plate.    

 

 

Figure 5.3. Plan view of a schematic of different angles covered by nozzles placed at two different 

radial distances. Red and green dotted lines show trajectories for two nozzles considered. ß angles 

represent the angles formed between the position at which a nozzle enters the ‘vision area’, the origin 

and the analysed plate. 

 

Different nozzle positions influence the available time a jet is travelling within the vision area 

(tvis). The closer the nozzle to the axis of rotation the longer the time travelling in that area. This 

is a consequence of the symmetry between plates placed in parallel and the rotational 

movement of the spray arm. In Figure 5.3, the angle displacement for two nozzles at different 

radial positions is proved to be different when symmetry between plates exists (!! > !!). As the 

angular velocity ! = !"
!"  is the same and the angle covered different, the time is therefore 

different. Higher separation between plates also provides longer times in the vision area. A 

displacement of the analysed plate towards the front or back of the dishwasher also changes 

the radius distance where the plate is located from the origin. Thus, angles and time in vision 

area also vary.  
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5.4. COMPUTATIONAL CASE STUDY RESULTS 
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Figure 5.4. Boxplot results for the different input parameters considered. Effective impact time (!!"#), effective impact 

length (!) and global efficiency (!) results are distributed in first, second and third column respectively. Plate 

diameter (DPL), separation between plates (d), nozzle-plate relative position (*R), nozzle’s theta angle (θjet) and 

nozzle’s rho angle (ρjet) results are shown from first to fifth row. Note: Results from second row on are expressed 

only for DPL = 250 mm. 
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5.4.1. Influence of plate diameter (DPL) 

Figure 5.4 shows the results from the computational experimental design in the form of ‘box 

plots’. They have been separated in different columns showing the effective impact length (!), 

effective impact time (!!"#) and global efficiency (!) values as a function of the different levels of 

the input parameters considered for the analysis. The horizontal red lines represent median 

values. The edges of the boxes indicate both the 25th and 75th percentile, while data considered 

as outliers are shown as red dots outside the black edges.  

 

The influence of plate diameter (DPL) clearly shows that the bigger the plate or element of 

crockery the higher the chances of a jet to impact it for longer while covering also a higher 

distance. Boxes are displaced towards higher efficiency values as the size of the plate 

increases.  

 

Effective impact length (!) values higher than 1 can be achieved for some particular cases. As a 

nozzle presents a curved trajectory in the vision area, the impact projection can be curved as 

well. Therefore, the length covered can be higher than the plate diameter.  

 

As the increase in plate diameter improves the quality of the results, further data is only 

represented for a plate diameter of 250 mm. This allows a clearer representation, as higher 

sensitivity is found due to a reduction in the size of the boxes. Equivalent box plots can be found 

for lower plate diameters, but with lower efficiency values.  

 

5.4.2. Influence of separation between crockery elements (d) 

In the second row of Figure 5.4, the separation between plates (d) shows an optimum value 

around 20 mm to 30 mm for !!"#. The greater the distance between consecutive plates, the 

higher the time travelling within the vision area and also the higher the chances to impact 

different locations outside the analysed plate. Jet projections can cover a wider area. Thus, from 

an effective use of time, separations higher than 30 mm are likely to reduce its time 

effectiveness.  
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The higher coverage that can be produced for higher separations is seen for ! values. More 

designs will be able to cover a wider area of the analysed plate when the gap between 

consecutive plates increases. If the space between plates is on the contrary small, less design 

combinations will be able to efficiently cover a wider area of the analysed plate.  

 

When both parameters, time and length covered, are combined, the resulting global efficiency 

shows a plateau for separations higher than 20 mm. Also, the smaller the separation the higher 

number of crockery items that can be loaded in the ADW.  

 

5.4.3. Influence of nozzle-crockery relative position (*R) 

In the third row of Figure 5.4, the influence of nozzle-crockery relative position (*R) on the 

different outputs considered can be seen. This relative position is calculated for similar y-axes 

coordinates between the nozzle and the analysed plate (i.e. just below the plate). Negative 

values indicate that the nozzle is on the left side when compared with the x-axis position of the 

centre of the analysed plate. Positive values indicate the nozzle is displaced to the right side.  

 

Similar tendencies are found for effective impact time (!!"#) and effective impact length (!) 

boxplots. When the nozzle is placed at the same x-axis coordinate than the analysed plate 

(centered position), the likelihood of longer impacts and longer lengths increases. As the nozzle 

is displaced towards the edge of the analysed plate, less design combinations produce a good 

result.  

 

The symmetry is not the same for both positive and negative nozzle-crockery relative positions. 

The rotation of the spray arm produces slightly better results when the nozzle is on the right 

side. Within the vision area and for the case considered, the nozzle will be moving from left to 

right due to the rotational movement (see Figure 5.3). Therefore, for an absolute value of i.e. 

0.92, a nozzle placed on the left side (-0.92) will start travelling in the vision area at more 

remote positions than 0.92 and it will move towards that reference. For a nozzle placed at the 

right side (0.92), the movement will be the opposite: it will go from more centered positions 

(lower than 0.92) to the edge. Thus, as in this second case the nozzle is ‘seeing’ the plate 
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better, the likelihood for better results increases. The symmetric distribution of crockery, makes 

the effect to be the opposite for the backside of the ADW. Jets will be moving from right to left.  

 

5.4.4. Influence of theta angle (θjet) 

The forth row of Figure 5.4 analysed the influence of the nozzle’s theta angle (θjet). This angle is 

the one seen from the jet when looking at it from above (x-y plane). Results show an inverse 

effect between !!"#  and !. In both cases, a plateau is seen for angles between 70 and 110 

degrees. No important trajectory changes are produced when design values are within that 

range. At the extreme cases is where the inverse effect is highlighted. As commented for 

Figure 5.2, theta angles close to 0 or 180 degrees makes the jet travel almost parallel to the x-z 

plane where the analysed plate is located. Therefore, impacts at these design extreme values 

are able to cover most of the length of the analysed plate but for very short periods of time. 

 

No angular positions higher than 180 degrees are considered. A design like that would make 

the jet impact the back of the analysed plate. The jet trajectory would be moving backwards 

from its ejection point.  

 

5.4.5. Influence of rho angle (ρjet) 

Finally, in the fifth row of Figure 5.4 the influence of nozzle’s rho (ρjet) value is studied. This 

angle corresponds to the one formed by the jet when looking at it from the front (radial-z plane). 

The effective impact time (!!"#) analysis shows an optimum value around 70 degrees with a 

rapid decrease for higher angles. For the effective impact length (!), a sigmoidal type increase 

with an optimum value at around 85 degrees is seen. The higher the angle the higher the jet is 

able to travel in a smaller space (higher packing). Therefore, a good coverage is almost assured 

when this angle value is high. However, as indicated previously and showed in Figure 5.2, if the 

rho angle was too high then the jet would travel higher than the analysed plate and an effective 

use of time would not be reached. This explanation justifies the tendency seen in !!"# after the 

optimum value. Overall, the global efficiency parameter (!) shows an optimum around 75 

degrees. In Figure 5.5, the median and 75th percentile values are shown for different plate sizes 

and for the effective impact time. When smaller plate sizes are analysed a displacement of the 
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optimum !!"# towards smaller angles is shown. This proves a strong influence of plate size on 

this parameter for !!"# optimum. The commented decrease in efficiency can be seen for 75th 

percentile values. This effect is hardly appreciated for median results.  

 

A 

 

B 

 

Figure 5.5. Effective impact time (!!"#) as a function of rho angle different levels. Results are expressed 

for four different plate diameters considered. A – Median values; B – 75th percentile values. 

 

Angles higher than 90 degrees are not considered in the study. A design with those values 

would hit the back of the analysed plate for the set-up considered. If the analysed plate was 

presented with some inclination (backwards or forward) the analysis would change. The jet 

trajectory, nozzle path and plate position defines a triangle. In Figure 5.6, a schematic of the 

problem is seen. If the triangle was ‘obtuse’ (plate lying backwards), then the impact of the jet 

would be highly compromised and would be less likely to happen. If the triangle was ‘acute’ 

(plate lying forward), the jet could face easily the front of the analysed plate. A better 

performance is expected with a higher value of !.  

 

Figure 5.6 Schematic of different ‘analysed plate’ 

angle positions for a single jet trajectory. 
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5.5. OPTIMUM FINDING 

The establishment of efficiency parameters (!!"#, ! and !) allows the finding of optimum design 

values. For the case study considered (see Table 5.3) and for a plate diameter (DPL) of 250 

mm, the designs with the highest global efficiency coefficients (!) were ordered. Table 5.6 

presents the best 20 theoretical results obtained. 

 

Table 5.6. 20 best design combinations for the computational experimental design considered. 

INPUTS OUTPUTS 

d *R θjet ρjet T (s) L (mm) !!"# ! ! 

100 -0.2 50 60 0.497 250.7 0.993 1.003 0.996 

90 0 85 70 0.253 249.4 0.991 0.998 0.988 

90 0.2 95 70 0.203 249.3 0.991 0.997 0.988 

90 0 80 70 0.252 250.2 0.985 1.001 0.986 

70 -0.2 50 70 0.243 249.9 0.985 0.999 0.985 

50 0 50 75 0.131 245.7 1.000 0.983 0.983 

90 0.2 100 70 0.200 250.5 0.978 1.002 0.980 

90 0.2 85 70 0.203 247.3 0.990 0.989 0.980 

90 0.2 90 70 0.203 247.2 0.990 0.989 0.979 

90 0 90 70 0.252 248.3 0.985 0.993 0.978 

50 0.2 130 75 0.107 246.3 0.990 0.985 0.975 

90 0.2 80 70 0.201 247.9 0.983 0.992 0.975 

30 -0.2 20 70 0.095 248.2 0.980 0.993 0.973 

20 0 110 85 0.051 243.3 0.999 0.973 0.973 

20 0 70 85 0.051 243.2 0.999 0.973 0.972 

40 0 110 80 0.104 242.3 1.000 0.969 0.969 

80 0 110 70 0.221 241.6 1.000 0.967 0.966 

40 0 70 80 0.104 241.6 1.000 0.966 0.966 

60 0 110 75 0.159 241.3 1.000 0.965 0.965 

50 -0.2 50 75 0.165 242.9 0.990 0.972 0.962 

 

Nozzle-plate relative position (*R) and rho angle (ρjet) are highlighted as the main factors 

affecting the results. *R values are contained within a small range (-0.2 to 0.2). This indicates 

the importance of a centred position of the nozzle (jet) with respect of the crockery item in order 

to achieve a good coverage of water and for a prolonged time. ρjet optimum values are found at 

angles closer to 70º. The narrow range of values given also proves the importance of this 
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parameter. Wider ranges of values are obtained for d and θjet, which again suggests the lesser 

effect of these design variables on the efficient distribution of water and use of time.  

 

5.6. REAL CASE EXAMPLE. EFFECT OF LOADING POSITION. 

The methodology developed can also predict the impact projection patterns of a specific ADW 

design. The theoretical design efficiency of the ADW model used for PEPT experiments 

(Whirlpool DU750) (see Chapter 4) was evaluated. Projection patterns were calculated for the 

lower spray arm, which is assumed to rotate at 35 rpm. The example also helped the illustration 

of the effect of different loading positions. Two plane plates with a diameter of 250 mm (DPL = 

250 mm) were placed virtually at symmetrical locations on the left and right side of the ADW. 

Origin was again established at the bottom centre of the ADW in line with the spray arm 

rotational axis. Coordinates of the base location of both theoretical plates were (-125,0,50) and 

(125,0,50) for plate 1 (left) and 2 (right) respectively. Different design parameters were 

measured externally. The spray arm was rotating at a height of 30 mm (ZNL = 30mm) and the 

separation between plates was 20 mm. Table 5.7 summarises those design values 

characterising each of the nozzles present in the spray arm. 

 

Table 5.7. Whirlpool DU750 lower spray arm nozzle’s design values. 

INPUTS 

# RNZ *R θ
jet

 ρ
jet

 

1 238 0.904 90 55 

2 226 0.808 359 89 

3 182 0.456 160 60 

4 145 0.160 305 70 

5 114 -0.088 90 89 

6 89 -0.288 179 89 

7 162 0.296 65 70 

8 194 0.552 43 62 

9 223 0.784 90 89 

10 238 0.904 60 55 

 

Those theta angles values higher than 180º indicates an impact occurring on the left plate, while 

if the angle value is lower than 180º the impact takes place on the right plate. Due to the 
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rotational movement and the crockery loading symmetry, no jet hitting the front of a plate (either 

left or right) can hit the front of the other. Figure 5.7 illustrates the water projection patterns 

estimated for the case considered. 

 

            A 

 

           B 

 

Figure 5.7. Theoretical water impact projections over two plates located symmetrically at left 

and right side of a Whirlpool DU750 dishwasher. Origin is established at the bottom centre. 

Plates are placed vertically at coordinates (-125,0,50) and (125,0,50). Spray arm is at a height 

of 30 mm. Blue line indicates spray arm position; black circles represent analysed plates; and 

water projections are shown in red. A – Left side projections. B – Right side projections. 

 

A clear inhomogeneous distribution is shown between the left and right plate positions. Spray 

arm design favours a better coverage on the right side. Only two jets (#2 and #4) manage to 

impact the left side. On the right side, there are three jets producing a good coverage over the 

plate surface (#5, #6 and #9), another two producing a small coverage (#3 and #7) and three 

with no impact on the analysed plate (#1, #8 and #10). Table 5.8 summarises the output results 

estimated for each nozzle design while Figure 5.8 represents the values of the different 

dimensionless numbers.  
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Table 5.8. Output values for each nozzle design. 

OUTPUTS 

# tvis Timpact 
(s) 

Limpact 
(mm) 

!!"# ! ! 

1 0.017 0.000 0.0 0.000 0.000 0.000 

2 0.018 5.2·10-5 140.2 0.003 0.561 0.002 

3 0.023 0.019 74.3 0.857 0.297 0.255 

4 0.028 0.027 49.5 0.967 0.198 0.192 

5 0.036 0.010 249.0 0.289 0.996 0.288 

6 0.046 2.2·10-4 237.9 0.005 0.951 0.005 

7 0.025 0.022 40.0 0.871 0.160 0.139 

8 0.021 0.000 0.0 0.000 0.000 0.000 

9 0.018 0.003 155.2 0.181 0.621 0.112 

10 0.017 0.000 0.0 0.000 0.000 0.000 
 

 

Figure 5.8. Illustration of the values for the different output dimensionless numbers 

defined for the real case example. 

 

Jets #3, #4 and #7 present high effective impact time values (!!"# > 0.85) with low effective 

impact lengths coefficients (!  < 0.30). This indicates that the impingement region is very 

localized but happens during most of the time possible. However, jets #9, #6 and particularly #5 

show high coverage (! > 0.60) but for impacts occurring in a short period of time (!!"# < 0.30). 

Jet #2 only manages to impact the left plate for a fraction of a second (!!"# < 0.001). Overall, no 

global efficiency (!) higher than 0.3 is achieved for the two plates locations considered. Most of 

the jets produced through the different nozzle designs present efficiencies lower than 0.2.  
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The analysis of different locations would generate slightly different results. However, the trend 

would be maintained. Important improvements can be achieved to produce a good coverage 

and an efficient use of time by investigating novel ways of spraying water inside an ADW.  

 

5.7. SUMMARY AND FUTURE MODEL EXTENSIONS 

A mathematical approach was considered for the analysis and understanding of ADW design 

factors and its influence over water distribution. The analysis was based on geometric and 

trigonometric principles. Main ADW design elements were established as parameters to study 

and grouped in different categories: dishwasher dimensions, spray arm design and crockery 

geometry (only plates-type geometry considered).  

 

The method presented is a simplified but intuitive way of understanding ADW design principles. 

Non-dimensionless and dimensionless parameters were defined as outputs. The use of 

dimensionless variables established an easy way to compare results from different cases. 

Output data was normalized in a range between 0 and 1. The introduction of time efficiency 

(!!"#) and coverage efficiency measurements (!) separated the understanding of the jet pattern 

from a time and geometry perspective. The combination of these two parameters in an overall 

efficiency parameter (!) allowed the interpretation on how well or bad a design was for a 

particular case.  

 

Five different factors were chosen as the main important parameters to study: plate diameter, 

separation between consecutive plates, nozzle-plate relative position and nozzle’s theta and rho 

design angles. A wide variety of levels were set for each of them and a virtual full factorial 

design of experiments run. Results were expressed in box-plots. Data was grouped for each of 

the different levels considered for every input parameter and separated for the three 

dimensionless variables established: !!"#, ! and !. Results highlighted the importance of nozzle-

plate relative position and rho angles among other factors. The more centred the nozzle with 

respect of the middle of the crockery element, the better results expected. Also, the more 

vertical the jet the better coverage, but with a decrease in the effective use of time for angles 
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higher than 75 degrees. For a specific case considered, the model developed also aided in the 

finding of optimum designs. 

 

A real case example was presented. Projections estimated for a specific spray arm’s design 

showed low efficiencies values. Important differences in water impact projections from left to 

right side of the dishwasher were seen as well. Current designs were proved to present room 

for further improvements.  

 

The study also highlighted the complexity of the problem. Many design factors are 

interconnected in order to produce efficient results. Understanding the influence of each of them 

and their interactions is a key step in order to improve future designs. The routine developed 

presents the benefits of being quicker than CFD analysis and introduces comparable 

measurements on the quality of a design. Potentially, further expansions could analyse multiple 

locations in parallel and more complex geometries. An overall ADW efficient coefficient could be 

introduced as a way to characterise the efficiency across all the inner volume and not just a 

particular location or crockery element.  

 

In the last two chapters, the design of current ADWs showed important challenges for 

distributing water efficiently and for creating significant mechanical forces over different 

locations. Efforts should be focused on the development of new systems to distribute water 

more homogenously by solving the symmetry problems highlighted here. The information 

presented in these chapters aims to settle some basics concepts for future research in the field. 
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6.1. INTRODUCTION 

The following chapter studies the typical cleaning evolution occurring on egg-yolk technical 

stains. Protein-based soils represent one of the most difficult soils to remove in ADWs. 

Understanding and modelling the removal process can lead to propose optimisation scenarios. 

If wash conditions established were able to clean dry egg-yolk soils, it could be assumed that 

other similar less attached soils would be removed as well. Experiments to study typical 

swelling and removal phenomena via scanning Fluid Dynamic Gauge (sFDG) are presented. 

Temperature, pH, level of enzyme, net shear stress and frequency of application of shear stress 

are analysed as factors affecting each of the steps in the removal process. These factors 

represent a combination of mechanical and chemical parameters typically found in ADWs. They 

are also considered to influence the cleaning behaviour in these soils.  

 

Initially, dynamic statistical models are developed to study swelling and removal phenomena. 

Partial Least Squares (PLS) method is the statistical tool used. The importance of the different 

factors along the process is given. Knowing how and when those factors analysed perform at 

their best can aid to decide the right way to proceed with this type of soils and to optimise wash 

cycles and formulations.  

 

Studies on swelling phenomena are further expanded. Temperature and pH effects are 

analysed in more detail. sFDG data is compared against gravimetric data. Four different 

diffusional theories are then considered. Firstly, power law model is used to describe the type of 

transport occurring at different temperatures and alkalinities. Then, Fick’s second law and linear 

and non-linear poroelasticity theories are used to evaluate the dynamics of the diffusion process 

and their predictions compared.  

 

In the last section, the development of a mathematical swelling-removal model is proposed. A 

case study is shown as a guideline to understand the steps taken and the decisions made. The 

different mechanisms involved in a typical protein-based soil cleaning process are identified: 

swelling and removal via external application of shear stress or soil dissolution. An equation is 

then proposed as a mathematical approach to visualise the problem. Different phenomena were 
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initially analysed independently. Uniaxial swelling is described by the non-linear poroelasticity 

equation. This is a partial differential equation (PDE) that allows to discretise the thickness of 

the sample and to introduce ‘theoretical layers’. Removal is modelled using an empirical 

approach and removal rates were calculated from experimental data. Finally, the proposed 

algorithm integrates in parallel swelling and removal mechanisms. The novelty is introduced as 

the ‘theoretical layers’ initially defined are removed over time until cleaning is complete. 

 

6.2. DYNAMIC STATISTICAL MODELS 

Experimental designs proposed for the development of dynamic statistical models are explained 

in Chapter 3, section 3.12.1. In this case, both types of design chosen allowed the inclusion of 

single interactions (i.e. Temperature*pH). Squared terms (i.e. Temperature*Temperature) were 

also included for swelling and removal phenomena model.  

 

6.2.1. Swelling phenomenon (nil enzyme experiments).  

For the study of swelling phenomenon, a 3-levels full factorial design was chosen. Temperature 

and pH range were from 30ºC to 55ºC and 9.5 to 11.5 respectively, in accordance to the values 

typically seen in an ADW wash cycle. Figure 6.1 illustrates the thickness profiles obtained for 

the 9 experimental runs included in the full-factorial DOE. Data is represented by using the 

data-processing method explained in Chapter 3, section 3.6.3. 

 

Figure 6.1. Thickness profiles for swelling phenomenon DOE. Red triangles, green squares and blue circles 

represent pH of 9.5, 10.5 and 11.5 respectively. Temperature range is shown from pale to intense colour 

gradients. Error bars illustrate the inner variability within a sample. Data is represented for every 2 minutes. 

Black line indicates the initial thickness of the stains. 
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Higher degrees of swelling were obtained when temperature and pH increased. pH showed a 

stronger effect on thickness than temperature. Equilibrium was seen for experimental conditions 

at pH 9.5 at all temperatures (red triangles) and at pH 10.5 and 30ºC (pale-green squares). The 

system was considered equilibrated when the swelling or mass-uptake rate was less than 5% of 

the swelling rate in the first 3 minutes of the experiment. For experimental conditions at pH 10.5 

and 42.5ºC and 55ºC (semi-pale and green squares) and at pH 11.5 and 30ºC (pale-blue 

circles), an increase in the soil thickness was still observed at times above 60 minutes. At pH 

11.5 and 55ºC (blue circles), a complete detachment of the soil from the stainless steel 

substrate occurred between 30 to 40 minutes. At pH 11.5 and 42.5ºC (semi-pale blue circles), a 

significant increase in the error was observed after 50 minutes despite equilibrium was 

apparently achieved. When data for single locations were analysed individually, a lift-up effect 

and the removal of top layers were seen at different locations. These phenomena are explained 

in more detailed in section 6.3, where swelling stage is deeply analysed. 

 

The statistical analysis constructed a full factorial PLS model (temperature, pH and 

temperature*pH as input factors) for the 181 responses obtained per run (from minute 0 to 

minute 180). The output result suggested 2 latent factors explaining 60% of the variation in X 

(input factors) and 96% of the variation in Y (output response). Table 6.1 summarises the 

variation explained by each of the factors given.  

 

Table 6.1. Summary of the X and Y variation explained by the factors proposed from PLS model. Swelling 

phenomenon DOE. 

Number of 
factors X Effects Cumulative X 

1 32.7663  32.766 
2 26.9291  59.695 

 

Number of 
factors Y Responses Cumulative Y 

1 85.1363  85.1363 
2 11.0737  96.2100 
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Figure 6.2 shows the scores plot for each factor extracted. In this case, no unusual observation 

was seen in the dataset as a linear tendency was followed. Therefore, data introduced from all 

experimental runs were considered valid.  

 
Figure 6.2. Scores plots for the two factors extracted by the PLS method. 

Swelling phenomenon DOE. 

 

Figure 6.3 illustrates the Variable Importance Plot (VIP) for the case given. 

 

 
Figure 6.3. Variable Importance Plot (VIP) for the swelling 

phenomenon DOE. 

 

As commented in Figure 6.1, pH was highlighted as the main factor contributing to the increase 

of thickness. The red dotted line in Figure 6.3 establishes the limit from which different input 

parameters can be considered negligible from a statistical perspective. The use of factors below 

this line in the model could lead to over-fit the predictions. Experimental variability and data-

processing errors would not be statistically disregarded, thus the predictive capability of the 

model would decrease. In this particular case, the number of factors initially considered was 

low. Also, as the effect of temperature caused important changes in the output response, no 
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further action was taken and the three model effects initially considered were incorporated to 

the model. The use of just pH as an input factor could have also lead to a poor predictive model 

due to a lack of inputted information.  

 

Figure 6.4 shows different examples of the spectral profiler obtained from the analysis of 

swelling phenomenon. 

 

  
        PREDICTIVE RESPONSE 

    CURVE 
TEMPERATURE EFFECT pH EFFECT 

Th
ic

kn
es

s 
P

re
di

ct
io

n 
(m

m
)  

A 

 

B 

 

C 

 

D 

 
 
 
 
 

E 

 

Figure 6.4. Examples of different spectral profiles at different conditions for the swelling 

phenomenon PLS model. First column plots represent thickness predictions over time. Second 

column plots represent temperature effect. Third column plots represent pH effect. A – Time located 

at 10 minutes; T = 30ºC; pH = 10.5; B – Time located at 10 minutes; T = 55ºC; pH = 10.5; C – Time 

located at 10 minutes; T = 42.5ºC; pH = 9.5; D – Time located at 10 minutes; T = 42.5ºC; pH = 11.5; 

E – Time located at 60 minutes; T = 42.5ºC; pH = 10.5; 
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The first row illustrates the thickness prediction curve for experimental conditions at 30ºC and 

pH 10.5. The graph (first column) shows low degree of swelling as expected. In the second row, 

the predictive response curve at 55ºC and pH 10.5 shows a considerably higher degree of 

swelling. The positive effect of temperature on the response matched what was observed 

experimentally. Plots also show the tendency to equilibrium in the first case and the increase of 

thickness after 60 minutes in the second case. In rows three and four, the same comparison is 

done but varying the pH. Again, a significant change in the degree of swelling is observed 

between pH 9.5 (third row) and pH 11.5 (fourth row), indicating the impact on thickness in the 

range of pH studied. The effect of the different factors over time can also be explored. The fifth 

row shows the importance of temperature and pH at a time of 60 minutes for experimental 

conditions at 42.5ºC and pH 10.5. The slope of the effect lines in the second and third column 

indicates the intensity of the change to the output response that would occur if these input 

effects were varied at that time. The steeper the slope, the bigger the change. The comparison 

of the slopes with previous examples at 10 minutes illustrates the difference of the effect at 

different times.  

 

6.2.2. Swelling and removal phenomena (experiments with enzymes).  

For the study of swelling and removal phenomena, a custom design with 22 runs was chosen. 

Temperature and pH range were kept from 30ºC to 55ºC and 9.5 to 11.5 respectively. 

Additionally, enzyme levels were set from 0.02 g/l to 0.10 g/l, shear stresses from 12 Pa to 65 

Pa and the frequency factor from 9% to 100%.  

 

Figure 6.5 shows the results for five different experimental runs. Examples selected represent a 

wide variety of responses obtained. 
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Figure 6.5. 5 different experimental runs from swelling and removal phenomena DOE showing a wide 

range of thickness profiles. Experimental conditions: Red dots – 55ºC, pH 11.5, [Enzymes] = 0.1 g/l, Shear 

Stress Frequency = 100%, Net Shear Stress = 65 Pa; Yellow dots – 55ºC, pH 9.5, [Enzymes] = 0.1 g/l, 

Shear Stress Frequency = 54.5%, Net Shear Stress = 12 Pa; Green dots – 42.5ºC, pH 11.5, [Enzymes] = 

0.02 g/l, Shear Stress Frequency = 8.5%, Net Shear Stress = 12 Pa; Blue dots – 42.5ºC, pH 10.5, 

[Enzymes] = 0.06 g/l, Shear Stress Frequency = 54.5%, Net Shear Stress = 38.5 Pa; Purple dots – 30ºC, 

pH 10.5, [Enzymes] = 0.02 g/l, Shear Stress Frequency = 8.5%, Net Shear Stress = 38.5 Pa. 

 

The fastest cleaning was achieved when the highest levels of the five factors controlled were 

tested (i.e. 55ºC, pH 11.5, [Enzymes] = 0.1 g/l, Shear Stress Frequency = 100%, Net Shear 

Stress = 65 Pa). The case, illustrated as the red circles, showed a quick increase on the 

thickness during the first 10 minutes followed by a quick decrease of it once removal started. A 

complete cleaning was observed after 20 minutes approximately.  

 

The yellow circles represent a case with low alkalinity (i.e. 55ºC, pH 9.5, [Enzymes] = 0.1 g/l, 

Shear Stress Frequency = 54.5%, Net Shear Stress = 12 Pa). As pH is the main driver of the 

increase on thickness, a low degree of swelling was observed in this case. The high level of 

protease used and a relatively high frequency factor gave a complete cleaning after 50-55 

minutes approximately.  

 

The green circles illustrate the opposite case (42.5ºC, pH 11.5, [Enzymes] = 0.02 g/l, Shear 

Stress Frequency = 8.5%, Net Shear Stress = 12 Pa). High alkaline conditions were established 
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with a low level of enzyme and a low frequency factor. As a result, a higher degree of swelling 

was observed but that did not translate into a shorter cleaning time than the previous case. A 

complete removal was seen at around 80 minutes. Interactions between different experimental 

parameters are suggested from these comparisons. Depending on the experimental conditions 

(i.e. level of enzyme or frequency of application of shear stress) it might be necessary to 

increase the alkalinity or not in order to speed up the removal process. A high degree of 

swelling does not guarantee a faster cleaning.  

 

The blue circles represent the thickness profile obtained for the midpoint experimental design 

run (i.e. 42.5ºC, pH 10.5, [Enzymes] = 0.06 g/l, Shear Stress Frequency = 54.5%, Net Shear 

Stress = 38.5 Pa). The degree of swelling observed was within the lowest and highest swelling 

degrees cases. A complete cleaning was achieved at around 65 minutes. Overall, cleaning 

times were in a range from 20 to 100 minutes.  

 

Exceptions with slower or no complete removal were also found. The purple circles represent a 

case where no complete removal was observed (i.e. 30ºC, pH 10.5, [Enzymes] = 0.02 g/l, Shear 

Stress Frequency = 8.5%, Net Shear Stress = 38.5 Pa). The low temperature, enzyme level and 

frequency factor established made the removal process slow. Soil still remained over the 

substrate after three hours. The use of a relatively high shear stress did not enhance the 

removal process, suggesting a small effect on the decrease of thickness from this factor.  

 

The statistical analysis followed the same approach as for the swelling phenomenon model. The 

model was constructed by inputting a single interaction design (i.e. pH*Enzyme) with individual 

(i.e. Shear Stress) and quadratic terms for each of the factors studied (i.e. 

Temperature*Temperature). PLS method initially extracted 14 factors explaining 83% of the 

variation in X and 99% of the variation in Y. Table 6.2 summarises the variation explained by 

each of the new factors constructed.  
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Table 6.2. Summary of the X and Y variation explained by the factors constructed with PLS method. 

Swelling and removal phenomena DOE. First iteration. 

Number of 
factors X Effects Cumulative X 

1 6.1350  6.135 
2 6.8421  12.977 
3 8.2467  21.224 
4 8.2890  29.513 
5 5.5589  35.072 
6 7.8713  42.943 
7 4.5882  47.531 
8 4.9601  52.491 
9 4.9138  57.405 

10 6.1080  63.513 
11 6.2953  69.809 
12 5.3282  75.137 
13 5.5841  80.721 
14 3.0317  83.753 

 

Number of 
factors Y Responses Cumulative Y 

1 52.1486  52.1486 
2 16.7868  68.9353 
3 9.8187  78.7541 
4 4.8338  83.5879 
5 5.2167  88.8046 
6 2.1790  90.9837 
7 2.5509  93.5346 
8 1.9019  95.4365 
9 1.3825  96.8190 

10 0.6920  97.5110 
11 0.5193  98.0303 
12 0.3634  98.3936 
13 0.2543  98.6479 
14 0.3536  99.0015 

 

Table 6.2 shows that only 6 factors explain more than 90% of the variation in Y and 8 factors 

more than 95%. This suggests that a further reduction in the number of factors considered is 

possible in order to avoid any over-fitting issue. 
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Figure 6.6 shows the scores plots for the first three factors extracted by the PLS approach.  

 

Figure 6.6. Scores plots for the first three factors extracted by the PLS method. First iteration 

on the swelling and removal phenomena DOE. 

 

An outlier point is seen in the score plot for factor 1 (left). This factor is the most representative 

as explains more than 52% of the variability found. The outlier corresponds to experimental 

conditions at 30ºC, pH 10.5, [Enzyme] = 0.02g/l, Shear Stress Frequency = 8.5% and Net 

Shear Stress = 38.5 Pa. The purple dots in Figure 6.5 represent its thickness profile. This run 

illustrates the slowest cleaning process obtained among all experimental cases proposed. The 

difference between this case and the second slowest one was significant. Thus, the statistical 

analysis highlighted this case as an outlier. Different analyses were further performed excluding 

this particular run. However, results obtained did not increase the quality of the model as the 

subsequent slowest cases were again highlighted as outliers. As a result, the run remained 

included in the analysis.  

 

Figure 6.7 shows the Variable Importance Plot (VIP) of all the model effects initially inputted in 

the analysis. 
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Figure 6.7. Variable Importance Plots (VIP) for swelling and removal phenomena PLS 

model. Factors inputted in first iteration. 

 

Temperature, pH, level of enzyme and the frequency factor were proved to affect the response 

(thickness) significantly. However, the net shear stress applied over the sample did not produce 

a significant impact on thickness change within the range studied (from 12 to 65 Pa). This 

indicates that the removal of soil layers occurred faster whenever some external energy input 

was applied (frequency), but that an increase in the external energy imposed (net shear stress) 

barely changed the rate of removal. The importance of the frequency factor suggests a 

minimum external mechanical action required to enhance cleaning in this type of protein-based 

soils. However, once that minimum value is surpassed, the rate of removal remains almost 

invariant. For the case given, it is suggested the existence of this threshold at shear stress 

values lower than 12 Pa. This threshold varies with the intrinsic status of the soil at any time. As 

chemistry affects the soil network (via swelling-stretching or hydrolysis reactions), it moves to 

lower energy values. Figure 6.8 summarises the hypothesis proposed: 
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Figure 6.8. Schematics of the shear stress threshold 

hypothesis. 

 

Among the interactions and quadratic terms, some were also identified as important contributors 

to the thickness change (i.e. Temperature*Temperature / pH*pH / Temperature*Enzyme / 

pH*Enzyme / Temperature*Frequency / Frequency*Frequency / Frequency*Shear Stress / 

Shear Stress*Shear Stress). Some effects are related to already known interactions such as the 

effect of temperature or alkalinity on enzyme activity (i.e. temperature*enzyme, pH*enzyme).   

   

To avoid any over-fitting issue, JMP software allows rebuilding the model from those factors 

proved to be significantly important. This simplifies the analysis as a smaller number of effects 

are considered. This simplification process was repeated twice for the experimental DOE given. 

As a final result, 5 factors were extracted by the PLS method explaining 73% of the variation in 

X and 71% of the variation in Y. Table 6.3 reports the variation explained by each of the final 

factors constructed.  
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Table 6.3. Summary of the X and Y variation explained by the factors constructed with PLS method. Third 

iteration on the swelling and removal phenomena DOE. 

Number of 
factors X Effects Cumulative X 

1 17.2372  17.237 
2 14.3868  31.624 
3 12.9935  44.618 
4 13.8880  58.506 
5 14.9091  73.415 

 

Number of 
factors Y Responses Cumulative Y 

1 42.2349  42.2349 
2 14.6146  56.8495 
3 7.1460  63.9955 
4 4.2782  68.2736 
5 3.1325  71.4061 

 

Figure 6.9 illustrates the scores plots for the 5 factors extracted. The slowest cleaning process 

was again highlighted as an outlier. As for the initial iteration, the removal of it in did not 

enhance the quality of the statistical model. Therefore, the experimental run was again 

maintained in the analysis.  

 

 

Figure 6.9. Scores plots for the final five factors extracted by the PLS method. Third iteration on the 

swelling and removal phenomena DOE. 
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Figure 6.10 represents the VIP for those effects that were established as significant after three 

iterations in the model building process.  

 

 

Figure 6.10. Variable Importance Plot (VIP) for swelling and removal phenomena PLS model. Factors 

shown remained as significant in the third and last iteration. 

 

Temperature, pH, enzyme level and the frequency factor were maintained as significant 

contributors to the thickness change. As for the interactions and quadratic terms initially 

established, only the squared term of pH (pH*pH) and the interactions between temperature 

and enzyme level (Temperature*Enzymes) and temperature and the frequency factor 

(Temperature*Shear Frequency) were kept as important.  

 

Figure 6.11 shows a normalised effect plot that describes the effect on thickness over time of 

each of the significant factors remaining. A negative value indicates a negative effect on 

thickness (removal) while a positive value indicates the opposite (swelling).  
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Figure 6.11. Normalised effect over time of the different significant factors 

remaining. Mechanisms of swelling and removal are later on shown in 

Figure 6.25. 

 

Temperature (blue line) showed an initial positive contribution to thickness during the first 20 

minutes. This corresponds to the swelling stage. As commented for the swelling DOE results, 

temperature is a factor affecting the degree of swelling at equilibrium. At around 20 minutes, the 

transition from a net swelling stage (net increase in thickness) to a removal phase (net decrease 

in thickness) was typically seen. At longer times, temperature contribution shifted from a 

positive to a negative effect on thickness with an increasing importance over time. The effect 

was proportionally higher at the removal stage (peak at -0.6) than at the swelling stage (peak at 

0.3). Overall, it can be concluded that temperature is a net contributing factor for all the 

phenomena occurring in a typical protein-based cleaning process, hence its great importance 

observed in Figure 6.10.  

 

pH (red line) was highlighted as a very important factor during the swelling stage of the process, 

according to what was initially seen with swelling data. The plot shows how pH impacts 

thickness at early times (i.e. at 10 minutes) with a normalised maximum value around 0.9. Its 

contribution decreased afterwards in parallel with a reduction of the swelling rate as the stretch 

of the network approximated towards the equilibrium. At that stage removal mechanisms 

became predominant. The plot illustrates as well the negligible contributions of pH to removal. 

Negative values are seen after 60 minutes. At this time most of the experimental conditions 
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analysed were in the final stages of the cleaning process or completely cleaned. Also, negative 

values were kept low. This result indicates that high alkalinity is required at the first stages of a 

protein-based soil cleaning process. However, alkalinity is not an important factor once removal 

occurs. Boosting alkalinity at the first stages of a wash cycle is therefore recommended when 

protein-based soils are cleaned. If this were left to a latter stage in the wash cycle, a decrease 

in the cleaning performance would be expected. 

 

The effect of the enzyme (green line) became significant after an initial lag period of 

approximately 10 minutes. As a protease promotes the hydrolysis of protein’s peptide bonds, its 

effect on thickness was negative. It required an initial reaction time to induce cleaning. The 

small positive effect on thickness shown at very early times is probably due to the experimental 

error and the statistical processing. After that period, the enzyme showed an increased negative 

effect on thickness until a local minimum was found at around 30 minutes. The enzyme was the 

main contributor to removal, showing a normalized effect peak at -0.6. Its effect varied slowly 

once the peak was achieved, remaining almost invariant during most of the removal process 

(from 20 minutes to 80 minutes).  

 

The frequency of application of shear stress over the soil (purple line) was also an important 

contributor to removal, following a similar trend as for the enzyme. However, during the initial 

swelling stage it showed a positive effect on thickness. This suggests that the application of an 

external shear stress and the water suction produced through the sFDG nozzle could enhance 

the diffusion process occurring. The convective flow created around the area could promote the 

diffusion of the wash solution into the soil network. This trend could also be referred to the lift-up 

effect occurring in the top layers of the soil network. Regardless the real fact, the more frequent 

the nozzle was over the soil, the faster the thickness increased. After that period, the effect 

shifted to a negative contribution. Its peak was found at around 30 minutes with a normalised 

effect value around -0.5. It can be conclude that both the frequency factor and enzyme level 

were the main contributors to cleaning for this particular soil types.  
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Interactions showed different behaviours. Overall, their influence was almost negligible during 

the initial swelling stage. The interaction of temperature with the enzyme (Temperature*Enzyme 

– discontinuous grey line) and with the frequency factor (Temperature*Frequency – 

discontinuous yellow line) showed a positive contribution to thickness from 10 to 60 minutes. 

This contradicts what initially expected from these types of interactions. For example, as 

commented previously, the activity of the enzyme is highly dependant on temperature. For the 

range of temperatures given, the protease best performance was at the highest level (55ºC). 

Therefore, a negative contribution to thickness was expected when temperature and enzyme 

level were analysed together as an interaction effect. The higher the level of these factors the 

faster cleaning observed. In Figure 6.11, the maximum contribution effect of this interaction 

(Temperature*Enzyme) was found at 20 minutes approximately. This corresponds to the curve 

maximum of a typical thickness profile, as seen for the mid-level case in Figure 6.5 (blue line). 

Also at that time, temperature contributions were transitioning from positive to negative 

thickness effect as commented previously. The positive contribution of this interaction suggests 

that the weakening process given by the action of the enzyme and temperature enhanced a lift-

up effect at that stage. Soil network had already lost cohesiveness but still remained strong 

enough. Thus, a high temperature or high level of the enzyme led to a partial increase on the 

thickness measured. That partial increase would be higher with the higher the level set for these 

factors. After overcoming this stage, the influence of this interaction reduced. The soil network 

became weak enough and the increase of temperature or the frequency factor led to an 

increase on the removal rates as shown by their individual factors. A similar reasoning could be 

applied for Temperature*Frequency interaction. Finally, pH interaction squared term did not 

show a big impact on thickness.  
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Figure 6.12 illustrates three spectral profiler examples for the swelling and removal phenomena 

PLS model. 
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Figure 6.12. Examples of different spectral profiler outputs for the swelling and removal phenomena PLS 

model. First column plots represent thickness predictions over time. Second column plots represent 

temperature effect. Third column represent pH effect. Fourth column represent enzyme level effect and 

fifth column represent frequency factor effect. A – Time located at 10 minutes; T = 42.5ºC; pH =10.5; 

[Enzyme] = 0.06 g/l; Shear Stress Frequency = 50%; B – Time located at 60 minutes; T = 42.5ºC;  pH 

=10.5; [Enzyme] = 0.06 g/l; Shear Stress Frequency = 50%; C – Time located at 10 minutes; T = 45ºC;  pH 

=11.5; [Enzyme] = 0.06 g/l; Shear Stress Frequency = 50%; 

 

Case A (Temperature 42.5ºC; pH = 10.5; [Enzyme] = 0.06g/l; Shear Stress Frequency = 50%) 

shows thickness predictions at intermediate levels of the four single factors controlled and 

established as significantly important by the PLS method. Time position set on the response 

curve was at 10 minutes, corresponding to the net swelling phase. Temperature effect and 

mostly pH effect presented a positive and steep slope. Enzyme effect and frequency factor 

effect remained flat. The positive slope represents a net positive contribution to thickness at that 

time. This was consistent to what was seen in Figure 6.11 at that time. Case B set the time 
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position at 60 minutes at the same experimental conditions as Case A. The response curve did 

not change as no factors’ levels were modified. However, the effect of the different factors did. 

Temperature effect shifted to a negative steep slope, indicating an important contribution in the 

removal stage. pH slope turned flat while the enzyme level and frequency factor effects showed 

significant contributions to the decrease of thickness. Again, this agreed with the information 

from Figure 6.11. Case C (Temperature 45ºC; pH = 11; [Enzyme] = 0.06g/l; Shear Stress 

Frequency = 50%) shows the effect on the response when the level of the factors were varied. 

The increase of pH and temperature made the response curve to predict a higher degree of 

swelling while the total removal time did not vary much (i.e. 80 minutes).  

 

Equations from the statistical model can be retrieved from JMP. The software builds individual 

equations for every time value considered in the analysis (a minute in this case). The output 

value is calculated as a function of the different factors remaining. For different equations, the 

coefficients of the factors vary according to their effect over time. Overall, 180 equations can be 

extracted from the experimental case analysed. This could be use for the integration of this 

statistical model into a bigger model containing other attributes from other areas of cleaning (i.e 

ADW design factors).  

 

6.3. SWELLING STUDIES VIA SCANNING FLUID DYNAMIC GAUGE AND 

GRAVIMETRIC TESTS 

Due to the importance of swelling phenomenon in the cleaning of protein-based soils, further 

studies were performed to deeply analyse this process. Experimental design selected is 

explained in Chapter 3, section 3.12.2. Temperature and pH were the factors highly affecting 

swelling, according to the previous statistical analysis. Ranges studied were again from 30ºC to 

55ºC for temperature and from 9.5 to 11.5 for pH. The analysis compares sFDG and gravimetric 

data to prove the existence or not of the hypothesis of lift-up or removal on the top layers of the 

soil sample due to the application of the external mechanical action from the gauging fluid. 4 

different diffusional theories (power law, Fick´s second law, linear and non-linear poroelasticity 

theory) are used to describe the phenomena occurring. They are explained in Chapter 2, 
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section 2.4. They present an increasing complexity as new theoretical parameters and 

considerations are introduced in their development.  

 

6.3.1. sFDG and gravimetric results. 

Data collected experimentally was processed according to the methodology explained in 

Chapter 3, section 3.6.3. Thickness and mass values were initially represented over time. 

Figure 6.13 shows the results for gravimetric (A) and sFDG experiments (B & C).  

A 

 
B 

 
C 

 
Figure 6.13. Experimental results. A – Gravimetric tests. B – Polynomial fit and averaged 

sFDG data. C – sFDG data for the first 40 minutes. 
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The plots show the rapid increase of thickness or mass that occurred during the initial minutes 

of any experimental run (i.e. 40 min). The rate decreased over time as the samples approached 

the equilibrium. The end point was different depending on the experimental conditions and 

equilibrium was reached by the end of the experimental time for all the cases. Again, data 

demonstrated that by increasing temperature and pH, swelling and water uptake increased. The 

VIP statistical analysis shown in Figure 6.14 also confirmed that the effect of pH on the 

hydration process was more important than temperature within the levels studied. This is clearly 

seen in Fig. 6.13A for gravimetric tests. The difference in behaviour found between the different 

soil batches used for the swelling phenomenon studies was related to the degree of swelling 

observed. The initial tests showed a slightly higher swelling than the tests shown in this section, 

despite the experimental conditions and procedure followed were the same. Regardless of this, 

the trend and importance of the different factors analysed was maintained.  

 

 

Figure 6.14. Variable Importance Plot (VIP) 

for sFDG experiments. 

 

For sFDG measurements, the variability between the 4 locations analysed within a sample was 

found to be about 4% of the measured thickness. The variability increased up to about 10% 

when different samples were compared. This indicated higher differences between samples 

than at different locations on a single tile. For gravimetric tests, the variability was lower at 

around 3% of the measured weight. The higher error seen for sFDG measurements was due to 

an accumulation of errors from different factors such as the application of a shear stress over 

the sample, the error related to the movement of the nozzle around different positions, the inner 

error of the flowmeter, the accuracy of the z-motor and the possible inhomogeneity of the 

sample at the different locations considered.  
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At 55ºC and pH 11.5, localised blisters appeared on the surface after 2h as shown in Figure 

6.15. We believe that these blisters related to hydrolysis reactions occurring at high alkalinity. 

Peptide bonds broke (cohesive failure) as a consequence of the high concentration of OH- ions 

and the network strength weakened (Saikhwan et al., 2010). A distortion of the data was thus 

observed as the presence of big blisters allowed the solvent to penetrate more easily into the 

network. This would explain the higher weight and variability seen after 150 minutes for the 

gravimetric tests (Figure 6.13A). This weakness in the soil called for extra care when handling 

the tiles in order to prevent the loss of any soil when measuring their weight.  

 

 

Figure 6.15. Egg yolk tile showing blisters at the edges after being submerged in a solution at 

55ºC and pH 11.5 for 180 min. 

 

Similar issues were found for sFDG tests at the same experimental conditions. A lift-up effect or 

removal of the soil was observed in some of locations studied as for the initial statistical tests 

performed. Underneath the nozzle a pressure change and a tensile force are generated as a 

consequence of the fluid moving upwards through the nozzle. The pressure change and pull-

force were estimated by applying Bernoulli’s equation (Gordon, 2012). With the set-up 

considered these values were established at 500 Pa and 1.6 mN approximately. The lift-up 

effect consists of the stretch of the network due to the pull force produced by the liquid suction 

through the nozzle of the sFDG. The measured thickness increases in consequence. The 

removal of the sample occurs when the action of the sFDG over the soil surface is high enough 

to detach some of the top layers. The consequence is that a lower thickness is measured. 

Figure 6.16 shows the raw data collected for the three experiments done at 55ºC and pH 11.5 

for each of the 4 locations analysed. The graphs illustrate the different behaviours commented. 

Overall, among the 12 different locations studied, a lift-up effect was observed 5 times followed 
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by a removal of the soil in 3 occasions. These cases were disregarded when estimating the 

average thickness profile for that sample. For the locations showing an apparent equilibrium we 

assumed none of these effects occurred.  

A 

 
B 

 
C 

 
Figure 6.16. sFDG raw experimental data at 55ºC and pH 11.5. A – First test; B – Second 

test; C – Third test; Blue diamonds, red squares, green triangles and purple circles represent 

locations from 1 to 4 respectively. 
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Figure 6.17 summarises the possible scenarios observed for the measurement of thickness 

using the sFDG.  

  

 

Figure 6.17. Schematic of the different scenarios when using the sFDG to measure the 

thickness of a sample. 

 

The difference in thickness between lift-up and equilibrium cases within a single replicate 

represents the stretch occurring in a specific location. Figure 6.18 represents that difference for 

the location 3 in the test shown in Figure 6.16A. The curve mimics creep profiles observed in 

plastic or polymeric materials (McKeen, 2015). Creep is defined as the change over time that 

occurs to a material when subjected to a constant or regular stress. Those locations with a lift-

up effect deformed plastically, not elastically, as they did not return to the original shape every 

time the tensile force was applied. Creep curves typically show three stages: primary, 

secondary and tertiary. The primary stage is an initial and non-steady deformation on the 

sample. This is followed by a constant strain rate, which characterises the secondary stage. 

Finally, when the stretch is high enough, the material starts to fail and the strain accelerates. 

This last stage precedes the fracture point, where the sample finally breaks. This phenomenon 

could be identified at a different extent in each of the cases not following an equilibrium trend. 

These observations arise the suitability of the sFDG in the analysis of creep behaviour of 

different materials and at different conditions (i.e. temperature, degree of swelling, tensile force 

applied…). 
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Figure 6.18. Strain profile for location 3 in example shown in Figure 6.16A. 

 

6.3.2. Comparison of sFDG and gravimetric data 

In Figure 6.19 normalised gravimetric, ! !  (x-axis), and sFDG, ℎ !  (y-axis), data are shown. 

Results compare the kinetics of the process. They were separated for every pH level 

considered. The colour scale indicates the time the measurements were undertaken. Samples 

started at the beginning of the axis and dimensionless height and mass increased with time as 

samples reached equilibrium.  
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A 
pH 9.5 

 

B 
pH 10.5 

 

C 
pH 11.5 

 
Figure 6.19. Normalised height and weight data to compare sFDG and gravimetric tests. A – 

pH 9.5; B – pH 10.5; C – pH 11.5. Circles – 30ºC; Squares – 55ºC. 
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Good agreement between the techniques was observed at pH 9.5 (Figure 6.19A), 10.5 (Figure 

6.19B) and at 30ºC and pH 11.5 (Figure 6.19C – circles). 95% of the equilibrium values were 

reached within 90 min and the kinetics were not significantly affected within the range of 

temperatures considered (30ºC and 55ºC). At 55ºC and pH 11.5, the maximum value was 

reached faster in the sFDG than in the gravimetric case. Whilst around 90 minutes were 

required in the gravimetric experiments to get to 95% of the maximum hydration, this time was 

significantly reduced to 50 minutes for the sFDG case. As for the analysis shown in Figure 

6.16, it is likely that the weakest top layers were detached when shear stress was applied from 

the sFDG, resulting in an underestimation of the swelling time required.  

 

Table 6.4 summarises the parameters obtained by fitting the data from Figure 6.19. Overall, a 

good correlation between the techniques from a kinetics perspective (slope close to 1 and 

intercept close to zero) was observed for some conditions but not all.  

 

Table 6.4. Linear fitting summary of data from Figure 6.19. 

EXPERIMENT 
SLOPE INTERCEPT R2 

TEMPERATURE pH 
30ºC 9.5 1.010 0.017 0.997 

55ºC 9.5 0.973 0.006 0.998 

30ºC 10.5 1.070 0.021 0.989 
55ºC 10.5 0.977 0.031 0.996 

30ºC 11.5 0.928 0.071 0.991 

55ºC 11.5 1.011 0.112 0.930 
 

 

The comparison was extended by transforming sFDG data into mass using Eq. 2.4. Figure 6.20 

shows sFDG and gravimetric data represented together and expressed in mass units. In Figure 

6.20A the absolute mass values from the two experimental techniques are shown while Figure 

6.20B represents the difference over time between gravimetric and sFDG data.   
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Figure 6.20. Comparison of gravimetric and sFDG data in mass units. A – Total mass over time. Lines and 

dots with same colour represent sFDG and gravimetric data respectively at the same experimental 

conditions; B – Difference between gravimetric and sFDG data over time. 

 

Experiments in the milder conditions (30ºC for pH 9.5 and 10.5) showed good agreement as the 

convergence seen in Figure 6.20A was high and the difference showed in Figure 6.20B 

remained flat at values closer to 0.  

 

Experiments at high temperature (55ºC for pH 9.5 and 10.5) showed similar trends for both 

techniques but the estimated water uptake from sFDG data was systematically higher (1g) 

when compared to the measured mass uptake given by gravimetric experiments. Two 

hypotheses were considered to explain this behaviour: 

 

1. A lift-up effect from sFDG measurements that was favoured at higher temperatures. 

This would indicate higher elasticity of the soil network with the increase of 

temperature. As the experimental conditions did not result in any removal of 

material, the lift-up effect occurred and the thickness values measured were higher. 

A look at the raw data did not allow assuring this hypothesis. Equilibrium trends 

were similar to those reported in Figure 6.16. 

2. Higher amount of water could be lost when removing the excess of water in the 

gravimetric method. At 55ºC, a lower water viscosity and consequent higher water 

mobility could have led to the removal of larger amounts of liquid. The hypothesis 
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was tested and disproved by quantifying the amount of water transferred to the 

drying paper. The difference in weight between the ‘wetted’ and ‘dried’ sample was 

measured and results showed a loss of approximately 0.2 g and 0.16 g for 55ºC 

and 30ºC respectively. This effect would only explain 4% of the difference seen 

between sFDG and gravimetric data.  

 

Differences between sFDG and gravimetric data at high pH (i.e. pH 11.5) became obvious after 

20-30 minutes. The measured mass uptake from the gravimetric tests was higher than the 

estimated mass uptake from sFDG experiments. If the assumption of molecular 

incompressibility is still valid, this indicates a lower volume occupied by the solvent molecules 

within the soil. Two hypothesis were again considered:  

 

1. The presence of electrostatic screening effects between the Na+ cations in the water 

and soil network. This would lead to a decrease in the volume of the network. These 

effects were studied in a similar work by (Mercadé-Prieto et al., 2007b) with protein-

based systems. Results reported a significant reduction volume as a consequence 

of the electrostatic effects. However, these interactions occurred at pH higher than 

13.3 when only NaOH was added to the solution. 

2. The removal of soil layers in those locations with an equilibrium trend (no lift-up and 

no removal observed). Highly swelled layers could be detached early in the process 

thus leading to a lower equilibrium thickness value.   
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6.3.3. Modelling swelling 

Power law equations (Eq. 2.1 and Eq.2.2) were applied to the experimental data obtained via 

gravimetric and sFDG tests. Figure 6.21 represents the estimated diffusional exponents, n and 

n’, as a function of temperature and pH. The size of the bubbles is related to the value of the 

exponent. 

A 

 

B 

 

Figure 6.21. Diffusional exponent values. A – From gravimetric data (n). B – From sFDG data (n’). 

 

Results for gravimetric data (Figure 6.21A) indicated that pH is the main factor affecting the 

diffusional exponent (n). Results for sFDG data (Figure 6.21B) reported slightly higher values of 

n’ for the same experimental conditions and a similar effect of pH. The effect of temperature 

was more pronounced in this case.  

 

Overall, data suggested a Fickian diffusion (Case I) transport mechanism in all cases (n < 0.5). 

However, as pH increased, there was an increase of ‘n’ indicating more anomalous or Non-

Fickian diffusion (Case II) mechanism. During hydration, as the soil network expanded, the 

rearrangement became more difficult. Thus, for those cases with higher equilibrium swelling, 

averaged relaxation times increased and became closer to diffusional times. 

 

The rest of the modelling approach were used to fit gravimetric and sFDG data. Figure 6.22 

illustrates experimental and numerical results for each of the conditions studied.  
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Figure 6.22. Comparative results from experimental and numerical data. Data in red represents values in 

mass units. Data in blue represents thickness values. 

 

Fick´s second law (Eq. 2.3 and Eq. 2.4) was used to fit gravimetric data. Linear poroelasticity 

equation (Eq. 2.5) and the non-linear theory approach (Eq. 2.7 and Eq. 2.9) were used to fit 

thickness results. Overall, Fick´s second law over-predicted results at initial times and under-

predicted them at longer times. Numerical estimations from linear and non-linear theories gave 

more accurate fits in all cases. The higher number of factors considered in the linear and non-

linear poroelasticity equations allowed the estimations to be more flexible and precise.  
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Table 6.5 shows the effective diffusion coefficients (DF) estimated with Fick´s second law as 

well as the goodness of fit:  

 

Table 6.5. Fick’s second law effective diffusion coefficients (DF) and goodness of fit for gravimetric 

experiments. 

EXPERIMENT DIFFUSION 
COEFFICIENT  

DF (m2/s) 
R2 

TEMPERATURE pH 

30ºC 9.5 5.5·10-12 0.9477 

55ºC 9.5 1.0·10-11 0.9498 

30ºC 10.5 8.6·10-12 0.9112 
55ºC 10.5 1.9·10-11 0.9498 

30ºC 11.5 4.1·10-11 0.8813 

55ºC 11.5 5.4·10-11 0.9202 
 

Values were in the order of 10-11 m2/s. For the range of pH investigated, the increase from 30ºC 

to 55ºC showed an increase in the effective diffusion coefficient calculated. This was also 

observed for increasing pH at the same temperature. Coefficients of determination (R2) ranged 

from 0.88 to 0.95.  

 

Table 6.6 shows the results estimated with the linear poroelasticity theory: 

 

Table 6.6. Linear poroelasticity theory effective diffusion coefficients (DL) and goodness of fit for sFDG 

experiments. 

EXPERIMENT DIFFUSION 
COEFFICIENT  

DL (m2/s) 
R2 

TEMPERATURE pH 

30ºC 9.5 9.60 · 10-13 0.9971 
55ºC 9.5 1.12 · 10-12 0.9865 

30ºC 10.5 7.60 · 10-13 0.9795 

55ºC 10.5 8.90 · 10-13 0.9785 

30ºC 11.5 1.33 · 10-12 0.9675 
55ºC 11.5 1.96 · 10-12 0.9812 

 

Effective diffusion coefficient values (DL) were in the order of 10-12 m2/s. The increase of 

temperature from 30ºC to 55ºC showed a slight increase in the effective diffusion coefficient at 

any pH considered. This tendency was not shown for the increase of pH at a fixed temperature. 

At pH 11.5, the removal of some of the top layers and its subsequent apparent equilibrium at 
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shorter times, translated into higher effective diffusion coefficients. Overall, the goodness of fit 

showed a better agreement than for Fick´s second law in a range between 0.967 to 0.998. 

 

Table 6.7 summarises the results estimated by applying the non-linear theory. The equivalent 

linear effective diffusion coefficient (DL) was calculated using Eq. 2.11. The initial swelling 

ratio  (!!) and the equilibrium stretch (!! ) needed for the calculations were obtained from 

experimental data. !! was estimated by dividing the initial experimental thickness (ℎ! = 68µ!) 

over the dry thickness (ℎ!"# = 68µ! − 9µ!) , giving !! ! = 0 = 1.1 . The different !!  were 

estimated for each case by dividing the maximum thickness reached at equilibrium over the dry 

thickness (ℎ!"#). The volume of a solvent (water) molecule (Ω) was 3·10-29 m3/molecule. 

 

Table 6.7. Non-linear poroelasticity theory iteration results. 

EXPERIMENT 
NON-LINEAR 
DIFFUSION 

COEFFICIENT 
DNL (m2/s) 

FLORY-
HUGGINGS 

PARAMETER 
(χ) 

POLYMER 
CHAINS 

PER UNIT 
VOLUME 
N  (m-3) 

LINEAR 
DIFFUSION 

COEFFICIENT 
DL (m2/s) 

MARGIN 
VALUE R2 

T pH 

30ºC 9.5 1.5·10-10 1.00 9.5·1026 4.32·10-13 0.1139 0.9935 

55ºC 9.5 2.5·10-10 0.80 6.0·1026 8.98·10-13 0.1081 0.9910 

30ºC 10.5 3.0·10-10 0.90 5.0·1026 1.50·10-12 0.0832 0.9429 

55ºC 10.5 4.0·10-10 0.80 4.0·1026 7.51·10-13 0.1118 0.9828 

30ºC 11.5 4.5·10-10 0.65 4.5·1026 1.21·10-12 0.1149 0.9697 

55ºC 11.5 9.0·10-10 0.00 4.0·1026 1.95·10-12 0.1018 0.9355 
 

Non-linear diffusion coefficients (DNL) were reported at around 10-10 m2/s. The increase from 

30ºC to 55ºC showed slightly higher diffusion coefficients at any pH given. The same correlation 

was observed for increasing pH at a fixed temperature. Flory-Huggins parameter (χ) showed a 

slight decrease with the increase of temperature and pH. The low sensitivity observed in the 

calculations of this intrinsic parameter did not allow any further conclusion to be made. Both, 

DNL and χ, were likely to change for each experiment as DNL is related to the kinetics of the 

swelling/diffusion process (temperature dependent) and χ to the interaction between the solvent 

and the polymer (pH dependent). A decrease in the Flory-Huggins parameter indicates a 

stronger affinity between the solvent and the polymer (Kuhn et al. 2006). Thus, this affinity 

increased with the increase of pH. N values estimated remained within a range from 4·1026 m-3 

to 9.5·1026 m-3 with an average value of 5.5·1026 (±2.1·1026) m-3. The variability seen is caused 
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by the iterative process in the calculations. The estimation of linear effective diffusion 

coefficients (DL) from non-linear effective diffusion coefficients (DNL) were similar and of the 

same order of magnitude as those reported in Table 6.6. 

 

The differences on the values of diffusion coefficients represent the difference on the equations. 

Fick’s second law (Eq. 2.3) offered the simplest mode. No intrinsic parameters were considered 

apart from an effective diffusion coefficient (DF). The incorporation of moving boundaries into 

the analysis did not provide sufficient flexibility and predictions had a lower accuracy than for 

the other two theories. Linear poroelasticity theory (Eq. 2.5) divided the swelling/hydration 

process in two terms: one related to the stretch of the network (Eq. 2.6) and the other related to 

the kinetics of the diffusion process. The diffusion coefficient (DL) was calculated from the 

characteristic time scale of diffusion (τ) in the second term on the right side of Eq. 2.5. DL is 

therefore only characterising the kinetic of the diffusion and not the stretch of the network. As in 

reality the thickness of the network increased and the diffusion coefficient did not take into 

account this effect, DL was lower than diffusion coefficients from other theories. Consequently, 

the linear poroelasticity theory underestimates the time needed to reach the swelling 

equilibrium. This issue is highlighted more in cases of large deformations (i.e. data collected in 

this work). This effect was taken into account in the theories combining swelling and kinetics in 

one term (i.e. Fick’s second law and non-linear theory). Finally, non-linear theory showed the 

highest effective diffusion coefficient (DNL) values among all theories.  

 

Independently of the theory used, calculated diffusion coefficients were lower than the self-

diffusion coefficient of water, estimated to be 2.3·10-9 m2/s (Métais and Mariette, 2003). This 

suggests an obstruction effect of the soil network on the diffusion of water molecules. The 

phenomenon was previously reported (Fukuoka et al., 1994). The differences between water 

self-diffusion coefficient and the ones calculated from these experiments offer an indirect 

estimation of the resistance offered by the network. The soil network offered the least resistance 

to diffusion at high pH and high temperature. 
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The temperature dependence of the different effective diffusion coefficients estimated was also 

explored. Eq. 2.13 was applied to the results shown in Tables 6.5 to 6.7. Despite the lack of 

rheological information, the soil sample was assumed to behave as a solid as it did not flow in 

any experimental condition and it was partly detached from its surface when a sufficiently high 

external force was applied. Maximum effective diffusion coefficients (D0) and activation energies 

(EA) were estimated for pairs of data at the same pH and different temperatures. As only two 

values were used in the calculations, results only represent an indication of the order of 

magnitude expected. Table 6.8 summarises the different values obtained.  

 

Table 6.8. Activation energies and maximum effective diffusion coefficients estimated for each of the 

theoretical cases previously studied. 

THEORY T pH 
DIFFUSION 

COEFFICIENT 
(m2/s) 

EA (kJ/mol) D0 (m2/s) 

Fick’s 
second law 

30ºC 9.5 5.5·10-12 
19.8 1.40·10-8 

55ºC 9.5 1.0·10-11 
30ºC 10.5 8.6·10-12 

26.2 2.83·10-7 
55ºC 10.5 1.9·10-11 
30ºC 11.5 4.1·10-11 

9.1 1.52·10-9 
55ºC 11.5 5.4·10-11 

MEAN 18.4 (±9.0) 9.9·10-8 
(±1.6·10-7) 

Linear 
poroelasticity 

theory 

30ºC 9.5 9.60 · 10-13 
5.1 7.3·10-12 

55ºC 9.5 1.12 · 10-12 
30ºC 10.5 7.60 · 10-13 

5.2 6.0·10-12 
55ºC 10.5 8.90 · 10-13 
30ºC 11.5 1.33 · 10-12 

12.8 2.2·10-10 
55ºC 11.5 1.96 · 10-12 

MEAN 7.7 (±4.4) 7.6·10-11 
(±1.1·10-10) 

Non-linear 
poroelasticity 

theory 

30ºC 9.5 1.5·10-10 
16.9 1.2·10-7 

55ºC 9.5 2.5·10-10 
30ºC 10.5 3.0·10-10 

9.5 1.3·10-8 
55ºC 10.5 4.0·10-10 
30ºC 11.5 4.5·10-10 

22.9 4.0·10-6 
55ºC 11.5 9.0·10-10 

MEAN 16.4 (±6.7) 1.4·10-6 
(±2.3·10-6) 
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Activation energies (EA) estimated were in the range of 7.7 to 18.4 kJ/mol. The linear theory 

showed the lowest values while Fick´s second law showed the highest ones. This compares 

favourably with what was reported previously in literature (Bello et al., 2010). Experiments at pH 

11.5 showed the biggest displacements to mean values due to the experimental uncertainty 

introduced in the measurements by the lift-up and hydrolysis processes that occurred.  

 

Maximum effective diffusion coefficient (D0) showed a wide range of values. They were a 

function of the theory approach used and should be analysed within those boundaries. Fick’s 

theory showed a maximum effective diffusion coefficient closer to the one previously reported 

for the self-diffusion of water.  

 

The relationship between N, χ and the equilibrium swelling ratio (!!) was further explored. 

Different !! were calculated by applying Eq. 2.9 for a wide range of χ values (-2 to +2) and for 4 

representative N values: 1025, 1026, 1027 and 1028. Figure 6.23 illustrates the results obtained. 

 

 

Figure 6.23. Equilibrium stretch as a function of Flory-Huggins parameter (χ) 

and effective number of polymer chains per unit volume of the polymer (N). 

 

The plot shows an increase in the equilibrium stretch for χ values lower than 0.8 approximately 

and for N values higher lower than 1028. The higher the value of N, the lower the maximum 

equilibrium stretch achieved. As the number of polymer chains per unit volume increases, the 

stretch of the network becomes more difficult as the forces linking the network increase. The 
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elasticity of the network is reduced as a consequence. For the case studied, the calculated 

equilibrium stretch ratios were in a range from 3.5 to 10 and N coefficient was in the order of 

5·10-26. Given that, the plot indicates that the value of N should be around one order of 

magnitude higher, that is, 5·10-25. As commented in Chapter 3, section 3.10 the iteration 

process and the experimental error introduced made the predictions less sensitive with regard 

of these parameters.  

 

6.4. DEVELOPMENT OF A SWELLING-REMOVAL MODEL FOR THE 

SCANNING FLUID DYNAMIC GAUGE 

To reinforce the modelling approach, a mathematical swelling-removal model based on a 

theoretical background is proposed next. As a first objective, the model aims to distinguish 

between the mechanisms leading to removal, differentiating between the application or not of an 

external mechanical action. These mechanisms can be further modelled independently as a 

function of the different factors already highlighted: temperature, pH, enzyme level, shear stress 

and frequency factor.  

 

It aims to add flexibility by incorporating a simulation schedule. This could include the variation 

along a typical wash cycle of temperature, pH or enzyme (chemical) levels. These factors have 

been previously studied as fixed values in the experimental statistical design and output 

responses calculated also for fixed values across the whole simulation.  

 

It also aims to expand the predictions outside the range studied (i.e. by covering a frequency 

factor range from 0% to 100%), with no need to run new experiments to correlate and establish 

new response profiles.  

 

Finally, it aims to provide wider and better information of the soil status at any time of the wash 

cycle. Discretisation of the soil thickness is proposed as the best approach. The algorithm 

developed must provide simulated data for thickness profiles, soil remaining, wash solution 

uptake or total mass in the sample (wash solution + soil) and percentage of cleaning over time. 
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This information allows a better an easier comparison between different cleaning sequences 

and supports the decision making process and the finding of an optimum scenario.  

 

6.4.1. Case study 

To help the understanding of the model development, experimental conditions seen in Table 

6.9 were considered. These experiments aimed to easily differentiate main cases seen by using 

the sFDG: no apparent cleaning (test 1), removal by discontinuous (test 2) and continuous (test 

3) application of shear stress. 

 

Table 6.9. Experimental conditions considered for illustration purposes. 

Test Temperature pH Protease 
level 

Shear 
Stress 

Frequency 
Shear 
Stress 

1 50ºC 10.5 None 24 Pa 8.5 % 

2 50ºC 10.5 Standard 
formulation 24 Pa 8.5% 

3 50ºC 10.5 Standard 
formulation 24 Pa 100% 

 

Fixed values of temperature (50°C), pH (10.5) and shear stress (24 Pa) were established. Two 

different levels of protease were also examined: none and standard formulation level. The 

frequency of application of shear stress over a single location was also considered as a factor 

affecting the total cleaning time. Two levels were explored: 8.5% and 100%. The above was 

also expanded in section 6.4.3.3 to describe the effect of different temperatures (30°C, 40°C 

and 50°C) in the removal analysis. Triplicates were done for each of the cases considered.  

 

Previous work demonstrated that at these conditions of temperature and pH no decrease in 

thickness was observed in the absence of enzymes suggesting none or insignificant removal. 

Figure 6.24 shows the averaged fitted data from all the locations studied and their triplicates for 

the three experimental cases considered. 

 



SWELLING AND REMOVAL PHENOMENA IN PROTEIN-BASED SAMPLES 142 

 

Figure 6.24. Averaged fitted experimental results for the three experimental 

tests considered. Experimental conditions are included in Table 6.9. 

  

The figure shows a removal stage after an initial net swelling period for cases where protease 

was present. It also shows a faster cleaning time when a constant application of external shear 

stress was set (100% frequency). By obtaining thickness values at fixed times, the comparison 

with the mathematical model is also simplified. 

 

6.4.2. Identification of mechanisms 

In Figure 6.25, raw data for a single location in test 2 is shown. Similar plots were obtained for 

other locations under the same experimental conditions. 
 

 
Figure 6.25. Mechanisms identified in a typical protein-based cleaning test in sFDG. Experimental 

conditions: 50°C; pH = 10.5; [Protease] = Standard formulation level; Shear Stress = 24 Pa; Frequency 

of application of shear stress = 8.5%.  
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The figure reveals the three different main mechanisms affecting the thickness change in a soil 

sample: swelling, removal by shear stress (enzyme-induced disengagement and mechanical 

action) and removal by soil dissolution (enzyme-induced disengagement and dissolution). As 

seen in Figure 6.24, both types of removal are made possible by the enzymatic action. As there 

is a lack of bulk fluid movement in these experiments, removal via application of shear stress 

occurs when the nozzle is positioned on top of a specific location to obtain a height 

measurement. Removal via soil dissolution occurs when there is no external input of stresses, 

that is, during the time length where no data is acquired. Soil dissolution mechanism represents 

the minimum removal rate that can be achieved at the conditions established, with no external 

disturbances. It corresponds to the mass transfer produced from the soil to the bulk fluid after 

the chemical action (hydrolysis reactions). The application of an external stress enhances the 

removal process and soil layers are removed faster. However, the technique does not 

distinguish the soil disengagement process when an external mechanical input occurs. 

Molecules to be removed are either already completely disengaged and their transport to the 

bulk enhanced or the application of the external stress breaks completely the affected areas by 

the enzymatic action (partially hydrolysed) and produces as well the subsequent transport to the 

bulk fluid. The origin of disengagement is debatable but has limited effect on modelling results.  

 

The intensity of the different mechanisms is not constant and varies over time. Around the curve 

maximum, i.e. at approximately 20 to 30 minutes, swelling and removal mechanisms occur at 

similar rates. Before the maximum thickness (1), the application of an external shear stress 

produces a net removal effect. The slope of the group of data acquired at that time is negative, 

indicating a reduction in thickness. Also, as the soil dissolution process is still slower than the 

swelling rate, an increase in the thickness is seen between consecutive data acquisition periods 

(1 to 2). Once the maximum is passed, the swelling rate keeps reducing whilst the dissolution 

increases. There is still a net increase in thickness at the interval period with no measurements, 

but that increase is lower than the one seen before the curve maximum (2 to 3). Later on, both 

types of removal mechanisms are able to produce a net decrease on soil thickness. The 

swelling rate is reduced and the sample is weaker and easier to remove. 
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Similar plots were reported by Gordon et al. (2012b), where cleaning studies were also 

performed on egg yolk stains. The individual modelling of these three mechanisms forms the 

basics of the proposed algorithm.  

 

6.4.3. Algorithm development. 

6.4.3.1. Proposed equation 

The above can be summarised using the following equation (Eq. 6.1):  

 

!!
!" = ! − ! ∙ !! −  1 − ! ∙ !"    Eq. 6.1 

 

Where:  

• h  = Thickness.  

• t   = Time.    

• S  = Swelling function.  

• SS  = Shear Stress function. 

• SD  = Soil Dissolution function (based on enzyme effect).  

• f  = Frequency function. Step function (0 or 1). 

 

Thickness variation over time is a function of the different mechanisms involved: swelling and 

removal via shear stress action or soil dissolution. Each of these mechanisms is modelled 

individually and integrated together over time. The frequency function is used to account for 

periods with an external application of shear stress imposed by the sFDG. The external 

mechanical energy input increases the rate of removal when compared to a pure dissolution 

process as seen in Figure 6.25. Thus, a function that describes when an external shear stress 

is applied is necessary. This frequency function is a step function taking values of 0 and 1. If an 

external mechanical action is occurring, the function assigns a value of 1 and the soil dissolution 

term is cancelled. If cleaning is driven by soil dissolution alone, then its value is 0 and the shear 

stress term is cancelled. Shear stress function could incorporate some soil dissolution 

(understood as the complete disengagement of soil elements due to chemical reaction). 

However, the technique does not completely decouple the removal phenomena as commented 
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previously. For modelling purposes, this approach enables an easier calculation of removal 

rates. 

 

6.4.3.2. Swelling 

To model swelling phenomena, the uniaxial constrained swelling equation (Eq. 2.6) proposed by 

Bouklas & Huang (2012) is used. The solution of the PDE implies both the discretization of time 

(∆!)  and space (∆!) . This allows the introduction of the concept of ‘theoretical layers’, 

representing the initial number of layers in which the soil is divided. The concept will be further 

used to integrate removal mechanisms. 

 

The iterative process required for fitting the experimental data has already been explained in , 

Chapter 3, section 3.10. The difficulty predicting the values for the Flory-Huggins parameter (χ) 

and the effective number of polymer chains per unit volume (N) does not affect the results from 

the model proposed. Although better knowledge of the system is required in order to minimise 

the variability in the prediction of these parameters, the equation shows the flexibility required 

for accurate fitting the data as well as the discretisation of the layer thickness.  

 

In Figure 6.26, predictions results are compared with experimental data. By using the iterative 

process explained above, the parameters resulting in the best fit were: Deff = 2.5·10-10 m2/s; χ = 

0.9; N = 6·1026 m-3. 50 theoretical layers were initially defined giving a ∆! =  1.22 !"  and a 

∆! = 0.003 !. Overall the model compared favourably with the experimental data (R2 = 0.98). A 

slight over prediction is seen at lower times while predicted values at high times shows great 

accuracy.  
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Figure 6.26. Quality of the adjustment for pure swelling experimental data (test 1). Red dots represent 

averaged fitted experimental data. Black line represents prediction results from model.  Experimental 

conditions: 50°C; pH = 10.5; [Protease] = None; Shear Stress = 24 Pa; Frequency factor = 8.5%. 

 

6.4.3.3. Removal  

Removal characterisation was done empirically from experimental data. Removal rates 

!" µ! !"#  for both shear stress and soil dissolution mechanisms were calculated by 

determining the different experimental removal slopes. Shear stress removal rates were 

estimated from the groups of thickness data available. For example, for test 2 and as seen in 

Figure 6.25, rates were calculated by linearly fits to those values. The slope (blue line), 

corresponding to the removal rate at that interval, was assigned to a time value calculated as 

the average time of the data group analysed. The same procedure was followed to estimate soil 

dissolution removal rates. The slope from intervals with no data (green line) was calculated and 

a time value assigned. For cases with a constant application of shear stress (test 3), removal 

rates were calculated for intervals of 1 minute.  

 

Swelling is incorporated as a positive contributor to thickness. In order to decouple swelling and 

removal mechanisms, swelling rates from test 1 (at the same temperature and pH conditions) 

were calculated and used as a base line. Positive swelling contributions to thickness were 

subtracted for each of the interval times considered (i.e. every minute). This assumes a linear 

relationship between mechanisms. Swelling rates were obtained from either the groups of data 

points (shear stress applied) or from periods with no data collection (no shear stress applied). 

The latter showed typically less noise.  



SWELLING AND REMOVAL PHENOMENA IN PROTEIN-BASED SAMPLES 147 

50ºC 

A 

 

B 

 

Figure 6.27. Thickness change rate over time for different mechanisms at 50°C, pH =10.5 and shear 

stress = 24 Pa (processed data from test 1,2 & 3). A – Mechanisms with swelling phenomena not 

decoupled. B – Mechanisms with swelling phenomena decoupled. Red squares represent swelling rate 

data calculated through non-measurement periods for pure swelling test (test 1 – [Protease] = none). 

Purple circles represent swelling rate data calculated through measurement periods for pure swelling test 

(test 1). Green triangles represent soil dissolution rates obtained from test 2 ([Protease] = Standard 

formulation level). Blue diamonds represent shear stress removal rates with constant application (100% 

Frequency) obtained from test 3 ([Protease] = Standard formulation level). Yellow circles represent shear 

stress removal rates for a discontinuous shear stress (8.5% Frequency) obtained from test 2. 
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In Figure 6.27A, the rate of thickness change over time is shown for each of the key 

mechanisms investigated. The data indicate that swelling had an important positive contribution 

to the change of the sample height for the first 15 minutes. At longer times, the application of 

shear stress resulted in a reduction of the sample height irrespective of the frequency of 

application (blue and yellow points). A decrease in thickness change rates was also seen as a 

result of the soil dissolution mechanism (green triangles), but its effect was less strong. The 

graph also shows higher variability when swelling rates were calculated from the different 

groups of data points in the experimental readings (purple circles - shear stress applied).  

 

In Figure 6.27B, the contribution of swelling to thickness was subtracted from removal 

mechanisms by using the swelling curve (red squares) as a base line. At initial times, removal 

action showed very little negative effect to the thickness. This negative contribution increased 

over time and constant removal rates were obtained for soil dissolution (green triangles) and 

removal via discontinuous application of shear stress (yellow circles) cases, with thickness 

change rates values of approximately -6 µm/min and -30 µm/min. However, continuous 

application of shear stress (blue diamonds) did not produce a constant removal rate. The 

maximum value was reached at approximately 20 minutes (-32 µm/min) and its subsequent 

decrease in rate is an indication that cleaning was in its final decay stage. Complete removal 

was achieved soon after 30 minutes. The fact that the removal rate was higher between 10 to 

30 minutes for a continuous exposure to shear stress (100%) than for 8.5% frequency suggests 

a weakening of the soil network at these conditions (50ºC, pH 10.5, 24 Pa). The continuous 

application of shear is able to produce extra mechanical removal. The graph also illustrates the 

important difference in removal rates between removal by soil dissolution alone (only 

enzymatic-induced removal) and shear stress removal (mechanical + enzymatic-induced 

removal). 

 

The same approach was applied to data collected at 30°C and 40°C to determine the effect of 

lower temperatures. Figure 6.28 shows the thickness change rate for each of the mechanisms 

studied. Swelling effect was also subtracted by applying the same approach as for the case at 

50°C. 
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A 

40 ºC 

 

B 

30 ºC 

 
Figure 6.28. Thickness change rate over time for different mechanisms at 40°C (A) and at 30°C (B) for 

pH = 10.5 and shear stress = 24 Pa. Mechanisms with swelling process decoupled. Meaning of the 

symbols is the same as for Figure 6.27. 

 

In Figures 6.28A and 6.28B, removal rates seemed to be constant over time after the initial 

non-steady period. This includes the case of a constant application of shear stress (blue 

diamonds). A decrease in the removal rate was also seen after the constant rate period, 

indicating the final decay stage. Cleaning times were extended as a consequence of the 

reduction of temperature. In these two cases, higher instantaneous removal rates were obtained 
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when the frequency of application of shear stress was lower (yellow dots versus blue 

diamonds). This suggests an enzyme reaction rate limiting stage. As the function of the enzyme 

function is to help and promote the breakage of peptide bonds (Aehle, 2007), the number of 

bonds hydrolysed at a certain time is limited. The longer the period without application of shear 

(lower frequency), the higher the number of bonds affected. As soil dissolution removal (mass 

transfer process) is slower, when shear stress is reapplied, the amount of soil ‘ready to be 

removed’ will be higher. Therefore, higher removal rates will be obtained. For continuous 

application of shear stress (100% Frequency), the instantaneous removal rate achieved will 

never be higher than a discontinuous application unless the amount of external energy applied 

(net shear stress value) is able to break mechanically a higher number of inner bonds of the soil 

network (cohesive failure). An example of this behaviour was commented previously for the 

case of 50°C. In any case, the continuous application of shear stress over the soil typically 

leads to reduced cleaning times as there is no soil dissolution alone.  

 

This enzyme reaction rate also complements the shear stress threshold proposed in section 

6.2.2 (see Figure 6.8). The shear stress threshold indicates the minimum energy required to 

produce the removal of the soil at a specific time while the enzyme reaction rate mechanism 

explains the removal rate limit over time. However, it is important to state that the data in this 

work do not absolutely precise the hypotheses given. 

 

Thickness change rates shown previously were integrated over time. In Figure 6.29, the 

resulting cumulative effect on thickness over the cumulative integrated time is seen for cases of 

continuous and discontinuous application of shear stress and for soil dissolution mechanisms. 
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A 

 

B 

 

C 

 

Figure 6.29. Cumulative thickness effect over time at different temperatures and for different cleaning 

mechanisms. A – Continuous application of shear stress (100% Frequency). B – Discontinuous application 

of shear stress (8.5% Frequency). C – Soil dissolution. Circles, squares and triangles represent data for 

30°C, 40°C and 50°C respectively. Experimental conditions: pH = 10.5; [Protease] = Standard formulation 

level; Shear Stress = 24 Pa. 
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Their different effects are also seen for the three different temperatures previously shown (30°C, 

40°C and 50°C). Given the linear tendency observed, the data were fitted to a linear correlation. 

The gradient was an estimate of a constant removal rate for each of the cases considered. A 

lag time was also calculated as the initial time with no cleaning. Its value was established as the 

intercept on the time axis (x-axis).  

 

In Figure 6.30, estimated removal rates are compared for all mechanisms at the temperatures 

studied. 

 

 

Figure 6.30. Constant removal rates calculated for different mechanisms at different temperatures. Green 

triangles represent removal rates for soil dissolution. Blue diamonds and yellow dots represent removal 

rates for a continuous (100% freq.) and discontinuous (8.5% freq.) application of shear stress over the soil. 

Experimental conditions: pH = 10.5; [Protease] = Standard formulation level; Shear Stress = 24 Pa. 

 

The soil dissolution values represent the maximum amount of soil removed if cleaning occurs 

without any external mechanical action. The highest removal rates were observed for a 

discontinuous application of shear. This is believed to be a consequence of the enzyme reaction 

rate limit explained before. The increase in temperature led to the increase in removal rates, 

regardless the mechanism. Thus, it is supposed that the energy requirement needed to break 

cohesively the soil network was reduced at higher temperatures. At 50°C, an approximation 

between rates from frequencies of 100% and 8.5% is seen. The hypothesis given previously 

suggested an extra mechanical breakage of some inner bonds of the soil network when a 

continuous shear is applied, as the shear stress threshold was overcome.  
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An Arrhenius analysis was performed on the soil dissolution data as described by Mercadé-

Prieto and Chen (2008). Figure 6.31 illustrates the results obtained. 

 

 

Figure 6.31. Arrhenius analysis on soil dissolution data from 

Figure 6.30. 

 

Despite only three points were analysed (three temperatures considered), a linear correlation 

was seen when representing removal rates (ln SD) as a function of temperature (1/T). The 

coefficient of determination estimated was high (R2 = 0.999). This gave an activation energy 

(Ea) of approximately 4.8 kJ/mol, slightly lower but in the same order of magnitude than for a 

non-catalysed breakage of peptide bonds (8-10 kJ/mol) (Martin, 1998). This enhances the 

hypothesis already given of a reaction rate limiting stage and suggests that the rate limiting 

stage is the same independently of temperature. A deeper analysis on this phenomenon will 

require the study of the dissolution behaviour at different pH, enzyme levels or sample 

processing conditions.  

 

The empirical approach followed in this section was used to calculate removal rates. Different 

cleaning mechanisms can be modelled statistically as a function of the parameters controlled. 

The examples given have shown the effect of temperature and frequency of application of shear 

stress. Two phases of the cleaning process are distinguished: an initial stage with no removal 

defined by a lag time and a subsequent constant removal phase. To compensate for the sudden 

increase in removal rates that this approach would produce, a transition period was also 

defined. A linear increase in the removal rate was established after the initial lag time for an 
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extra half of the lag time estimated. The use of this transition period is used to provide smoother 

simulated curves around the curve maximum. An opportunity for further development is 

possible. The application of a stronger theoretical background to characterise enzyme kinetics 

(i.e. Michaelis-Menten approach) would lead to a removal model that would be less empirical. 

 

Concerns about a change over time (decrease) of the N parameter (the effective number of 

polymer chains per unit volume of the polymer) can also arise when analysing the definition of 

the parameter in detail. Hydrolysis reactions breaking protein network bonds reduce the number 

of crosslinks and long chains. Therefore, the value of N reduces. However, removal occurs from 

top to bottom layers and experimental data suggests an enzyme reaction rate limiting stage. 

This indicates that only top layers are affected by the enzymatic action at a given time. Those 

layers are removed as soon as an external mechanical action is applied or through a dissolution 

process. Deeper layers remain unreacted and therefore with the same ‘N’ value initially 

established. Thus, the integrated swelling process can still be applied without any changes over 

time. For further developments, the decrease of N in top layers could be used as limit criteria to 

establish the point from which removal is going to occur.  

 

6.4.3.4. Frequency function 

The frequency function is a step function that distinguishes when an external mechanical action 

is being applied over the soil. Whenever this occurs, the function assigns a value of 1. If 

cleaning is driven by a pure soil dissolution mechanism, then the value given is 0.  

 

Typically, cleaning patterns are repeated periodically (i.e. automatic dishwashing). In order to 

define these repetitions, the following terms need to be defined: 

 

• t = Experimental time. 

• ts = Start time of application of shear within an interval. 

• te = End time of application of shear within an interval. 

• !! = Time length of the interval.  

• i = Counter. Defines the number of pattern repetition it is occurring. 
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• Nts = !! !!  = Normalised start time of application of shear within an interval. 

• Nte = !! !!  = Normalised end time of application of shear within an interval.  

 

Therefore, the frequency function establishes: 

 

! = 1   !"  !!!!  ≤  !− !−1 ·!!
!!  ≤   !!!!      Eq. 6.2  

 

! = 0   !"  !!!!  ≥  !− !−1 ·!!
!!  !"  !− !−1 ·!!

!!  ≥   !!!!   Eq. 6.3 

  

Figure 6.32 shows different pattern examples. 

A 

 

B 

 

Figure 6.32. Frequency function pattern examples. A – ts = 0 min.; te = 2 min.; !! = 10 min.; B - ts = 0.5 min.; 

te = 1 min.; !! = 3 min. 

 

If the pattern does not occurs periodically the sequence needs to be inputted manually.  
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6.4.3.5.  Developed algorithm 

A computer routine developed in MATLABTM allowed the integration of the different mechanisms 

studied. In Figure 6.33, a schematic of the algorithm used is shown:  

 

 
Figure 6.33. Schematic of the algorithm developed. 

 

Initially, starting conditions for the different experimental variables (temperature, pH, [Enzyme], 

shear stress, frequency of shear stress) and their profiles along the simulation must be 

established. These factors are linked (if previously modelled) with the parameters defining both 

the swelling and removal mechanisms. The initial thickness of the sample is discretised into a 

number of theoretical layers and a time step established to comply with the convergence in the 

solution of the swelling non-linear partial differential equation (PDE). The model evaluates and 

combines each of the mechanisms (swelling and removal) for every time step. Cleaning 

happens either by shear stress removal or soil dissolution depending on whether some external 

mechanical input is applied or not (frequency function). The net removal rate at any stage is 

given by the approach explained in section 6.4.3.3. The integration over the time step gives a 

net thickness swelling/removal value. To compute for swelling and removal in parallel, the 

algorithm developed introduces a novel consideration: a deletion of theoretical layers occurs 
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when the integrated rate of removal over a time step is higher than the thickness of the top 

layer(s) considered. A ‘removal carryover’ is also calculated as the difference between the net 

removal in that step time and the net thickness of the layers removed (if there is any layer 

removed). The routine keeps on calculating the thickness profile over time until no theoretical 

layers remain. Figure 6.34 shows a schematic on the modelling approach taken. 

 

    

Figure 6.34. Schematic of the cleaning process. Removal of the layers occurs when the net removal 

calculated is higher than the thickness of one or more of the layers above. Yellow tone simulates the 

colour of egg yolk. 

 

6.4.3.6. Simulation example 

In Figure 6.35, a simulation performed by the developed algorithm is compared to averaged 

fitted experimental data. 

 

Figure 6.35. Simulation results versus real data. Blue colour represents experimental averaged 

fitted data. Red colour represents simulated data. Experimental conditions: 50°C, pH 10.5, 

[Enzyme] = standard, Shear Stress = 24Pa, Frequency = 17%. 50 theoretical layers considered.  

 

The conditions of the test were the following: 50°C, pH 10.5, [Enzyme] = standard, Shear Stress 

= 24 Pa and Frequency of application of shear = 17%. This frequency corresponded to the 

analysis of three different points over the soil at intervals of a minute with a repetition pattern 



SWELLING AND REMOVAL PHENOMENA IN PROTEIN-BASED SAMPLES 158 

every 3 minutes. Experimental data was acquired approximately during 30 seconds per point as 

the rest of the time is spent on moving and placing the nozzle in the defined location. Table 

6.10 summarises the parameters under which the simulation was run:  

 
Table 6.10. Values of the parameters used for simulation example. 

MECHANISMS PARAMETER VALUE 

General 
specifications 

Theoretical layers 50 

Time step, Δt 3 ms. 

Swelling 

Effective diffusion coefficient, Deff 2.5·10-10 m2/s. 

Flory-Huggins parameter, χ 0.9 

Polymer chains per unit volume, N 6·1026 chains/m3. 

Removal 

Shear Stress Removal Rate, kss 25.10 µm/min. 

Soil Dissolution Removal Rate, kds 5.55 µm/min. 

Lag time 9 min. 
 

The plot shows how the algorithm is able to compute the observed swelling and removal. The 

removal of the layers is represented by each of the small ‘jumps’ that can be seen in the graph. 

Accordingly to what is seen in experimental data (see Figure 6.25), swelling and removal 

mechanisms acting at similar rates are shown around the curve maximum. Anytime a layer is 

removed a decrease in thickness is seen. If no layer removal happens, the algorithm still 

computes for swelling and thickness increases.  

 

Figure 6.36 represents the relationship between the quality of the simulation and the 

computational time as a function of the number of theoretical layers defined.  
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Figure 6.36. Computational cost (s) in CPU time, and quality of the analysis (R2) as a 

function of number of theoretical layers defined. 

 

Simulations with less than 10 theoretical layers would under predict the removal occurring, 

leading to poor results (low R2 values). Each of the layers defined would be thicker and 

therefore, anytime one of them would be removed, it would be equivalent to the removal of a 

relative high amount of soil. This would contradict what was observed experimentally where 

small quantities of soil were removed progressively. Also, as swelling is computed in parallel, 

the longer the layer remains the thicker it would get with no removal occurring. The accuracy of 

the simulation could be improved by using a higher number of theoretical layers. This would 

lead to smoother curves and therefore higher sensitivity. However, the computational cost 

would be compromised. The higher the number of theoretical layers, the lower the time step and 

so, more calculations would be required to reach the solution. Above 20 theoretical layers it was 

observed that the computational time required to simulate the process increases exponentially 

while the quality of the prediction did not enhanced very much. 
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6.4.3.7. Other outputs 

The algorithm also allows different information to be estimated. In Figure 6.37, a series of 

possible outputs is shown. 

 

A 

 

B 

 

C 

 

D 

 

Figure 6.37. Other outputs that can be obtained with the algorithm developed. A – Soil remaining over 

time; B – Total mass (soil + solvent) over time; C – Cleaning percentage over time; D – Sample 

saturation over time. 

 

If the initial soil dry mass is known, a soil mass content can be assigned to each layer and the 

amount of soil remaining can be estimated as seen in Figure 6.37A. The net amount of mass in 

the system (soil + solvent) can also be calculated when increase in thickness is correlated with 

the amount of solvent (water) uptake via a density relationship. This is seen in Figure 6.37B. A 

cleaning percentage profile can be calculated if cleaning rate is normalised as a function of the 

layers remaining. This approach can lead to better comparison between cleaning rates for 

different systems. It establishes a common cleaning scale for different procedures and soil 
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types as cleaning is evaluated in a scale from 0 to 100.  The graph is shown in Figure 6.37C. 

Finally, the increase of layers’ thickness can be correlated with the equilibrium thickness and 

their ‘saturation’ calculated. ‘Saturation’ tells whether the soil network has ‘room’ for further 

swelling (or solvent uptake). Data calculated can be analysed for different numbers of layers 

(i.e. individual layers, group of bottom/top layers, all layers, etc.) depending on the information 

required. In Figure 6.37D, the saturation of the soil is represented considering all the layers 

available at each time of the process. Maximum saturation is estimated around 50-60%. This 

indicates that if no removal happens, the soil still has the potential to hydrate by another 40%. 

At the end of the process, the routine predicts a decrease in the saturation of the remaining soil. 

This corresponds to the bottom layers, which are calculated theoretically to be low hydrated, as 

the liquid penetration is low. Once all layers are removed the curve drops to a 0% value.  

 

6.5. SUMMARY 

Swelling and removal phenomena occurring in protein-based soils were studied via scanning 

Fluid Dynamic Gauge (sFDG). Factors such as temperature, pH, enzyme level, net shear stress 

and the frequency of application of shear stress were investigated.  

 

The dynamic statistical study built predictive curve responses as well as highlighted those 

parameters significantly impacting thickness variations. Initially, temperature and pH were 

evaluated as factors affecting swelling. Results showed pH as the most contributing factor to the 

degree of swelling. Swelling ratio increased with the increase of alkalinity. Temperature also 

played an important role. At high alkaline and temperature conditions (i.e. pH 11.5 and 55ºC), 

hydrolysis effects weakened the structure and the soil was detached from the surface.  

 

The addition of enzymes to the wash solution led to a decrease in thickness after an initial 

swelling period. A second experimental design incorporated the effect of the enzyme level, the 

net shear stress and its frequency (frequency factor) into the analysis. Results established 

temperature, pH, enzyme level and the frequency factor as significant contributors to the 

thickness change. The effect of the net shear stress applied was disregarded in the statistical 

analysis. This indicated that at the range of shear stresses studied (12 Pa to 65 Pa), an 
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increase on the net shear stress applied did not produce a significant thickness change. 

However, the importance of the frequency factor suggested that the quick removal of a protein-

based sample requires the application of an external force as frequently as possible. This 

further suggested the existence of a shear stress threshold below which an external mechanical 

action does not impact the removal process. If this threshold value is achieved, removal is 

suddenly enhanced though the removal rate does not vary much with a further increase on the 

shear stress applied. This threshold would vary with the change of the status of the sample 

(more or less hydration, hydrolysis reactions…). 

 

The effect over time of each of the significant factors showed the importance of pH in the first 

stages of the process as a positive contributor to thickness (swelling) only. Temperature 

showed an important effect on both swelling and removal stages, presenting the overall biggest 

importance. Enzyme level and the frequency factor were negative contributors to thickness 

(removal) and their effect was noticeable once the removal stage started (typically after 15 to 20 

minutes). The pH square term (pH*pH) and the interaction effect between temperature and 

enzyme level (temperature*enzyme) and temperature and frequency factor 

(temperature*frequency) were also reported as significant contributors to thickness changes.  

 

The analysis of swelling phenomena was expanded by comparing hydration studies performed 

via sFDG and gravimetric methods. At high alkalinity (pH 11.5), some of the material was 

removed when an external surface shear stress was applied. The formation of blisters was also 

observed in these conditions. The soil network was weaker due to the increase of moisture 

content and hydrolysis reactions that occurred. The kinetics of the diffusion process did not 

shown significant differences within the range of conditions studied. 95% of the maximum 

swelling was reached approximately after 90 min. 

 

The use of the power-law model suggested a Fickian diffusion transport model. The adaptation 

of the equation to fit sFDG data produced comparable results. The increase of temperature and 

pH led the mass transfer process towards an anomalous scenario. The sample network needed 
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to accommodate higher volumes of liquid over the same time period as the maximum swelling 

was reached at the same time. Therefore, the network rearrangement became more difficult. 

 

Three different theoretical approaches were used to fit the experimental data and to estimate 

effective diffusion coefficients. Fick’s second law (with moving boundaries) showed the lowest 

accuracy in predictions. Linear poroelasticity theory allowed good fits on the experimental data. 

However, this mathematical approach led to lower effective diffusion coefficients than the other 

theories. The non-linear approach also reported accurate predictions. The use of these theories 

allowed the estimation of activation energies in the analysis of the temperature dependence of 

the diffusion coefficient. 

 

Finally, a novel algorithm based on theoretical background was developed to describe and 

model swelling and removal. The use of sFDG allowed the identification of the different 

mechanisms leading to removal: either via application of an external shear stress (mechanical 

and enzymatic-induced cleaning) or soil dissolution (pure enzymatic-induced cleaning). The 

process was mathematically expressed in Eq. 6.1. 

 

Swelling was described by applying the non-linear poroelasticity theory. The second order non-

linear partial differential equation given allowed the introduction of ‘theoretical layers’. These 

theoretical layers correspond to the number of parts into which the initial dry thickness of the 

soil is divided. A mathematical requirement to comply with the convergence in the solution of 

the PDE included as well the introduction of a time step. This was used further on to integrate 

the removal mechanisms.  

 

Cleaning phenomena was modelled empirically. For each of the removal mechanisms identified 

(shear stress removal and soil dissolution), removal rates over time were calculated by 

subtracting the positive contribution to thickness from swelling. Results showed constant 

removal rates after an initial induction period with increasing removal rates. Different 

temperatures and frequencies of application of shear stress were explored. An increase in 

temperature increased the removal rates observed for any of the cleaning mechanism involved. 
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The constant application of shear stress over a fixed location promoted a reduction in the 

instantaneous cleaning rate observed. The hypothesis suggested an enzyme reaction rate 

limiting stage. Long intervals without the application of an external mechanical cleaning action 

allowed higher quantities of soil to be removed when mechanical action was applied. At 50°C 

and with a continuous application of shear stress, results also indicated a stronger mechanical 

removal. In the first stages of the cleaning process (induction period), removal rates were higher 

than for a discontinuous application of shear. This agreed with the shear stress threshold 

hypothesis commented before. 

 

The algorithm developed was able to integrate all phenomena occurring. By using ‘theoretical 

layers’ and its associated time step, overall cleaning process was modelled. Theoretical layers 

were removed over time until a complete cleaning was achieved. The deletion of layer occurs if 

the accumulated removal thickness over a time step exceeds the thickness of the layer(s) 

above. The approach used also allows different ways of presenting the results. Cleaning can be 

expressed as thickness evolution over time, as a percentage, as the amount of soil left or total 

mass (soil + solvent) of the system at any time. A saturation analysis, expressed as the 

potential for further swelling, can also be performed.  

 

Statistical and mathematical models for the cleanibility of protein-based soils will be used in the 

following chapter to predict and compare results in cleaning processes occuring in full scale 

ADWs.    
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7.1. INTRODUCTION  

The assessment of cleaning in commercial ADWs has always represented a challenge. Multiple 

soils attached to different surfaces with different shapes can be found at different status during 

a wash cycle. Therefore, describing their cleaning process is always complex. This chapter 

introduces the results of a novel system to constantly evaluate cleaning of technical soils inside 

an ADW. The technique improves the current assessment used in these appliances as the 

kinetics of the process can be measured. Current technical analyses are done via visual grading 

or through external image analysis systems (EN 50242). Thus, only the end result is measured.  

 

Also, the mathematical model for water distribution inside an ADW (Chapter 5) is combined with 

the statistical and fundamental models developed in Chapter 6 to predict and compare cleaning 

profiles in ADWs. This modelling effort concludes the integration of the learning made during 

this work and provides a tool to optimise experimental scenarios and speed-up knowledge gain.  

7.2. IMAGE ANALYSIS STUDIES 

The technical principles as well as the experimental procedure are explained in Chapter 3, 

section 3.11. Also, a schematic representation of the different vectors into which colour is 

divided (L*a*b) was previously shown in Figure 3.10. Temperature, pH and enzyme level 

effects were evaluated on egg yolk technical stains. Levels selected were kept in the same 

range as studied previously: 30ºC to 55ºC for temperature, 9.5 to 11.5 for pH and 0.02 g/l to 0.1 

g/l for the enzyme level. Triplicates were measured for each experimental case considered. 

Cleaning profiles represented the stain removal index (SRI) achieved at any time of the wash.   

7.2.1. Typical tile cleaning evolution 

 Figure 7.1 illustrates a typical tile cleaning evolution.  

      

t = 0 min. t = 15 min. t = 30 min. t = 45 min. t = 60 min. White Reference 

Figure 7.1.  Typical cleaning evolution path. Wash conditions were T = 55ºC, pH = 10.5 and 0.06 g/l of 

enzyme. 
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The figure shows the changes in colour through the wash cycle from the initially soiled tile. The 

difference in colour to the white reference decreases over time as cleaning occurs. A ‘white 

reference tile’ is always considered as the best cleaning output possible and establishes the 

upper limit in the scale (SRI = 100%). Cleaning processes observed experimentally showed a 

homogeneous removal across the tile area. This suggests a diffusion-reaction mechanism 

where the enzyme helps breaking the network and the soil washes out continuously as the 

water reaches the tile. It also suggests a small effect of the external shear stress generated by 

the direct impact of water as no areas were cleaned faster.  

 

Water droplets on the images can be observed eventually at different locations (i.e. t = 15 min. 

at upper and bottom left side) due to the splashing of water occurring internally in the 

dishwasher. This obscures the images by creating darker spots, thus increasing the noise in the 

readings. Sometimes, a water film is developed as well at the front of the camera distorting 

some of the images. The placement of the light torch also makes the right side of the tile to be 

more illuminated. This produces a gradient in L vector across the width of the sample and 

distortions on ‘a’ and ‘b’ vectors. 

 

Figure 7.2 illustrates L*a*b values obtained over time for a row of pixels (350 pixels height) 

across the width of the soil from the cleaning example shown.  
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A 
‘L’ vector 

 

B 
‘a’  vector 

 

C 
‘b’ vector 

 

Figure 7.2.  L*a*b values of a row of pixels across the width of the soil. A – ‘L’ vector; B- ‘a’ vector; C – ‘b’ 

vector. 

 

Figure 7.2A shows the linear gradient previously commented for ‘L’ vector. At the right side of 

the image the luminosity reached its maximum (L = 100). No differences in the ‘L’ value would 

be spotted from picture to picture if the luminance of the sample varied during the cleaning 
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process. As a consequence, pictures were re-cropped to a width not higher than 700 pixels for 

further analyses. The plot also shows no changes in L over time, indicating that the luminance 

did not vary when these soils were cleaned. Figure 7.2B shows the results of the chromatic 

component ‘a’ (red-greeness).  A small distortion was produced again at the right side as a 

consequence of the inhomogeneous illumination. In that area, the system evolved from values 

around -10 to values close to 0 at the end of the wash cycle, in agreement with the profile given 

by the white reference. The area not distorted directly by the illumination shows no differences 

over time. Figure 7.2C analyses the chromatic component ‘b’ (blue-yellowness). It shows a 

clear evolution from high values (b = 70), corresponding to the ‘yellowness’ of the picture, to low 

values (b = 10), in accordance to the white reference. Therefore, this vector was the main 

contributor in the measurement of the colour change. The profile shows as well the decrease of 

‘b’ component from left to right as a consequence of the inhomogeneous illumination. At 45 and 

60 minutes a sharp decrease in the ‘b’ value was also seen on the left side of the picture. This 

was related to the accumulation of water in this area. Overall, L*a*b values were averaged 

across the cropped area considered. Therefore, only a single ‘L’, ‘a’ and ‘b’ value was given at a 

specific time (one ‘L’,’a’ and ‘b’ value per picture). This reduced all the illumination and 

homogenised the results. 

 

Figure 7.3 illustrates the SRI profile obtained from the example given. Data was processed 

according to the method explained in Chapter 3, section 3.11.4. 
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Figure 7.3.  Stain Removal Index profile for the example given. Blue dots represent SRI 

values calculated for each picture taken. Black line represents a moving average line 

with a period of 10. Red line represents the linear fitting on the constant removal period. 

 

The plot identified three different stages in the cleaning process.  Firstly, an initial period with no 

removal was observed for the first 5 minutes. This related to the time required for cleaning to 

start and was in agreement with the swelling phenomenon explained in the previous chapter. 

No colour changes were therefore associated with swelling. Then, cleaning occurred at a 

constant rate during most of the wash cycle. Again, the phenomenon agreed with the removal 

rates profiles calculated in Chapter 6, section 6.4.3.3, (Figure 6.29). Finally, removal was 

reduced gradually as the process moved to the decay stage and the tile was completely clean. 

 

Due to the inherent error in a single L*a*b picture measurement, the initial reference contrast 

[ !"#$%&'$ !!!] was calculated as the average result for images taken during the first three 

minutes of the experimental procedure. As no cleaning occurred within that period, this aimed to 

reduce the overall error in the calculations. 

 

The fitting of a line during the constant removal stage allowed the calculation of an averaged 

cleaning rate. For the example given, this stage was found between 5 to 45 minutes 

approximately. The linear fitting estimated a removal rate of 1.94 %SRI/min (R2 = 0.9807). This 

methodology will be used further as a quantitative comparison for different washing conditions 

considered. 
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Despite the issues highlighted previously on data acquisition and image processing, the method 

was able to represent clear cleaning profiles. Deviations from consecutive points were very 

small and the presence of outliers scarce. The effect of temperature, pH and enzyme level on 

the cleaning of protein-based soils is shown next.  

 

7.2.2. Effect of temperature 

Figure 7.4 shows the results from experiments at 30ºC and 55ºC. They were initially set-up with 

an enzyme level of 0.06 g/l and a pH of 10.5. 

 

 
Figure 7.4. Temperature effect on cleaning performance. Red and blue lines represent the moving 

average fit with a period of 10 at 30ºC and 55ºC respectively. Experimental conditions were set at pH 

10.5 and 0.06 g/l of enzyme. Individual data points are not shown to preserve the clarity of the figure. 

 

The graph clearly shows how the cleaning rate increased with the increase of temperature. A 

reduction in the initial lag period was also observed at 55ºC. As explained in the previous 

chapter, these differences were due to the following phenomena: 

 

1. The absorption of higher quantities of liquid is faster at higher temperatures. This 

phenomenon leads to a faster weakening of the soil structure. Therefore the subsequent 

cleaning process occurs at an early stage.  
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2. The use of a protease is favoured at 55ºC. According to literature (Aehle, 2007), this type 

of enzyme finds their optimum performance at a range of temperatures between 50ºC to 

60ºC. By making the enzyme work at its best, hydrolysis kinetics was faster and therefore 

removal occurred faster as observed. 

 

Table 7.1 compares the averaged cleaning rates estimated for each of the cases studied:  

Table 7.1. Cleaning rate values for experiments at 30ºC and 55ºC. 

CASE CLEANING RATE STD 

30ºC 0.85 %/min 0.12 %/min 

55ºC 1.75 %/min 0.29 %/min 
 

Results show how the cleaning rate was twice as fast at 55ºC when compared to 30ºC runs.  

 

7.2.3. Effect of enzyme level 

Figure 7.5 illustrates three different cleaning profiles for three enzyme levels considered: 0.02 

g/l, 0.06 g/l and 0.10 g/l. These experiments were run at 55ºC and at initial pH of 10.5.  

 

 

Figure 7.5. Enzyme level effect on cleaning performance. Red, green and blue lines 

represent the moving average fit with a period of 10 at 0.02, 0.06 and 0.10 g/l of protease 

respectively. Experimental conditions were 55ºC and pH 10.5. 
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The plot shows how the lowest level of enzyme (0.02 g/l) hardly produced any removal on the 

soil. A significant difference was observed when compared to higher levels. For the highest 

level considered (0.10 g/l) a complete cleaning was achieved at around 45 minutes. The 

medium level results (0.06 g/l - seen as well in Figure 7.4) suggested a completed removal at 

around 65 minutes. The difference in performance, apart from the obvious increase in protease 

concentration, could also be influenced by a lower impact on the replenishment effect produced 

by the water action. The spread of water on a particular location is a periodic movement as 

commented in Chapters 4 and 5. For the rotation rate given of 35 rpm a jet would impact the 

same spot every 1.7 seconds approximately. Enzymes deposited at the surface at the moment 

of the impact could either be reacting or remain unreacted. Those not reacting at that particular 

moment are more likely to be wash out from the soil surface. It could also be assumed that the 

higher the concentration the more molecules reacting until the saturation of the soil surface is 

achieved. Given that case, a higher concentration would lead to more molecules remaining at 

the surface and for longer which in the latter case would increase the removal rate.  

Table 7.2 summarises the averaged cleaning rates calculated:  

 

Table 7.2. Cleaning rate values for experiments at 0.02, 0.06 and 0.10 g/l levels of enzyme. 

CASE CLEANING RATE STD 

0.02 g/l 0.17 %/min 0.05 %/min 

0.06 g/l 1.75 %/min 0.29 %/min 

0.10 g/l 2.59 %/min 0.22 %/min 
 

A significant difference in the cleaning performance was observed between the three levels 

considered. The rate increase from 0.02 g/l to 0.06 g/l was much higher than from 0.06 g/l to 

0.10 g/l (increment of 1.58 %/min versus 0.84 %/min), indicating an exponential variation. This 

suggests that potential savings or optimization scenarios can be explored in order to correlate 

the usage of enzyme and its associated cost with the performance expected in a typical wash 

cycle.  
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7.2.4. Effect of pH 

Figure 7.6 shows the effect of pH on the removal of egg yolk technical samples. These 

experiments were run at 55ºC with 0.06 g/l of protease.   

 

Figure 7.6. pH effect on cleaning performance. Red, green and blue lines represent the 

moving average fit with a period of 10 at pH 9.5, 10.5 and 11.5 respectively. Experimental 

conditions were 55ºC and 0.06 g/l of protease. 

 

Results indicated that the increase of alkalinity led to a faster removal within the range studied. 

This was favoured by both the weakening of the soil network as the swelling-ratio increased and 

by the hydrolysis reactions occurring at high pH (Mercadé-Prieto et al., 2008, 2007a). These 

phenomena were commented in detailed in the previous chapter. 

 

The different cleaning rates calculated were summarised in Table 7.3: 

 

Table 7.3. Cleaning rate values for experiments at pH 9.5, 10.5 and 11.5. 

CASE CLEANING RATE STD 

9.5 0.69 %/min 0.16 %/min 

10.5 1.75 %/min 0.29 %/min 

11.5 4.66 %/min 0.38 %/min 
 

The experiment at pH 11.5 showed the highest removal rate among all the experimental 

conditions analysed. For this case, a complete cleaning was achieved at around 25 minutes. 

The increase of pH from 10.5 to 11.5 led to an increase in the cleaning rate by a factor higher 
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than 2.5. At pH 9.5, a reduction on the removal rate was observed after 20 minutes and a 

complete cleaning was far from being achieved. The curvature given in the cleaning profiles 

also reduced the accuracy to calculate the removal rate values. The estimation for each of the 

triplicates showed higher error. The coefficients of determination (R2) calculated were within 

0.78-0.81, while for the rest of the experimental cases were typically around 0.95-0.99. 

 

Apart from the effect of the enzyme on the soil surface, the mechanism of removal could 

incorporate some penetration of the enzyme into the soil network. As the swelling-ratio achieved 

increases, the diffusion of bigger molecules becomes easier. The increase of alkalinity, leading 

to more hydration, could enhance the penetration of enzyme molecules to some layers 

underneath the surface. Therefore, the breakage of peptide bonds would occur both at the 

surface and inside the soil. If the swelling-ratio achieved was not high enough, the enzyme 

would not diffuse and the hydrolysis would only occur at the surface. This would decrease the 

cleaning rate observed.  

 

The different experiments analysed showed no change in colour during the initial swelling stage 

as commented previously. Therefore it can be concluded that colour changes are only related to 

the cleaning process occurring in this type of soils. This makes the technique suitable for the 

analysis of cleaning inside an ADW.  

7.2.5. Peculiar cases 

Two different and uncommon cleaning patterns were seen only once: the formation of a 

cleaning moving front and the pattern created by the direct impact of a jet.   

 

a) Creation of a cleaning moving front 

Figure 7.7 illustrates the evolution of a cleaning front starting at the bottom left of the tile and 

expanding upwards and to the right. Experimental conditions were 55ºC, pH 10.5 and 0.02 g/l of 

protease. 
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Figure 7.7. Cleaning moving front seen for experimental conditions at 55ºC, pH 10.5 and 0.02 g/l of 

protease. 

 

Previously reported values at these conditions showed almost no cleaning. This pattern was 

also different to the typical homogeneous cleaning observed across the area of the tile. Two 

hypothesis were suggested for the creation of this moving front: 

 

1. A higher deposition of the enzyme at the bottom left side where cleaning started. 

This could be caused either by a poor dissolution of the enzyme in the wash 

solution and/or by a progressive accumulation of the enzyme at that area. The way 

the tile was placed could have created a dead space where enzyme molecules 

were accumulated. In that area the replenishment of chemistry caused by the action 

of the water jets was more difficult. Therefore, even a low level of enzyme could 

have started the cleaning process, as the contact between the enzyme and the soil 

was extended in time. Once this occurred, the removal action expanded to the 

vicinities. This dead spot can be seen as a ‘cleaning seeding point’.  

2. The characteristics of the tile used. The use of a defective tile could also explain 

this phenomenon. Low amounts of soil at the bottom left side of the tile could have 

eased the start the cleaning process. Liu et al. (2006) reported that less mechanical 

or chemical energy input is required to completely clean areas with lower quantities 

of soil. Therefore, those particular areas could have acted as starting points of the 

cleaning process.  

 

b) Jet impact pattern  

Figure 7.8 shows the cleaning pattern created as a consequence of the direct impact of water 

in an experiment at 55ºC, pH 9.5 and 0.06 g/l of protease. 
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A 

 

B 

 
Figure 7.8. Jet impact pattern on the tile surface. A – Multiple water jets on their way to impact the tile. B – 

Straight cleaning pattern observed at right side of the tile. Picture was taken after drying the tile at room 

temperature during 24h. Experimental conditions were 55ºC, pH 9.5 and 0.06 g/l of protease. 

 

Figure 7.8A illustrates different water jets heading to the soil tile. As explained in Chapter 5, 

only those jets with the right combination of nozzle position and angles would be able to directly 

impact the tile. A deeper study on this particular experimental set-up is explained in the 

following section 7.3.1. Figure 7.8B shows the vertical pattern created by the water. These 

types of cleaning patterns were not seen in any other run at any experimental condition. Two 

hypotheses were again suggested to explain this behaviour:  

 

1. The tile was not placed steadily and in the same position as the rest of the 

experiments. The tile could have been inclined and the impact pattern been 

changed. An initial visual approach suggested that, given the set-up considered, 

only 2 of the 10 jets from the spray arm were facing towards the front of the tile. 

This is confirmed in section 7.3.1.  

2. A non-homogeneous distribution of the soil. As explained before, areas with low 

amounts of soil require less energy for cleaning to occur.  

7.3. PREDICTIONS FROM DEVELOPED MODELS 

To close up the different pieces of work done during this research, full-scale experimental data 

were compared to predictions built directly from models described in previous chapters. Firstly, 

the water distribution pattern, impact locations over the soil tile and its frequency factor were 

calculated for the set-up considered in full-scale tests by applying the model developed in 
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Chapter 5. Then, using the data from the statistical studies in Chapter 6, section 6.2.2, removal 

rates were modelled for each of the cleaning mechanisms previously identified (shear stress 

and soil dissolution removal). Finally, this information was input into the mathematical swelling-

removal model and full-scale cleaning profiles were estimated and compared against 

experimental data. Figure 7.9 illustrates a schematic of the integrated model built. 

 

 

Figure 7.9. Schematic of the integrated model built to simulate full 

scale cleaning profiles. 

 

7.3.1. Building predictions 

7.3.1.1. Jets impact patterns and frequency 

The input parameters required to establish the water impact patterns and frequency factor 

involve knowing the coordinates of the area occupied by the tile, the ‘vision area’ distance, the 

spray arm rotation rate and the design parameters of the different nozzles in the lower spray 

arm. The characteristics of the spray arm were shown in Chapter 5, section 5.6, table 5.7 and 

the spray arm rotation rate was measured at 35 rpm (1.71 seconds per revolution) as 

commented previously.  
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Figure 7.10 illustrates a schematic of the experimental set-up used for full-scale tests. The 

different corners defining the area of the tile are numbered as shown above. The coordinates of 

them are summarised in Table 7.4.  

 

A 

 

B 

 
Figure 7.10. Schematic of the experimental set-up for full-scale tests. A – Plan view. B – Side view. 

 

 

Table 7.4. Coordinates of the 4 corners defining the area occupied by the soil tile. 

POINTS X Y Z 

1 -35 245 180 

2 -35 245 240 

3 -35 155 240 

4 -35 155 180 

 

The vision area distance was set at 75 mm. With this information, the routine predicted only two 

jets (#2 and #4) able to directly impact the soil. Figure 7.11 illustrates the water impact pattern 

simulated for those jets. 
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A 

 

B 

 

Figure 7.11. Water jets projections. A – Side Elevation at x = -35 mm. B – Detailed water 

projection pattern over soil tile. 

 

Table 7.5 summarises the input and output values obtained from the simulation. 

 

Table 7.5. Input and output values for the full-scale set-up. 

INPUT	 OUTPUT	

#	

NOZZLE	
POSITION	
(RNZ	[=]	
mm)	

NOZZLE	
–PLATE	
REL.	
POS.	

(*R)	

THETA	
ANGLE	

(θjet		[=]	
degrees)	

RHO	
ANGLE	

(ρjet		[=]	
degrees)	

tvis	(s)	
Timpact	
(s)	

Limpact	
(mm)	

!!"#	 !!"#	 ! !	

2	 226	 0.2262	 359	 89	 0.0963	 0.0013	 59.86	 0.0133	 0.0007	 0.998	 0.0133	

4	 145	 -0.5717	 305	 70	 0.1685	 0.0272	 60.93	 0.1617	 0.0159	 1.015	 0.1642	

 

For jet #2, the impact time over the soil was estimated at 0.0013 seconds per revolution of the 

spray arm. This corresponds to only 0.07% of the total rotational time (!!"# = 0.0007). This is a 

consequence of the rho angle design value (ρjet	 =	 89	 degrees), which projects the jet almost 

vertically in the dishwasher. For jet #4, the impact time was higher and estimated to be 0.0272 

seconds. This led to a frequency of impact of 1.59% of the total rotational time (!!"# = 0.0159). 

The rho angle design (ρjet	=	70	degrees) projected this jet less vertically in the dishwasher, thus 

allowing it to impact the soil tile for longer. For the full-scale simulations, the frequency of 
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application of an external shear stress over the soil tile was assigned a value of 1.59%, 

representing the best-case scenario estimated.  

 

Both jets impacted the tile across its height as seen in Figure 7.11, therefore producing a good 

coverage (! ≈ 1). Given that, for the full-scale simulations, it was assumed that the water shear 

stress generated was homogeneous across the soil area at any time the impact of the jets 

occurred.  

 

7.3.1.2. Swelling and removal rate predictions 

Four different pieces of information were required in order to estimate swelling and removal 

rates at any experimental conditions considered in full-scale tests: swelling profiles, cleaning lag 

times, shear stress removal rates (kss) and soil dissolution removal rates (kds). 

 

Swelling profiles were obtained directly from experiments shown in Chapter 6, section 6.3.1. 

Cleaning lag times, shear stress removal rates and soil dissolution removal rates were 

estimated by building Response Surface (RS) statistical models from data from the swelling and 

removal phenomena study in Chapter 6, section 6.2.2.  

 

Table 7.6 summarises the different cleaning lag times, shear stress and soil dissolution removal 

rates calculated for each experimental case considered in the experimental design proposed for 

the sFDG tests. Extra information was calculated in those experiments at a frequency of 54.5 

%. In these cases, as the sFDG nozzle moved from one position to another to set the desired 

frequency, alternative data (out of the original design) was collected at a frequency of 17%. This 

data was incorporated for the modelling of shear stress and soil dissolution removal rates as it 

enhanced the quality of the predictions. It is shown at the bottom of the table. 
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Table 7.6. Summary of cleaning lag times, shear stress removal rates and soil dissolution removal rates 

estimated from swelling and removal phenomena studies over protein-based soils by using the sFDG. 

T	
	(ºC)	

pH	 ENZYME	
(g/l)	

SHEAR	
STRESS	

FREQUENCY	
(%)	

SHEAR	
STRESS	
(Pa)	

tlag			
(min)	

kds	
(µm/min)	

kss	
(µm/min)	

55	 9.5	 0.10	 9	 65	 0.38	 -11.72	 -26.29	

30	 9.5	 0.06	 54.5	 65	 	 -3.30	 -9.43	

30	 10.5	 0.02	 9	 38.5	 10.94	 -5.31	 -16.46	

55	 11.5	 0.02	 100	 12	 5.03	 	 -53.20	

30	 9.5	 0.10	 9	 12	 18.77	 -4.64	 -16.73	

42.5	 10.5	 0.06	 54.5	 38.5	 	 -8.29	 -16.91	

30	 11.5	 0.06	 54.5	 38.5	 	 -9.66	 -15.62	

55	 9.5	 0.06	 9	 12	 4.52	 -9.16	 -25.56	

42.5	 9.5	 0.02	 54.5	 38.5	 	 -6.40	 -9.09	

30	 9.5	 0.10	 100	 38.5	 0.80	 	 -7.25	

55	 9.5	 0.02	 100	 65	 6.19	 	 -16.99	

42.5	 11.5	 0.10	 100	 12	 8.37	 	 -42.56	

30	 10.5	 0.10	 54.5	 65	 	 -7.08	 -13.34	

42.5	 10.5	 0.06	 100	 38.5	 16.83	 	 -18.97	

30	 10.5	 0.02	 100	 12	 25.30	 	 -10.18	

55	 11.5	 0.10	 9	 38.5	 10.54	 -60.87	 -93.54	

55	 10.5	 0.02	 54.5	 65	 	 -7.43	 -13.39	

55	 11.5	 0.10	 100	 65	 3.55	 	 -77.21	

42.5	 11.5	 0.06	 9	 65	 20.29	 -37.30	 -133.74	

55	 9.5	 0.10	 54.5	 12	 	 -10.82	 -20.27	

30	 11.5	 0.02	 100	 65	 16.86	 	 -12.94	

42.5	 11.5	 0.02	 9	 12	 33.23	 -23.57	 -66.83	

30	 9.5	 0.06	 17	 65	 	 -5.35	 -12.87	

42.5	 10.5	 0.06	 17	 38.5	 	 -10.23	 -21.84	

30	 11.5	 0.06	 17	 38.5	 	 -11.45	 -19.96	

42.5	 9.5	 0.02	 17	 38.5	 	 -5.73	 -10.21	

30	 10.5	 0.10	 17	 65	 	 -7.56	 -21.71	

55	 10.5	 0.02	 17	 65	 	 -8.90	 -11.28	

55	 9.5	 0.10	 17	 12	 	 -14.03	 -14.51	
 

The lag time model used as input factors the individual temperature, pH, level of enzyme and 

frequency factor response surfaces (e.g. temperature*RS). No interactions were considered as 

the amount of data was low and therefore there were less degrees of freedom. For the soil 

dissolution removal rate model, input factors considered were the individual response surfaces 

of temperature, pH and enzyme level, their interactions (eg. pH*enzyme) and square terms (e.g. 
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pH*pH). As this removal phenomenon is not related to the application of any external 

mechanical action, the frequency factor and shear stress applied were not incorporated as 

inputs. Finally, the shear stress removal rate model built used as input factors the individual 

response surfaces of temperature, pH, enzyme level and frequency factor, and their second 

polynomial to degree interactions (i.e. temperature*temperature, temperature*pH, 

temperature*enzyme, temperature*frequency for temperature factor). Shear stress was not 

incorporated as a factor as the statistical analysis in Chapter 6, section 6.2.2, did not highlight 

this parameter as significant in the swelling-removal process. Figure 7.12 illustrates the actual 

by predicted plots obtained for every case as well as the R2 and R2 adjusted calculated.  

 

A 

 

R2 = 0.862 
R2 Adj. = 0.695 

B 

 

R2 = 0.848 
R2 Adj. = 0.718 

C 

 

R2 = 0.878 
R2 Adj. = 0.633 

Figure 7.12. Actual by predicted plots for lag time (A), soil dissolution removal rate (B) and shear stress 

removal rate (C) response surface models. Dotted red lines represent the confidence interval.  

 

Overall, models built showed relatively high agreement with real data (R2 > 0.84). Bigger 

deviations were expected at the extreme values (i.e. large lag times or high soil dissolution or 

shear stress removal rates), as the number of data points was lower. As the experiments were 

not originally designed for the purpose of using them in full-scale predictions, the Response 

Surface models built were not fully symmetrical. This introduced some uncertainty in the 

predictions and also reduced the accuracy of the models. 

 

With all these tools and data, it was already possible to estimate full-scale cleaning profiles at 

the different experimental conditions tested.  In the following section, and for each experimental 

condition considered, the simulations parameters inputted in the mathematical swelling-removal 
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model are detailed. A representation comparing directly the experimental and simulated 

removal profiles, the total thickness, the total mass (soil + water), the egg yolk remaining and 

the soil saturation over time are also given. 

7.3.2. Results comparison 

EXPERIMENTAL CONDITIONS 

 

Temperature 30ºC 

pH 10.5 

Enzyme 0.06 g/l 

Shear Stress Frequency 1.58% 

Shear Stress N/A 

SIMULATION PARAMETERS 

Diffusion Coefficient, D 3.0·10-10 m2/s 

Flory-Huggins Parameter, Χ 0.9 

Polymer Chains Per Unit Volume, 
N 

5.5·1026 m-3 

Volume Per Solvent Molecule, Ω 3·10-29 m3 

Equilibrium Thickness, ℎ! 0.410 mm 

Lag Time, tlag 13.05 min 

Shear Stress Removal Rate, kss -24.28 µm/min 

Dissolution Removal Rate, kds -2.84 µm/min 
 

 

Other outputs from simulation 

  

  
Figure 7.13. Simulation results for the experimental case at 30ºC, pH 10.5, 0.06 g/l of enzyme. 
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EXPERIMENTAL CONDITIONS 

 

Temperature 55ºC 

pH 10.5 

Enzyme 0.06 g/l 

Shear Stress Frequency 1.58% 

Shear Stress N/A 

SIMULATION PARAMETERS 

Diffusion Coefficient, D 4.0·10-10 m2/s 

Flory-Huggins Parameter, Χ 0.8 

Polymer Chains Per Unit Volume, 
N 

5.5·1026 m-3 

Volume Per Solvent Molecule, Ω 3·10-29 m3 

Equilibrium Thickness, ℎ! 0.703 mm 

Lag Time, tlag 3.14 min 

Shear Stress Removal Rate, kss -69.42 µm/min 

Dissolution Removal Rate, kds -9.63 µm/min 

 

Other outputs from simulation 

Figure 7.14. Simulation results for the experimental case at 55ºC, pH 10.5, 0.06 g/l of enzyme. 
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EXPERIMENTAL CONDITIONS 

 

Temperature 55ºC 

pH 10.5 

Enzyme 0.02 g/l 

Shear Stress Frequency 1.58% 

Shear Stress N/A 

SIMULATION PARAMETERS 

Diffusion Coefficient, D 4.0·10-10 m2/s 

Flory-Huggins Parameter, Χ 0.8 

Polymer Chains Per Unit Volume, 
N 

5.5·1026 m-3 

Volume Per Solvent Molecule, Ω 3·10-29 m3 

Equilibrium Thickness, ℎ! 0.703 mm 

Lag Time, tlag 8.45 min 

Shear Stress Removal Rate, kss -31.06 µm/min 

Dissolution Removal Rate, kds -7.82 µm/min 

 

Other outputs from simulation 

Figure 7.15. Simulation results for the experimental case at 55ºC, pH 10.5, 0.02 g/l of enzyme. 
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EXPERIMENTAL CONDITIONS 

 

Temperature 55ºC 

pH 10.5 

Enzyme 0.10 g/l 

Shear Stress Frequency 1.58% 

Shear Stress N/A 

SIMULATION PARAMETERS 

Diffusion Coefficient, D 4.0·10-10 m2/s 

Flory-Huggins Parameter, Χ 0.8 

Polymer Chains Per Unit Volume, 
N 

5.5·1026 m-3 

Volume Per Solvent Molecule, Ω 3·10-29 m3 

Equilibrium Thickness, ℎ! 0.703 mm 

Lag Time, tlag 0.41 min 

Shear Stress Removal Rate, kss -95.66 µm/min 

Dissolution Removal Rate, kds -12.19 µm/min 

 

Other outputs from simulation 

Figure 7.16. Simulation results for the experimental case at 55ºC, pH 10.5, 0.10 g/l of enzyme. 

 

 

  

  



CLEANING STUDIES ON FULL SCALE ADWs. 187 

 

EXPERIMENTAL CONDITIONS 

 

Temperature 55ºC 

pH 9.5 

Enzyme 0.06 g/l 

Shear Stress Frequency 1.58% 

Shear Stress N/A 

SIMULATION PARAMETERS 

Diffusion Coefficient, D 2.5·10-10 m2/s 

Flory-Huggins Parameter, Χ 0.8 

Polymer Chains Per Unit Volume, 
N 

5.5·1026 m-3 

Volume Per Solvent Molecule, Ω 3·10-29 m3 

Equilibrium Thickness, ℎ! 0.445 mm 

Lag Time, tlag 0.93 min 

Shear Stress Removal Rate, kss -19.20 µm/min 

Dissolution Removal Rate, kds -7.69 µm/min 

 

Other outputs from simulation 

Figure 7.17. Simulation results for the experimental case at 55ºC, pH 9.5, 0.06 g/l of enzyme. 
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EXPERIMENTAL CONDITIONS 

 

Temperature 55ºC 

pH 11.5 

Enzyme 0.06 g/l 

Shear Stress Frequency 1.58% 

Shear Stress N/A 

SIMULATION PARAMETERS 

Diffusion Coefficient, D 9.0·10-10 m2/s 

Flory-Huggins Parameter, Χ 0.0 

Polymer Chains Per Unit Volume, 
N 

5.5·1026 m-3 

Volume Per Solvent Molecule, Ω 3·10-29 m3 

Equilibrium Thickness, ℎ! 0.822 mm 

Lag Time, tlag 5.92 min 

Shear Stress Removal Rate, kss -154.65 µm/min 

Dissolution Removal Rate, kds -22.93 µm/min 

 

Other outputs from simulation 

Figure 7.18. Simulation results for the experimental case at 55ºC, pH 11.5, 0.06 g/l of enzyme. 
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Simulations showed good agreement with real data in 4 of the 6 cases. The algorithm was able 

to make close predictions under circumstances where cleaning conditions in reality were 

relatively strong, that is, mid or high levels of enzymes, temperature and pH. The other two 

cases not showing an accurate prediction belonged to scenarios where the cleaning rates were 

the lowest ones observed. Main distortions to predictions were introduced by the soil dissolution 

removal rate (kds) term. As the frequency factor was established at 1.58%, the main mechanism 

for cleaning was soil dissolution. In order to get similar profiles between real and simulated data, 

soil dissolution rates should have been established in the range of -0.90 µm/min and -2.00 

µm/min for the cases shown in Figure 7.15 and Figure 7.17 respectively. By looking at Table 

7.6 -which shows the data inputted for the lag time, soil dissolution and shear stress removal 

rate models- it can be seen that the slowest removal rate observed in the soil dissolution (kds) 

column was -3.90 µm/min. This corresponded to the experimental case at low temperature 

(30ºC), low pH (9.5) and low level of enzyme (0.02 g/l). Therefore, the statistical model built for 

the soil dissolution removal rate will never be able to predict such low removal rates within the 

levels studied.  

 

Data suggest different enzyme deposition levels over the soil at low enzyme concentrations for 

the two experimental set-up considered. Main differences between them are summarised in 

Table 7.7. In full-scale and at low concentrations, the enzyme molecules could struggle to bind 

to the soil surface. The low availability of enzyme combined with the vertical placement of the 

tile plus a fast solution renewal means that less enzyme molecules are deposited and the 

hydrolysis of the sample is reduced. In sFDG tests, the horizontal placement of the soil 

immersed in the wash solution with a slow renewal of it offers advantages for this enzyme 

deposition. At higher concentrations, the higher number of enzyme molecules could 

compensate the disadvantages previously observed in full-scale and more molecules could bind 

the soil surface per unit time thus increasing the soil dissolution as observed. In the sFDG, the 

increase in the number of enzyme molecules could increase the soil dissolution rate as well, 

however, due to the poor solution renewal the transport of hydrolysed soil material to the bulk 

solution could be done much slower therefore reducing or making the previous divergences 

negligible.  
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Table 7.7. Main differences between sFDG and Full-Scale experimental set-ups. 

 sFDG FULL-SCALE 

Position of the tile Horizontal Vertical 

Tile completely sunk Yes No 

Wash solution renewal Slow Fast 
 

Apart from the discrepancies previously mentioned, the integrated model also misses the final 

decay stage of the cleaning process. This can be observed in Figures 7.14 and 7.16. The 

model replicates the real data with high accuracy until the SRI reaches 70% approximately. 

From this point on, the removal rate decreases for real data (indicating the decay stage of the 

cleaning process), while for simulated data the removal rate remains invariant.  

 

Figure 7.19 illustrates a comparison between the real and estimated removal rates at the 

constant cleaning stage.  

 

 

Figure 7.19. Comparison between simulated and full scale removal rates at the 

constant cleaning stage. Black line represents equal removal rates for both cases. 

 

Overall, the integrated model over-predicts slightly the removal rate at the constant cleaning 

stage. This is particularly seen in the two cases already commented, represented by the green 

and blue squares. 
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In order to reduce the errors shown, it would be recommended to expand the initial test design 

to gather more information and balance the design. This would reduce the statistical errors 

shown, therefore increasing the accuracy of the predictions.   

7.4. SUMMARY 

The first part of this chapter shows the applicability of a waterproof camera used on the online 

measurement of cleaning inside ADWs. Images obtained were processed using the CIELAB 

colour space. To compare data from different experimental conditions, a homogeneous scale 

from 0 to 100 was used to describe cleaning. It indicates the Stain Removal Index (SRI), that is, 

the percentage of cleaning achieved at any time. The technique was proved successful despite 

the non-homogeneous distribution of light along the width of the sample. This effect was 

corrected by averaging L*a*b values of the area of study as cleaning occurred homogeneously 

on the tile.  

 

Different cleaning experiments were carried out using egg yolk technical samples. The three 

different stages reported in literature were observed: (1) an initial lag phase, (2) a constant 

cleaning removal stage and (3) a final decay stage in which the cleaning rate reduces 

progressively. No colour change was observed during the initial lag phase. This phase relates to 

the swelling phenomenon as explained in Chapter 6. Cleaning during the constant cleaning rate 

stage occurred homogeneously across the soil area. This suggested a removal mechanism 

mainly driven by soil dissolution with little effect from the shear stress created by the direct 

impact of the water jets. The final decay stage was typically observed after SRI values were 

higher than 70%. The influence of temperature, pH and enzyme levels on cleaning was studied. 

Increasing cleaning rates were observed for higher levels of these factors. Triplicates for each 

experimental condition showed good reproducibility and sensitivity. 

 

Two uncommon cleaning mechanisms were also reported. A cleaning moving front was 

observed in one occasion for the case of low level of enzyme. Higher protease concentration at 

the starting cleaning point was suggested as the trigger of the process. The second case, also 

observed once, showed higher cleaning on a specific area of the soil where the direct impact of 
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a jet occurred. The introduction of this novel technique aims to normalise the cleaning 

evaluation in full-scale ADW testing and to increase the information gathered. 

 

The second part of this chapter presented the integration of the different modelling efforts made 

throughout this work. Simulated data were compared against full-scale profiles previously 

obtained through experimentation. Initially, water distribution patterns were estimated using the 

mathematical model from Chapter 5. Two jets were determined to directly impact the soil 

according to the set-up proposed. The frequency factor was established at 1.59%. Then, 

removal rate data from work shown in Chapter 6, section 6.2.2 were used to build statistical 

models based on the response surface (RS) methodology. This allowed the estimation of lag 

times, shear stress and soil dissolution removal rates. This information was further inputted in 

the mathematical swelling-removal model developed in Chapter 6, section 6.4 to finally obtain 

full-scale cleaning predictions.  

 

Simulated results compared favourably with real data in 4 of the 6 scenarios proposed. 

Differences were observed in those cases showing the lowest removal rates. The divergences 

arose as a consequence of scaling-up the information obtained through the sFDG. The different 

set-ups and phenomena occurring between the two cleaning techniques (full-scale and sFDG) 

led to these deviations.  

 

This integrated model represents the first modelling effort that combines the mechanical action 

from the ADW and the different removal mechanisms to predict cleaning profiles in full-scale 

testing.  



 

 

CHAPTER 8 

 

CONCLUSIONS 
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8.1. PROJECT CONCLUSIONS 

8.1.1. Key findings 

The analysis of a complex cleaning system such as an Automatic Dishwasher (ADW) has 

provided interesting and useful insights that have led to a better understanding of some of the 

on-going phenomena.  

 

Water distributed via coherent jets. 

Particularly, the study of the water distribution patterns by using Positron Emission Particle 

Tracking (PEPT) technique proved the initial distribution of water via straight water jets. From a 

specific location, a jet shows a defined trajectory that can be easily calculated by applying 

trigonometric principles.  

 

Little and localized areas of direct impingement. Low shear areas are predominant in 

consequence. 

As the number of jets is typically low in current ADW appliances (no more than 10-12 nozzles 

per spray arm), the area of direct impingement is very small and very localised. Data from PEPT 

also demonstrated the low energy profile occurring during the downfall stage of the water by 

showing a homogeneous low velocity pattern across the radial distance. Thus, most of the 

wetting of the soils occurs at low shear stress (i.e. falling films with shear stresses between 0 Pa 

to 2 Pa). Despite the efforts from manufactures to increase the mechanical action (shear 

stresses between 5 Pa to 50 Pa), most common appliances lack an optimum design to properly 

distribute water. The room for improvement and future innovations therefore exists.  

 

Importance of frequency factor. 

The mathematical model developed with the insights provided by PEPT experimentation also 

introduced another important element for the analysis: the frequency factor. The frequency 

factor stands for the time a specific crockery item (i.e. plate) is being hit directly by an 

impingement jet. This definition was adapted for the sFDG tests as the ratio of time the gauging 

fluid is imposing a shear stress action over a particular location of the soil analysed. The 

simulations undertaken with the mathematical model for ADWs suggested that this frequency 
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factor was very low (less than 10% in most cases) and a direct impact of an impingement jet 

occurs for a very limited time period.  

 

Introduction of dimensionless parameters to cross compare ADWs performance.  

New dimensionless parameters were also introduced to facilitate the comparison between 

different appliances and to standardise the results obtained (range from 0 to 1). The coverage 

was assessed by the effective impact length (!) coefficient and the frequency factor by the 

effective impact time (!!"#). A global factor measured the overall efficiency (!). The two main 

design factors highlighted as important for the water distribution were the nozzle-plate relative 

position (how centred the nozzle is with respect of the crockery element) and the nozzle’s rho 

angle value (vertical projection of the jet). The study also showed a problem of symmetry in the 

design of current commercial dishwashers: while the ejection of water is produced in a circular 

movement, the distribution of the items follows a rectangular pattern. This automatically 

produces that low radial locations are impacted for longer.  

 

Swelling affected by pH and temperature; Removal by temperature, enzyme level and 

frequency factor; Net shear stress negligible as a factor. 

Technical egg yolk stains were selected as a typical hard-to-remove soil in auto-dishwashing. 

The study of swelling and removal phenomena in these soils highlighted the importance of pH 

at the beginning. The increase of pH led to an increase of the degree of swelling observed. No 

removal action was observed unless the enzyme was present, except for the case of high 

alkalinity (pH 11.5) and high temperature (55ºC) where top layers were partially detached when 

an external shear stress was applied. Enzyme level and the frequency factor were estimated as 

the two main factors leading to removal. Interestingly though, net shear stress applied over the 

soil was statistically disregarded as a significant factor. Results suggested the existence of a 

shear stress threshold among the levels studied (12 to 65 Pa) below which no cleaning occurs. 

Once that threshold value is surpassed, the removal of soil material takes place but the rate of 

removal increases slowly with the increase of the shear stress applied. Temperature also was 

highlighted as a significant factor over the whole process. It aided both the initial swelling 
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phenomenon and the subsequent removal process. Overall, the cleaning process was faster 

with the increase of temperature.   

 

Development of a mathematical model with the novelty of the introduction of ‘theoretical layers’. 

A new mathematical swelling-removal model was also introduced. It presented as a novelty the 

concept of ‘theoretical layers’. They represent the number of layers in which the soil is divided.  

The model illustrates cleaning in a simple equation that summarises the different phenomena 

occurring: swelling and removal via direct application of shear stress or via soil dissolution. 

Experiments performed using the sFDG were able to separate and characterise each of these 

mechanisms. Swelling was modelled by using the non-linear poroelasticity theory approach, 

which showed good accuracy in the fitting of the data. The Partial Differential Equation (PDE) 

describing swelling allowed the use of the theoretical layers concept. To model cleaning, the 

algorithm removed one by one each of the theoretical layers considered anytime the integrated 

removal rate was higher than the thickness of one or more of the top layers of the soil. The 

integration over time of two opposite phenomena, swelling (increase of thickness) and removal 

(decrease of thickness) was successful and described in detail the phenomena observed. The 

model is also able to provide complementary information apart from a thickness profile: cleaning 

percentage, soil remaining, total mass or the saturation (understood as percentage of maximum 

swelling) of the soil over time.  

 

Design of an online cleaning evaluation system in ADWs 

The need of a better understanding of cleaning phenomena in current full-scale testing was 

solved with the introduction of a waterproof camera to be used inside an ADW. The different 

tests performed showed good sensitivity of the camera and reproducibility of the results. More 

importantly, it introduced ‘time’ as a factor in the measurement of cleaning performance for 

different formulations, as nowadays this is evaluated only by comparing the end result.  

 

First full scale model in ADW. 

To close up the work undertaken during this project, full-scale simulations were performed by 

integrating the mathematical model describing the distribution of water together with the 
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swelling and removal information from tests done with the sFDG. Statistical models were built to 

estimate lag times, shear stress and soil dissolution removal rates for a range of experimental 

conditions. The information initially generated with these smaller models was inputted to the 

mathematical swelling-removal model to simulate full-scale results. Good agreement was 

observed between real and simulated data in most cases (removal rates over 1.00 %SRI/min). 

Poor agreement was observed for the cases showing low removal rates in full-scale tests (less 

than 0.75 %SRI/min), where the integrated model overestimated the cleaning rate.  

 

8.1.2. Application on product development 

As an industrially sponsored project, the aim of a company such as Procter & Gamble was to 

create value to their products with the information provided through this research. The deeper 

understanding on the mechanical action provided by the appliance has sparked the thoughts on 

the integration of chemical and physical forces in the search of an optimum performance. The 

analysis of the different effects of each of the main formulation ingredients over time has led to 

the idea of providing optimum amounts of chemistry at specific times of the wash cycle. This 

can potentially lead to benefits to the company (i.e. cost savings as no chemistry will be lost or 

misused at the different stages of the wash cycles) or to the consumer (i.e. by reducing cycle 

lengths and/or by buying products at a cheaper cost).   

 

The use of dynamic models is also a tool with high potential in the understanding and the 

analysis of the performance of different formulations. The inclusion of time as a factor multiplies 

the information gathered and allows better and faster decisions to be made. By evaluating not 

only the end cleaning point of an specific formulation, but also the evolution of the soil over time, 

it is possible to know where the formulation performs at its best (i.e. reduced lag times, faster 

constant cleaning stage, etcetera… for the case of protein-based soils). This information could 

be also used for consumer claims and to establish competitive advantages. In this scenario, the 

use and introduction of new tools, such as the scanning fluid dynamic gauge or the waterproof 

camera, represents a clear benefit for these purposes. These new tools also represent a cost 

saving opportunity in experimentation, as less information/testing is required to make the right 

decision.  
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Finally, the identification of the different mechanisms involved in the cleaning of different soils is 

important in order to determine new ways to evaluate the performance of individual ingredients. 

For example, different enzymes can be tested by comparing the soil dissolution rates observed 

at different experimental conditions using the sFDG.  

 

8.2. LOOKING FORWARD 

8.2.1. Studies on different soil samples.  

This research focused on technical egg yolk stains as a representative hard-to-remove soil 

within automatic dishwashing. However, there are also other challenging soils that can be 

commonly found. Typically, they do not follow the same cleaning pattern observed for protein-

based soils and therefore, their way to study how the get cleaned might vary slightly.  

 

Particularly, another soil of interest nowadays are the commonly known as ‘burnt-on/ baked-on’. 

These stains are formed, as seen in Chapter 2, by strongly adhere layers formed on the 

oxidative polymerisation of unsaturated components. They typically show an adhesive failure 

when cleaned, that is, they are completely detached from the surface. The techniques showed 

throughout this work could also be applied to study their cleaning mechanisms. Thus, for 

example, and due to the different behaviour when cleaned, sFDG might not be suitable to study 

the thickness evolution of the system but the moment at which the ‘baked-on’ layer detaches at 

different chemical conditions and mechanical stresses. Although the information provided might 

be less, the technique could still determine the limiting criteria required to clean these soils. 

Statistical models could be built based on the different treatments that the samples might have 

received (i.e. baking temperatures and times, layer thickness, composition…) and the 

conditions at which the cleaning process will take place (i.e. chemistry, temperature, shear 

stress and frequency). With this information it would be possible to determine the main factors 

affecting the cleaning process, the interactions between them and the existence or not of some 

limiting criteria for cleaning to occur. Full-scale studies could also be performed by using the 

waterproof camera. The real visualisation of the cleaning process could help the understanding 

of the mechanisms leading to cleaning and the establishment of similarities or differences 

observed between small-scale and full-scale techniques.  
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Finally, the use of the waterproof camera could help the understanding of different issues also 

observed in automatic dishwashing and not related to cleaning. Another common problem of 

interest is the formation of spots or films after the cleaning sequence, which creates the feeling 

of dirtiness or incomplete removal. By using this camera it could be possible to observe this 

phenomenon during the final drying stage and identify which are the factors leading to this. 

 

8.2.2. Improvements on existing models.  

All different models presented throughout this work can be expanded or upgraded by 

incorporating other elements to make them more accurate or flexible. Overall, and due to the 

complexity of some of the models built, it is highly recommended the development of user 

interfaces to allow non-familiarised people to perform their estimations easily.  

 

It is also recommended to quantify in more detail the agreement between the CFD model 

developed by the appliance manufacturer and PEPT data generated experimentally. A further 

analysis should give numbers in terms of the percentage of correlation by looking into different 

unitary phenomena (i.e. ejections through an specific nozzle) and also via the realisation of 

simpler individual tests that can be performed externally (i.e. trajectories of jets at different 

pump speeds). The idea would be to characterise the system through smaller subsystems and 

validate them individually. 

 

The mathematical model describing the water distribution inside an ADW can be improved by 

adding the following:  

• Analysis of water distribution on crockery items loaded at a certain angle (not only 

vertically). 

• Incorporation of different geometries, such as cylinders or rounded areas to mimic 

glasses, bowls or other common elements.  

• Determination of shear stress profiles generated by direct impingement of jets.  

 

With regard to the different removal mechanisms models (shear stress and soil dissolution), 

next steps to improve their quality should be: 
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• Incorporation of enzyme kinetics (as commented in Chapter 6, section 6.4.3.3.) to 

expand the theoretical background and make the soil dissolution model rely less on 

empirical data.  

• Perform extra experiments to augment the initial design in order to make it 

balanced and to reduce the error in the estimations. 

 

Finally, the integrated mathematical swelling-removal model used to estimate full-scale cleaning 

profiles should incorporate the following features: 

• Profiles over time of the cleaning factors used as inputs. This feature is essential to 

mimic temperature, pH or enzyme level changes during a typical wash cycle (as 

seen in Chapter 2, section 2.1). As the integration occurs in small time steps, 

removal rates can be estimated at any time as a function of the specific 

temperature, pH, enzyme level or other factor at that particular time.  

• Reduce computational times by using an optimised programming code.  

 

8.2.3. Energy requirements on cleaning 

The final aim of any research focused on cleaning must be the understanding of the energy 

needed to remove any soil attached to any surface and at any condition. In order to take a step 

forward, the elaboration of a dynamic cleaning scale based on this energy requirement is of 

particular interest. Throughout this work it has been shown, for example, how the use of a 

higher level of enzyme reduces the total cleaning time by increasing the rate of removal, or how 

this effect is also produced by increasing the frequency factor. In a basic level, this means that 

the amount of energy inputted to the system per unit time is higher and therefore removal 

occurs faster. This energy requirement is also related to the status of the soil. At a dry state, 

higher energy is required to fully remove any protein-based soil. However, if the sample is 

partially hydrated this energy requirement is lower. Swelling and hydration phenomena are 

produced by a chemical potential gradient established between the liquid and the soil. As a 

consequence, the hydration process implies an energy input into the system. Baking the sample 

produces the opposite effect. It increases the strength of the soil-to-soil bonds due to secondary 

reactions (e.g. Maillard reaction) and of the soil-to-substrate bonds and, therefore, more energy 
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is required to fully remove the soil material. Figure 8.1 represents a schematic of the concept 

here commented. 

 

 
Figure 8.1. Schematic of the energy requirements in cleaning process. 

 

 

During the past decade, some analytical instruments have been developed to analyse the 

energy required to remove a soil from a surface. This is the case of micromanipulation (Liu et 

al., 2006a, 2006b, 2006c, 2005, 2002) and more recently millimanipulation (Ali et al., 2015). A t-

shaped blade is used to sweep soil samples at different conditions and at different thicknesses 

while constantly measuring the force applied. By integrating the curve obtained, total energy 

required is calculated. The information obtained is related to the cohesive and adhesive 

strength of the soils sample analysed. These techniques represent a powerful source of 

information that can be used to map different factor effects on cleaning (i.e. temperature, pH, 

enzyme level, surfactant level…). By establishing an adequate approach, it is possible to start 

building models to predict the energy requirements needed to remove any soil from any surface 

at any condition and then correlate the results with bigger scale experiments.  

 

8.2.4. The dishwasher as a unit operation 

In chemical engineering or other related fields, a unit operation is defined as one basic step (in 

a major transformative process) that is always based on the same scientific principles and that 

always share a similar final objective (McCabe et al., 1993). Considering the life cycle of any 

food material, cleaning of any residue left over a substrate can be considered as a unit 

operation itself. Particularly in ADW, the process involves the use of an automated and 
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independent machine that always based its performance on the same physical and chemical 

principles.  

 

This research has shown the broad knowledge of the chemical engineering profession and the 

direct applicability of chemical engineering concepts in a non-common studied field. Throughout 

this work, mathematical, physical and chemical approaches have been followed to explain the 

fundamentals of the removal of protein-based soils in a specific environment. However, the 

principles applied here as well as the models developed can be used in other similar areas (i.e. 

pipe cleaning). This agrees with the unit operation concept, where the systematic study of a 

particular operation can cross industries.  

 

8.3. CLOSING THOUGHTS  

This research work has met the original objectives established (Chapter 1, section 1.2): 

1. Water motion has been characterised via PEPT. The study showed the water 

patterns followed in a typical sequence and how the water is ejected through the 

various nozzles in a spray arm.  

2. The information provided in the initial PEPT experiments was further used to 

develop a mathematical model that showed the constraints in current ADW design. 

This model is also a tool really useful to predict water distribution patterns quickly. 

3. New and existing techniques were fully developed for the analysis of cleaning of 

protein-based soils. sFDG and a camera kit were used to gather data and 

understanding the mechanisms underlying in the swelling and removal process 

occurring in technical egg yolk soils.  

4. New theoretical and statistical models have been built to predict cleaning. The 

insights gathered have allowed to establish the limiting factors at each time of the 

cleaning sequence and to spark the thoughts on a more efficient cleaning approach.  

 

It is desired that all the information provided in this dissertation aids the development of more 

efficient and sustainable automatic dishwashing units and detergents. Ideally, new appliances 

designs should focus on distributing the water more efficiently, paying attention into a more 
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homogeneous and more frequent water action onto the different items loaded. It is therefore 

encouraged to investigate new spray water systems aiming to fill the gap currently existing. New 

designs however should preserve an easy way to load and unload the dishes. From the 

detergent perspective, efforts should be put into a more intelligent use of the different 

ingredients, making them only to act at the specific moment where they are required. This could 

lead into savings for both consumers and detergents manufactures as an optimal and more 

efficient use of chemistry is achieved.  
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APPENDIX(A.1.(POSITRON(EMISSION(PARTICLE(TRACKING((PEPT)(MATLAB(ROUTINES( A.1(

A.1.$Appendix$

The(following(appendix(shows(the(routines(used(for(the(processing(of(PEPT(data((see(Chapter(

3).(Routines(are(shown(in(the(order(they(were(used(according(to(Chapter(3,(section(3.3.((

(

Pre3processing(

function [data1,data2]=PEPTloadtransfil(data) 
  
    % Routine that loads the data, translate the origin and filters out high 
    % error values.  
     
    clc 
    clearvars -except data 
     
    % 1.1.- Add time column in seconds 
    data(:,1)=data(:,1)/1000; 
  
     
%% 1.- Translation of the origin and axis change. 
    % The origin will be set centered at the bottom of the dishwasher and axis will 
change in the following way: 
        % Raw x - changes to new y. 
        % Raw y - changes to new z. 
        % Raw z - changes to new x. 
            
    % Creation of the new matrix. 
        % Column 1.- time (s). 
        % Column 2.- x(mm). 
        % Column 3.- y(mm). 
        % Column 4.- z(mm). 
        % Column 5.- Error. 
                    
  
data1(:,2) = data(:,4)-340;       % New x 
data1(:,3) = data(:,2)-260;       % New y 
data1(:,4) = data(:,3)-130;       % New z 
data1(:,1) = data(:,1)/1000;      % New time(s) 
data1(:,5) = data(:,5);           % New error 
         
  
%% 2.- Data filtering. 
  
data2 = data1;  
  
temp            = find(data2(:,5)>3);       % Find data with error > 3 mm. 
data2(temp,:)   = []; 
  
meandata    = mean(data2(:,5)); 
stddata     = std (data2(:,5)); 
error       = meandata+(2*stddata); 
  
temp1           = find(data2(:,5) > error); 
data2(temp,:)   = []; 
(

(

(

(

(

(
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Smoothing(

function [data1,meanvalue,standdev] = PEPTsmooth1(data) 
  
%% Routine to smooth PEPT data. 
clc 
clearvars -except data 
close all 
  
  
%% Definitions 
n = 5;                % Minimum Number of Points in Fitting 
m = 25;               % Maximum Number of Points in Fitting 
  
step=1;               % Step is created to cut the number of data, if (step=1) 
                      % all the data is calculated. 
                     
n_el = size(data,1); 
T    = data(:,1);        % [s] 
X    = data(:,2);        % [mm] 
Y    = data(:,3);        % [mm] 
Z    = data(:,4);        % [mm] 
  
time = 0.1               % [s]. Time limit for smoothing process.   
  
meanvalue = zeros (1000,6); 
standdev  = zeros (1000,7);  
  
  
%% Creating the smooth matrix 
l=1;      % Counter.      
 
for o = 1:1:3    % Loop for different fitting orders 
    for k = n:2:m   % Loop for different intervals 
 
        % Initial values         
        j     = floor(k/2); 
        data1 = zeros(n_el,7); 
      
         % Add missing data - Beggining of the matrix 
        for q = 1:4 
            for i = 1:j 
                data1(i,q)  = data(i,q); 
                data1(i,q+3)= data(i,q); 
            end 
        end 
     
      
        % Creation of the fitted matrix 
        for i = ceil(k/2):step:(n_el-(floor(k/2)))   
            range = (i-(floor(k/2))):(i+(floor(k/2)));    % Creates a range of the size 
(pnt-1). 
            Tran  = T(range); 
            Xran  = X(range); 
            Yran  = Y(range); 
            Zran  = Z(range); 
  
            j=j+1; 
            [Xfit,Yfit,Zfit]= PEPTsmooth2(Tran,Xran,Yran,Zran,o,time); 
            data1(j,1)      = T(i);              %[s] 
            data1(j,2)      = X(i);              %[mm] 
            data1(j,3)      = Y(i);              %[mm] 
            data1(j,4)      = Z(i);              %[mm] 
            data1(j,5)      = Xfit;              %[mm] 
            data1(j,6)      = Yfit;              %[mm] 
            data1(j,7)      = Zfit;              %[mm] 
  
        end 
  
        % Add missing data - End of the matrix. 
        for q = 1:4 
            for i = (j:n_el) 
            data1(i,q)  = data(i,q); 
            data1(i,q+3)= data(i,q); 
            end 
        end 
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        % Obtention of mean value and standard deviation. 
        difference = diff(data1);       % Row differences.  
         
        for p=1:3 
        meanvalue(l,p)= mean(difference(:,p+4));    % New x,y & z.  
        standdev(l,p) = std(difference(:,p+4));     % New x,y & z. 
        end 
         
        standdev(l,5) = o;         % Fitting order. 
        standdev(l,6) = k;         % Number of points in fitting. 
      
        % Preparation for next loop stage. 
     l=l+1; 
    end 
end 
  
  
 %% Finding best smoothing value and obtention of new smoothed matrix 
meanvalue (l+1,:) = []; 
standdev  (l+1,:) = [];  
  
for r = 1:size(standdev,1) 
    standdev(r,4) = sqrt(standdev(r,1)^2 + standdev(r,2)^2 + standdev(r,3)^2);   
end 
  
[a1,a2] = min(standdev(:,4));   % Find best smoothing process.  
o = standdev(a2,5);             % Best fitting value - Fitting order.  
m = standdev(a2,6);             % Number of points in fitting.  
  
j    = floor(m/2); 
data1= zeros(n_el,7); 
  
  
 % Add missing data - Beggining of the matrix 
for k = 1:4 
    for i=1:j 
        data1(i,k)  = data(i,k); 
        data1(i,k+3)= data(i,k); 
    end 
end 
  
  
 % Smooth calculations  
for i = ceil(m/2):step:(n_el-(floor(m/2)))    
    range = (i-(floor(m/2))):(i+(floor(m/2)));  % Creates a range of the size (pnt-1). 
    Tran  = T(range); 
    Xran  = X(range); 
    Yran  = Y(range); 
    Zran  = Z(range); 
  
        j=j+1; 
        [Xfit,Yfit,Zfit] = smooth2(Tran,Xran,Yran,Zran,o,time); 
        data1(j,1)       = T(i);              %[s] 
        data1(j,2)       = X(i);              %[mm] 
        data1(j,3)       = Y(i);              %[mm] 
        data1(j,4)       = Z(i);              %[mm] 
        data1(j,5)       = Xfit;              %[mm] 
        data1(j,6)       = Yfit;              %[mm] 
        data1(j,7)       = Zfit;              %[mm] 
  
 end 
  
  
 % Add missing data 
for k=1:4 
    for i=(j:n_el) 
        data1(i,k)  = data(i,k); 
        data1(i,k+3)= data(i,k); 
    end 
end 
  
  
  
%%  Plots comparison  
  
% X-axis 
figure(1) 
axes('FontSize',20,'FontName','Calibri') 
plot(data1(:,1),data1(:,2),'MarkerFaceColor',[0 0 
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1],'MarkerSize',4,'Marker','o','LineStyle','none',... 
    'Color',[0 0 1]) 
hold on 
plot(data1(:,1),data1(:,5),'MarkerFaceColor',[1 0 
0],'MarkerSize',4,'Marker','o','LineStyle','none',... 
    'Color',[1 0 0]) 
% plot(data1(:,1),data1(:,2),'r.',data1(:,1),data1(:,5),'b-') 
set(gcf,'Color',[1,1,1]) 
ylabel('Height Position, 
Z(mm)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
xlabel('Time, t (seconds)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
box('on'); 
hold on 
  
 
% Y-axis 
figure(2) 
plot(data1(:,1),data1(:,3),'r.',data1(:,1),data1(:,6),'b-') 
set(gcf,'Color',[1,1,1]) 
title('Y-axe comparison','interpreter','Latex','FontSize',24) 
ylabel('Y(mm)','interpreter','Latex','FontSize',18) 
xlabel('time(sec)','interpreter','Latex','FontSize',18) 
box('on'); 
grid('on'); 
  
  
% Z-axis 
figure(3) 
plot(data1(:,1),data1(:,4),'r.',data1(:,1),data1(:,7),'b-') 
set(gcf,'Color',[1,1,1]) 
title('Z-axe comparison','interpreter','Latex','FontSize',24) 
ylabel('Z(mm)','interpreter','Latex','FontSize',18) 
xlabel('time(sec)','interpreter','Latex','FontSize',18) 
box('on'); 
grid('on'); 
  
  
% 3D 
figure(4) 
axis equal 
xlim([-270 270]);  % Axis X limit. Front 
set(gca,'XDir','reverse'); 
set(gcf,'Color',[1,1,1]) 
zlim([0 600]);  % Axis Z limit 
ylim([-250 250]);  % Axis Y limit. Side 
set(gca,'YDir','reverse'); 
hold on 
plot3(data1(:,2),data1(:,3),data1(:,4),'MarkerFaceColor',[1 0 
0],'MarkerSize',4,'Marker','o',... 
    'LineStyle','none',... 
    'Color',[1 0 0]) 
title('3D view','interpreter','Latex','FontSize',26) 
xlabel('x(mm)','interpreter','Latex','FontSize',18) 
ylabel('y(mm)','interpreter','Latex','FontSize',18) 
zlabel('z(mm)','interpreter','Latex','FontSize',18) 
view([-37.5 30]); 
box('on'); 
grid('on'); 
hold on 
plot3(data1(:,5),data1(:,6),data1(:,7),'MarkerFaceColor',[0 0 
1],'MarkerSize',4,'Marker','o',... 
    'LineStyle','none',... 
    'Color',[0 0 1]) 
(
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function [Xfit,Yfit,Zfit] = PEPTsmooth2(Tran,Xran,Yran,Zran,o,time) 
  
%% Regression Analysis 
  
    d = distcar(Xran,Yran,Zran);  %Interval distance 
     
if (Tran(end)-Tran(1))>=0 && (Tran(end)-Tran(1))<=time 
    if d < 200  %% Do not fit if the points distance is higher than 200 mm. 
   %% Calculate Velocities, Error & Accelerations 
    %Vx 
[Xfit] = PEPTsmooth3(Tran,Xran,o); 
  
    %Vy 
[Yfit] = PEPTsmooth3(Tran,Yran,o); 
  
    %Vz 
[Zfit] = PEPTsmooth3(Tran,Zran,o); 
  
  
    elseif (Tran(end)-Tran(1))<=0 
        j=ceil(size(Tran,1)/2); 
     
        Xfit = Xran(j); 
        Yfit = Yran(j); 
        Zfit = Zran(j); 
    else 
        j=ceil(size(Tran,1)/2); 
         
        Xfit = Xran(j); 
        Yfit = Yran(j); 
        Zfit = Zran(j); 
    end 
end 
  
[Xfit] = Xfit(ceil(length(Xfit)/2)); 
[Yfit] = Yfit(ceil(length(Xfit)/2)); 
[Zfit] = Zfit(ceil(length(Xfit)/2)); 
  
%% Subfunction to calculate cartesian distance   
  
function d=distcar(Xran,Yran,Zran) 
d=((Xran(end)-Xran(1))^2 + ... 
    (Yran(end)-Yran(1))^2 + ... 
    (Zran(end)-Zran(1))^2)^.5; 
(

(

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN(

function [yfit] = PEPTsmooth3(xdat,ydat,o) 
  
 Coeffs = polyfit(xdat,ydat,o);     % Getting the coefficients. 
  
 yfit = polyval(Coeffs,xdat);       % Fitted data. 
  
 yfit = yfit(ceil(length(yfit)/2)); % Value taken. 
(
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Selective(linear(interpolation(

function [mat2] = PEPTintrpselective(data) 
    %% Interpolating data where points are missing 
     
        %% Input 
            % Column 1 - Time [s]. 
            % Column 2 - x-axis [mm]. 
            % Column 3 - y-axis [mm]. 
            % Column 4 - z-axis [mm]. 
  
dmin = 5;      % Minimum distance to interpolate. [mm] 
dmax = 20;     % Maximum distance to interpolate. [mm] 
 
mat2        = zeros(length(data),4);  
mat2(1,:)   = data(1,:);  
k = 2; 
  
  
for i=2:length(data) 
    p1 = data(i-1,:); 
    p2 = data(i,:); 
    d  = distcar(p1,p2); 
    if (d>dmin & d<dmax) 
        Nint= floor(d/dmin); 
        t   = linspace(p1(1),p2(1),Nint+2); 
        k   = k-1; 
        mat2(k:k+Nint+1,1) = t; 
        mat2(k:k+Nint+1,2) = intfab([p1(1) p2(1)],[p1(2) p2(2)],t); %X-axis 
        mat2(k:k+Nint+1,3) = intfab([p1(1) p2(1)],[p1(3) p2(3)],t); %Y-axis 
        mat2(k:k+Nint+1,4) = intfab([p1(1) p2(1)],[p1(4) p2(4)],t); %Z-axis 
        k   = k+Nint+2; 
    else 
        mat2(k,:) = data(i,:); 
        k   = k+1; 
    end 
end 
mat2(k:end,:) = []; 
toc 
  
%% ===================================================================%% 
%% Subfunction to calculate cartesian distance                        %% 
%% ===================================================================%% 
function d = distcar(p1,p2) 
d = ((p1(4)-p2(4))^2 + ... 
    (p1(2)-p2(2))^2 + ... 
    (p1(3)-p2(3))^2)^.5; 
  
%% ================================================================== %% 
%% Interpolation first order                                          %% 
%% xdat is time, whilst ydat is the coordinate                        %% 
%% ===================================================================%% 
function int = intfab (xdat,ydat,t) 
a  = (ydat(2)-ydat(1))/(xdat(2)-xdat(1)); 
b  = ydat(1)-a*xdat(1); 
int= a*t+b; 
 
(
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Lagrangian(analysis(

function [data1] = PEPTlagrangian1(data) 
    %% Routine to calculate Lagrangian velocities 
clc 
close all 
  
%% Initial definitions 
  
n=7;        % Minimum number of points in fitting. 
pnt=17;     % Maximum number of points in fitting.  
  
step=1;            %step is create to cut the number of data, if (step=1) 
                   %all the data are calculated. 
n_el = size(data,1); 
T    = data(:,1);   %Time       [=] s.   
X    = data(:,2);   %X-axe      [=] mm. 
Y    = data(:,3);   %Y-axe      [=] mm. 
Z    = data(:,4);   %Z-axe      [=] mm. 
R    = data(:,6);   %Radius-axe [=] mm. 
  
  
%% Creating the velocity matrix 
j     = 0; 
data1 = zeros(n_el,15); % OUTPUT MATRIX 
err   = 1; 
  
for i = ceil(pnt/2):step:(n_el-(floor(pnt/2))) 
    range = (i-((pnt-1)/2)):(i+((pnt-1)/2));  % Creates a range of the size pnt. 
    Tran  = T(range);  
    Xran  = X(range); 
    Yran  = Y(range); 
    Zran  = Z(range); 
    Rran  = R(range); 
     
     
        j=j+1; 
        [Vt,Vx,Vy,Vz,Vrad,At,Ax,Ay,Az,Arad] = 
PEPTlagrangian2(Tran,Xran,Yran,Zran,Rran,n,pnt); 
        data1(j,1)  = T(i);   %Time       [=] s.  
        data1(j,2)  = X(i);   %X-axe      [=] mm. 
        data1(j,3)  = Y(i);   %Y-axe      [=] mm. 
        data1(j,4)  = Z(i);   %Z-axe      [=] mm. 
        data1(j,5)  = R(i);   %Radius-axe [=] mm. 
        data1(j,6)  = Vx;     %X-axe Velocity [=] m/s.    
        data1(j,7)  = Vy;     %Y-axe Velocity [=] m/s. 
        data1(j,8)  = Vz;     %Z-axe Velocity [=] m/s. 
        data1(j,9)  = Vt;     %3D Velocity    [=] m/s. 
        data1(j,10) = Vrad;   %Radial-axe Velocity [=] m/s. 
        data1(j,11) = Ax;     %X-axe Acceleration  [=] m/s2.  
        data1(j,12) = Ay;     %Y-axe Acceleration  [=] m/s2.  
        data1(j,13) = Az;     %Z-axe Acceleration  [=] m/s2.  
        data1(j,14) = At;     %3D Acceleration     [=] m/s2.  
        data1(j,15) = Arad;   %Radial-axe Acceleration [=] m/s. 
end 
  
data1(j+1:end,:) = []; 
  
  
    %% Stablish decelerations 
        % Cartesian accelerations 
for i = 1:(size(data1(:,9),1)-4) 
    posneg(i,1) = data1(i+4,9)-data1(i,9); 
end 
  
for i = 1:size(posneg,1) 
    if posneg(i,1)<0 
    data1(i,14) = -data1(i,14); 
    end 
end 
  
  
        % Radius accelerations 
for i = 1:(size(data1(:,10),1)-4) 
    posneg(i,1) = data1(i+4,10)-data1(i,10); 
end 
  
for i = 1:size(posneg,1) 
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    if posneg(i,1)<0 
    data1(i,15) = -data1(i,15); 
    end 
end 
  
  
    %% Input of new columns for final matrix 
for i=7:21 
    data(:,i)=zeros;    % Expand initial matrix. Increase columns. 
end 
         
      
for i=12:1:21 
    for q=1:size(data1,1) 
    data(q+floor(pnt/2),i) = data1(q,i-6);  % Incorporate velocities and accelerations.  
    end 
end 
(

( ( ( NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN(

function [vt,vx,vy,vz,vrad,acct,accx,accy,accz,accr] = 
PEPTlagrangian2(Tran,Xran,Yran,Zran,Rran,n,pnt) 
  
%% Regression Analysis 
l = 1; 
d = distcar(Xran,Yran,Zran); 
  
  
for m=n:2:pnt     
  
    if (Tran(end)-Tran(1))>=0 
        if d < 25 
  
%% Calculate Velocities, Error & Accelerations 
%Vx 
[vx(l,1),errx(l,1),accx(l,1)]   = PEPTlagrangian3(Tran((ceil(pnt/2)-
floor(m/2)):(ceil(pnt/2)+floor(m/2))),Xran((ceil(pnt/2)-
floor(m/2)):(ceil(pnt/2)+floor(m/2)))); 
%Vy 
[vy(l,1),erry(l,1),accy(l,1)]   = PEPTlagrangian3(Tran((ceil(pnt/2)-
floor(m/2)):(ceil(pnt/2)+floor(m/2))),Yran((ceil(pnt/2)-
floor(m/2)):(ceil(pnt/2)+floor(m/2)))); 
%Vz 
[vz(l,1),errz(l,1),accz(l,1)]   = PEPTlagrangian3(Tran((ceil(pnt/2)-
floor(m/2)):(ceil(pnt/2)+floor(m/2))),Zran((ceil(pnt/2)-
floor(m/2)):(ceil(pnt/2)+floor(m/2)))); 
%Vrad 
[vrad(l,1),errr(l,1),accr(l,1)] = PEPTlagrangian3(Tran((ceil(pnt/2)-
floor(m/2)):(ceil(pnt/2)+floor(m/2))),Rran((ceil(pnt/2)-
floor(m/2)):(ceil(pnt/2)+floor(m/2)))); 
  
  
errt(l,1) = errx(l,1)+erry(l,1)+errz(l,1); 
vt(l,1)   = ((vx(l,1).^2)+(vy(l,1).^2)+(vz(l,1).^2)).^.5; 
acct(l,1) = ((accx(l,1).^2)+(accy(l,1).^2)+(accz(l,1).^2)).^.5; 
l = l+1; 
  
    else 
     
    vt=0; vx=0; vy=0; vz=0; vrad=0; 
    acct=0; accx=0; accy=0; accz=0; accr=0; 
  
        end 
    end 
end 
  
if exist('errt') 
m=n+((find(errt(:,1)==min(errt(:,1)))-1)*(2)); 
  
vt(1,1)       = vt(((m-n)/2)+1,1);  
vx(1,1)       = vx(((m-n)/2)+1,1);  
vy(1,1)       = vy(((m-n)/2)+1,1);  
vz(1,1)       = vz(((m-n)/2)+1,1);  
vrad(1,1)     = vrad(((m-n)/2)+1,1); 
vt(2:end,:)   = [];  
vx(2:end,:)   = [];  
vy(2:end,:)   = []; 
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vz(2:end,:)   = [];  
vrad(2:end,:) = []; 
acct(1,1)     = acct(((m-n)/2)+1,1);  
accx(1,1)     = accx(((m-n)/2)+1,1);  
accy(1,1)     = accy(((m-n)/2)+1,1);  
accz(1,1)     = accz(((m-n)/2)+1,1);  
accr(1,1)     = accr(((m-n)/2)+1,1); 
acct(2:end,:) = [];  
accx(2:end,:) = [];  
accy(2:end,:) = [];  
accz(2:end,:) = [];  
accr(2:end,:) = []; 
else 
vt=NaN; vx=NaN; vy=NaN; vz=NaN; vrad=NaN; 
acct=NaN; accx=NaN; accy=NaN; accz=NaN; accr=NaN; 
end 
  
  
   %% Subfunction to calculate cartesian distance   
  
function d=distcar(Xran,Yran,Zran) 
d=((Xran(end)-Xran(1))^2 + ... 
    (Yran(end)-Yran(1))^2 + ... 
    (Zran(end)-Zran(1))^2)^.5; 
(

(
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function [vel,err,acc,yfit] = PEPTlagrangian3(xdat,ydat) 
%% Least square polynomial dx/dt interpolation using m points to find velocities 
%xdat is time, whilst ydat is the coordinate 
%xdats=rangesc(xdat); 
  
xdats      = xdat(:,1)-xdat(1,1); % Substract the first value of time 
xdats(:,2) = xdats(:,1);  
xdats(:,1) = 1; 
xdats(:,3) = xdats(:,2).^2;       % Squared second column. 
  
a = inv(transpose(xdats)*(xdats))*(transpose(xdats))*(ydat); % Velocity units. 
  
for j=1:length(ydat) 
    yfit(j,1) = a(1,1)+(a(2,1)*xdats(j,2))+(a(3,1)*(xdats(j,2)^2)); % Second grade fit. 
end 
  
err = mean((ydat-yfit).^2); 
  
%% Velocity 
vel = ((2*(a(3,1)*(xdats(ceil(length(xdat)/2),2))))+a(2,1))/1000; %[m/s] 
  
%% Acceleration 
acc = (2*a(3,1))/1000;  % [m/s2] 
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Eulerian(analysis(

function [E,ZI,RI] = PEPTeulerian1(data) 
%% Routine for the creation of velocity distribution and occupancies plots. Eulerian 
analysis. 
 clc 
 close all 
  
 
% Data Handling 
t    = data(:,1);       %Time        [=] s.  
x    = data(:,2);       %X-axis      [=] mm. 
y    = data(:,3);       %Y-axis      [=] mm. 
z    = data(:,4);       %Z-axis      [=] mm. 
rad  = data(:,6);       %Radial-axis [=] mm. 
  
Vx   = data(:,12);      %X-axis Velocity [=] m/s.  
Vy   = data(:,13);      %Y-axis Velocity [=] m/s.  
Vz   = data(:,14);      %Y-axis Velocity [=] m/s.  
V    = data(:,15);      %3D Velocity     [=] m/s.  
Vrad = data(:,16);      %Radial-axis Velocity [=] m/s.       
  
Ax   = data(:,17);      %X-axis Acceleration  [=] m/s2. 
Ay   = data(:,18);      %Y-axis Acceleration  [=] m/s2. 
Az   = data(:,19);      %Z-axis Acceleration  [=] m/s2. 
A    = data(:,20);      %3D Acceleration      [=] m/s2. 
Arad = data(:,21);      %Radial-axis Acceleration  [=] m/s2. 
  
data2   = [t,x,y,z,rad]; %Creation of the data matrix 
    
% Non-dimensionless 
MaxZ    = 600;           % Dishwasher dimensions [=] mm. 
MaxY    = 500;           % Dishwasher dimensions [=] mm. 
MaxX    = 540;           % Dishwasher dimensions [=] mm. 
MaxRad  = max(rad);     
  
cellsize = 10;        % Cellsize [=] mm. 
  
 
x_bins  = floor(MaxX/cellsize); 
y_bins  = floor(MaxY/cellsize); 
z_bins  = floor(MaxZ/cellsize); 
rad_bins= ceil(MaxRad/cellsize); 
  
  
[E] = 
PEPTeulerian2([data2],Vx,Vz,Vy,V,Vrad,Ax,Ay,Az,A,Arad,MaxZ,MaxY,MaxX,MaxRad,y_bins,x_bin
s,z_bins,rad_bins,cellsize); 
  
%% Plots 
PEPTeulerian3 
(

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN(

function [EulerianC] = 
PEPTeulerian2(data1,Vx,Vz,Vy,V,Vrad,Ax,Ay,Az,A,Arad,MaxZ,MaxY,MaxX,MaxRad,y_bins,x_bins,
z_bins,rad_bins,cellsize); 
  
%% Nodes & Centers 
%X-axis 
x_nodes     = [-(MaxX/2):cellsize:(MaxX/2)]; 
x_centers   = (x_nodes(1:length(x_nodes)-1)+x_nodes(2:length(x_nodes)))/2; 
  
%Y-axis 
y_nodes     = [-(MaxY/2):cellsize:(MaxY/2)]; 
y_centers   = (y_nodes(1:length(y_nodes)-1)+y_nodes(2:length(y_nodes)))/2; 
  
%Z-axis 
z_nodes     = [(0:cellsize:MaxZ)]; 
z_centers   = (z_nodes(1:length(z_nodes)-1)+z_nodes(2:length(z_nodes)))/2; 
 
%Radial-axis 
rad_nodes   = [(0:cellsize:MaxRad)]; 
rad_centers = (rad_nodes(1:length(rad_nodes)-1)+rad_nodes(2:length(rad_nodes)))/2; 
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%% Hipermatrix 
EulerianC = zeros(rad_bins-1,z_bins,16); 
     
[EulerianC(:,:,15),EulerianC(:,:,16)] = meshgrid(z_centers,rad_centers); 
  
    % Loop 
for i_lag=1:length(Vz)-1     
     
    x_act  = data1(i_lag,2);     
    y_act  = data1(i_lag,3);     
    z_act  = data1(i_lag,4);     
    rad_act= data1(i_lag,5); 
    
    %dt=(data1(i_lag+1,1)-data1(i_lag,1)); 
  
    ix  = find(x_centers<=x_act,1,'last'); 
    iy  = find(y_centers<=y_act,1,'last'); 
    iz  = find(z_centers<=z_act,1,'last'); 
    irad= find(rad_centers<=rad_act,1,'last'); 
     
     
    if ix > x_bins 
        ix=x_bins; 
    end 
     
    if iy > y_bins 
        iy=y_bins; 
    end 
     
    if iz > z_bins 
        iz=z_bins; 
    end 
  
    if irad > rad_bins 
        irad=rad_bins; 
    end 
     
  
    dt=(data1(i_lag+1,1)-data1(i_lag,1)); 
     
    if dt>=0 && dt<=1   
        dt=dt;     
    else    
        dt=0;      
    end 
     
     
     
     %clear irad 
     %irad=ix; 
     
    EulerianC(irad,iz,1) = EulerianC(irad,iz,1) + Vx(i_lag);     %Vx 
    EulerianC(irad,iz,2) = EulerianC(irad,iz,2) + Vy(i_lag);     %Vy     
    EulerianC(irad,iz,3) = EulerianC(irad,iz,3) + Vz(i_lag);     %Vz 
    EulerianC(irad,iz,4) = EulerianC(irad,iz,4) + V(i_lag);      %V 
    EulerianC(irad,iz,5) = EulerianC(irad,iz,5) + Vrad(i_lag);   %Vrad 
     
    EulerianC(irad,iz,6) = EulerianC(irad,iz,6) + Ax(i_lag);     %Ax 
    EulerianC(irad,iz,7) = EulerianC(irad,iz,7) + Ay(i_lag);     %Ay     
    EulerianC(irad,iz,8) = EulerianC(irad,iz,8) + Az(i_lag);     %Az 
    EulerianC(irad,iz,9) = EulerianC(irad,iz,9) + A(i_lag);      %A 
    EulerianC(irad,iz,10)= EulerianC(irad,iz,10)+ Arad(i_lag);   %Arad 
     
    EulerianC(irad,iz,11)= EulerianC(irad,iz,11)+dt;    %TIME IN EACH CELL 
    EulerianC(irad,iz,12)= EulerianC(irad,iz,12)+1;     %PASS count 
  
end 
      
    exptime  = sum(EulerianC(:,:,11)); 
    exptime2 = sum(exptime);            % Total experimental time 
     
     
    %%AVERAGES 
    EulerianC(:,:,1) = (EulerianC(:,:,1)./EulerianC(:,:,12));    %FINAL Vx 
    EulerianC(:,:,2) = (EulerianC(:,:,2)./EulerianC(:,:,12));    %FINAL Vy 
    EulerianC(:,:,3) = (EulerianC(:,:,3)./EulerianC(:,:,12));    %FINAL Vz 
    EulerianC(:,:,4) = (EulerianC(:,:,4)./EulerianC(:,:,12));    %FINAL V 
    EulerianC(:,:,5) = (EulerianC(:,:,5)./EulerianC(:,:,12));    %FINAL Vrad 
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    EulerianC(:,:,6) = (EulerianC(:,:,6)./EulerianC(:,:,12));    %FINAL Ax 
    EulerianC(:,:,7) = (EulerianC(:,:,7)./EulerianC(:,:,12));    %FINAL Ay 
    EulerianC(:,:,8) = (EulerianC(:,:,8)./EulerianC(:,:,12));    %FINAL Az 
    EulerianC(:,:,9) = (EulerianC(:,:,9)./EulerianC(:,:,12));    %FINAL A 
    EulerianC(:,:,10) = (EulerianC(:,:,10)./EulerianC(:,:,12));  %FINAL Arad 
     
    EulerianC(:,:,13) = 
sqrt(EulerianC(:,:,1).^2+EulerianC(:,:,2).^2+EulerianC(:,:,3).^2);  % Avg. Velocity 
    EulerianC(:,:,14) = 
sqrt(EulerianC(:,:,5).^2+EulerianC(:,:,6).^2+EulerianC(:,:,7).^2);  % Avg. Acceleration 
    EulerianC(:,:,15) = EulerianC(:,:,11)./EulerianC(:,:,12); %Avg. Residence Time 
    EulerianC(:,:,16) = EulerianC(:,:,11)/exptime2;     %Occupancy 
(

(

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN(

%% Routine to plot the results from Eulerian analysis 
 
  
%% Nodes & Centers 
   %X 
x_nodes=[-(MaxX/2):cellsize:(MaxX/2)]; 
x_centers=(x_nodes(1:length(x_nodes)-1)+x_nodes(2:length(x_nodes)))/2; 
  
   %Y 
y_nodes=[-(MaxY/2):cellsize:(MaxY/2)]; 
y_centers=(y_nodes(1:length(y_nodes)-1)+y_nodes(2:length(y_nodes)))/2; 
  
   %Z 
z_nodes=[(0:cellsize:MaxZ)]; 
z_centers=(z_nodes(1:length(z_nodes)-1)+z_nodes(2:length(z_nodes)))/2; 
 
   %Rad 
rad_nodes=[(0:cellsize:MaxRad)]; 
rad_centers=(rad_nodes(1:length(rad_nodes)-1)+rad_nodes(2:length(rad_nodes)))/2; 
  
 
[ZI,RI]=meshgrid(z_centers,rad_centers); %Meshgrid 
 
 
%% Matrices 
  
%Velocities 
a1=find(E(:,:,4)>=0); b1=find(E(:,:,4)<=0); C1=zeros(size(RI,1),size(RI,2)); 
C=E(:,:,4); C1(a1)=C(a1); C1(b1)=C(b1); 
  
%Accelerations 
a2=find(E(:,:,9)>=0); b2=find(E(:,:,9)<=0); C2=zeros(size(RI,1),size(RI,2)); 
C=E(:,:,9); C2(a2)=C(a2); C2(b2)=C(b2); 
  
%Residence times 
a3=find(E(:,:,15)>=0); b3=find(E(:,:,15)<=0); C3=zeros(size(RI,1),size(RI,2)); 
C=E(:,:,15); C3(a3)=C(a3); C3(b3)=C(b3); 
  
%Occupancy 
a4=find(E(:,:,16)>=0); b4=find(E(:,:,12)<=0); C4=zeros(size(RI,1),size(RI,2)); 
C=E(:,:,16); C4(a4)=C(a4); C4(b4)=C(b4); 
  
  
%% Plots 
  
% Velocity  
figure(1) 
axes('FontSize',34) 
ph=surf(RI,ZI,C1,'Edgecolor','None'); 
hold on 
xlabel('Radial position, 
R(mm)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal'); 
set(gcf,'Color',[1,1,1]) 
ylabel('Height Position, 
Z(mm)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal'); 
view(0,90) 
axis tight 
axis equal 
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cd=get(ph,'cdata'); 
cd(C1==0)=NaN; 
set(ph,'cdata',cd) 
cb=colorbar('FontSize',30); 
set(get(cb,'ylabel'),'string','Velocity 
(m/s)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal') 
caxis([0 14]) 
box('on') 
ylim([0 500]);   
xlim([0 300]);  
hold off 
  
  
% Acceleration 
figure(2) 
axes('FontSize',34) 
ph=surf(RI,ZI,C2,'Edgecolor','None'); 
hold on 
xlabel('Radial position, 
R(mm)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal'); 
set(gcf,'Color',[1,1,1]) 
ylabel('Height Position, 
Z(mm)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal'); 
view(0,90) 
axis tight 
axis equal 
cd=get(ph,'cdata'); 
cd(C2==0)=NaN; 
set(ph,'cdata',cd) 
cb=colorbar('FontSize',30); 
set(get(cb,'ylabel'),'string','Acceleration 
(m/s2)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal') 
caxis([-500 500]) 
box('on') 
ylim([0 500]);   
xlim([0 300]);  
hold off 
  
  
% Residence time 
figure(3) 
axes('FontSize',34) 
ph=surf(RI,ZI,C3,'Edgecolor','None'); 
hold on 
xlabel('Radial position, 
R(mm)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal'); 
set(gcf,'Color',[1,1,1]) 
ylabel('Height Position, 
Z(mm)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal'); 
view(0,90) 
axis tight 
axis equal 
cd=get(ph,'cdata'); 
cd(C3==0)=NaN; 
set(ph,'cdata',cd) 
cb=colorbar('FontSize',30); 
set(get(cb,'ylabel'),'string','Res.time 
(sec)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal') 
caxis([0 0.015]) 
box('on') 
ylim([0 500]);   
xlim([0 300]);  
hold off 
  
  
%Occupancy 
figure(4) 
axes('FontSize',34) 
ph=surf(RI,ZI,C4,'Edgecolor','None'); 
hold on 
xlabel('Radial position, 
R(mm)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 



APPENDIX(A.1.(POSITRON(EMISSION(PARTICLE(TRACKING((PEPT)(MATLAB(ROUTINES( ( A.14(

    'FontAngle','normal'); 
set(gcf,'Color',[1,1,1]) 
ylabel('Height Position, 
Z(mm)','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal'); 
view(0,90) 
axis tight 
axis equal 
cd=get(ph,'cdata'); 
cd(C4==0)=NaN; 
set(ph,'cdata',cd) 
cb=colorbar('FontSize',30); 
set(get(cb,'ylabel'),'string','Fraction of total 
time','FontWeight','bold','FontSize',34,'FontName','Calibri',... 
    'FontAngle','normal') 
caxis([0 0.005]) 
box('on') 
ylim([0 500]);   
xlim([0 300]);  
hold off 
(
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A.2. Appendix 

Time travelling in ‘vision area’ (!!"#), Time impacting plates (Timpact) and Impact Length 

(Limpact) per spray arm rotation. 

Let there be a plate located vertically at coordinates (xPL,yPL,zPL) with a separation from the front 

plate d. Let there be also a nozzle located at a radial distance RNZ, a height zNL and rotating 

from an axis of rotation at (0,0,zNL) coordinates. The angles at which the nozzle enters (!!") and 

exits (!!"#) the defined vision area can be calculated as follow:  

 

!!" = !"# sin !!"!!
!!"

     (1) 

!!"# = !"# sin !!"
!!"

     (2) 

 

Given a rotational speed of the spray arm ! (! = !"
!"), the time the nozzle (jet) is travelling in 

the ‘vision area’ is given by:  

 

!!"# =  !!"#− !!"
!      (3) 

 

In between those angles, the path followed by the nozzle is given by:  

 

!!" =  !!" ∙ cos !      (4) 

!!" =  !!" ∙ sin !      (5) 

 

Where:  !!" >  ! >  !!"# 

 

A time value can also be assigned for each of the nozzle locations if the rotational speed ! is 

known.  

 

 

 



APPENDIX A.2. MATHEMATICAL APPROACH TO UNDERSTAND ADWs DESIGN: EQUATIONS AND MATLAB ROUTINE  A.16 

The Cartesian components of the direction vector characterising the jet path are calculated as 

follow:  

 

  x-direction:  !"# ! = 1      (6) 

  y-direction: !"# ! = !"# ! · !" θ!"#     (7) 

  z-direction: !"# ! = !"# !
! + !"# !

! · !" ρ!"#    (8) 

 

With those parameters, the impact locations on the x-z plane formed by the analysed plate are 

given by: 

 

!!" − !!"
! <  !!"#$%& ! =  !!"!!!" !

!"# !
· !"# ! + !!" ! <   !!" + !!"

!   (9) 

!!" −  !!" <  !!"#$%& ! =  !!"!!!" !
!"# !

· !"# ! + !!" ! <   !!"  (10) 

 

The times at which the first and last impact locations within the boundaries of the analysed plate 

occur indicate the total impact time (Timpact). The sum of the distance between consecutive 

impact locations within the analysed plate edges gives the length coverage by the jet (Limpact).   
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MATLAB routine 

The following routine illustrates the mathematical approach used to obtain the results for the 

case study shown in section 4.3.2.  

 

function [table,P] = jets(A); 
%% Routine for calculating the impact areas of water jets into plates. 
    %Example given. 
  
        % Input matrix A: 
            % A (:,1) = Separation between plates. [=] mm.  
            % A (:,2) = Nozzle position. [mm]. 
            % A (:,3) = Theta angle. [Degrees]. 
            % A (:,4) = Rho angle. [Degrees]. 
  
  
clc 
close all 
table = zeros(size(A,1),13);      % OUTPUT MATRIX.  
  
  
for j=1:size(A,1) 
  
%% 1-Design Data 
% Plates characteristics.  
dpl = 250;                              %Plate diameter. (mm) 
rpl = 125;                              %Plate width position (mm). 
d   = A(j,1);                           %Distance between plates (mm). Separation. 
ylimi(2) = 0;                           %Plate 2 position. 
ylimi(1) = ylimi(2)-d;                  %Plate 1 position. 
  
  
% Jet characteristics. 
nd  = 2e-3;                             % Nozzle diameter. [=] m. 
radius = A(j,2);                        % Nozzle position. [=] mm. 
w   = 30;                               % Spray Arm rotational velocity. [=] rpm. 
w   = w*2*pi/60;                        % Spray Arm rotational velocity. [=] rad/seg. 
turningtime = 2*pi/w;                   % Time to complete a rotation.   [=] s. 
  
thetajet = A(j,3);                      % Theta angle. [=] Degrees.  
rhojet   = A(j,4);                      % Rho angle.   [=] Degrees.  
thetajet = (thetajet*pi/180);           % Theta angle. [=] Radians.  
rhojet   = (rhojet*pi/180);             % Rho angle.   [=] Radians. 
  
veljet = 9;                                 % Velocity of the jet. [=] m/s. 
vz     = veljet*sin(rhojet);                % x-axis velocity of the jet. [=] m/s. 
vy     = veljet*cos(rhojet)*sin(thetajet);  % y-axis velocity of the jet. [=] m/s. 
vx     = veljet*cos(rhojet)*cos(thetajet);  % z-axis velocity of the jet. [=] m/s. 
  
  
  
%% 2 - Finding angles for areas seen by the plate.  
for i=1:2 
    thetalim(i) = asin(ylimi(i)/radius);             % Defines the start and the end of 
the areas where the plate sees the jet in the rotation. 
    xlimi(i)    = sqrt((radius^2)-(ylimi(i)^2)); 
end 
  
  
% Time the plate sees the jet 
timeexposed     = abs((thetalim(2)-thetalim(1))/w);  % Time - Used for mass flow hitting 
the plate.  
  
  
  
%% 3 - Obtention of nozzle trajectories inside the "vision area". 
  
Theta = (0:0.0001:2*pi)';        % Whole NOZZLE rotation movement.  
 
for i = 1:size(theta,1) 
x1(i) = radius*cos(theta(i));    % NOZZLE circle - XAXE - 
y1(i) = radius*sin(theta(i));    % NOZZLE circle - YAXE - 
end 
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platetheta=(thetalim(1):0.0001:thetalim(2))';    % Vision area.  
  
for i = 1:size(platetheta,1) 
x2(i) = radius*cos(platetheta(i));       % NOZZLE trajectory inside Vision Area - XAXE - 
y2(i) = radius*sin(platetheta(i));       % NOZZLE trajectory inside Vision Area - YAXE - 
z2(i) = 30;                              % Height of the SPRAY ARM. 
end 
  
  
deltat=timeexposed/size(x2,2); 
  
for i = 1:size(x2,2) 
time(i) = (i-1)*deltat; 
end 
  
x2=x2'; y2=y2'; z2=z2'; time=time'; 
  
sprayarm = zeros(size(x2,1),4); 
sprayarm(:,1) = x2;  
sprayarm(:,2) = y2;  
sprayarm(:,3) = z2;  
sprayarm(:,4) = time; %DATA FROM SPRAY ARM. 
  
  
 
%% 4 - Projection of the jet onto the plate surface.   
% Obtention of the JET DIRECTION VECTOR 
dir(1) = 1;                                           % x-direction 
dir(2) = dir(1)*tan(thetajet);                        % y-direction 
dir(3) = (sqrt((dir(1)^2)+(dir(2)^2)))*tan(rhojet);   % z-direction 
  
  
% Points in the projection - Impact of water.  
for i = 1:size(platetheta,1) 
xplate(i) = ((ylimi(2)-y2(i))/dir(2))*dir(1)+x2(i);       % y2-y1=m(x2-x1) - Looking for 
x2 
zplate(i) = (abs((ylimi(2)-y2(i))/dir(2))*dir(3))+z2(i); 
end  
  
xplate = xplate'; 
zplate = zplate'; 
  
  
  
 
%% 5 - Obtention of distance covered by jet. 
  
plate = zeros(size(xplate,1),3); 
plate(:,1) = xplate;      %Impact on X-AXE 
plate(:,2) = zplate;      %Impact on Z-AXE     
  
% Circular plates 
platecentre = [rpl (30+(dpl/2))];  %Coordinates where the plate sits (x-axe,z-axe).     
  
for i = 1:size(plate,1) 

plate(i,3) = sqrt(((plate(i,1)-platecentre(1,1))^2)+((plate(i,2)-
platecentre(1,2))^2)); %Obtention of the distance from plate centre. 

end 
  
a1 = find(plate(:,3)>(dpl/2));     % If impact distance to the plate centre is higher 
that dpl/2, it means it does not touch the plate. Circular plates 
plate(a1,:) = []; 
  
  
if size(plate,1)>1 
dplate = diff(plate); 
  
for i = 1:size(dplate,1) 
dplate(i,3) = sqrt((dplate(i,1)^2) + ((dplate(i,2))^2)); 
end 
  
    dist1 = sum(dplate(:,3)); 
     
elseif size(plate,1)<=1 
    dist1 = 0; 
end 
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if size(plate,1)>1 
 
%% 6 - Time water is impacting the plate.   
ytime(1) = ylimi(2)-((plate(1,2)-z2(1))/(dir(3)/dir(2)));    % y1=y2-(z2-z1)/m 
ytime(2) = ylimi(2)-((plate(end,2)-z2(1))/(dir(3)/dir(2))); 
  
thetaimpactlimit(1) = asin(ytime(1)/radius); 
thetaimpactlimit(2) = asin(ytime(2)/radius); 
  
impacttime = (abs(thetaimpactlimit(2)-thetaimpactlimit(1)))/w; 
  
vwater = veljet*((pi/4)*nd^2)*impacttime*1e3;  % Volume of water hitting a plate 
(litres). 
  
  
  
%% 7 - Dimensionless number calculations. 
  
tauvis = impacttime/timeexposed;    %Effective impact time in vision area; 
taulap = impacttime/turningtime;    %Effective impact lap time;  
  
effimpactarea = dist1/dpl;  %Effective impact area; 
  
  
%% 8 - Creation of output table 
  
                                        %INPUTS     
table(j,1) = ylimi(2);                  % Plate position. 
table(j,2) = rpl;                       % Plate width position. 
table(j,3) = d;                         % Distance between plates. 
table(j,4) = radius;                    % Nozzle rotation radius. Nozzle position 
table(j,5) = thetajet*180/pi;           % Theta jet angle. 
table(j,6) = rhojet*180/pi;             % Rho jet angle. 
table(j,7) = (A(j,2)-rpl)/(dpl/2);      % Nozzle-plate relative position.  
  
                                        %OUTPUTS 
table(j,8) = timeexposed;               % Time in vision area;                                 
table(j,9) = impacttime;                % Time impacting the plate (sec); 
table(j,10)= dist1;                     % Distance covered 
table(j,11)= vwater;                    % Total water input on plate (mm3); 
table(j,12)= tauvis;                    % Effective impact time in vision area;  
DIMENSIONLESS. 
table(j,13)= taulap;                    % Effective impact time per lap; DIMENSIONLESS. 
table(j,14)= effimpactarea;             % Effective impact area; DIMENSIONLESS. 
table(j,15)= table(j,12)*table(j,14);   % Global efficiency. 
  
  
elseif size(plate,1)<=1 
  
                                        %INPUTS     
table(j,1) = ylimi(2);                  %Plate position. 
table(j,2) = rpl;                       %Plate width position. 
table(j,3) = d;                         %Distance between plates. 
table(j,4) = radius;                    %Nozzle rotation radius. Nozzle position 
table(j,5) = thetajet*180/pi;           %Theta jet angle. 
table(j,6) = rhojet*180/pi;             %Rho jet angle. 
table(j,7) = (A(j,2)-rpl)/(dpl/2);      %Nozzle-plate relative position.  
  
                                        %OUTPUTS 
table(j,8) = timeexposed;               %Time in vision area;                                 
table(j,9) = 0;                         %Time impacting the plate (sec); 
table(j,10)= 0;                         %Distance covered. [mm] 
table(j,11)= 0;                         %Total water input on plate (mm3); 
table(j,12)= 0;                         %Effective impact time in vision area;  
DIMENSIONLESS. 
table(j,13)= 0;                         %Effective impact time per lap; DIMENSIONLESS. 
table(j,14)= 0;                         %Effective impact area; DIMENSIONLESS.   
table(j,15)= 0;                         %Global efficiency; 
     
end 
         
   clear x2; clear y2; clear z2; clear time 
    
  
   %For plotting all impact points for an Spray Arm design 
    
P1=[xplate zplate]; 
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P1(:,3) = table(j,9);               % Time impacting plate. [s]. 
   P1(:,4) = table(j,10);              % Distance covered. [mm]. 
   P1(:,5) = table(j,15);              % Global Efficiency. 
    
   if j==1 
   P=[xplate zplate]; 
   P(:,3) = table(j,9);               % Time impacting plate. [s]. 
   P(:,4) = table(j,10);              % Distance covered. [mm]. 
   P(:,5) = table(j,15);              % Global Efficiency. 
   end 
    
   if j>1 
   P=[P;P1]; 
   end 
    
    
   clear xplate 
   clear zplate 
         
          
end 
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A.3.$Appendix$

The(following(appendix(shows(the(different(MATLAB(routines(used(for(the(evaluation(of(the(

diffusional(theories(in(Chapter(6,(section(6.3.(

(

Fick´s(second(law(with(moving(boundaries(

function [D,thickness,thickness_layer,total_mass,mass_layer,error_matrix,w_s,r2] = FDGfitdiffusion 
(data);  
  
%% Routine for the estimation of diffusion values for Gravimetric experiments. 
    % FICK'S SECOND LAW. 
    % Asumptions:  
            % - Diffusion coefficient does not depend on thickness change or water concentration 
(constant). 
            % - Moving boundary conditions considered.  
     
  
         % Input matrix (data). 
            % Column1: time (min); 
            % Column2: Total mass (g); 
   
clc             
clearvars -except data 
close all 
        
  
%% Input data transformations  
E(:,1)  = data(:,1)*60;                   % Experimental time [s].          
E(:,2)  = data(:,2)/1000;                 % Experimental mass [kg]. 
  
m0      = E(1,2);                         % Initial mass. [kg] 
mh2o0   = 0.11/1000;                      % Initial water content. [kg] 
mdry    = m0 - mh2o0;                     % Dry mass. [kg] 
h0      = 0.068/1000;                     % Initial layer thickness. [m] 
hh2o0   = mh2o0 / (0.12*0.10*1000);       % Initial thickness of water layer. [m] 
hdry    = h0-hh2o0;                       % Dry thickness. [m]. 
  
  
  
    % Obtention of equilibrium mass. 
        a = size(E,1); 
        mmax1 = zeros(size(E,1),1); 
            for j= (a-1):1:a 
                mmax1(j,1) = E(j,2); 
            end 
        mmax1(1:(a-2)) = []; 
        mmax = mean (mmax1); 
        mmax = mmax - mdry;  % Total water uptake at equilibrium       
  
         
    % Obtention of water mass fraction. 
        for i = 1:size(E,1) 

E(i,3) = (E(i,2)-mdry)/mdry;        % [kg.H2O/kg.dry] 
        end 
            
         
    % Obtention of water mass fraction equilibrium. 
        a = size(E,1); 
        wmax1 = zeros(size(E,1),1); 
            for j= (a-1):1:a 
                wmax1(j,1) = E(j,3); 
            end 
        wmax1(1:(a-2)) = []; 
        wmax = mean (wmax1);                   % [kg.H2O/kg.dry] 
         
         
    % Obtention of maximum stretch obtained.  
        hmax = hdry + ((mdry*wmax)/(1000*0.10*0.12));   % [m]. 
         
         
    % Simulation time 
        t    = data(end,1)*60;                 % Total experimental time (s). 
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%% Initial evaluation. 
  
    % Effective diffusion coefficient (DF) 
     D1 = [1e-13:0.1e-13:9e-13]; 
     D2 = [1e-12:0.1e-12:9e-12]; 
     D3 = [1e-11:0.1e-11:9e-11]; 
     D4 = [1e-10:0.1e-10:9e-10]; 
     D  = [D1 D2 D3 D4]'; 
     
     
    loops = length(D)   % Number of loops in simulation. 
    error_matrix = zeros(length(D),2); 
     
     
    % Number or layers 
        pointsz = 50;   % Establish the number of layers available. 
         
     
    % Thickness matrices 
        thickness       = zeros (300000,2);           % [s m]. 
        thickness(1,1)  = 0;                          % [s]. 
        thickness(1,2)  = h0;                         % [m]. 
         
        thickness_layer = zeros (300000,pointsz);     % [m]. 
        thickness_layer(1,:) = h0/pointsz;            % [m]. 
         
  
    % Water mass fraction matrix     
        w_0      = E(1,3);                % Initial water mass fraction of the layers.[kg.H2O/kg.dry] 
        w_inf    = wmax;    % Water mass fraction at equilibrium. [kg.H2O/kg.dry] 
        w_s      = zeros(300000,pointsz); % Layer thickness vector. [kg.H2O/kg.dry] 
  
        w_s(1,:) = w_0;   % Initial condition - Initial water mass fraction of the layers. 
        w_s(2:size(w_s,1),pointsz) = w_inf;   % BC 2: Top layer in equilibrium instantly. 
         
         
    % Total mass and mass per layer matrices     
        total_mass  = zeros(300000,2);                % Total Mass. [kg].   
        total_mass(1,1) = 0;                          % Initial time. [s]. 
        total_mass(1,2) = m0;                         % Initial total mass. [kg]. 
         
        mass_layer  = zeros(300000,pointsz);          % Mass per layer. [kg]. 
        mass_layer(1,:) = m0/pointsz;                 % Mass per layer. [kg].   
         
         
         
%% Loop for solving the equation.  
for k = 1:length(D); 
     
    % PDE simulation 
    tic 
    h = 1; %counter 
     
    while thickness(h,1) <= t   
     
    delta_z = thickness(h,2)/pointsz;        % [m]. 
    delta_t = (0.5/D(k))*delta_z^2;          % [s].  
     
     
        for j = 2:pointsz-1        
        w_s(h,1) = w_s(h,2);                   % Boundary condition 1: no flux at the bottom layer. 
     
        % Discretisation of the dif. equation    
        w_s(h+1,j) =  w_s(h,j) + (D(k)*delta_t/delta_z^2)*(w_s(h,j+1)-2*w_s(h,j)+w_s(h,j-1));          
        end 
     
        w_s(h+1,1) = w_s(h,1); 
         
         
        % Mass 
        for j = 1:pointsz 
        mass_layer(h+1,j)  =   mdry*(1+w_s(h+1,j))/pointsz;   % Mass per layer. [kg]. 
        end  
         
        total_mass(h+1,1)  =   total_mass(h) + delta_t;       % [s]. 
        total_mass(h+1,2)  =   sum(mass_layer(h+1,:));        % [kg]. 
         
         
         
        % Thickness 
        for j = 1:pointsz 
        thickness_layer(h+1,j) = (((mdry*w_s(h+1,j))/(1000*0.10*0.12)) + hdry)/pointsz;     % [m].   
        end 
         
        thickness(h+1,1)  = thickness(h,1) + delta_t;      % [s]. 
        thickness(h+1,2)  = sum(thickness_layer(h+1,:));   % [m].  
              
        h = h+1; % Counter 
  end 
    %Removal of extra rows 
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    thickness (h+1:end,:)       = []; 
    thickness_layer (h+1:end,:) = []; 
    total_mass (h+1:end,:)      = []; 
    w_s (h+1:end,:)             = []; 
    mass_layer (h+1:end,:)      = []; 
     
     
     
    % Comparison between real and simulated data 
    thickness(:,2) = thickness(:,2)*1e6;                    % [µm]. 
 
    closest = zeros(size(E,1),1); 
    for i=1:size(E,1) 
        val = E(i,1);                                   % Value to find [s].  
        tmp = abs(total_mass(:,1)-val);                  
        [idx idx] = min(tmp);                           % Index of the closest value.  
        closest(i,1) = idx; 
    end 
     
    B = zeros (size(E,1),2);                      % Simulation results matrix.  
    B(:,1) = total_mass(closest,1);               % Column 1: Time [s]. 
    B(:,2) = total_mass(closest,2);               % Column 2: Mass [kg]. 
      
         
         
    % Calculate R2 for fitting. 
    yresid = E(:,2) - B(:,2); 
    SSresid = sum(yresid.^2); 
    SStotal = (length(E(:,2))-1) * var(E(:,2)); 
    rsq = 1 - SSresid/SStotal;                       % R2. 
      
    error_matrix(k,1) = D(k); 
    error_matrix(k,2) = rsq; 
          
         
         
    % Re-start simulation matrices 
        % Thickness matrices 
        thickness       = zeros (300000,2);           % [s m]. 
        thickness(1,1)  = 0;                          % [s]. 
        thickness(1,2)  = h0;                         % [m]. 
         
        thickness_layer = zeros (300000,pointsz); 
        thickness_layer(1,:) = h0/pointsz;            % [m]. 
         
  
        % Water mass fraction matrix     
        w_0      = E(1,3);                            % Initial water mass fraction of the layers. 
        w_inf    = wmax;                              % Water mass fraction at equilibrium. 
        w_s      = zeros(300000,pointsz);             % Layer thickness vector.  
  
        w_s(1,:) = w_0;   % Initial condition - Initial water mass fraction of the layers. 
        w_s(2:size(w_s,1),pointsz) = w_inf;     % BC2: Top layer in equilibrium inmediatly. 
         
         
        % Total mass, mass per layer matrices     
        total_mass  = zeros(300000,2);                % Total Mass. [kg].   
        total_mass(1,1) = 0;                          % Initial time. [s]. 
        total_mass(1,2) = m0;                         % Initial total mass. [kg]. 
         
        mass_layer  = zeros(300000,pointsz);          % Mass per layer. [kg]. 
        mass_layer(1,:) = m0/pointsz;                 % Mass per layer. [kg].   
       
         
         
        toc 
         
        % Evolution of the fitting. 
        if k == ceil(loops/10) 
            disp('10% COMPLETE') 
        elseif k == ceil(2*loops/10) 
            disp('20% COMPLETE') 
        elseif k == ceil(3*loops/10) 
            disp('30% COMPLETE') 
        elseif k == ceil(4*loops/10) 
            disp('40% COMPLETE') 
        elseif k == ceil(5*loops/10) 
            disp('50% COMPLETE') 
        elseif k == ceil(6*loops/10) 
            disp('60% COMPLETE') 
        elseif k == ceil(7*loops/10) 
            disp('70% COMPLETE') 
        elseif k == ceil(8*loops/10) 
            disp('80% COMPLETE') 
        elseif k == ceil(9*loops/10) 
            disp('90% COMPLETE') 
        end 
         
      
end     
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    %% Choose lowest error aproximation. 
tic 
  
r2  = max (error_matrix(:,2));          % Find maximum R2 value. 
d   = find (error_matrix(:,2)==r2);     % Find row with highest R2. 
  
clear D, clear B, clear delta_t, clear delta_z, clear i, clear j, clear k 
  
D = error_matrix(d,1);                  % Effective diffusion coefficient with highest R2.  
  
     
    h = 1; %counter 
     
    while thickness(h,1) <= t   
     
    delta_z = thickness(h,2)/pointsz;   % [m]. 
    delta_t = (0.5/D)*delta_z^2;        % [s].  
     
     
        for j = 2:pointsz-1        
        w_s(h,1) = w_s(h,2);            % BC 1: no flux at the bottom layer. 
     
            % Discretisation of the dif. equation    
        w_s(h+1,j) =  w_s(h,j) + (D*delta_t/delta_z^2)*(w_s(h,j+1)-2*w_s(h,j)+w_s(h,j-1));          
        end 
     
        w_s(h+1,1) = w_s(h,1); 
         
         
        % Mass 
        for j = 1:pointsz 
        mass_layer(h+1,j)  =   mdry*(1+w_s(h+1,j))/pointsz;   % Mass per layer. [kg]. 
        end  
         
        total_mass(h+1,1)  =   total_mass(h) + delta_t;       % [s]. 
        total_mass(h+1,2)  =   sum(mass_layer(h+1,:));        % [kg]. 
         
         
         
        % Thickness 
        for j = 1:pointsz 
        thickness_layer(h+1,j) = (((mdry*w_s(h+1,j))/(1000*0.10*0.12)) + hdry)/pointsz;     % [m].   
        end   
         
        thickness(h+1,1)  = thickness(h,1) + delta_t;      % [s]. 
        thickness(h+1,2)  = sum(thickness_layer(h+1,:));   % [m].  
              
        h = h+1; % Counter 
     
    end 
    
     
    %Removal of extra rows 
    thickness (h+1:end,:)       = []; 
    thickness_layer (h+1:end,:) = []; 
    total_mass (h+1:end,:)      = []; 
    w_s (h+1:end,:)             = []; 
    mass_layer (h+1:end,:)      = []; 
  
  
    % Comparison between real and simulated data 
    thickness(:,1) = thickness(:,1)/60;                     % [min]. 
    thickness(:,2) = thickness(:,2)*1e6;                    % [µm]. 
     
    total_mass(:,1)= total_mass(:,1)/60;                    % [min]. 
    total_mass(:,2)= total_mass(:,2)*1000;                  % [g]. 
     
     
(
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Linear(poroelasticity(theory(

function [D,error_matrix,r2] = FDGswellinglintheory (data); 
  
%% Routine for the estimation of diffusion values for sFDG experiments.     
    % LINEAR POROELASTICITY THEORY.  
        % Input matrix 
            % Column1: time (min); 
            % Column2: height (mm); 
             
clc 
close all 
  
%% INITIAL MODIFICATIONS             
    % Matrix E 
            % Column 1: Time. [s]. 
            % Column 2: Thickness. [m]. 
            % Column 3: Thickness increase. [m]. 
  
    % Unit transformations. 
E      = data; 
E(:,1) = E(:,1)*60;       % Time. [s].  
E(:,2) = E(:,2)/1000;     % Height. [m].   
  
  
    % Initial thickness.  
%h0=E(1,2);               % Initial Thickness from data (m). NOT CONSTANT. 
h0=0.075/1000;            % Initial Thickness. [m]. CONSTANT. 
  
  
    % Thickness increase.   
E(:,3)=E(:,2)-h0;         % h(t)-h(0). [m]. 
  
  
    % Thickness at equilibrium.  
a   = size(E,1); 
delta_inf1 = zeros (a,1); 
    for j  = (a-10):1:a 
         delta_inf1(j) = E(j,3); 
    end 
delta_inf1(1:(a-11)) = []; 
delta_inf            = mean (delta_inf1);  %[m]. 
clear a; clear delta_inf1; 
     
% delta_inf = ((1 - 2*poisson_ratio)*(mu - mu_0) * H) / (2 * (1-poisson_ratio) * G * omega) 
     
    
    % Other variables. 
exp_time = E(end,1);          % Experimental time. [s]. 
time     = (0:1:exp_time)';   % Time vector. [s]. 
  
  
  
%% LINEAR THEORY EQUATION  
    % Effective diffusion coefficient. 
    D1 = [1e-17:0.1e-17:9e-17]; 
    D2 = [1e-16:0.1e-16:9e-16]; 
    D3 = [1e-15:0.1e-15:9e-15]; 
    D4 = [1e-14:0.1e-14:9e-14]; 
    D5 = [1e-13:0.1e-13:9e-13]; 
    D6 = [1e-12:0.1e-12:9e-12]; 
    D  = [D1 D2 D3 D4 D5 D6]';  % [m2/s]. 
     
     
    loops = length(D)   % Number of loops in simulation. 
    h = 1; %counter 
     
    error_matrix = zeros(length(D),2); 
  
     
% Loop for obtaining results.  
for i = 1:length(D); 
    tic 
     
    tau = (h0^2)./D;        % Characteristic time scale. [s]. 
     
    % Seconds term 
    for j=1:size(time,1)     
        A=zeros(15,1);       
     
        for k=1:size(A,1); 
        A(k)=(1/((2*(k-1)+1)^2)) * exp(-(((2*(k-1)+1)^2)*(time(j)*(pi^2)/(4*tau(i))))); 
        end 
     
        a(j,1)=sum(A); 
        clear A 
  
    end 
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    second_term = zeros(length(time),1); 
    second_term = (1-((8/pi^2)*a));    
   
     
B = zeros (length(time), 2);        % Simulation results matrix.  
B(:,1) = time;                      % Column 1: Time. [s]. 
B(:,2) = delta_inf * second_term;   % Column 2: Thickness increase. [m]. 
  
  
    % Comparison  
    clear a 
    for m=1:size(E,1) 
    b(m)=find(B(:,1)==E(m,1));      % Find same time values in both Real and Simulation matrices. 
    end 
  
    b=b'; 
    B1=B(b,:);                      % Simulation matrix with just 'Same time' values.  
     
     
    % Calculate R2 for fitting. 
     yresid = E(:,3) - B1(:,2); 
     SSresid = sum(yresid.^2); 
     SStotal = (length(E(:,3))-1) * var(E(:,3)); 
     rsq = 1 - SSresid/SStotal; 
      
     error_matrix(i,1) = D(i); 
     error_matrix(i,2) = rsq; 
     
      
      
     % Evolution of the fitting. 
        if h == ceil(loops/10) 
            disp('10% COMPLETE') 
        elseif h == ceil(2*loops/10) 
            disp('20% COMPLETE') 
        elseif h == ceil(3*loops/10) 
            disp('30% COMPLETE') 
        elseif h == ceil(4*loops/10) 
            disp('40% COMPLETE') 
        elseif h == ceil(5*loops/10) 
            disp('50% COMPLETE') 
        elseif h == ceil(6*loops/10) 
            disp('60% COMPLETE') 
        elseif h == ceil(7*loops/10) 
            disp('70% COMPLETE') 
        elseif h == ceil(8*loops/10) 
            disp('80% COMPLETE') 
        elseif h == ceil(9*loops/10) 
            disp('90% COMPLETE') 
        end 
             
      
     h = h+1; % Counter 
     toc 
end 
  
  
  
  
%% Choose lowest error aproximation. 
  
r2 = max(error_matrix(:,2));          % Find maximum R2 value. 
d  = find (error_matrix(:,2)==r2);    % Find row with maximum R2 value. 
  
clear D 
D = error_matrix(d,1); 
  
clear tau; clear a; clear second_term; clear B; 
  
    tau = (h0^2)/D;         % Characteristic time scale. [s]. 
  
    % Second term 
    for j=1:size(time,1) 
        A=zeros(15,1);       
     
        for k=1:size(A,1); 
        A(k)=(1/((2*(k-1)+1)^2)) * exp(-(((2*(k-1)+1)^2)*(time(j)*(pi^2)/(4*tau)))); 
        end 
     
        a(j,1)=sum(A); 
        clear A 
    end 
  
    second_term = zeros(length(time),1); 
    second_term = (1-((8/pi^2)*a));    
     
     
B = zeros (length(time), 2);        % Simulation results matrix.  
B(:,1) = time;                      % Column 1: Time (seconds). 
B(:,2) = delta_inf * second_term;   % Column 2: Thickness increase (m). 



APPENDIX(A.3.(DIFFUSIONAL(THEORIES(ROUTINES.( A.27(

%% Plot results. 
  
B(:,1) = B(:,1)/60; B(:,2) = B(:,2)*1000;                        % Time into min / Thickness into mm. 
E(:,1) = E(:,1)/60; E(:,2) = E(:,2)*1000; E(:,3) = E(:,3)*1000;  % Time into min / Thickness into mm. 
  
  
% Real vs simulated swelling. 
figure(1) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
plot(B(:,1),B(:,2),'.g','markersize',8) 
hold on 
plot(E(:,1),E(:,3),'.r','markersize',8) 
hold on 
%xlim([0 10000]) 
%ylim([0 1]) 
%set(gca,'XDir','reverse'); 
title('SWELLING OVER TIME','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
xlabel('Time, (min)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('Thickness increase, (mm)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
h=legend('Fitted data','Experimental data', 'Location', 'Southeast') 
    set(h,'FontSize',22,'FontName','Calibri','FontAngle','normal') 
hold on 
  
  
% R2 profile 
figure(2) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
semilogx (error_matrix(:,1),error_matrix(:,2),'.b','markersize',8) 
xlabel('Effective Diffusion, (m2/s)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('R-squared','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
hold on 
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Non@linear(poroelasticity(theory(

function 
[thickness,lambda_s,lambda_lin,lambda_0,lambda_inf,error_matrix,error_matrix2,D,D_linear,chi,n,omega,
r2,d,loops,rsq_matrix] = FDGnonlinear3(data); 
  
%% Routine to solve Bouklas(2010) non-linear equation for swelling samples.  
    %% Iteration to obtain D, chi and n*omega parameters.  
     
        % Input matrix 
            % Column1: Time (min). 
            % Column2: Thickness (mm).  
             
        % Forward difference in time and second order central difference for X 
        % domain. Explicit algorithm. 
  
        % BOUNDARY CONDITIONS 
  
            % IC: at any X; t = 0; lambda = lambda_0; 
            % BC1: at any t; X = 0; dlambda/dX = 0;        ** No flux at the bottom ** 
            % BC2: at any t; X = H; lambda = lambda_inf    ** Instantaneous equilibrium at the upper 
surface **  
   
             
  
clearvars -except data 
close all; 
clc; 
             
     
         
%% 1. INITIAL DEFINITIONS 
E      = data; 
E(:,1) = E(:,1)*60;             % Time in seconds [s]. 
  
  
%Thickness 
    hh2o0 = 0.009/1000;         % Initial water thickness. [m]. 
    h_0   = E(1,2)/1000;        % Initial experimental sample thickness. [m]. 
    h     = h_0-hh2o0;          % Dry sample thickness [m]. 
  
% Flory-Huggins parameter. 
    chi   = [0:0.05:1.2];   
     
% Effective number of polymer chains per unit volume 
    n1    = [1e25:1e25:9e25];      
    n2    = [1e26:1e26:9e26]; 
    n3    = [1e27:1e27:9e27]; 
    n     = [n1 n2 n3];         % [chains/m3]. 
  
% Volume per solvent molecule  
    omega = 3e-29;              % [m3/water.molecule]. 
  
% Diffusion coefficient 
   D1 = [1e-13:1e-13:9e-13]; 
   D2 = [1e-12:1e-12:9e-12]; 
   D3 = [1e-11:1e-11:9e-11]; 
   D4 = [1e-10:1e-10:9e-10]; 
   D  = [D1 D2 D3 D4]'; 
    
% Simulation time 
   t     = 180;                 % Simulation time [min]. 
   t     = t * 60;              % Simulation time [sec]. 
        
% Obtention of equilibrium thickness. 
   a = size(E,1); 
   for j= (a-10):1:a 
    hmax(j) = E(j,2); 
   end 
   hmax(1:(a-11)) = []; 
   hmax1 = mean (hmax)/1000;  % Thickness equilibrium value [m].    
   
    
   % Stretch 
   lambda_0   = h_0/h;          % Initial stretch. 
   lambda_inf = hmax1/h;        % Equilibrium stretch. 
         
         
   % Loops & Error Matrix           
   loops        = length(D)*length(chi)*length(n)  % Number of loops in simulation. 
   error_matrix = zeros(loops,6);  
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%%  2. SOLUTION OF PDE 
counter = 1;                    % Counter 
  
 for k = 1:length(D); 
     for l = 1:length(n); 
         for v = 1:length(chi); 
    tic     
   
    % Initial iteration for Deltas. Optimising computational cost. 
    t1 = [1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001 0.00005 0.00002]; 
    t2 = [1 2 5 10 20 30 60 120 300 600]; 
  
    delta_t   = t1(1);                    % Size of time step to match stability criteria 
    delta_X   = sqrt(D(k)*delta_t/0.5);   % Size of position step to match stability criteria                                                   
    pointsX   = h./delta_X; 
    i1=2; i2=2; 
  
     
    while pointsX < 20        % Cases where diffusion values are high. (E-7; E-8; E-9). 
    delta_t   = t1(i1); 
    delta_X   = sqrt(D(k)*delta_t/0.5);   
    pointsX   = h/delta_X; 
    i1=i1+1; 
    end 
  
    while pointsX > 60        % Cases where diffusion values are low. (E-13; E-14). 
    delta_t   = t2(i2); 
    delta_X   = sqrt(D(k)*delta_t/0.5);   
    pointsX   = h/delta_X; 
    i2=i2+1; 
    end 
  
    t_d       = [0:delta_t:t];     % Discretised time domain. Time vector.  
    X_d       = [0:delta_X:h];     % Discretised spatial domain 
  
  
    % Stretch at equilibrium value.         
    lambda_s      = zeros(length(t_d),length(X_d));     % STRETCH VECTOR. 
    lambda_s(1,:) = lambda_0;                           % INITIAL BOUNDARY CONDITION. t=0 
  
    thickness = zeros(length(t_d),1);                   % THICKNESS.[m].  
 
  
    lambda_s(2:length(t_d),length(X_d)) = lambda_inf;   % BC1: Instantaneous equilibrium swelling 
ratio at the upper surface. 
  
  
    % Non-linear equation solver. 
    for i = 1:length(t_d)-1 
       for j = 2:length(X_d)-1 
       lambda_s(i,1) = lambda_s(i,2);   % BC2: No flux at the bottom layer. 
       
       lambda_A = (lambda_s(i,j+1)+lambda_s(i,j))/2; 
       lambda_B = (lambda_s(i,j)+lambda_s(i,j-1))/2; 
  
       xiA = (1/(lambda_0^2 * lambda_A^4)) - ((2*chi(v)*((lambda_0^2 * lambda_A)-1))/(lambda_0^4 * 
lambda_A^5)) + (n(l)*omega*((lambda_0^2 * lambda_A)-1)*((lambda_A^2)+1))/(lambda_0^2 * lambda_A^4); 
       xiB = (1/(lambda_0^2 * lambda_B^4)) - ((2*chi(v)*((lambda_0^2 * lambda_B)-1))/(lambda_0^4 * 
lambda_B^5)) + (n(l)*omega*((lambda_0^2 * lambda_B)-1)*((lambda_B^2)+1))/(lambda_0^2 * lambda_B^4); 
       lambda_s(i+1,j) = lambda_s(i,j) + 
((D(k)*(lambda_0^2)*delta_t)/delta_X^2)*((xiA*(lambda_s(i,j+1)-lambda_s(i,j))) - xiB*(lambda_s(i,j)-
lambda_s(i,j-1))); 
       
       end 
    end 
  
    lambda_s(end,1) = lambda_s(end-1,1);      % Final value. Close loop.  
  
     
    % Obtention of total thickness 
    for i = 1:length(t_d) 
         thickness(i,1) = t_d(i);                                        % Time. [s]. 
         thickness(i,2) = ((sum(lambda_s(i,:))*h)/length(X_d))*1000;     % Thickness. [mm]. 
    end 
     
     
    % Comparison with experimental data 
    B = thickness; 
     
    clear a 
    for m = 1:size(E,1) 
    b(m) = find(B(:,1)==E(m,1));      % Find same time values in both Real and Simulation matrices. 
    end 
  
    b  = b'; 
    B1 = B(b,:);                       
     
     
    % Calculate R2. 
     yresid = E(:,2) - B1(:,2); 
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     SSresid = sum(yresid.^2); 
     SStotal = (length(E(:,2))-1) * var(E(:,2)); 
     rsq = 1 - SSresid/SStotal; 
      
     error_matrix(counter,1) = D(k); 
     error_matrix(counter,2) = n(l); 
     error_matrix(counter,3) = chi(v); 
     error_matrix(counter,4) = omega; 
     error_matrix(counter,5) = rsq; 
     counter=counter+1; 
      
     clear yresid, clear SSresid, clear SStotal, clear rsq 
      
       
    % Calculation of lambda_inf condition.  
    A_inf = log((((lambda_0^2)*lambda_inf)-1)/((lambda_0^2)*lambda_inf)); 
    B_inf = 1/((lambda_0^2)*lambda_inf); 
    C_inf = chi(v)/((lambda_0^4)*(lambda_inf^2)); 
    D_inf = ((n(l)*omega)/(lambda_0^2))*(lambda_inf - (1/lambda_inf)); 
         
    result = A_inf + B_inf + C_inf + D_inf; 
    error_matrix(counter,6) = result; 
  
  
    clear a; clear b; clear c; clear d; clear A_inf; clear B_inf; clear C_inf; clear D_inf; 
    
    toc 
         
     
    % Evolution of the fitting. 
        if counter == ceil(loops/10) 
            disp('10% COMPLETE') 
        elseif counter == ceil(2*loops/10) 
            disp('20% COMPLETE') 
        elseif counter == ceil(3*loops/10) 
            disp('30% COMPLETE') 
        elseif counter == ceil(4*loops/10) 
            disp('40% COMPLETE') 
        elseif counter == ceil(5*loops/10) 
            disp('50% COMPLETE') 
        elseif counter == ceil(6*loops/10) 
            disp('60% COMPLETE') 
        elseif counter == ceil(7*loops/10) 
            disp('70% COMPLETE') 
        elseif counter == ceil(8*loops/10) 
            disp('80% COMPLETE') 
        elseif counter == ceil(9*loops/10) 
            disp('90% COMPLETE') 
        end 
             
             
         end 
     end 
 end 
     
  
  
%% 3. FINAL ESTIMATION. LOWEST ERROR VALUE. 
  
    % Lambda_inf Condition.  
    error_matrix2 = error_matrix; 
  
    a = find (error_matrix2(:,6)<0.12); 
    clear error_matrix 
    error_matrix = error_matrix2(a,:); 
  
     
    % Searching for best fit. 
    r2 = max(error_matrix(:,5)); 
    d  = find (error_matrix(:,5)==r2); 
  
    clear D 
  
    D = error_matrix(d,1);      % [m2/s]. 
    D(2:end,:) = []; 
     
    n = error_matrix(d,2);      % [m-3]. 
    n(2:end,:) = []; 
     
    chi = error_matrix(d,3); 
    chi(2:end,:) = []; 
     
    clear tau; clear a; clear B; 
  
     
    t1 = [1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001 0.00005]; 
    t2 = [1 2 5 10 20 30 60 120 300]; 
  
    delta_t   = t1(1);                 % Size of time step to match stability criteria 
    delta_X   = sqrt(D*delta_t/0.5);   % Size of position step to match stability criteria                                                   
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    pointsX   = h./delta_X; 
    i1=2; i2=2; 
     
     
    while pointsX < 20        % Cases where diffusion values are high. (E-7; E-8; E-9). 
    delta_t   = t1(i1); 
    delta_X   = sqrt(D*delta_t/0.5);   
    pointsX   = h/delta_X; 
    i1=i1+1; 
    end 
  
    while pointsX > 60        % Cases where diffusion values are low. (E-13; E-14). 
    delta_t   = t2(i2); 
    delta_X   = sqrt(D*delta_t/0.5);   
    pointsX   = h/delta_X; 
    i2=i2+1; 
    end 
  
    t_d       = [0:delta_t:t];       % Discretised time domain. Time vector.  
    X_d       = [0:delta_X:h];     % Discretised spatial domain 
  
     
    % Stretch at equilibrium value.         
    lambda_s  = zeros(length(t_d),length(X_d));         % STRETCH VECTOR. 
    lambda_s(1,:) = lambda_0;                           % INITIAL BOUNDARY CONDITION. t=0 
  
    thickness = zeros(length(t_d),1);                   % THICKNESS. [m].  
  
    lambda_s(2:length(t_d),length(X_d)) = lambda_inf;   % BC 1: Instantaneous equilibrium swelling 
ratio at the upper surface. 
  
  
    % Non-linear equation solver. 
    for i = 1:length(t_d)-1 
       for j = 2:length(X_d)-1 
       lambda_s(i,1) = lambda_s(i,2);    % BC2: No flux at bottom layer. 
  
       lambda_A = (lambda_s(i,j+1)+lambda_s(i,j))/2; 
       lambda_B = (lambda_s(i,j)+lambda_s(i,j-1))/2; 
  
       xiA = (1/(lambda_0^2 * lambda_A^4)) - ((2*chi*((lambda_0^2 * lambda_A)-1))/(lambda_0^4 * 
lambda_A^5)) + (n*omega*((lambda_0^2 * lambda_A)-1)*((lambda_A^2)+1))/(lambda_0^2 * lambda_A^4); 
       xiB = (1/(lambda_0^2 * lambda_B^4)) - ((2*chi*((lambda_0^2 * lambda_B)-1))/(lambda_0^4 * 
lambda_B^5)) + (n*omega*((lambda_0^2 * lambda_B)-1)*((lambda_B^2)+1))/(lambda_0^2 * lambda_B^4); 
       lambda_s(i+1,j) = lambda_s(i,j) + ((D*(lambda_0^2)*delta_t)/delta_X^2)*((xiA*(lambda_s(i,j+1)-
lambda_s(i,j))) - xiB*(lambda_s(i,j)-lambda_s(i,j-1)));       
       end 
    end 
  
    lambda_s(end,1)=lambda_s(end-1,1);      % Final value. Close loop.  
  
     
    for i = 1:length(t_d) 
         thickness(i,1)= t_d(i);                                       % Time. [s]. 
         thickness(i,2)= ((sum(lambda_s(i,:))*h)/length(X_d))*1000;    % Thickness. [mm]. 
    end 
    
    B = thickness; 
  
 
 
%% 4. ERROR VARIATION MATRIX 
  
a = find (error_matrix (:,5) > 0); 
  
rsq_matrix      = zeros(length(a),5); 
rsq_matrix(:,1) = error_matrix(a,5);                % R2 
rsq_matrix(:,2) = error_matrix(a,1);                % D. [m2/s]. 
rsq_matrix(:,3) = error_matrix(a,3);                % Chi. 
rsq_matrix(:,4) = error_matrix(a,2);                % n. [m2]. 
rsq_matrix(:,5) = error_matrix(a,6);                % Lambda_inf condition. 
   
 
   
%% 5. D_linear vs. D_nonlinear 
  
lambda_lin  = (lambda_0+lambda_inf)/2; 
xi_lin      = (1/(lambda_0^2 * lambda_lin^4)) - ((2*chi*((lambda_0^2 * lambda_lin)-1))/(lambda_0^4 * 
lambda_lin^5)) + (n*omega*((lambda_0^2 * lambda_lin)-1)*((lambda_lin^2)+1))/(lambda_0^2 * 
lambda_lin^4); 
  
D_linear = D * xi_lin; 
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%% 6. PLOTS 
thickness(:,1)=thickness(:,1)/60;                   % Time into minutes. [min].        
  
  
%   Swelling over time 
figure(1) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
plot(thickness(:,1),thickness(:,2),'.g','markersize',8) 
hold on 
plot(data(:,1),data(:,2),'.r','markersize',8)  
hold on 
% xlim([0 10000]) 
% ylim([0 1]) 
title('THICKNESS OVER TIME','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
xlabel('Time, (min)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('Thickness, (mm)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylim([0 0.8]) 
h=legend('Model prediction','Experimental data'); 
    set(h,'FontSize',22,'FontName','Calibri','FontAngle','normal') 
hold on 
  
  
%   R2 vs D 
figure(2) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
semilogx (rsq_matrix(:,2),rsq_matrix(:,1),'.b','markersize',8) 
xlabel('Effective Diffusion, D(m2/s)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('R-squared','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylim([0 1]) 
hold on 
  
  
%   R2 vs Chi 
figure(3) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
plot (rsq_matrix(:,3),rsq_matrix(:,1),'.b','markersize',8) 
xlabel('Flory-Huggins Parameter','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('R-squared','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
hold on 
  
  
%   R2 vs n 
figure(4) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
semilogx (rsq_matrix(:,4),rsq_matrix(:,1),'.b','markersize',8) 
xlabel('Polymer Chains Per Unit Volume (m-
3)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('R-squared','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
hold on 
  
  
  
%   Lambda Inf. Constraint vs n 
figure(5) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
plot(rsq_matrix(:,5),rsq_matrix(:,1),'.b','markersize',8) 
xlabel('Lambda Inf. Constraint','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('R-squared','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
hold on 
  
  
  
%   R2 vs D 
figure(6) 
axes('FontSize',24,'FontName','Calibri','XScale','log','XMinorTick','on','XGrid','on') 
set(gcf,'Color',[1,1,1]) 
hold on 
semilogx (error_matrix2(:,1),error_matrix2(:,5),'MarkerSize',8,'LineWidth',3,'Color',[0 0 0]) 
xlabel('Effective Diffusion, D(m2/s)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('R-squared','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylim([0 1]) 
xlim([1e-10 1e-9]) 
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hold on 
box on 
  
  
%   R2 vs Chi 
figure(7) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
hold on 
plot(error_matrix2(:,3),error_matrix2(:,5),'MarkerSize',8,'LineWidth',3,'Color',[0 0 0]) 
xlabel('Flory-Huggins Parameter','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('R-squared','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylim([0 1]) 
xlim([0 2.5]) 
hold on 
box on 
  
  
%   R2 vs n 
figure(8) 
axes('FontSize',24,'FontName','Calibri','XScale','log','XMinorTick','on','XGrid','on') 
set(gcf,'Color',[1,1,1]) 
hold on 
semilogx(error_matrix2(:,2),error_matrix2(:,5),'MarkerSize',8,'LineWidth',3,'Color',[0 0 0]) 
xlabel('Polymer Chains Per Unit Volume (m-
3)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('R-squared','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylim([0 1]) 
xlim([1e25 1e29]) 
hold on 
box on 
  
  
disp ('100% COMPLETE') 
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A.4.$Appendix$

The(following(appendix(shows(the(MATLAB(routine(used(for(the(swelling/removal(model(

developed(in(Chapter(6,(section(6.4.( 

 
 
%% Script to estimate swelling-removal model predictions.  
    %% Version 2.0 - Raul Perez Mohedano  
   
     % Input data:  
            % Data1:    Removal matrix. 
                    % Column 1: Time [=] min. 
                    % Column 2: Thickness [=] mm. 
            % exptime:  Simulation time considered [=] min. 
            % hmax1:    Equilibrium thickness [=] mm.  
            % nz:       Number of theoretical layers considered. 
            % k1:       Shear stress removal rate [=] µm/min. 
            % k2:       Soil dissolution removal rate [=] µm/min. 
             
                
clearvars -except data1 
close all 
clc; 
  
E1 = data1;                                     % Matrix to use in further calculations. 
  
%% INTIAL DEFINITIONS 
% Initial conditions  
exptime = input('Experimental time (min): ');   % Time vector. [min]. 
h    = 0.59e-4;                                 % Dry sample thickness. [m]. 
h0   = 1.15*h;                                  % Initial experimental sample thickness. [m]. 
     
% Stretch 
lambda_0   = h0/h;                              % Initial stretch. 
  
  
% Obtention of equilibrium thickness. 
hmax1 = input('Equilibrium thickness (µm): ');  % Equilibrium thickness. [µm]. 
hmax1 = hmax1/1e6;                              % Equilibrium thickness. [m].   
lambda_inf = hmax1/h;                           % Equilibrium stretch. 
             
  
%Parameters for non-linear swelling equation. 
display('Check your non-linear theory parameters') 
  
chi   = 0.9;                                    % Interaction parameter. 
n     = 6e26;                                   % Effective number of polymer chains per unit volume. 
[chains/m3]. 
omega = 3e-29;                                  % Volume per solvent molecule. [m3/water.molecule]. 
D_s   = 2.5e-10;                                % Diffusion coefficient. [m2/s].           
  
  
% Timings - LINEAR INCREASE FOR REMOVAL (1/2) 
tremoval  = 7.5;                                % Time for removal to start. [min].  
tincrease = 7;                                  % Increasing time to get to maximum removal. [min]. 
tmaximum  = tremoval + tincrease;               % Time to reach maximum removal rate. [min].   
  
  
  
% Theoretical layers and PDE criteria 
nz        = input ('number of theoretical layers considered: ');        % Number of grid points in z 
domain 
nz1       = nz;                                                         % Number of layers still 
available. 
  
delta_z   = h/nz;                               % Size of each grid point. [m]. 
z_d       = [0:delta_z:h];                      % Discretised spatial domain. [m]. 
delta_t   = 0.5*delta_z^2/D_s                   % Time step to match stability criteria. [s]. 
t         = exptime*60;                         % Experimental time. [s].                                         
t_d       = [0:delta_t:t];                      % Time vector. [s].    
  
  
  
% Timings - LINEAR INCREASE FOR REMOVAL (1/2)  
a = find(t_d >= tremoval*60);                   % Find time value for end of lag time. [s].  
a1 = a(1); 
clear a 
         
a = find(t_d >= tmaximum*60);                   % Find time value for end of increase of removal 
rate.†[s]. 
a2 = a(1); 
clear a 
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% Layer Thickness matrix 
z_s_0  = h/nz;                                  % Initial thickness of the layers. [m]. 
z_inf  = hmax1/nz;                              % Maximum stretch per layer. [m]. 
z_s_01 = z_s_0 * 1000;                          % Initial thickness of theoretical layers. [mm]. 
z_inf1 = z_inf * 1000;                          % Maximum thickness of a theoritical layer. [mm].  
z_s  = zeros(length(t_d),length(z_d));          % Layer thickness vector. OUTPUT MATRIX. 
  
  
% Other possible outputs.  
rho_h20 = 1;                                    % Water density. [g/cm3]. 
m_sat =  rho_h20 * (z_inf1 - z_s_01) / 10;      % Saturation mass of a theoretical layer. [g/cm2]. 
  
eggyolk_mass = 1.66;                            % Egg Yolk mass per tile. [g]. 
tile_area    = 12*10;                           % CFT tile area. [cm2]. 
eggyolk_mass_area  = eggyolk_mass/tile_area;    % Egg Yolk mass per tile area. [g/cm2]. 
eggyolk_mass_layer = eggyolk_mass_area / nz;    % Egg Yolk mass per area and per layer. [g/cm2 per 
layer].  
eggyolk_remaining  = zeros(size(t_d,2),2);      % Egg Yolk remaining matrix. OUTPUT MATRIX.  
  
m_s = zeros(size(z_s,1),size(z_s,2));           % Water mass per layer. [g/cm2 per layer] 
water_mass      = zeros(length(t_d)-1,1);       % Total water mass. [g]. 
  
cum_water_mass          = zeros (size(z_s,1),size(z_s,2));  % Cumulative water content per layer. 
[g]. 
cum_thickness           = zeros (size(z_s,1),size(z_s,2));  % Cumulative thickness. [mm]. 
cum_water_mass_sat      = zeros (size(z_s,1),size(z_s,2));  % Cumulative saturated water content per 
layer. [%]. 
relative_cum_water_mass = zeros (size(z_s,1),size(z_s,2));  % Relative cumulative total water mass. 
[%]. 
  
  
% Output matrices. 
thickness    = zeros(length(t_d),2);            % OUTPUT MATRIX [s mm]. 
total_mass   = zeros(length(t_d),2);            % OUTPUT MATRIX [s g]. 
removal      = zeros(length(t_d),4);            % OUTPUT MATRIX [s removal_rate layers_remaining 
removal_carryover]. 
state_matrix = zeros(size(t_d,2),4);            % OUTPUT MATRIX [min cumulative_saturation 
removal_rate frequency_function].  
  
  
thickness(:,1) = t_d';                          % Time. [s]. 
thickness(1,2) = h*1000;                        % Thickness. [mm]. 
  
eggyolk_remaining(:,1) = t_d';                                  % Time. [s].   
eggyolk_remaining(1,2) = nz1 * eggyolk_mass_layer * tile_area;  % Egg Yolk mass. [g].  
  
total_mass(:,1) = t_d';                                         % Time. [s]. 
total_mass(1,2) = nz * eggyolk_mass_layer * tile_area;          % Total (soil + solvent) mass. [g]. 
  
removal(:,1) = t_d';                            % Time. [s]. 
state_matrix (:,1) = t_d';                      % Time. [s]. 
             
             
             
% Frequency function definitions 
        interval_shear_start = 1.45;            % Start time of application of shear. [min].      
        interval_shear_end   = 2;               % End time of application of shear.   [min]. 
        total_shear_interval = 3;               % Time length of repetition interval. [min].   
        related_interval_shear_start = interval_shear_start / total_shear_interval; 
        related_interval_shear_end   = interval_shear_end / total_shear_interval;   
                
         
% Removal Rates definitions 
k1 = input ('shear stress removal rate (µm/min): ');    % Shear stress removal rate. [µm/min]. 
k2 = input ('dissolution removal rate (µm/min): ');     % Soil dissolution removal rate. [µm/min]. 
         
              
% Initial boundary conditions 
lambda_s      = zeros(length(t_d),length(z_d));  % Stretch matrix. 
lambda_s(1,:) = lambda_0;                        % INITIAL BOUNDARY CONDITION (t=0). 
z_s (1,:) = lambda_s(1,:) * z_s_0;               % INITIAL BOUNDARY CONDITION (t=0). 
  
     
% Number of loops and counter 
loops = length (t_d)                            % Number of loops.  
counter = 1; 
  
  
%% ALGORITHM 
tic 
for i=1:length(t_d)-1                           % LOOP FOR SOLVING PDE AND INTEGRATE MECHANISMS 
    if nz1 >= 1  
        %if thickness(i,2) > 0 
            
    % BOUNDARY CONDITIONS 
            if nz1<nz                                   % BOUNDARY CONDITION 1. INSTANT EQUILIBRIUM 
AT UPPER LAYER.              
               lambda_s(i+1,nz1+1) = lambda_s(i,nz1+1); 
%              lambda_s(i+1,nz1+1) = (lambda_s(i,nz1)+lambda_s(i,nz1+1))/2; 
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%              lambda_s(i+1,nz1+1) = (lambda_s(i,nz1+1)+lambda_inf)/2; 
            else 
               lambda_s(i+1,nz1+1) = lambda_inf;    
            end 
                      
            if i>1                                      % BOUNDARY CONDITION 2. NO FLUX AT BOTTOM 
LAYER. 
                lambda_s(i,1) = lambda_s(i-1,2);    
                z_s (i,1) = z_s(i-1,2); 
            end 
        
             
    % SWELLING - NONLINEAR THEORY 
            for j = 2:nz1 
       %z_s(i+1,j) =  z_s(i,j) + (D_s*delta_t/delta_z^2)*(z_s(i,j+1)-2*z_s(i,j)+z_s(i,j-1));  % m 
        
            % Non-linear equation solver. 
                lambda_A = (lambda_s(i,j+1)+lambda_s(i,j))/2; 
                lambda_B = (lambda_s(i,j)+lambda_s(i,j-1))/2; 
  
                xiA = (1/(lambda_0^2 * lambda_A^4)) - ((2*chi*((lambda_0^2 * lambda_A)-
1))/(lambda_0^4 * lambda_A^5)) + (n*omega*((lambda_0^2 * lambda_A)-1)*((lambda_A^2)+1))/(lambda_0^2 * 
lambda_A^4); 
                xiB = (1/(lambda_0^2 * lambda_B^4)) - ((2*chi*((lambda_0^2 * lambda_B)-
1))/(lambda_0^4 * lambda_B^5)) + (n*omega*((lambda_0^2 * lambda_B)-1)*((lambda_B^2)+1))/(lambda_0^2 * 
lambda_B^4); 
                lambda_s(i+1,j) = lambda_s(i,j) + 
((D_s*(lambda_0^2)*delta_t)/delta_z^2)*((xiA*(lambda_s(i,j+1)-lambda_s(i,j))) - xiB*(lambda_s(i,j)-
lambda_s(i,j-1))); 
            end 
               
                z_s (i+1,:) = lambda_s(i+1,:)* z_s_0;                   % [m]. 
  
                 
    % WATER CONTENT IN SAMPLE OVER TIME 
        % Water mass per layer.  
            for j = 1:nz1+1 
                m_s(i+1,j) =  rho_h20 * (z_s(i+1,j)-z_s_0) * 100;       % Water mass per layer. 
[g/cm2]. 
            end  
  
        % Total water mass in sample 
            water_mass(i+1,1) = (sum(m_s(i+1,:))) * tile_area;          % Total water mass. [g]. 
  
        % Cumulative water content  
            for j = 1:nz1+1 
                cum_water_mass_sat (i+1,j) = m_sat * ((nz1+1)-(j-1));   % Cumulative water 
saturation. [g/cm2]. 
            end 
          
            for j = 1:nz1+1             
                mini_m_s = zeros(1,(nz1+1)-(j-1)); 
                mini_cum_thickness = zeros(1,(nz1+1)-(j-1)); 
             
                mini_m_s = m_s(i,j:(nz1+1)); 
                mini_cum_thickness = z_s(i,j:(nz1+1)) * 1000;           % From top of the layer. 
[mm]. 
             
                cum_water_mass (i+1,j) = sum (mini_m_s);                % Cumulative water mass (top 
to bottom). [g/cm2]. 
                cum_thickness  (i+1,j) = sum (mini_cum_thickness);      % Cumulative thickness  (top 
to bottom). [mm]. 
             
                clear mini_m_s; clear mini_cum_thickness; 
              
                % Relative cumulative water content  
                relative_cum_water_mass (i+1,j)= (cum_water_mass(i+1,j)/ cum_water_mass_sat(i+1,j)) * 
100; % Saturation percentage. [%]. 
            end 
  
             
     % FREQUENCY FUNCTION 
         
            if i > 1 
            interval_counter = ceil ((t_d(i+1)/(60*total_shear_interval)));  % [min/min]. 
            else  
            interval_counter = 1;  
            end 
         
            inner_interval_time = ((t_d(i+1)/60)-((interval_counter-
1)*total_shear_interval))/total_shear_interval; 
             
            if inner_interval_time >= related_interval_shear_start && inner_interval_time <= 
related_interval_shear_end 
                phiSS = 1; 
                phiEA = 0; 
            else  
                phiSS = 0; 
                phiEA = 1;  
            end 



APPENDIX(A.4.(SWELLING/REMOVAL(MODEL(FOR(sFDG.(MATLAB(ROUTINE.( A.37(

             
         
    % SOIL DISSOLUTION 
                 
            if i > a1 && i < a2 
                ke = (-k2/tincrease)*((t_d(i)-(tremoval*60))/60)/1000;  % Soil dissolution rate at 
increase period. [mm/min]. 
                %ke = 0;  %[mm/min] 
            elseif i > a1 && i > a2 
                ke = -k2/1000;  %[mm/min]                               % Soil dissolution rate. 
[mm/min]. 
            else  
                ke = 0; 
            end 
     
     
    % SHEAR STRESS  
     
            if i > a1 && i < a2 
                kss = (-k1/tincrease)*((t_d(i)-(tremoval*60))/60)/1000; % Shear Stress rate at 
increase period. [mm/min]. 
                %kss = 0;  %  [mm/min]   
            elseif i > a1 && i > a2 
                kss = -k1/1000; % [mm/min]                              % Shear Stress rate. 
[mm/min]. 
            else  
                kss = 0; 
            end 
         
                      
 %% 3 - INTEGRATION OF DIFFERENT RATES 
   
            removal(i+1,2)   = (phiSS*kss + phiEA*ke) * delta_t/60;     % Net removal in the loop.   
[mm]. 
            thickness(i+1,2) = cum_thickness(i+1,1) + removal(i+1,2) ;  % Net thickness in the loop. 
[mm]. 
         
         
            removal(i+1,3) = nz1;                                       % Number of layers remaining. 
            c = find (removal(:,3) == nz1);  
            %cum_shear_removal = zeros(c,1); 
            cum_shear_removal = removal(c,2); 
            removal(i+1,4) = sum(cum_shear_removal); 
            clear cum_shear_removal  
        
         
        % Output matrixes 
            state_matrix (i+1,2) = relative_cum_water_mass (i+1,1);     % Saturation. [%] 
            state_matrix (i+1,3) = removal(i+1,2);                      % Net removal in the loop. 
[mm]. 
            state_matrix (i+1,4) = phiSS;                               % Frequency function.  
  
            eggyolk_remaining(i+1,2) = nz1 * eggyolk_mass_layer * tile_area;    % Soil remaining. 
[g]. 
        
            total_mass(i+1,2) = nz1 * eggyolk_mass_layer * tile_area + water_mass(i+1);  % Total 
mass. [g].  
             
        
        % Removal of theoretical layers 
            d = find (cum_thickness(i+1,:) <= abs(removal(i+1,4))); 
         
            if size(d,1) == 0 
                nz1 = nz1; 
            else 
                d(2,:)= z_s(i+1,d); 
                e = find(d(2,:) > 0); 
                nz1 = nz1 - size(e,2);             
            end 
            clear d 
  
        %end        
         
    %end    
     end         
  
     
                % Evolution of the fitting. 
        if counter == ceil(loops/10) 
            disp('10% COMPLETE') 
        elseif counter == ceil(2*loops/10) 
            disp('20% COMPLETE') 
        elseif counter == ceil(3*loops/10) 
            disp('30% COMPLETE') 
        elseif counter == ceil(4*loops/10) 
            disp('40% COMPLETE') 
        elseif counter == ceil(5*loops/10) 
            disp('50% COMPLETE') 
        elseif counter == ceil(6*loops/10) 
            disp('60% COMPLETE') 
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        elseif counter == ceil(7*loops/10) 
            disp('70% COMPLETE') 
        elseif counter == ceil(8*loops/10) 
            disp('80% COMPLETE') 
        elseif counter == ceil(9*loops/10) 
            disp('90% COMPLETE') 
        end 
          
        counter = counter + 1; 
     
end 
time = toc; 
  
% g. moisture / g. dry solid.  
moisture_content      = zeros(size(total_mass,1),size(total_mass,2)); 
moisture_content(:,1) = total_mass(:,1);                                                    % Time. 
[min]. 
moisture_content(:,2) = (total_mass(:,2)-eggyolk_remaining(:,2))./eggyolk_remaining(1,2);   % 
Moisture content. [g.water/g.soil]. 
  
% Cleaning percentage. 
cleaning_percentage         = zeros(size(eggyolk_remaining,1),size(eggyolk_remaining,2)); 
cleaning_percentage (:,1)   = eggyolk_remaining(:,1);                                       % Time. 
[min].     
cleaning_percentage (:,2)   = ((eggyolk_remaining(1,2)-
eggyolk_remaining(:,2))./eggyolk_remaining(1,2))*100;  % Cleaning percentage. [%]. 
  
  
  
%% GOODNESS-OF-FIT SIMULATION 
     
    thickness (:,1) = thickness(:,1)/60;     % Time into minutes. [min]. 
    B  = thickness;                          % Simulation matrix. [s mm]. 
%   E1(:,1)= E1(:,1) * 60;      % Time in seconds (s).  
    
    % Time limitation. Fitting only when thickness is >0 
    s1 = find(E1(:,2) < 0); 
    s2 = E1(s1,1); 
    s3 = find(B(:,1) > s2(1)); 
     
    if length (s3) > 0 
    B(s3(1):end,:) = []; 
    E1((s1+1):end,:) = []; 
    end 
     
     
    % Create more values for original experimental data matrix. Increase R2 
    % sensitivity. 
    % Interpolation 1     
    t_new = linspace(E1(1,1),E1(end,1),2*size(E1,1)-1); 
    thickness_new = interp1(E1(:,1), E1(:,2), t_new);  
    E2(:,1) = t_new';                                       % Time. [min]. 
    E2(:,2) = thickness_new';                               % Thickness. [mm].     
    
  
    % Interpolation 2     
    t_new2 = linspace(E2(1,1),E2(end,1),2*size(E2,1)-1); 
    thickness_new2 = interp1(E2(:,1), E2(:,2), t_new2);  
    E3(:,1) = t_new2';                                      % Time. [min]. 
    E3(:,2) = thickness_new2';                              % Thickness. [mm]. 
     
     
    % Interpolation 3     
    t_new3 = linspace(E3(1,1),E3(end,1),2*size(E3,1)-1); 
    thickness_new3 = interp1(E3(:,1), E3(:,2), t_new3);  
    E4(:,1) = t_new3';                                      % Time. [min]. 
    E4(:,2) = thickness_new3';                              % Thickness. [mm]. 
     
     
     
  % Find closest value and create new matrix.      
    B1 = zeros (size(E4,1),2);    % New simulation matrix. [s mm]. 
    Btmp = zeros (size(B,1),1);   % Temporary matrix.     
     
     
    for j = 1:size(E4,1)     
        val = E4(j,1);             % Value to find 
        Btmp = abs(B(:,1)-val);    % Temporaty matrix.  
        [idx idx] = min(Btmp);     % Index of closest value. 
     
        B1(j,1) = B(idx,1);        % Time. [s]. 
        B1(j,2) = B(idx,2);        % Thickness. [mm]. 
    end 
         
       
    % R-squared 
    yresid  = E4(:,2) - B1(:,2); 
    SSresid = sum(yresid.^2); 
    SStotal = (length(E4(:,2))-1) * var(E4(:,2)); 
    rsq = 1 - SSresid/SStotal;     % Coefficient of determination.  
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%% PLOTS 
close all 
  
  
    %PLOT 1 
    %Swelling over time 
figure(1) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
plot(thickness(:,1),thickness(:,2),'.','markersize',8,'Color',[0 0 0]) 
hold on 
plot(data1(:,1),data1(:,2),'.','markersize',8,'Color',[0 0 0]) 
% title('THICKNESS OVER TIME','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
%     'FontAngle','normal') 
xlabel('Time (min)','FontWeight','bold','FontSize',24,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('Thickness (mm)','FontWeight','bold','FontSize',24,'FontName','Calibri',... 
    'FontAngle','normal') 
% ylim([0 0.5]) 
% xlim([0 35]) 
% h=legend('Model prediction','Experimental data', 'Location', 'NorthEast'); 
%     set(h,'FontSize',22,'FontName','Calibri','FontAngle','normal') 
hold on 
  
  
    %PLOT 2 
    %Total mass over time 
total_mass(:,1)=total_mass(:,1)/60;      % Time into minutes.  
  
figure(2) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
plot(total_mass(:,1),total_mass(:,2),'.','markersize',10,'Color',[0 0 0]) 
hold on 
% plot(Aexpdata1(:,1),Aexpdata1(:,2),'.r','markersize',8) 
% hold on 
%xlim([0 10000]) 
%ylim([0 1]) 
% title('TOTAL MASS OVER TIME','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
%     'FontAngle','normal') 
xlabel('Time (min)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('Total mass (g)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
% ylim([0 0.8]) 
% h=legend('Model prediction','Experimental data', 'Northeast'); 
%     set(h,'FontSize',22,'FontName','Calibri','FontAngle','normal') 
hold on 
  
  
    %PLOT 3 
    %Egg yolk remaining over time 
eggyolk_remaining(:,1) = eggyolk_remaining(:,1)/60;     % Time into minutes. 
  
figure(3) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
plot(eggyolk_remaining(:,1),eggyolk_remaining(:,2),'.','markersize',10,'Color',[0 0 0]) 
hold on 
% plot(Aexpdata1(:,1),Aexpdata1(:,2),'.r','markersize',8) 
% hold on 
%xlim([0 10000]) 
%ylim([0 1]) 
% title('EGG YOLK REMAINING OVER TIME','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
%     'FontAngle','normal') 
xlabel('Time (min)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('Egg Yolk remaining (g)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
% ylim([0 0.8]) 
% h=legend('Model prediction','Experimental data', 'Northeast'); 
%     set(h,'FontSize',22,'FontName','Calibri','FontAngle','normal') 
hold on 
  
  
    %PLOT 4 
    %Cleaning percentage 
cleaning_percentage(:,1) = cleaning_percentage(:,1)/60;     % Time into minutes. 
  
figure(4) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
plot(cleaning_percentage(:,1),cleaning_percentage(:,2),'.','markersize',10,'Color',[0 0 0]) 
hold on 
% plot(Aexpdata1(:,1),Aexpdata1(:,2),'.r','markersize',8) 
% hold on 
%xlim([0 10000]) 



APPENDIX(A.4.(SWELLING/REMOVAL(MODEL(FOR(sFDG.(MATLAB(ROUTINE.( A.40(

%ylim([0 1]) 
% title('CLEANING PERCENTAGE','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
%     'FontAngle','normal') 
xlabel('Time (min)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('Cleaning percentage (%)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
% ylim([0 0.8]) 
% h=legend('Model prediction','Experimental data', 'Northeast'); 
%     set(h,'FontSize',22,'FontName','Calibri','FontAngle','normal') 
hold on 
  
  
  
    %PLOT 5 
    %Saturation over time.  
state_matrix(:,1) = state_matrix(:,1)/60;      %Time into minutes. 
  
figure(6) 
axes('FontSize',24,'FontName','Calibri') 
set(gcf,'Color',[1,1,1]) 
plot(state_matrix(:,1),state_matrix(:,2),'.','markersize',10,'Color',[0 0 0]) 
hold on 
% xlim([0 6000]) 
%ylim([0 1]) 
%set(gca,'XDir','reverse'); 
% title('%SATURATION OVER TIME','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
%     'FontAngle','normal') 
xlabel('Time (min)','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
ylabel('% Sample saturation','FontWeight','bold','FontSize',20,'FontName','Calibri',... 
    'FontAngle','normal') 
hold on 
  
  
%% CLEAN OUTPUT 
  
clearvars -except data1 time chi rsq cleaning_percentage eggyolk_mass eggyolk_remaining h0 ke kss 
lambda_s m_s moisture_content nz nz1 omega removal state_matrix thickness total_mass z_s 
  
display ('SIMULATION FINISHED') 
time 
 
(



!
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A.5.$Appendix$

This( appendix( focuses( on( the( description( of( a( procedure( to( evaluate( cleaning( via( Black( and(

White((B&W)(imaging.(The(method(is(suitable(for(soils(showing(adhesive(failure(when(cleaned,(

that( is,( the(detachment(of(soil(patches(of(different(sizes( from( the(substrate.(This(behaviour( is(

typically(seen,(for(example,(in(tomato(paste(soils((carbohydrate(based).((

(

To(setUup(an(experiment,(the(operator(must(ensure(enough(contrast(between(the(substrate(and(

the(soil(used((i.e.(red(soil(vs.(transparent/white(substrate).(Images(of(the(soil(sample(analysed(

must(be(taken(at(different(times,(at(the(most(uniform(lighting(conditions(possible(and(at(a(fixed(

distance.(For(its(use(in(ADWs(it(is(possible(to(take(pictures(while(the(wash(cycle(is(running,(as(

done( for( the(colour(change( IA(shown( in(Chapter(7,( section(7.2( or(outside( the(appliance.(The(

latest(setUup(offers(less(noise(as(the(camera(is(not(located(in(a(water(environment(but(requires(

the(interruption(of(the(cleaning(sequence(for(pictures(to(be(taken.(The(placement(of(a(camera(

inside(the(ADW(allows(collecting(more(data(but(the(quality(of(the(images(is(not(as(good.((

(

Figure$A5.1(shows(the(images(taken(from(a(test(run(to(illustrate(the(technique(presented.(40g(

of( ketchup(were( sprayed(across( the( surface( of( a( circular( and( transparent(Perspex( substrate.(

Samples(were( dried( for( 24h( in( an( oven( at( 60ºC(before( placing( them( into( a(Miele(G1222(SC(

ADW(at( the( left( side( of( the( bottom(basket.( A( ‘Quick(Wash’( programme(was( set( and(pictures(

were(taken(outside(the(ADW(at(intervals(of(1(minute(for(the(first(10(minutes(of(the(wash(cycle.(

Colour(images(were(transformed(into(B&W(images(by(using(the(Matlab(routine(included(at(the(

end(of(the(appendix.(To(calculate(the(removal(achieved(at(any(time,(a(comparison(between(the(

initial( number( of( black( pixels,( (representing( the( area( covered( by( the( soil( at( time( 0)( and( the(

number(of(pixels(at(time(‘t’((representing(the(area(covered(by(the(soil(at( time(‘t’)( is(necessary.(

Following(Eq.1(it(is(possible(to(estimate(the(SRI(at(any(time.(

(

!"#$ % = $ 1 − )*+,-$./01*2$3=3
)*+,-$./01*2$3=0

· 100( ( ( ( (1)(

(

(
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0(min( 2(min( 4(min( 6(min( 8(min(

( ( ( ( (

( ( ( ( (

Figure$A5.1.$Example(of(the(cleaning(pattern(shown(by(a(tomato(ketchup(deposit(over(a(Perspex(

substrate(and(the(transformation(of(the(pictures(to(B&W(images.(

(

In$Figure$A5.2(SRI(values(calculated(from(the(example(shown(below(are(plotted.(((

(
Figure$A5.2.$Cleaning(profile(over(time(for(the(example(previously(shown.(

(

As(observed,(the(technique(offers(a(simple(and(straightforward(system(of(measuring(cleaning(of(

soils(that(show(an(adhesive(failure.((

(

(

(

(

(

(

(

(
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MATLAB(routine(

%% Script to analyse cleaning via B&W images 
 % Pictures should be preloaded to MATLAB workspace 

% Note: Pictures should be numbered consecutively (i.e. NAME_01; NAME_02; 
NAME_03...) 

  
clc 
close all 
  
  
%% 1.- Load images & create cropped area. 
n = input ('Introduce number of images: '); 
 
  
    % Load first image & crop.  
tic 
k=1; 
jpgFilename = strcat('NAME_', num2str(k),'.JPG'); 
A = imread(jpgFilename); 
  
[I2 RECT] = imcrop(A);  
close all 
   
imageData = zeros(size(I2,1),size(I2,2),size(I2,3),n,'uint8');  %Pre-allocation. 
imageData(:,:,:,1) = I2; 
   
toc 
  
 % Load all images & crop. 
tic 
if n > 1 
   for k = 2:n 
   jpgFilename = strcat('NAME_', num2str(k),'.JPG'); 
   C           = imread(jpgFilename); 
   [D]         = imcrop(C,RECT); 
   imageData (:,:,:,k) = D; 
   end 
end 
toc 
  
%% 2.- Convert RGB to B&W and Calculate cleaning percentage 
 
threshold = graythresh(A); 
C = im2bw(A,threshold);    C --> Black % White image 
figure, imshow(C)               
  
D = imresize(C, [1800 1800]);   E --> Resized image 
  
b = find(D==0); 
total = size(b); 
total = total(1,1); 
 
 
i=1; 
k=1;  
for k = 1:n 
    F = imageData(:,:,:,k); 
 

G = im2bw(F); 
H = imresize(G, [1800 1800]); 
c = find(H==0); 
total1 = size(c); 
total1 = total1(1,1); 

  
cleaning(i) = ((total-total1)/total)*100; % SRI results 

 
i=i+1; 

end 
 
disp('DONT FORGET TO SAVE THE RESULTS') 



!


