Investigation into Turbocharger crazing defect

Phull, Harpinder Singh (2015). Investigation into Turbocharger crazing defect. University of Birmingham. Eng.D.

Full text not available from this repository.


A programme of research was undertaken to identify the mechanisms of formation of voids and defects in aluminium alloy C354 and C355 castings. The following aspects of the material processing were studied as independent and linked effects: casting technique and associated variables, hot isostatic pressing cycle parameters, and heat treatment cycle. Microstructure related driving forces for defect formation were quantified using differential scanning calorimetry and quantitative metallography and surface effects investigated using x-ray photoelectron spectroscopy. It was shown that by controlling key variables within casting, the component can become less sensitive to subsequent defect evolution from further thermal processing. Optimised parameters were defined and the mechanism of defect formation elucidated. A Non Destructive Testing (NDT) method for the detection of defects within C354 components was developed.

Type of Work: Thesis (Doctorates > Eng.D.)
Award Type: Doctorates > Eng.D.
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Metallurgy and Materials
Funders: Engineering and Physical Sciences Research Council
Subjects: T Technology > T Technology (General)
T Technology > TN Mining engineering. Metallurgy


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year