A quantum behaved particle swarm approach to multi-objective optimization

Al Baity, Heyam (2015). A quantum behaved particle swarm approach to multi-objective optimization. University of Birmingham. Ph.D.

PDF - Accepted Version

Download (2MB)


Many real-world optimization problems have multiple objectives that have to be optimized simultaneously. Although a great deal of effort has been devoted to solve multi-objective optimization problems, the problem is still open and the related issues still attract significant research efforts. Quantum-behaved Particle Swarm Optimization (QPSO) is a recently proposed population based metaheuristic that relies on quantum mechanics principles. Since its inception, much effort has been devoted to develop improved versions of QPSO designed for single objective optimization. However, many of its advantages are not yet available for multi-objective optimization. In this thesis, we develop a new framework for multi-objective problems using QPSO. The contribution of the work is threefold. First a hybrid leader selection method has been developed to compute the attractor of a given particle. Second, an archiving strategy has been proposed to control the growth of the archive size. Third, the developed framework has been further extended to handle constrained optimization problems. A comprehensive investigation of the developed framework has been carried out under different selection, archiving and constraint handling strategies. The developed framework is found to be a competitive technique to tackle this type of problems when compared against the state-of-the-art methods in multi-objective optimization.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Computer Science
Funders: None/not applicable
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
URI: http://etheses.bham.ac.uk/id/eprint/5857


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year