ACCURACY OF TESTS FOR PREDICTING SPONTANEOUS PRETERM BIRTH: SYSTEMATIC REVIEWS OF DIAGNOSTIC RESEARCH

by

HONEST HONEST

A thesis submitted to The University of Birmingham for the degree of DOCTOR OF MEDICINE

> Department of Obstetrics & Gynaecology Faculty of Medicine & Dentistry University of Birmingham June 2009

UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.

Abstract

Spontaneous preterm birth complicates about 3% of pregnancies before 34 weeks' gestation and 7 - 12% before 37 weeks' gestation. It is an important issue to public health worldwide. The aim of this thesis was to identify test(s) which would predict spontaneous preterm birth in early pregnancy when women are asymptomatic and in later pregnancy when they present with symptoms of threatened preterm labour, using systematic reviews and meta-analysis. If women at risk can be identified whether early in pregnancy or when they present with threatened preterm labour, interventions can be deployed to prevent or delay birth and to improve subsequent neonatal mortality/morbidity. Initially 40,243 title and abstract citations were scrutinised, resulting in shortlist of 1,650 full articles in which 319 were included in the systematic reviews, encompassing 22 tests. The quality of studies and accuracy of tests measured with likelihood ratio (LR) was generally poor. There were only a handful of studies for most of the tests. Few tests reached LR+ point estimates >5. In asymptomatic antenatal women these were ultrasonographic cervical funnelling and length measurement, cervicovaginal prolactin and cervico-vaginal fetal fibronectin screening for predicting spontaneous preterm birth before 34 weeks' gestation. In this group, tests with LR-point estimates approaching <0.2 were detection of uterine contraction (by mammary stimulating test) and amniotic fluid CRP measurement. In symptomatic women with threatened preterm labour tests with LR+ point estimate >5 were absence of fetal breathing movements, cervical length measurement, amniotic fluid IL6 and IL8, serum CRP and cervico-vaginal hcg for predicting birth within 2-7 days of testing. In this group tests with LR- point estimate <0.2 were measurement of cervico-vaginal hcg, cervical length measurement, absence of fetal breathing movement, amniotic fluid IL6 and IL8, and serum CRP for predicting birth within 2 - 7 days of testing. In conclusion, no exceptional, but many promising tests for predicting spontaneous preterm birth was identified to aid the development of evidence based practice.

Dedication

I dedicate this thesis to Catherine and my family for their encouragement and support.

Acknowledgements

In undertaking this thesis, which is also a part of Health Technology Assessment (HTA) UK project no.: 05-03-01, a panel of local and national experts of the field was consulted.

Expert list (England, UK)

Zarko Alfirevic, Consultant Obstetrician, Liverpool Women's Hospital Steve Walkinshaw, Consultant Obstetrician, Liverpool Women's Hospital Steve Thornton, Consultant Obstetrician, Coventry Hospital Ronnie Lamont, Consultant Obstetrician, Northwick Park

Local experts (Birmingham, England, UK)

Mark Kilby, Consultant Obstetrician, Birmingham Women's Hospital Martin Whittle, Consultant Obstetrician, Birmingham Women's Hospital Andy Ewer, Consultant Neonatologist, Birmingham Women's Hospital

I am grateful for the assistance of enthusiastic medical students and colleagues in study selection and data extractions.

Assistance with study selection and data extraction

Sarah Chapman, External Reviewer, Oxford Shelley Adams, 5th MB, Birmingham University Lucy Higgins, 5th MB, Birmingham University

Caroline Fox, Senior House Officer, Birmingham University Lucas Bachmann, Senior research fellow, University of Zurich

Arravanthan Coomarasamy, Specialist Registrar, Birmingham Women's Hospital

Pedro Cabeza, Specialist Registrar, Birmingham Women's Hospital

Christina Schlegel, research fellow, University of Zurich

I am also grateful for principal investigators for contributing their data, without which some of the systematic reviews would not be as up to date.

Investigators who provided additional data and comments on previously published reviews

Roberto Eduardo Bittar Francois Mallard Wendy Hansen Ida Vogel Peter Holbrook Choi June Seek Shai Elizur Balu Rukmini Nestor Lopez Suzanne Farrell Lucilla Poston Francois Goffinet Melanie Plaut Marta Radnai David Savitz Andrew Shennan Melanie Ebber nee Essen Mark Klebanoff Samarina Musaad Waranuch Pithipat Rosemarie McMillon

Arun Mittal Luis Sanchez-Ramos

Last but not least I am grateful for my friends and supervisors for their encouragement and support

Supervisors

Khalid S. Khan, Professor of Clinical Epidemiology in Obstetrics & Gynaecology, University of Birmingham and Birmingham Women's Hospital

Chris J Hyde, Senior Lecturer in Public Health, ARIF and HTA West Midlands Group, Dept. of Public Health and Epidemiology, University of Birmingham

Conflict of interest

None declared

List of Abbreviations/Glossary

95% CI 95% confidence intervals

CDSR Cochrane Database of Systematic Reviews
CENTRAL Cochrane Central Register of Controlled Trials

CI confidence interval

CRD Centre for Reviews and Dissemination
DARE Database of Abstracts of Reviews of Effect

dOR Diagnostic odds ratio (LR+/LR-)

In dOR Natural logarithm of diagnostic odds ratio

HTA Health Technology Assessment

HSROC hierarchical summary receiver operating characteristic

IPD Individual patient data (meta-analysis)

LR likelihood ratio (LR+, LR for positive test result; LR-, LR for negative test result)

MeSH Medical Subject Heading MoM Multiple of median

NRR National Research Register
PROM Pre-labour rupture of membrane

PPROM Premature pre-labour rupture of membrane

QUADAS Quality Assessment of Diagnostic Accuracy Studies

RCT randomised controlled trial RDS Respiratory distress syndrome

RR relative risk

ROC receiver operating characteristics

SD standard deviation SE standard error

SIGLE Systems for Information in Grey Literature in Europe

sLR Summary likelihood ratio: sLR+ summary of positive test result, sLR- of negative test result

Table of contents

Chapter 1 Thesis summary	
Background	21
Objective	21
Methods	21
Results	22
Conclusions	23
Chapter 2 Introduction	25
Definition of preterm birth	25
Aetiology of preterm birth	25
Consequences of preterm birth	25
Burden of disease due to preterm birth	26
Potential clinical applications of output from this thesis	26
Delineation of the problem	27
Aim	31
Objectives	31
Chapter 3 Methods	32
Protocol development	32
Research question	32
Study identification and selection	33
Study quality assessment and data extraction	37
Data synthesis	38
Chapter 4 Results	41
Literature selection	41
Previous history of spontaneous preterm birth	43
Study characteristics and quality	43
Accuracy of previous history of spontaneous preterm birth in asymptomatic women.	43
Digital examination	47
Study characteristics and quality	47
Accuracy of digital examination in asymptomatic women	47
Accuracy of digital examination in symptomatic women	48
Cervico-vaginal fetal fibronectin (fFN)	51
Study characteristics and quality	51
Accuracy of fFN in asymptomatic women	52
Accuracy of fFN in symptomatic women	52
Cervico-vaginal prolactin	62
Study characteristics and quality	
Accuracy of cervico-vaginal prolactin in asymptomatic women	
Accuracy of cervico-vaginal prolactin in symptomatic women	65
Cervico-vaginal phIGFBP-1	67
Study characteristics and quality	
Accuracy of phIGFBP-1 in asymptomatic women	68
Accuracy of phIGFBP-1 in symptomatic women	
Serum α-fetoprotein (MSAFP)	
Study characteristics and quality	
Accuracy of maternal serum α-fetoprotein (MSAFP) in asymptomatic women	74
Serum relaxin	79

Study characteristics and quality	
Accuracy of maternal serum relaxin in asymptomatic women	
Accuracy of maternal serum relaxin in symptomatic women	
Serum corticotrophin releasing hormone (CRH)	83
Study characteristics and quality	83
Accuracy of CRH in asymptomatic women	
Accuracy of CRH in symptomatic women	85
β-human chorionic gonadotrophin (β-hcg)	86
Study characteristics and quality	86
Accuracy of β-hcg in asymptomatic women	87
Accuracy of β-hcg in symptomatic women	88
Estriol	
Study characteristics and quality	92
Accuracy of estriol in asymptomatic women	95
Accuracy of estriol in symptomatic women	95
C-reactive protein (CRP)	97
Study characteristics and quality	97
Accuracy of CRP in asymptomatic women	98
Accuracy of CRP in symptomatic women	98
Interleukin-6 (IL6)	104
Study characteristics and quality	104
Accuracy of IL6 in asymptomatic women	
Accuracy of IL6 in symptomatic women	107
Interleukin-8 (IL8)	113
Study characteristics and quality	113
Accuracy of IL8 in asymptomatic women	
Accuracy of IL8 in symptomatic women	114
Matrix metalloproteases-9 (MMP-9)	
Study characteristics and quality	
Accuracy of MMP-9 in symptomatic women	
Periodontal assessment	
Study characteristics and quality	
Accuracy of periodontal assessment in asymptomatic women	
Asymptomatic bacteriuria assessment	
Study characteristics and quality	
Accuracy of asymptomatic bacteriuria in asymptomatic women	
Bacterial vaginosis (BV)	
Study characteristics and quality	
Accuracy of BV in asymptomatic women	
Accuracy of BV in symptomatic women	
Mammary stimulation test	138
Study characteristics and quality	
Accuracy of mammary stimulation test in asymptomatic women	
Uterine activity monitoring	
Study characteristics and quality	
Accuracy of uterine activity monitoring in asymptomatic women	
Accuracy of uterine activity monitoring in symptomatic women	
Rheobase	
Study characteristics and quality	
Accuracy of rheobase measurement in symptomatic women	144

Absence of fetal breathing movements on ultrasound	146
Study characteristics and quality	146
Accuracy of absence of fetal breathing movement in symptomatic women	146
Cervical ultrasound assessment	150
Study characteristics and quality	150
Accuracy of cervical length and funnelling in asymptomatic women	153
Accuracy of cervical length and funnelling in symptomatic women	154
Chapter 5 Overview and summary of test accuracy results	161
Chapter 6 Discussion	174
Methodological quality of the reviews undertaken for the thesis	174
Limitations arising from problems with primary data	174
Limitations arising from review methods	177
Limitations arising from things not done (omissions)	179
Interpretation of the findings	179
Recommendations for practice	180
Recommendations for research	184
Chapter 7 Conclusions	184
Appendices	189
Appendix I - List of tests	189
Appendix II - Search strategies	190
Appendix III - Data extraction pro-forma	203
Appendix IV - Characteristics and results of individual included test accuracy studies	204
Appendix V – Guide to summary ROC & funnel plots interpretations	286
References	290

List of Figures

Figure 1 Target populations and outcomes in the course of pregnancy for diagnostic research on spontaneous preterm birth
Figure 2 Flow chart of procedures for reviews of test accuracy studies40
Figure 3 Identification of test accuracy literatures for systematic reviews in this thesis42
Figure 4 Methodological quality of studies of previous history of spontaneous preterm birth in predicting subsequent spontaneous preterm birth included in the systematic review. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 5 Forest plots of likelihood ratios (LR's) of the accuracy of previous history of spontaneous preterm birth in asymptomatic women for predicting spontaneous preterm birth stratified according to outcome gestation
Figure 6 Plot of sensitivity against specificity including summary values of the accuracy of previous history of spontaneous preterm birth in asymptomatic women for predicting spontaneous preterm birth before 37 weeks' gestation
Figure 7 Funnel plot analysis of accuracy studies evaluating previous history of spontaneous preterm birth in asymptomatic women for predicting spontaneous preterm birth before 37 weeks' gestation
Figure 8 Methodological quality of studies included in the systematic review of accuracy of digital examination in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 9 Forest plots of likelihood ratios (LR's) of digital examination in predicting spontaneous preterm birth as a predictor of spontaneous preterm birth
Figure 10 Methodological quality of studies included in the systematic review of accuracy of bedside test for cervico-vaginal fetal fibronectin in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 11 Forest plots of likelihood ratios (LR's) for cervico-vaginal fetal fibronectin bedside testing on asymptomatic antenatal women as a predictor of spontaneous preterm birth before 34 weeks' gestation
Figure 12 Forest plots of likelihood ratios (LR's) for cervico-vaginal fetal fibronectin bedside testing on asymptomatic antenatal women as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 13 Plot of sensitivity against specificity including summary values of the accuracy of cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 34 weeks' gestation
Figure 14 Plot of sensitivity against specificity including summary values of the accuracy of cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 37 weeks' gestation.

Figure 15 Forest plots of likelihood ratios (LR's) for cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth within 7-10 days of testing57
Figure 16 Forest plots of likelihood ratios (LR's) for cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 34 weeks' gestation
Figure 17 Forest plots of likelihood ratios (LR's) for cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 18 Plot of sensitivity against specificity including summary values of the accuracy of cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth within 7-10 days of testing
Figure 19 Plot of sensitivity against specificity including summary values of the accuracy of cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 34 weeks' gestation
Figure 20 Plot of sensitivity against specificity including summary values of the accuracy of cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 21 Funnel plot analysis of accuracy studies evaluating the accuracy of cervico-vaginal fetal fibronectin in symptomatic women in predicting spontaneous preterm birth within 7-10 days of testing
Figure 22 Funnel plot analysis of accuracy studies evaluating the accuracy of cervico-vaginal fetal fibronectin in asymptomatic women in predicting spontaneous preterm birth before 37 weeks' gestation
Figure 23 Methodological quality of studies included in the systematic review of accuracy of cervico-vaginal prolactin in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 24 Forest plots of likelihood ratios (LR's) of rapid test for cervico-vaginal prolactin as a predictor of spontaneous preterm birth according to population and outcome gestations 66
Figure 25 Plot of sensitivity against specificity including summary values of the accuracy of cervico-vaginal prolactin testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 26 Methodological quality of studies included in the systematic review of accuracy of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 27 Forest plots of likelihood ratios (LR's) of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion as a predictor of spontaneous preterm birth within 48 hours of testing

Figure 28 Forest plots of likelihood ratios (LR's) of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion as a predictor of spontaneous preterm birth within 7 days of testing
Figure 29 Forest plots of likelihood ratios (LR's) of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion as a predictor of spontaneous preterm birth before 34 weeks' gestation
Figure 30 Forest plots of likelihood ratios (LR's) of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 31 Plot of sensitivity against specificity including summary values of the accuracy of phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 32 Methodological quality of studies included in the systematic review of accuracy of maternal serum α -fetoprotein in predicting spontaneous preterm birth among asymptomatic antenatal women. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.
Figure 33 Forest plots of likelihood ratios (LR's) of maternal serum α -fetoprotein (MSAFP) in asymptomatic women (threshold of 2.0 MoM) as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 34 Plot of sensitivity against specificity including summary values of the accuracy of maternal serum α -fetoprotein (MSAFP) in asymptomatic women (threshold of 2.0 MoM) as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 35 Forest plots of likelihood ratios (LR's) of maternal serum α -fetoprotein (MSAFP) in asymptomatic women (threshold of 2.5 MoM) as a predictor of spontaneous preterm birth before 34 and 37 weeks' gestation
Figure 36 Plot of sensitivity against specificity including summary values of the accuracy of maternal serum α -fetoprotein (MSAFP) in asymptomatic women (threshold of 2.5 MoM) as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 37 Methodological quality of studies included in the systematic review of accuracy of maternal serum relaxin in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 38 Forest plots of likelihood ratios (LR's) of maternal serum relaxin measurement in predicting spontaneous preterm birth stratified according to population and outcomes82
Figure 39 Methodological quality of studies included in the systematic review of accuracy of CRH in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 40 Forest plots of likelihood ratios (LR's) of CRH in predicting spontaneous preterm birth within 7-10 days of testing and 37 weeks' gestation in symptomatic women and before 34 and 37 weeks' gestation strain asymptomatic women
Figure 41 Methodological quality of studies included in the systematic review of accuracy of human chorionic gonadotrophin in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour. Data presented as 100% stacked bars. Figures in the stacks represent number of studies

Figure 42 Forest plots of likelihood ratios (LR's) of serum β-human chorionic gonadotrophin (β-hcg) testing in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation90
Figure 43 Forest plots of likelihood ratios (LR's) of cervico-vaginal β-human chorionic gonadotrophin (β-hcg) testing in symptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation90
Figure 44 Plot of sensitivity against specificity including summary values of serum β-human chorionic gonadotrophin (β-hcg) testing in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 45 Funnel plot analysis of accuracy studies evaluating the accuracy of serum β-human chorionic gonadotrophin (β-hcg) testing in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 46 Methodological quality of studies included in the systematic review of accuracy of estriol in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 47 Forest plots of likelihood ratios (LR's) of salivary and serum estriol in predicting spontaneous preterm birth before 37 weeks' gestation for asymptomatic and symptomatic women
Figure 48 Methodological quality of studies of C-reactive protein in predicting spontaneous preterm birth included in the systematic review. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 49 Forest plots of likelihood ratios (LR's) of the accuracy of mid-trimester maternal serum CRP level measurement in asymptomatic women for predicting spontaneous preterm birth before 37 weeks' gestation
Figure 50 Forest plots of likelihood ratios (LR's) of the accuracy of maternal serum CRP level measurement in symptomatic women with threatened labour for predicting spontaneous preterm birth within 7 days of testing
Figure 51 Forest plots of likelihood ratios (LR's) for maternal serum CRP level measurement in symptomatic women with threatened labour for predicting spontaneous preterm birth before 37 weeks' gestation
Figure 52 Plot of sensitivity against specificity including summary values of the maternal serum measurement of C-reactive protein (CRP) studies in symptomatic women with threatened preterm labour for predicting spontaneous preterm birth within 7 days of testing
Figure 53 Methodological quality of studies included in the systematic review of accuracy of interleukin-6 (IL6) in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 54 Forest plots of likelihood ratios (LR's) of amniotic fluid interleukin-6 (IL6) measurement as a predictor of spontaneous preterm birth before 34 and 37 weeks' gestation in asymptomatic women
Figure 55 Forest plots of likelihood ratios (LR's) of IL6 measurement from amniotic fluid and cervical specimen as a predictor of spontaneous preterm birth within 7 - 10 days of testing in symptomatic women

Figure 56 Forest plots of likelihood ratios (LR's) of IL6 measurement from amniotic fluid, cervical swab and serum specimen as a predictor of spontaneous preterm birth before 34 and 37 weeks' gestation
Figure 57 Plot of sensitivity against specificity including summary values of the accuracy of amniotic fluid and cervico-vaginal interleukin – 6 (IL6) studies in symptomatic women with threatened preterm labour in predicting spontaneous preterm birth within 7 days of testing 112
Figure 58 Methodological quality of studies included in the systematic review of accuracy of test for interleukin-8 (IL8) in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 59 Forest plots of likelihood ratios (LR's) of interleukin-8 (IL8) measurement from amniotic fluid and cervical specimen as a predictor of spontaneous preterm birth stratified according to population and outcome
Figure 60 Methodological quality of studies included in the systematic review of accuracy of matrix metalloproteases-9 (MMP-9) in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 61 Forest plots of likelihood ratios (LR's) of MMP-9 in predicting spontaneous preterm birth before 37 weeks' gestation in symptomatic women
Figure 62 Methodological quality of studies included in the systematic review of accuracy of periodontal health status in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 63 Forest plots of likelihood ratios (LR's) of periodontal health status in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic women
Figure 64 Plot of sensitivity against specificity including summary values of the accuracy of periodontal health status in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic women
Figure 65 Funnel plot analysis of accuracy studies evaluating periodontal health status in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic women. 125
Figure 66 Methodological quality of studies included in the systematic review of accuracy of asymptomatic bacteriuria assessment in predicting spontaneous preterm birth among asymptomatic antenatal women. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 67 Forest plots of likelihood ratios (LR's) of asymptomatic bacteriuria assessment in asymptomatic women as a predictor of spontaneous preterm birth before 37 weeks' gestation stratified according to the type of asymptomatic bacteriuria
Figure 68 Plot of sensitivity against specificity including summary values of the accuracy of asymptomatic bacteriuria assessment in asymptomatic women as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 69 Funnel plot analysis of the accuracy of asymptomatic bacteriuria assessment in asymptomatic women as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 70 Methodological quality of studies included in the systematic review of accuracy of bacterial vaginosis (BV) testing in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women who presented with threatened preterm labour. Data presented as 100% stacked bars. Figures in the stacks represent number of studies 134

Figure 71 Forest plots of likelihood ratios (LR's) of a single 2 nd trimester bacterial vaginosis (BV) testing using Nugent's criteria in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 72 Forest plots of likelihood ratios (LR's) of serial bacterial vaginosis (BV) testing using Nugent's criteria in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 73 Plot of sensitivity against specificity including summary values of the accuracy of a single 2 nd trimester bacterial vaginosis (BV) testing using Nugent's criteria in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation136
Figure 74 Funnel plot analysis of accuracy studies evaluating the accuracy of a single 2 nd trimester bacterial vaginosis (BV) testing using Nugent's criteria in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 75 Forest plots of likelihood ratios (LR's) of a single 2 nd trimester bacterial vaginosis (BV) testing using Amsel's criteria in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 76 Forest plots of likelihood ratios (LR's) of bacterial vaginosis (BV) testing in symptomatic women as a predictor of spontaneous preterm birth before 37 weeks' gestation
Figure 77 Methodological quality of studies included in the systematic review of accuracy of mammary stimulation test in asymptomatic women for predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies138
Figure 78 Forest plots of likelihood ratios (LR's) of mammary stimulation test as a predictor of spontaneous preterm birth in asymptomatic women stratified according to outcome139
Figure 79 Methodological quality of studies included in the systematic review of of home uterine activity monitoring in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 80 Forest plots of likelihood ratios (LR's) of uterine activity monitoring as a predictor of spontaneous preterm birth before 37 weeks' gestation stratified according to populations 143
Figure 81 Methodological quality of studies included in the systematic review of accuracy of rheobase testing in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 82 Forest plots of likelihood ratios (LR's) of rheobase measurement as a predictor of spontaneous preterm birth in symptomatic women stratified according to thresholds145
Figure 83 Methodological quality of studies included in the systematic review of the accuracy of fetal breathing movements in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 84 Forest plots of likelihood ratios (LR's) for the absence of fetal breathing movements in predicting spontaneous preterm birth within 48 hours of testing in women presenting with threatened preterm labour
Figure 85 Forest plots of likelihood ratios (LR's) for the absence of fetal breathing movements in predicting spontaneous preterm birth within 7 days of testing in women presenting with threatened preterm labour

Figure 86 Plot of sensitivity against specificity including summary values of the absence of fetal breathing movements in predicting spontaneous preterm birth within 7 days of testing in women presenting with threatened preterm labour
Figure 87 Methodological quality of studies included in the systematic review of accuracy of cervical length in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.
Figure 88 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement before 20 weeks' gestation (listed in ascending order of thresholds of abnormality) in predicting spontaneous preterm birth before 34 weeks' gestation in asymptomatic antenatal women
Figure 89 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement between 20 - 24 weeks' gestation (listed in ascending order of thresholds of abnormality) in predicting spontaneous preterm birth before 34 weeks' gestation in asymptomatic antenatal women
Figure 90 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement before 20 weeks' gestation (listed in ascending order of thresholds of abnormality) in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic antenatal women
Figure 91 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement between 20 – 24 weeks' gestation (listed in ascending order of thresholds of abnormality) in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic antenatal women
Figure 92 Forest plots of likelihood ratios (LR's) for cervical funnelling between 20 – 24 weeks' gestation in predicting spontaneous preterm birth stratified according to reference standards (outcomes) in asymptomatic antenatal women
Figure 93 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement in predicting spontaneous preterm birth within 48 hours of testing in symptomatic women with threatened preterm labour
Figure 94 Forest plots of likelihood ratios (LR's) for cervical length measurement utilizing commonly chosen threshold (15mm) in predicting spontaneous preterm birth within 7 days of testing in symptomatic women with threatened preterm labour
Figure 95 Forest plots of likelihood ratios (LR's) for cervical length measurement utilizing commonly chosen threshold (30mm) in predicting spontaneous preterm birth before 34 weeks' gestation in symptomatic women with threatened preterm labour
Figure 96 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement in predicting spontaneous preterm birth before 37 weeks' gestation in symptomatic women with threatened preterm labour
Figure 97 Forest plots of likelihood ratios (LR's) for cervical funnelling between 24 – 36 weeks' gestation in predicting spontaneous preterm birth stratified according to reference standards (outcomes) in symptomatic women with threatened preterm labour
Figure 98 Summary of methodological quality of studies included in the systematic review of accuracy of rheobase testing in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies
Figure 99 Summary forest plots of likelihood ratios (LR's) of various tests accuracy as a predictor of spontaneous preterm birth in asymptomatic women stratified according to

reference standards (outcome of spontaneous preterm birth before 34 and 37 weeks' gestation), tests and selected thresholds	. 165
Figure 100 Summary forest plots of likelihood ratios (LR's) of various tests accuracy as a predictor of spontaneous preterm birth in symptomatic women stratified according to reference standards (outcome spontaneous preterm birth within 48 hours and 7 days of testing), tests and selected thresholds	. 166
Figure 101 Summary forest plots of likelihood ratios (LR's) of various tests accuracy as a predictor of spontaneous preterm birth in symptomatic women stratified according to reference standards (outcome spontaneous preterm birth before 34 and 37 weeks' gestation tests and selected thresholds	n),
	. 107

List of Tables

Table 1 List of tests that purported to predict spontaneous preterm birth36
Table 2 Guide to the likelihood ratio (LR) interpretation of a test's accuracy
Table 3 Summary of tests' accuracy results for predicting spontaneous preterm birth before 34 weeks' gestation in asymptomatic antenatal women
Table 4 Summary of tests' accuracy results for predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic antenatal women
Table 5 Summary of tests' accuracy results for predicting spontaneous preterm birth within 48 hours of testing in symptomatic women with threatened preterm labour
Table 6 Summary of tests' accuracy results for predicting spontaneous preterm birth within 7 – 10 days of testing in symptomatic women with threatened preterm labour172
Table 7 Summary of tests' accuracy results for predicting spontaneous preterm birth before 34 weeks' gestation in symptomatic women with threatened preterm labour
Table 8 Summary of tests' accuracy results for predicting spontaneous preterm birth before 37 weeks' gestation in symptomatic women with threatened preterm labour
Table 9 Testing among symptomatic pregnant women for risk of spontaneous preterm birth and number of women needed to be tested and treated with antenatal maternal administration of corticosteroids to prevent respiratory distress syndrome before 34 weeks' gestation for anticipated birth within 7 days of testing, based on a prevalence of spontaneous preterm birth of 4.5%, risk of respiratory distress syndrome (RDS) of 53% and relative risk treatment effect of corticosteroids of 0.66^1
Table 10 Characteristic of studies on accuracy of maternal history of previous spontaneous preterm birth in predicting subsequent spontaneous preterm birth
Table 11 Individual accuracy results of maternal history of previous spontaneous preterm birth in predicting subsequent spontaneous preterm birth
Table 12 Characteristics of test accuracy studies of digital examination in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and women symptomatic with threatened preterm labour
Table 13 Individual accuracy results of digital examination in predicting spontaneous preterm birth stratified according to population of asymptomatic antenatal women and symptomatic women with threatened preterm labour
Table 14 Characteristic of studies on the accuracy of bedside cervico-vaginal fetal fibronectin testing as a predictor of spontaneous preterm birth stratified according to study population of asymptomatic antenatal women and symptomatic women who presented with threatened preterm labour
Table 15 Individual accuracy results of cervico-vaginal fetal fibronectin (fFN) in predicting spontaneous preterm birth among symptomatic women with threatened preterm labour217
Table 16 Individual accuracy results of cervico-vaginal fetal fibronectin (fFN) in predicting spontaneous preterm birth among asymptomatic antenatal women
Table 17 Characteristics of studies on test accuracy of cervico-vaginal prolactin in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and symptomatic women with threatened preterm labour

Table 18 Individual accuracy results of cervico-vaginal prolactin measurement in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour
Table 19 Characteristic of studies on the accuracy of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion as a predictor of spontaneous preterm birth stratified according to study population of asymptomatic antenatal women and symptomatic women who presented with threatened preterm labour
Table 20 Individual accuracy results of bedside rapid test cervico-vaginal phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in predicting spontaneous preterm birth among symptomatic women with threatened preterm labour
Table 21 Characteristics of the included studies on accuracy of maternal serum α-fetoprotein (MSAFP) testing in predicting spontaneous preterm birth for asymptomatic pregnant women
Table 22 Individual accuracy results of maternal serum α -fetoprotein (MSAFP) testing in predicting spontaneous preterm birth among antenatal asymptomatic women
Table 23 Characteristics of studies on test accuracy of maternal serum relaxin in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and symptomatic women with threatened preterm labour
Table 24 Individual accuracy results of maternal serum relaxin measurement in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour
Table 25 Characteristics of studies on test accuracy of corticotrophin releasing hormone (CRH) in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and symptomatic women with threatened preterm labour
Table 26 Individual accuracy results of maternal serum corticotrophin releasing hormone (CRH) measurement in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour
Table 27 Characteristics of the included studies on accuracy of β -human chorionic gonadotrophin (β -hcg) testing in predicting spontaneous preterm birth for asymptomatic pregnant women and women who presented with threatened preterm labour
Table 28 Individual accuracy results of β -human chorionic gonadotrophin (β -hcg) testing in predicting spontaneous preterm birth among asymptomatic and symptomatic women with threatened preterm labour
Table 29 Characteristics of studies on test accuracy of estriol in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and symptomatic women with threatened preterm labour
Table 30 Individual accuracy results of maternal estriol measurement in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour
Table 31 Characteristic of studies on accuracy of maternal C-reactive protein (CRP) measurement in predicting spontaneous preterm birth
Table 32 Sensitivity and specificity (with corresponding 95% Confidence Intervals (CI)) of Creactive protein (CRP) among individual studies in predicting spontaneous preterm birth according to type of tests, reference standards, and populations

Table 33 Likelihood Ratios for positive (LR+) and negative (LR-) test results (with corresponding 95% Confidence Intervals (CI)) of C-reactive protein (CRP) in predicting spontaneous preterm birth among individual studies according to type of tests, reference standard and populations
Table 34 Characteristics of the included studies on accuracy of interleukin-6 (IL6) testing in predicting spontaneous preterm birth for asymptomatic pregnant women and symptomatic women who presented with threatened preterm labour, stratified according to specimen source
Table 35 Individual accuracy results of interleukin-6 (IL6) testing in predicting spontaneous preterm birth among asymptomatic and symptomatic women with threatened preterm labour, stratified according to outcome (weeks' gestation) and specimen source
Table 36 Characteristics of the included studies on accuracy of interleukin-8 (IL8) testing in predicting spontaneous preterm birth for asymptomatic pregnant women and symptomatic women who presented with threatened preterm labour
Table 37 Individual accuracy results of interleukin-8 (IL8) testing in predicting spontaneous preterm birth among asymptomatic and symptomatic women with threatened preterm labour and stratified according to outcome (weeks' gestation)
Table 38 Characteristics of the included studies on accuracy of matrix metalloprotease 9 (MMP-9) testing in predicting spontaneous preterm birth in symptomatic women who presented with threatened preterm labour
Table 39 Individual accuracy results of matrix metalloprotease 9 (MMP-9) testing in predicting spontaneous preterm birth among asymptomatic and symptomatic women with threatened preterm labour
Table 40 Characteristics of the included studies on accuracy of periodontal health assessment in predicting spontaneous preterm birth among asymptomatic pregnant women253
Table 41 Individual accuracy results of periodontal health assessment in predicting spontaneous preterm birth among asymptomatic women
Table 42 Characteristics of the included studies on accuracy of asymptomatic bacteriuria assessment in predicting spontaneous preterm birth before 37 weeks' gestation for asymptomatic pregnant women
Table 43 Individual accuracy results of asymptomatic bacteriuria assessment in predicting spontaneous preterm birth before 37 weeks' gestation among asymptomatic antenatal women
Table 44 Characteristics of the included studies on accuracy of bacterial vaginosis (BV) testing in predicting spontaneous preterm birth for asymptomatic pregnant women and women who presented with threatened preterm labour
Table 45 Individual accuracy results of bacterial vaginosis (BV) testing in predicting spontaneous preterm birth among symptomatic women with threatened preterm labour266
Table 46 Characteristic of studies on test accuracy of mammary stimulation test in predicting spontaneous preterm birth among asymptomatic women
Table 47 Individual accuracy results of mammary stimulation test in predicting spontaneous preterm birth among asymptomatic women stratified according testing gestation and outcome gestations

Table 48 Characteristics of test accuracy studies of uterine activities monitoring in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and women symptomatic with threatened preterm labour
Table 49 Individual accuracy results of uterine activities monitoring in predicting spontaneous preterm birth stratified according to population of asymptomatic antenatal women and symptomatic women with threatened preterm labour
Table 50 Characteristic of studies on test accuracy of rheobase measurement in predicting spontaneous preterm birth among symptomatic women
Table 51 Individual accuracy results of rheobase measurement in predicting spontaneous preterm birth among asymptomatic women stratified according testing gestation and outcome gestations
Table 52 Characteristic of studies on test accuracy of absence of fetal breathing movement (FBM) in predicting spontaneous preterm birth in symptomatic women
Table 53 Individual accuracy results of absence of fetal breathing movement in predicting spontaneous preterm birth among symptomatic women with threatened preterm labour274
Table 54 Characteristics of test accuracy studies of cervical length measurement in predicting spontaneous preterm birth in antenatal asymptomatic women
Table 55 Characteristics of test accuracy studies of cervical length measurement in predicting spontaneous preterm birth in women symptomatic with threatened preterm labour277
Table 56 Characteristics of test accuracy studies of cervical funnelling assessment in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and women symptomatic with threatened preterm labour279
Table 57 Individual accuracy results of cervical length measurement in predicting spontaneous preterm birth among asymptomatic antenatal women stratified according to outcome (weeks' gestation) and testing gestation (weeks')
Table 58 Individual accuracy results of cervical length measurement in predicting spontaneous preterm birth among women symptomatic with threatened preterm labour stratified according to outcome (within days of testing and according to weeks' gestation).283
Table 59 Individual accuracy results of cervical funnelling assessment in predicting spontaneous preterm birth among women symptomatic with threatened preterm labour stratified according to outcome (weeks' gestation)

Chapter 1 Thesis summary

Background

A viable preterm birth is defined as any delivery of a pregnancy at less than 37 completed weeks (<259 days) and more than 23 completed weeks of gestation. It is a heterogeneous condition where up to 30 - 40% of all cases of preterm births are due to elective delivery for a maternal or a fetal complication. The remaining 60 – 70% of preterm births occurs spontaneously, which is the focus of this thesis. It complicates about 3% of pregnancies before 34 weeks' gestation and between 7 – 12% before 37 weeks' gestation. The former particularly has serious effects on mother, child and society, which makes preterm birth an important issue to public health worldwide. If women can be identified to be at high risk in early pregnancy, they can be targeted for more intensive antenatal surveillance and prophylactic interventions. When women present with symptoms of threatened preterm labour, if the likelihood of having spontaneous preterm birth can be determined, interventions can be deployed to prevent or delay birth and to improve subsequent neonatal mortality/morbidity.

Objective

The aim of this thesis was to identify test(s) which would accurately predict spontaneous preterm birth in asymptomatic antenatal women in early pregnancy and in women symptomatic with threatened preterm labour in later pregnancy by undertaking a series of systematic reviews of accuracy of tests.

Methods

Protocols were developed for performing the systematic reviews of test accuracy using standard review methods including: literature searches without language restrictions, study quality assessment and meta-analysis where appropriate. Two populations of interest were defined: asymptomatic antenatal women and women symptomatic with threatened preterm

labour. Literature was identified from several sources (up to September 2005 inclusive), including databases: PUBMED (MEDLINE), EMBASE (Ovid), DARE, CENTRAL, MEDION, contact with experts including the Cochrane Pregnancy and Childbirth Group and checking of reference lists of review articles and papers that were eligible for the systematic reviews included in this thesis. Included were cohorts or case control studies of any pregnant women where the index test was compared to the reference standard of spontaneous preterm birth and a 2x2 table could be calculated. Quality assessment was based on modified QUADAS criteria. Meta-analyses of likelihood ratios (LR's) using random effects model and of sensitivity and specificity using the bivariate models were performed. In general, the higher the LR+>1 (i.e. the likelihood ratio for a positive test) the more accurate is the test in ruling in the condition while the lower the LR-<1 (i.e. the likelihood ratio for a negative test) the more accurate is the test in ruling out the condition.

Results

Initially 40,243 title and abstract citations were scrutinised, resulting in the short listing of 1,650 full articles for which 319 were included for the systematic reviews, encompassing 22 tests that were evaluated in this thesis. The quality of studies and accuracy of tests was generally poor. For asymptomatic women, only testing for asymptomatic bacteriuria, cervicovaginal fibronectin, assessment for periodontitis and bacterial vaginosis, and serum β-hcg were evaluated in more than 10 studies while for symptomatic women, aside from fetal fibronectin, and amniotic fluid IL6 which has been evaluated in 31 and 10 studies respectively, the remainder had only been evaluated in a handful of studies. Some tests were able to achieve high predictive value when positive, but at the expense of compromised low predictive value when negative. Only a few tests reached LR+ point estimates >5. In asymptomatic antenatal women these were ultrasonographic cervical funnelling and length measurement, cervico-vaginal prolactin and cervico-vaginal fetal fibronectin screening for

predicting spontaneous preterm birth before 34 weeks' gestation. In this group, tests with LR-point estimates approaching <0.2 were detection of uterine contraction (by mammary stimulating test) and amniotic fluid CRP measurement. For predicting spontaneous preterm birth before 37 weeks' gestation, only cervico-vaginal fibronectin achieved and serial salivary estriol testing achieved LR+ >5.0, while only home uterine activity monitoring and amniotic fluid CRP measurement achieved LR- <0.2. In symptomatic women with threatened preterm labour tests with LR+ point estimate >5 were absence of fetal breathing movements, cervical length measurement, amniotic fluid IL6 and IL8, serum CRP and cervico-vaginal hcg (for predicting birth within 2-7 days of testing); and serum CRP, amniotic fluid IL6, and MMP-9, cervico-vaginal fetal fibronectin and cervico-vaginal hcg (for predicting spontaneous preterm birth before 34 or 37 weeks' gestation). In this group tests with LR- point estimate <0.2 were measurement of cervico-vaginal hcg, cervical length measurement, absence of fetal breathing movement, amniotic fluid IL6 and IL8, and serum CRP (for predicting birth within 2 - 7 days of testing); and cervico-vaginal fetal fibronectin and amniotic fluid IL6 (for predicting spontaneous preterm birth before 34 or 37 weeks' gestation).

Conclusions

There are a number of promising tests identified by this thesis. The prominence of the detection of absence of fetal breathing movement, cervical funnelling and cervical length measurement provide a stronger impetus for a universal provision for high quality ultrasound machine in labour wards for predicting spontaneous preterm birth among women with a viable pregnancy who present with threatened preterm labour to direct management (e.g. administration of tocolytics, corticosteroids and in-utero transfer). Nevertheless, provision for round the clock trained personnel to perform such a scan in the interim is a challenge.

Additionally, the feasibility and acceptability to mothers and health providers of such tests including more invasive (but potentially more accurate amniotic fluid assessment of IL6 and

8) strategies needs to be explored. Rigorous evaluation is needed of tests with minimal cost or invasiveness whose initial assessments suggest that they may have high levels of accuracy. Similarly, there is a need for high quality, adequately powered randomized controlled trials to investigate whether interventions are indeed effective in reducing (in asymptomatic women) and/or delaying (in symptomatic women with threatened preterm labour) spontaneous preterm birth. In future, an economic model should be developed which considers not just spontaneous preterm birth, but other related outcomes, particularly those relevant to the infant like perinatal death and shorter and longer term outcomes amongst survivors. Such a modelling project should make provision for primary data collection on the safety of interventions and their associated costs.

Chapter 2 Introduction

Definition of preterm birth

Textbooks define preterm birth as any delivery of a viable pregnancy at less than 37 completed weeks of gestation (<259 days), the lower limit of viability ex-utero being generally accepted to be at 23 completed weeks. Births before 23 completed weeks of gestation are classified as either miscarriages or abortions.

Aetiology of preterm birth

Preterm birth is a heterogeneous condition where up to 30 - 40% of all cases of preterm birth are due to elective delivery for a maternal or a fetal complication where it is judged that the baby is better delivered in the mother's interest or that of its own e.g. hypertension, diabetes, intra-uterine growth restriction. The remaining 60 – 70% of preterm birth are likely due to covert or sub-clinical infective/inflammatory processes, cervical dysfunction, idiopathic (unknown), multiple gestations and possible social, nutritional, and environmental interactions. This thesis focuses on the latter group of so called 'spontaneous' preterm birth among singletons regardless of aetiology.

Consequences of preterm birth

Preterm births, particularly those before 34 weeks' gestation, account for three-quarters of neonatal mortality and one-half of long term neurological impairment in children.³⁻⁵ Many of the surviving infants also suffer from other serious short and long-term morbidity, ^{4;6;7} such as respiratory distress syndrome, broncho-pulmonary dysplasia, intraventricular haemorrhage, retrolental fibroplasia and developmental problems. Even those premature infants that are classified as developmentally 'normal' or classified as having 'mild' developmental problem, in the longer term, have higher rate of multiple problems that do affect their life.⁸ Although complications of prematurity are significantly reduced after 32-34 weeks' gestation, minor

morbidities, which often lengthen hospitalisation, remain for neonates born between 34 –37 weeks' gestation.⁹⁻¹³

Burden of disease due to preterm birth

Spontaneous preterm birth before 37 weeks' gestation occurs in 7-12% of pregnancies ¹⁴⁻¹⁶ and it occurs in about 4% of pregnancies before 34 weeks' gestation. ¹⁷ Thus far advances in perinatal healthcare have not reduced the rate of spontaneous preterm birth. ¹⁵ Extrapolation from live births data in England and Wales (2004) live births data, ¹⁸ shows that an estimated 76,000 and 26,000 spontaneous preterm births occur before 37 weeks' and 34 weeks' gestation respectively.

Economically, preterm birth has a major and significant direct and indirect cost. There is a direct cost in terms of clinical resources use, e.g. intensive and often prolonged neonatal care as in-patient followed by higher rate of re-hospitalisation following discharge, ^{19;20} and emotional, psychological, and financial burden to the parents who are usually the main carers. There is also an indirect cost to the society where scarce public resources are utilized for long term care of the handicapped premature child and the fact that one or both parents may have to give up full time employment to care for their premature child.

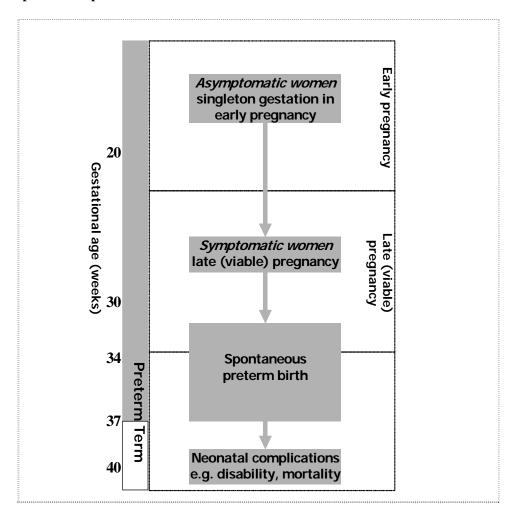
Therefore, accurate prediction of the risk of preterm birth among asymptomatic pregnant women and those symptomatic with threatened preterm labour may offer the opportunity to target care at those most likely to benefit.

Potential clinical applications of output from this thesis

Antenatal care in the UK is a complex care package, within which screening for women at risk of preterm birth is an integral component. Often this is linked to screening for conditions (e.g. pre-eclampsia) that might predispose to the need for elective preterm delivery. Currently there is no routine screening test for spontaneous preterm birth apart from obtaining history of previous pregnancies. Once women are identified to be at risk, they may be able to be either

recruited for further intervention(s) or measure(s) to prevent spontaneous preterm birth or be targeted for more intensive antenatal surveillance and prophylactic measures that are currently available, as primary, secondary or tertiary preventions.

Primary prevention is preventing the onset of spontaneous preterm labour in asymptomatic women e.g. administration of maternal progestational agents injection or ensuring and maintaining healthy maternal genito-urinary tract and periodontal status. Secondary prevention is steps that can be taken to attenuate, stop or reverse the progress of spontaneous preterm labour in its early stages, well before advanced cervical dilatation, e.g. by administration of tocolytic agents. Tertiary prevention is measures aimed at preventing neonatal complications associated with prematurity, e.g. maternal administration of antenatal corticosteroids to accelerate fetal lung maturity. This thesis focuses on primary and secondary prevention.


Delineation of the problem

Assessment of pregnant women's risk for preterm birth based on a combination of patients' characteristics, symptoms, physical signs and investigations, is important. This is because without an accurate assessment, clinicians are handicapped in the management of women at risk of preterm birth regarding institution of timely antenatal interventions. Wrong or delayed diagnosis can put mother and baby at risk of an adverse outcome whereas correct prediction of spontaneous preterm birth will provide an opportunity to institute effective interventions. This thesis will address these issues using systematic reviews to estimate the accuracy of tests for predicting spontaneous preterm birth.

There are two target populations of pregnant women that need to be tested for the risk of spontaneous preterm birth (Figure 1). The first is a population of antenatal asymptomatic women carrying a singleton gestation having routine care. In this important, and by far the largest epidemiological target of pregnant population, women are generally in a healthy state,

anticipating a normal course of pregnancy. They are usually regarded as 'low-risk' unless there are antecedent or current factor(s) and history that might increase the risk of preterm birth. If screening or testing could predict the risk of spontaneous preterm birth among these women, preventative measure(s) may be more appropriately targeted. For example if ultrasonographic measurement of cervical length in these women identifies shortened cervical length,²¹ then cervical cerclage may be deployed to prevent progression to spontaneous preterm birth.²² For these women, the key outcome measure would be prevention of spontaneous preterm birth before 34 and 37 weeks' gestation.

 $Figure\ 1\ Target\ populations\ and\ outcomes\ in\ the\ course\ of\ pregnancy\ for\ diagnostic\ research\ on\ spontaneous\ preterm\ birth$

The second population of interest is that of symptomatic women with singleton gestation who present with threatened preterm labour. For these women, there is a need to identify those who will go on to deliver prematurely as the key clinical decisions following testing relates to immediate management and outcome. For example, if cervico-vaginal fetal fibronectin testing could predict spontaneous preterm birth among these women before advanced cervical dilatation, ²³ antenatal maternal intramuscular corticosteroid injection may be administered to accelerate fetal lung maturity to prevent respiratory distress syndrome. 24 In-utero transfer to a tertiary intensive neonatal care unit able to care for the premature neonate may also be considered. 25;26 Such a transfer, which may take some time to arrange (because of logistics, geography or lack of neonatal intensive care cots), would be inappropriate if birth were imminent, as this would risk delivery en-route. In such cases, knowledge of a higher likelihood of imminent birth may allow rational use of tocolytics agents, which aim to suppress or diminish contractions allowing time for antenatal corticosteroid administration to exert its beneficial effects.²⁷ Antenatal corticosteroids have maximal effectiveness in preventing neonatal complications of prematurity delivered within 2-7 days after administration.²⁴ Given the duration of time required for corticosteroids to exert beneficial effects and the potential for in-utero transfer and tocolytic administration, knowledge of impending birth within 48 hours to 7 days of testing would be a clinically meaningful outcome measure among women symptomatic of threatened preterm labour.

Aim

The aim of this thesis was to systematically review the evidence on tests that identify women with singleton pregnancy at risk of spontaneous preterm birth which would allow for the institution of measures to improve neonatal outcome.

Objectives

Considering the above background and aim, the research was undertaken to meet the following objectives:

- 1. To determine, among asymptomatic women with singleton gestation in early pregnancy (before 23 completed weeks of gestation) the accuracy of various tests (history, examination and investigations) for predicting the risk of spontaneous preterm birth and
- 2. To determine, among women with a viable singleton pregnancy (after 23 completed weeks of gestation), symptomatic of threatened preterm labour with intact amniotic membrane and before advance cervical dilatation (less than 2-3 cm dilatation) the accuracy of various tests (history, examination and investigations) for predicting the risk of imminent preterm birth.

From this work, the thesis aims to identify areas where evidence is strong enough to generate recommendations for clinical practice in addition to identifying key areas and research questions requiring further primary research.

Chapter 3 Methods

Protocol development

This thesis is based on systematic reviews, a scientific, replicable method of evidence synthesis explicitly describing the objectives, the search strategy for relevant literature, and the methods for processing information and deriving conclusions.²⁸ The process followed key steps involved in health technology assessment (HTA) of a diagnostic test.²⁹⁻³¹ Systematic reviews of accuracy of tests were carried out using contemporaneous methodology,³²⁻³⁴ which is in line with the recommendations of the Centre for Reviews and Dissemination (CRD),³⁵ and the Cochrane Collaboration including those of Cochrane Methods Working Group on Screening and Diagnostic tests.³⁶ The research was based on a prospective protocol, which included reviews of existing test accuracy, updating those which were out-of-date; and performing reviews of topics not reviewed in the literature.

Research question

The following structured question was addressed:

Populations: Asymptomatic low-risk pregnant women with singleton gestation in early pregnancy and low-risk women symptomatic of threatened preterm labour with a viable singleton pregnancy. Singleton pregnancies were the focus because it represents an epidemiological significant pregnant population and because multiple gestations fall in a higher risk category that represents a different disease spectrum.

Tests: List of tests available for determining the risk of spontaneous preterm birth in asymptomatic pregnant women and those available for determining the risk of imminent birth in women symptomatic of threatened preterm labour (Appendix I).

Outcomes (reference standards): Spontaneous preterm birth <37 weeks' gestation and <34 weeks' gestation in asymptomatic pregnant women, and birth within 24, 48 hours and up to 7 - 10 days of testing or presentation in women symptomatic of threatened preterm labour.

Study designs: Test accuracy studies (observational: prospective or retrospective) of defined non-randomised populations in which the results of the test of interest were compared with the outcomes (reference standards) to generate 2x2 tables to compute indices of test accuracy.

Study identification and selection

Existing reviews were first identified, assessed for their quality and examined their currency. Through this process gaps were identified where reviews did not exist and where they needed updating. To fill these gaps, systematic reviews were performed where none was available or non-current existing reviews were updated where required. Therefore a formal search was undertaken to identify existing reviews of accuracy of tests for spontaneous preterm birth. The search strategy can be found in Appendix II. The Cochrane Library, the National Research Register (NRR), the Health Technology Assessment (HTA) database, the National Guideline Clearinghouse and a range of other guideline and effectiveness collections were searched for systematic reviews, guidelines and ongoing research using Medical Subject Headings (MeSH) terms and text words. A database of published and unpublished literature was assembled from update searches using an existing search strategy, ³⁷ as well as hand searching, contacting manufacturers and consultation with experts in the area. No language restrictions were applied to electronic searches.

The following databases were searched for primary studies: MEDLINE, EMBASE, BIOSIS, MEDION, Pascal, Science Citation Index, and Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE) and HTA database. In addition, information on studies in progress, unpublished research or research reported in the grey literature was sought by searching a range of relevant databases including Inside Conferences, Systems for Information in Grey Literature (SIGLE), Dissertation Abstracts, Clinical Trials.gov and the NRR. Citations captured by the search were scrutinised for inclusion in the review in a two-

stage process using predefined and explicit criteria regarding populations, index tests, target conditions and study designs. First, a master database of the literature searches was constructed by amalgamation of all the citations from various database sources. The citation were scrutinised by two reviewers. Copies of full manuscripts of all citations that were likely to meet the selection criteria were obtained. Two reviewers then independently selected the studies, which met the predefined criteria. These criteria were pilot tested using a sample of papers. Disagreements were resolved by consensus and/or arbitration involving a third reviewer.

The search revealed a number of test accuracy reviews at various levels of currency (Chapter 4: Identification of accuracy literature and Appendix I). Most of the identified reviews were updated, where experts surveyed for this thesis decided the priority on clinical grounds, and a few new rapid reviews were carried out to fill the identified gaps. To be included in updated systematic reviews, any recent systematic reviews or primary studies had to fulfil the individual criteria as stated in the original reviews, including the following criteria:

Population: Asymptomatic antenatal women and women symptomatic of threatened preterm labour with singleton gestation to allow interventions, which delay delivery and improve neonatal outcome for prematurely born infants.

Index Tests: Tests that purported to predict spontaneous preterm birth (Table 1).

Reference standards and other outcomes: Any outcomes as reported in the individual reviews.

However, only data relating to the following outcome measures were used in the thesis: spontaneous preterm birth < 37 weeks gestation, <34 weeks gestation or within 2-7 days of testing, and resource use. If relevant outcomes were not reported in the original reviews this is noted.

Study designs: Systematic reviews of test accuracy studies were included; all reviews were of a standard quality accepted by DARE produced by the CRD, University of York (UK). For

primary studies, observational cohort studies were looked for and or, if unavailable, 'case-control' studies of test accuracy.

Table 1 List of tests that purported to predict spontaneous preterm birth

Type of tests or investigation	Predictive and diagnostic tests for preterm birth		
History	Previous history of either spontaneous preterm birth*		
Examination	Abdominal palpation ⁺		
	Cervical digital examination ⁺		
Biochemistry	Cervico-vaginal glycoproteins: Interleukins (IL-6, IL-8) ⁺ β-hcg ⁺ Fetal fibronectin ^{*+} Phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) ⁺ Serum glycoprotein: α-fetoprotein, human chorionic gonadotrophin (as part of Down's screening) [*] Endocrine hormones: Salivary estriol ⁺ Corticotrophin releasing hormone ⁺ Inflammatory markers (serum): C-reactive protein ^{*+} Matrix metalloprotease (MMP) ⁺ Interleukins ^{*+}		
Microbiology	Detection of bacterial vaginosis*+ Periodontal screening* Midstream urine culture*+		
Physiological	Uterine activity monitoring * Rheobase * Mammary stimulation test *		
Ultrasound scan	Absence of fetal breathing movements ⁺ Measurement of cervical length ^{*+}		

^{*}Test applied on asymptomatic women +Test applied on symptomatic women

Study quality assessment and data extraction

For existing reviews, quality was assessed using existing guidance on conducting test accuracy reviews. ^{35;36;38} The methodological quality of the selected primary studies was assessed using predefined criteria based on elements of study design, conduct and analysis which are likely to have a direct relationship to bias in a test accuracy study (derived from 'QUADAS' (Quality Assessment of Diagnostic Accuracy Studies) criteria (of which, these: clear description of population selection and enrolment criteria, complete verification of outcome using the same reference standard, sufficient test description for replication and blinding of assessors) were used). ³⁹⁻⁴² In addition to using study quality as a possible explanation for differences (i.e. heterogeneity) in results, the extent to which primary research met methodological standards is important per se for assessing the strength of any conclusions that are reached. Data extraction pro-forma can be found in Appendix III. In the main text of the thesis, graphical summaries of the five most important quality items were provided for while others can be extracted from tables of study characteristics for the individual test (Appendix IV).

Any randomized trials of effectiveness of test-treatment combinations were assessed for validity separately to the diagnostic accuracy studies. Studies' findings were extracted in duplicate for 10% of randomly selected studies, while the remaining were done by the author, using pre-designed and piloted data extraction forms, which were developed and used in previously published reviews. ^{21;23;43-45} Previous reviews had assessed studies and extracted data in duplicate. For missing information attempt was made to obtain data from original investigators only if it was crucial to subsequent analysis. To avoid introducing bias, unpublished information was coded in the same fashion as published information. If there was a suspicion of double data counting (consequent from e.g. studies or publications from the same population for a particular test for different outcomes), clarification was sought from the

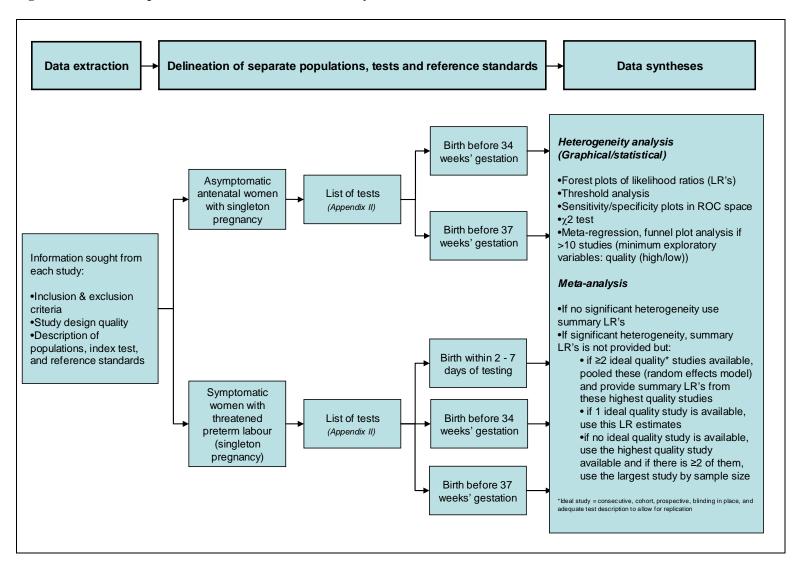
corresponding authors so that only information pertinent to the more significant outcomes e.g. birth before 34 weeks' gestation for asymptomatic women and within 7-10 days of testing were used in the situation.

Data synthesis

A brief narrative review of findings and quality was undertaken for each test considered. This was followed by exploration for the causes of variation in results from study to study (i.e. heterogeneity) and synthesis of results from individual studies (meta-analysis) if appropriate. Accuracy results were computed separately for different populations, tests and reference standards. Heterogeneity of results between studies was graphically assessed in forest plots of likelihood ratios (LR's) and distribution of sensitivity and specificity in summary receiver operating characteristics (ROC) space (for the latter only those reviews of 'more accurate tests' with the relevant clinical outcomes are shown in this thesis). The latter showed the trade-off between sensitivity and specificity across different studies with explicit or implicit variation in thresholds. A general guide for interpreting summary LR's is shown in Table 2.

Table 2 Guide to the likelihood ratio (LR) interpretation of a test's accuracy

Category of test accuracy usefulness	Likelihood ratio for a positive test result (LR+)	Likelihood ratio for a negative test result (LR-)	Interpretation
			Likely to generate large (and often) conclusive
Very useful	>10	< 0.1	changes from pre-test to post-test probabilities
			Likely to generate moderate shifts in pre-test to
Useful	5 - 10	0.1 - 0.2	post-test probabilities
			Likely to generate small but sometimes important
May be useful	2 - 5	0.2 - 0.5	changes in pre-test to post-test probabilities
			May alter pre-test to post-test probabilities to a
Not useful	1 - 2	0.5 - 1	small (and rarely important) degree
Not useful	1 – 2	0.5 - 1	small (and rarely important) degree

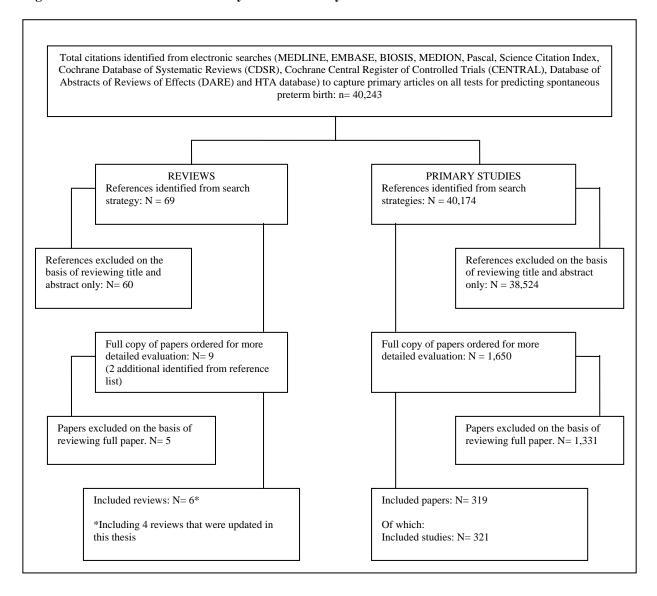

Derived from Jaeschke, Grimes and Fagan et al 46-48

In any specific context however the value of LR below which positive result and above which negative result will be useless depends on how effective, safe and expensive the interventions that follow relative to costs and outcome of false negative cases

Subgroup analyses were planned *a-priori* to explore causes of heterogeneity to check whether variations in populations, index test characteristics, target conditions and study quality affect the estimation of accuracy. Individual factors explaining heterogeneity were also analysed using meta-regression where there were more than 10 studies in a review to determine their unique contribution, allowing for other factor. Conclusions regarding the typical estimate of

accuracy were interpreted cautiously if there was significant heterogeneity. 49
In addition to meta-analyses that generated summary estimates primarily of LR's, summary sensitivity and specificity using the bivariate model 50;51 and summary ROC curves using the hierarchical summary receiver operating characteristic (HSROC) model 50;52 were also generated where on balance, they would add to the interpretation of the results. 53 LR's are considered more clinically meaningful as measures of test accuracy 46-48 and would allow estimation of probabilities for use in a decision analytic modelling. These post test probabilities can be used to calculate the absolute effects of interventions according to test results. 54 Publication and related biases were assessed using funnel plots of diagnostic odds ratio (dOR) against corresponding variances amongst reviews with more than 10 studies. 35 Appendix V aids for the interpretation of summary ROC curves and funnel plots. Stata version 8.2 software was used in the statistical analyses. The procedural flow chart for systematic reviews of test accuracy is shown in Figure 2.

Figure 2 Flow chart of procedures for reviews of test accuracy studies



Chapter 4 Results

Literature selection

List of tests reviewed and their currency can be found on Appendix I. The reviews of tests' accuracy were divided into history, examination and investigations. 40,243 title and abstract electronic citations were obtained from the comprehensive literature searches from the various databases. These citations were scrutinised, with duplicates and those citations which do not meet the inclusion criteria excluded, resulted in the short listing of 1,650 citations for which the full article was requested. Upon further scrutiny of the full article, 319 were finally included for the systematic reviews, encompassing 22 tests that were evaluated in this thesis. The 22 tests aimed at the prediction of spontaneous preterm birth in asymptomatic women in early pregnancy and in women symptomatic with threatened preterm labour in the later part of their pregnancy. Figure 3 summarizes the process of the identification of literature reviews for test accuracy studies.

Figure 3 Identification of test accuracy literatures for systematic reviews in this thesis

Previous history of spontaneous preterm birth

Previous medical history of having spontaneous preterm birth is clinically used as a predictor for another spontaneous preterm birth. With the advent of dating scan, this history can be accurately assessed at antenatal booking consultation.

Study characteristics and quality

There were 10 studies evaluating the accuracy of previous history of spontaneous preterm birth among asymptomatic antenatal women in predicting spontaneous preterm birth in the subsequent pregnancy (n=55,885). 55-64 One study 65 was excluded on closer inspection because it used the same population as another included study. Table 10 summarized the salient characteristics of the included studies. There were no studies on symptomatic women with threatened preterm labour. Most of the studies did not differentiate between previous single or more episodes of spontaneous preterm birth. Two studies evaluated the accuracy of two against one previous history of spontaneous preterm births histories, 58;64 while one study evaluated the accuracy of gestation at which the previous spontaneous preterm birth occurred in predicting spontaneous preterm birth in subsequent pregnancy. 62

None of the study fulfilled the criteria of ideal quality study. None of the studies reported blinding and consecutive enrolment. The quality features were summarized in Figure 4. Aside from two studies, ^{59;61} the remaining studies reported birth before 37 weeks' gestation as their outcomes.

Accuracy of previous history of spontaneous preterm birth in asymptomatic women

For predicting spontaneous preterm birth before 34 weeks' gestation, previous history of spontaneous preterm birth had an LR+ 4.62 (95% CI 3.28 - 6.52) and LR- 0.68 (95% CI 0.56 - 0.82). For predicting spontaneous preterm birth before 37 weeks' gestation, previous history of spontaneous preterm birth had a range of LR+ from 0.52 (95% CI 0.42 - 0.64)⁵⁸

with one previous spontaneous preterm birth to 10.12 (95% CI 4.54 - 22.59)⁵⁸ with two previous spontaneous preterm births and a range of LR- from 0.45 (95% CI 0.33 - 0.61)⁶² with previous history of spontaneous preterm birth before 26 weeks' gestation to LR- 1.38 (95% CI 1.27 - 1.49)⁵⁸ with one previous spontaneous preterm birth. The highest quality study has LR+ 2.26 (95% CI 1.86 - 2.74) and LR- 0.72 (95% CI 0.64 - 0.81) Goldenberg *et al.*⁶¹ The accuracy estimates of previous history of spontaneous preterm birth in predicting subsequent spontaneous preterm birth is shown in Figure 5 while Figure 6 showed plot of sensitivities and specificities and their summary estimates for the accuracy of previous history of spontaneous preterm birth in asymptomatic woman in predicting spontaneous preterm birth. Individual accuracy data are summarized in Table 11. Figure 7 showed an asymmetric funnel plot indicating possible presence of publication or related biases for studies of the accuracy of previous history of spontaneous preterm birth in asymptomatic women.

Figure 4 Methodological quality of studies of previous history of spontaneous preterm birth in predicting subsequent spontaneous preterm birth included in the systematic review. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

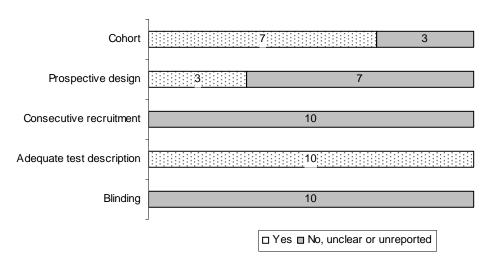
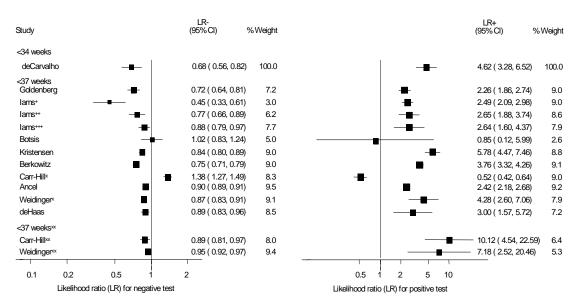



Figure 5 Forest plots of likelihood ratios (LR's) of the accuracy of previous history of spontaneous preterm birth in asymptomatic women for predicting spontaneous preterm birth stratified according to outcome gestation*

 $[\]chi 2$ heterogeneity test p=0.00012 for LR+ and p=0.0017 for LR- of spontaneous preterm birth before 37 weeks' gestation * Studies are listed in descending order of quality + Previous spontaneous preterm birth before 26 weeks' gestation

⁺⁺ Previous spontaneous preterm birth before 31 weeks' gestation +++ Previous spontaneous preterm birth before 36 weeks' gestation

x One previous spontaneous preterm birth xx Two previous spontaneous preterm birth

Figure 6 Plot of sensitivity against specificity including summary values of the accuracy of previous history of spontaneous preterm birth in asymptomatic women for predicting spontaneous preterm birth before 37 weeks' gestation

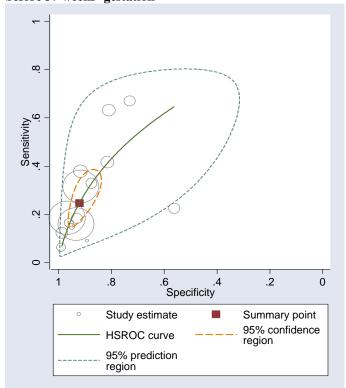
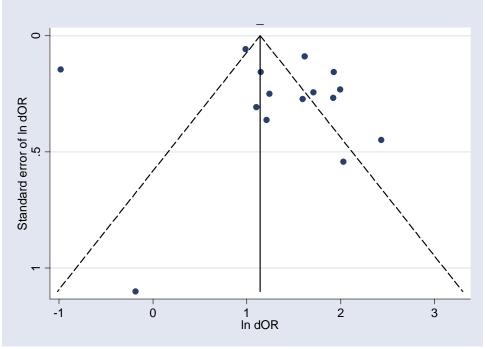



Figure 7 Funnel plot analysis of accuracy studies evaluating previous history of spontaneous preterm birth in asymptomatic women for predicting spontaneous preterm birth before 37 weeks' gestation

Digital examination

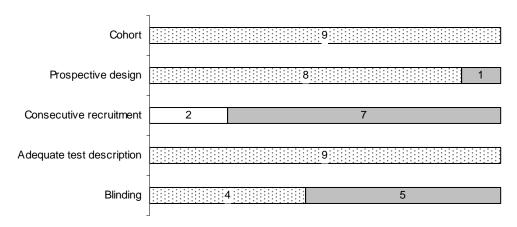
Physical examination is one of the cornerstones of medicine. Vaginal digital examination to assess the cervix is simple to do but its accuracy in the assessment of either asymptomatic antenatal women or symptomatic pregnant with threatened preterm labour to predict spontaneous preterm birth has not been evaluated in a systematic review.

Study characteristics and quality

There were 10 studies that evaluated the accuracy of cervical digital examination in predicting spontaneous preterm birth, 9 in asymptomatic antenatal women (n = 12,325)⁶⁶⁻⁷⁴ and 1 study in symptomatic women symptomatic (n = 90) with threatened preterm labour.⁷⁵ There was a variation in testing gestation, frequency of testing and thresholds' selection among the included studies. Noticeably, for all of the studies, testing gestation commenced after 24 weeks' gestation, currently accepted lower limit of neonatal viability. Aside from three studies, which used birth before 34 and 35 weeks' gestation⁶⁹⁻⁷¹ as their outcome measurement, the other studies used 37 weeks' gestation. Individual study characteristics are summarized in Table 12.

One study fulfilled the criteria for ideal quality study;⁷⁰ otherwise the remaining studies lacked one or more criteria for ideal quality study with consecutive enrolment being the most commonly absent feature. Blinding was only reported by 4 studies in asymptomatic women. Methodological quality of the included study is summarized in Figure 8.

Accuracy of digital examination in asymptomatic women


There was a wide variation in the accuracy of digital examination in asymptomatic antenatal women in predicting spontaneous preterm birth (Figure 9). For predicting spontaneous preterm birth before 34 weeks' gestation, digital examination showed an LR+ 9.25 (95% CI 3.91 - 21.85) and LR- 0.46 (95% CI 0.19 - 1.08) in a mixed population of nulliparous and multiparous antenatal asymptomatic women and a threshold of >2cm cervical dilatation. For

predicting spontaneous preterm birth before 37 weeks' gestation, LR+ ranged from 0.46 (95% CI 0.03 - 6.85) in multiparous women with a threshold of >2-3 cm cervical dilatation⁷³ to 9.17 (95% CI 0.52 - 160.08) in a mixed population of nulliparous and multiparous antenatal asymptomatic women with a centrally positioned cervix and >1.5 cm dilatation,⁶⁸ and LR-ranged from 0.42 (95% CI 0.26 - 0.68) in a nulliparous antenatal women with soft cervix⁶⁶ to 2.46 (95% CI 0.11 - 55.35) in a mixed population of nulliparous/multiparous antenatal asymptomatic women and a threshold of posterior cervix >1.5 cm dilatation.⁶⁸ The highest quality study from Parikh *et al* has LR+ 1.15 (0.86 - 1.53) and LR- 0.89 (0.68 - 1.16), which evaluated digital examination in a mixed population of nulliparous and multiparous women using the threshold of admitting a finger at cervical internal os.⁷² Individual accuracy results are summarized in Table 13.

Accuracy of digital examination in symptomatic women

For predicting spontaneous preterm birth before 37 weeks' gestation digital examination in symptomatic women with threatened preterm labour had a range of LR+ from 2.01 (95% CI 1.26 - 3.22) to 2.38 (95% CI 1.46 - 3.87) and LR- from 0.47 (95% CI 0.29 - 0.79) to 0.54 (95% CI 0.34 - 0.88) corresponding to a choice of threshold >2 cm cervical dilation or >40% effacement (the latter threshold correspond to the less accurate results). Individual accuracy results are summarized in Table 13.

Figure 8 Methodological quality of studies included in the systematic review of accuracy of digital examination in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

Symptomatic women

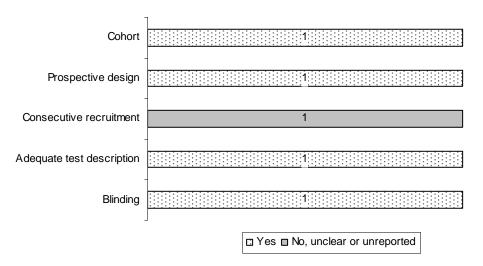
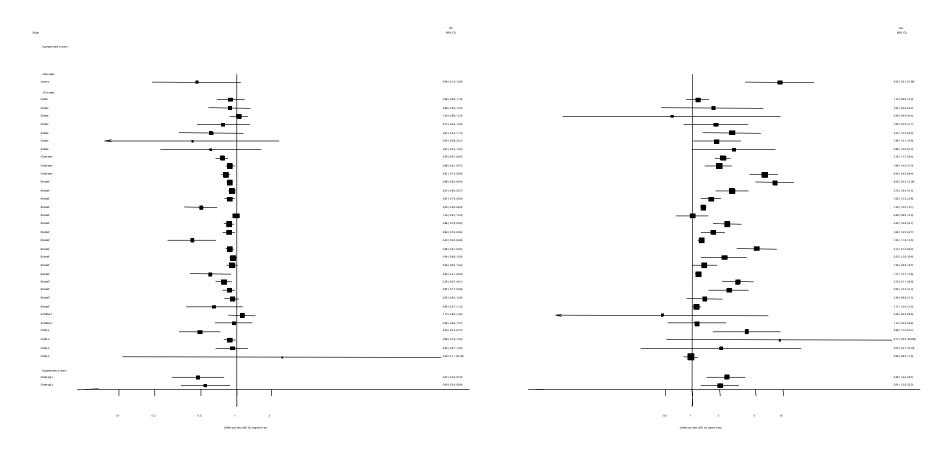



Figure 9 Forest plots of likelihood ratios (LR's) of digital examination in predicting spontaneous preterm birth as a predictor of spontaneous preterm birth

Cervico-vaginal fetal fibronectin (fFN)

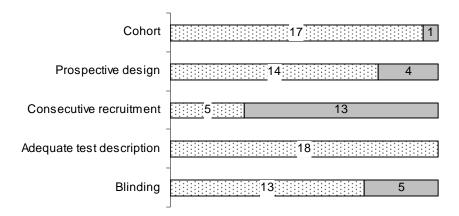
Cervico-vaginal fetal fibronectin (fFN) is a glycoprotein, present in trace quantity that is usually undetectable in the cervical vaginal secretion. Higher quantity has been purported to be an indication of imminent labour onset. The test is readily available in the form of commercial rapid test kit. A cotton swab is used to collect samples of cervico-vaginal secretions during a speculum examination. The result is either positive (fFN is present), or negative (fFN is not present) obtained within 10 - 15 minutes of performing the test. These commercial preparations used positivity threshold of 50 ng/mL.

Study characteristics and quality

There were 58 primary studies (n = 22,905 women) on the accuracy of bedside cervicovaginal fetal fibronectin testing, comprising of 18 studies on asymptomatic antenatal women (n = 18,696) and 40 studies on symptomatic women with presented with threatened preterm labour (n = 4,209). Table 14 summarizes each study's salient features, stratified according to population of women tested, i.e. asymptomatic antenatal women and women with symptoms of threatened preterm labour. The studies' enrolment ranged from 20 to 6,508 women^{76;77} with a median of 147 women in asymptomatic population and from 26 to 725 women^{78;79} with a median of 86 women in symptomatic women. All the included studies had used cervicovaginal fetal fibronectin specimen taken either from the posterior fornix or the cervix. There were three studies in asymptomatic women 80-82 and five studies in symptomatic women that fulfil the definition of high quality test accuracy studies. 78;83-86 The methodological quality of the included primary studies is summarized in Figure 10. There were seven and fifteen studies that reported the accuracy of the test for predicting spontaneous preterm birth before 34^{76;81;87-91} and 37 weeks' gestation^{76;77;80;82;87;88;90;92-99} respectively in asymptomatic women. For symptomatic women presenting with threatened preterm labour, eighteen studies^{79;83;85;86;100-113} reported the accuracy of the test in predicting spontaneous preterm birth

within 7-10 days of testing in addition to 8 studies that reported birth before 34^{86;108;114-119} and 31 studies that reported birth before 37 weeks' gestation.^{78;79;83;84;86;96;97;99;101-103;105;107-109;111;113;116-118;120-130}

Accuracy of fFN in asymptomatic women


For predicting spontaneous preterm birth before 34 weeks' gestation, the range of LR+ was from 2.57 (95% CI 2.07 - 3.19) to 86.60 (95% CI 6.26 - 1198.92) with a summary LR+ of 7.65 (95% CI 3.93 to 14.86) (χ 2 heterogeneity test 0.00073) and the range of LR- was from 0.28 (95% CI 0.05 – 1.52) to 0.80 (95% CI 0.52 – 1.24) with a summary LR- of 0.80 (95% CI 0.73 – 0.88) (χ 2 heterogeneity test p = 0.082) (Figure 11). For predicting spontaneous preterm birth before 37 weeks' gestation, the range of LR+ was from 0.43 (95% CI 0.07 – 2.78) to 26.38 (95% CI 1.73 – 402.99) with a summary LR+ of 3.17 (95% CI 2.00 – 5.02) (χ 2 heterogeneity test p = 0.00021) and the range of LR- was from 0.28 (95% CI 0.03 – 3.07) to 1.20 (95% CI 0.93 -1.54) with a summary LR- of 0.87 (95% CI 0.77 – 0.97) (χ 2 heterogeneity test p = 0.00037) (Figure 12). Figure 13 and Figure 14 showed plot of sensitivities and specificities and their summary estimates for the accuracy of fFN in predicting spontaneous preterm birth before 34 and 37 weeks' gestation respectively. Individual test accuracy results from the included studies for asymptomatic women can be found in Table 15.

Accuracy of fFN in symptomatic women

For predicting spontaneous preterm birth within 7-10 day of testing, the range of LR+ was from 2.12 (95% CI 1.05-4.28) to 9.29 (95% CI 5.06-17.06) with a summary LR+ of 4.10 (95% CI 3.37-4.98) ($\chi 2$ heterogeneity test p = 0.0021) and the range of LR- from 0.09 (95% CI 0.01-0.58) to 0.59 (95% CI 0.25-1.39) with a summary LR- of 0.35 (95% CI 0.27-0.46) ($\chi 2$ heterogeneity test = 0.042) (Figure 15). For predicting spontaneous preterm birth before 34 weeks' gestation, the range of LR+ was from 1.57 (95% CI 0.53-4.60) to 5.70 (95% CI 0.88-11.28) with a summary LR+ of 3.58 (95% CI 0.56-5.00) ($\chi 2$ heterogeneity

test p = 0.052) and the range of LR- from 0.12 (95% CI 0.02 - 0.79) to 0.91 (95% CI 0.69 - 0.052) 1.20) with summary LR- of 0.34 (95% CI 0.17 – 0.68) (χ 2 heterogeneity test p = 0.0020) (Figure 16). For predicting spontaneous preterm birth before 37 weeks' gestation the range of LR+ was from 1.00 (95% CI 0.44 - 2.30)⁷⁸ to 14.36 (95% CI 5.81 - 35.47)¹¹¹ with summary LR+ of 3.62 (95% 3.02 - 4.33) (χ 2 heterogeneity test p = 0.00021) and the range of LR- from $0.08 (95\% \text{ CI } 0.01 - 0.54)^{118} \text{ to } 1.00 (95\% 0.44 - 2.30)^{78} \text{ with a summary LR- of } 0.50 (95\% 0.44 - 2.30)^{78} \text{ summary LR- of } 0.50 (95\% 0.44 - 2.30)^{78} \text{ with a summary } 0.08 (95\% 0.44 - 2.30)^{$ 0.43 - 0.59) (χ 2 heterogeneity test p = 0.00019) (Figure 17). Figure 18, Figure 19 and Figure 20 showed plot of sensitivities and specificities and their summary estimates for the accuracy of fFN in predicting spontaneous preterm birth within 7-10 days of testing and before 34 and 37 weeks' gestation respectively in symptomatic women. Figure 21 showed absence of large studies with higher level of accuracy missing in the funnel plot analysis for studies of the accuracy of fFN in predicting spontaneous preterm birth within 7 - 10 days of testing in symptomatic women. Figure 22 did not show asymmetry in the funnel plot analysis of the accuracy of fFN in predicting spontaneous preterm birth before 37 weeks' gestation in symptomatic women. Individual test accuracy results from the included studies for symptomatic women can be found in Table 16.

Figure 10 Methodological quality of studies included in the systematic review of accuracy of bedside test for cervico-vaginal fetal fibronectin in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour. Data presented as 100% stacked bars. Figures in the stacks represent number of studies

Symptomatic women

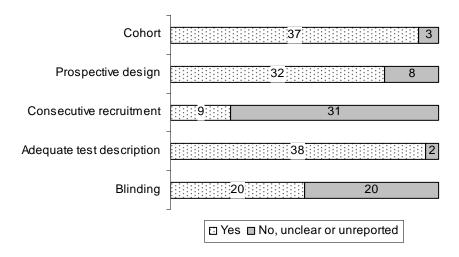
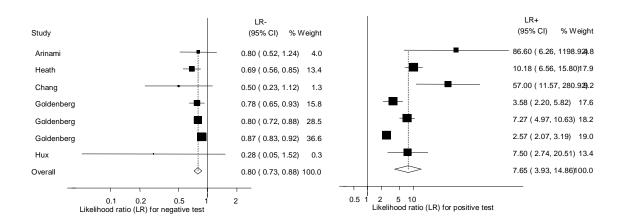
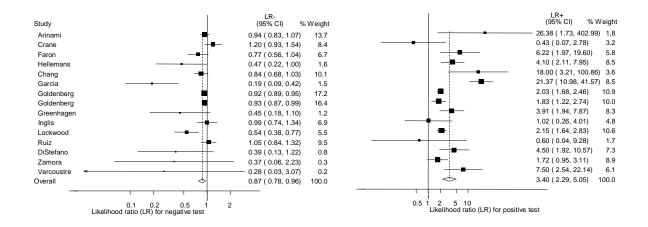




Figure 11 Forest plots of likelihood ratios (LR's) for cervico-vaginal fetal fibronectin bedside testing on asymptomatic antenatal women as a predictor of spontaneous preterm birth before 34 weeks' gestation*+

^{*}Studies are arranged in descending order of methodological quality

Figure 12 Forest plots of likelihood ratios (LR's) for cervico-vaginal fetal fibronectin bedside testing on asymptomatic antenatal women as a predictor of spontaneous preterm birth before 37 weeks' gestation*+

^{*}Studies are arranged in descending order of methodological quality

 $^{+\}chi 2$ heterogeneity test p=0.00073 for LR+ and p=0.082 for LR-

 $^{+\}chi 2$ heterogeneity test p = 0.00021 for LR+ and p = 0.00037 for LR-

Figure 13 Plot of sensitivity against specificity including summary values of the accuracy of cervicovaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 34 weeks' gestation

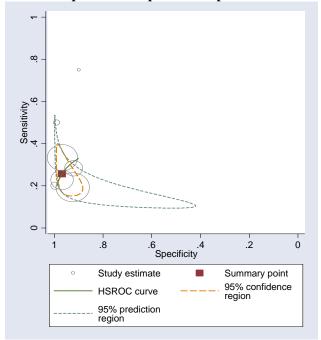


Figure 14 Plot of sensitivity against specificity including summary values of the accuracy of cervicovaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 37 weeks' gestation

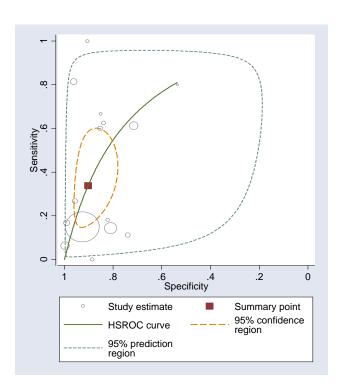
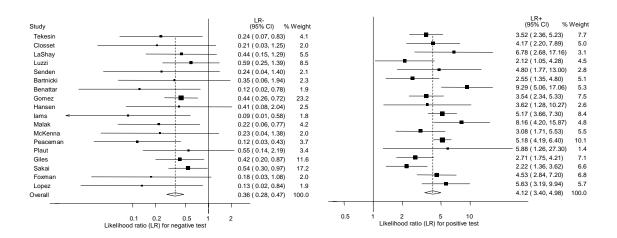
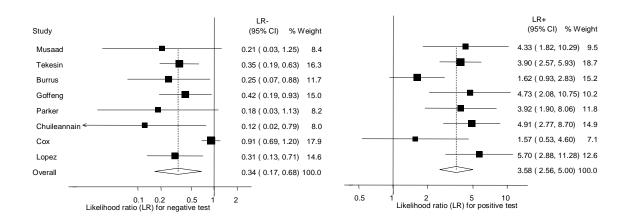




Figure 15 Forest plots of likelihood ratios (LR's) for cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth within 7-10 days of testing*+

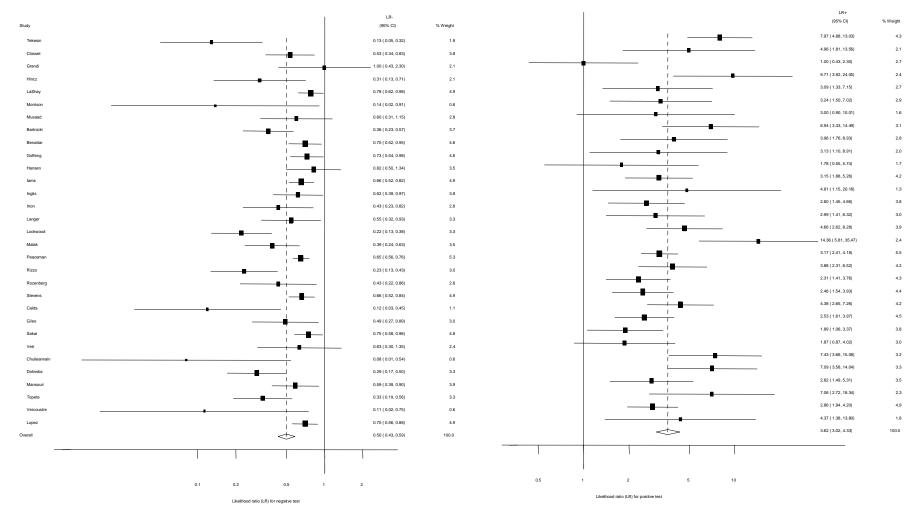

^{*}Studies are arranged in descending order of methodological quality $+\chi 2$ heterogeneity test p=0.0021 for LR+ and p=0.424 for LR-

Figure 16 Forest plots of likelihood ratios (LR's) for cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 34 weeks' gestation*+

^{*}Studies are arranged in descending order of methodological quality $+\chi 2$ heterogeneity test p = 0.052 for LR+ and p = 0.0020 for LR-

Figure 17 Forest plots of likelihood ratios (LR's) for cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 37 weeks' gestation*+

^{*}Studies are arranged in descending order of methodological quality

 $^{+\}chi 2$ heterogeneity test p = 0.00021 for LR+ and p = 0.000 for LR-

Figure 18 Plot of sensitivity against specificity including summary values of the accuracy of cervico-vaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth within 7-10 days of testing

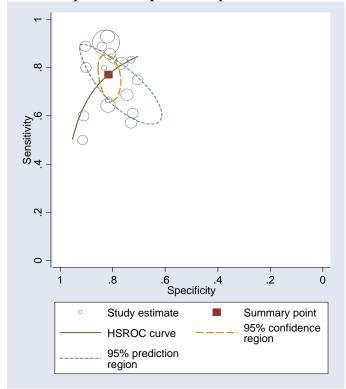


Figure 19 Plot of sensitivity against specificity including summary values of the accuracy of cervicovaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 34 weeks' gestation

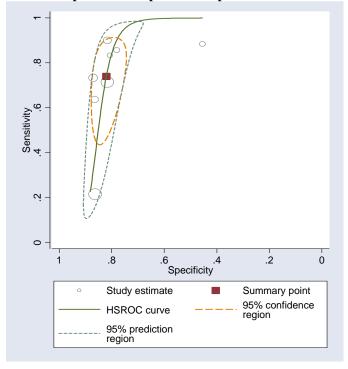


Figure 20 Plot of sensitivity against specificity including summary values of the accuracy of cervicovaginal fetal fibronectin bedside testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 37 weeks' gestation

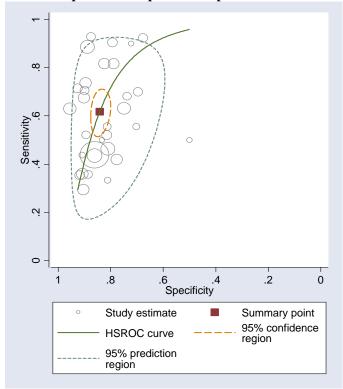


Figure 21 Funnel plot analysis of accuracy studies evaluating the accuracy of cervico-vaginal fetal fibronectin in symptomatic women in predicting spontaneous preterm birth within 7-10 days of testing

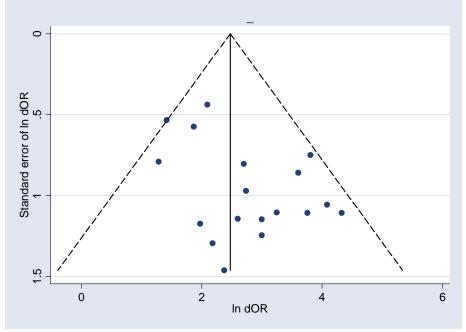
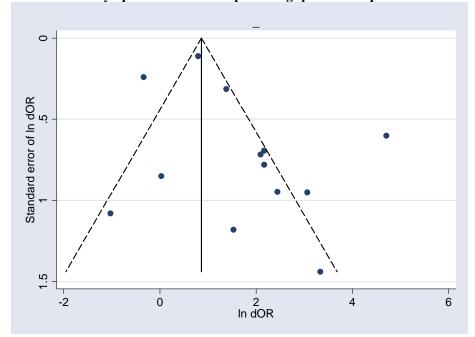
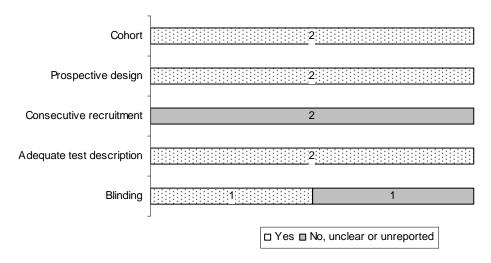



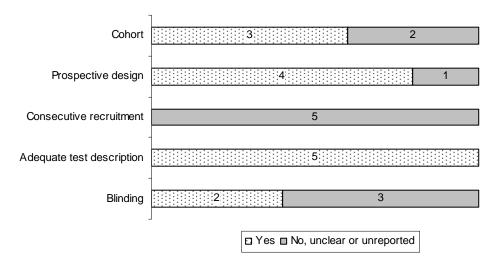
Figure 22 Funnel plot analysis of accuracy studies evaluating the accuracy of cervico-vaginal fetal fibronectin in asymptomatic women in predicting spontaneous preterm birth before 37 weeks' gestation

Cervico-vaginal prolactin

During pregnancy, prolactin is produced by the decidua (in addition to the maternal adenohypophysis and the fetal pituitary. Disruption of the decidua-membrane matrix during labour whether preterm or term, may allow the secreted prolactin to leak to the cervix and vagina where it would be available for detection. It is purported that detection of this cervico-vaginal prolactin is a reliable predictor of the onset of spontaneous preterm labour and hence spontaneous preterm birth. A cotton swab is used to collect samples of cervico-vaginal secretions during a speculum examination, which was then sent for laboratory assay.


Study characteristics and quality

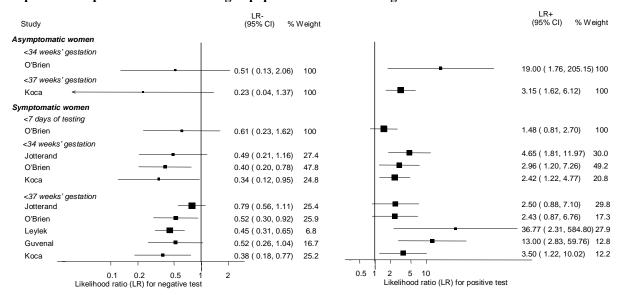
There were 5 primary studies, 2 evaluating the test in asymptomatic women population (n = 80)^{131;132} and 5 evaluating the test in symptomatic women (n = 265),¹³¹⁻¹³⁵ presenting with threatened preterm labour, including two studies that evaluated the test in both populations.^{131;132} The study enrolment ranged from 35^{132} to 66 women.¹³⁵ In asymptomatic women, the test was carried between 24 and 32 weeks' gestation. The studies' enrolment for asymptomatic women ranged from 35 to 66 women^{132;135} with a median of 40 women.¹³¹ Only two studies, both in symptomatic women, used the same threshold of abnormality of 2.0 ng/ml.^{131;134} The remaining studies used 1.5 ng/ml,¹³² 1.8 ng/ml,¹³³ and 50 ng/ml thresholds.¹³⁵ All the studies evaluated cervico-vaginal prolactin test on a single occasion rather than as a serial test.


None of the studies reported consecutive enrolment and only 3 studies, one in asymptomatic population¹³¹ and two in symptomatic population^{131;134} reported blinding. The methodological quality of the included primary studies is summarized in Figure 23. None of the studies fulfilled the definition of ideal quality test accuracy study design. One study each reported outcome of spontaneous preterm birth before 34 weeks' and 37 weeks' gestation. One study reported outcome within 7 days of testing, ¹³¹ 3 studies reported outcome before 34

weeks' gestation ^{131;132;134} and all studies reported outcome before 37 weeks' gestation in symptomatic women. ¹³¹⁻¹³⁵ Information on individual study characteristics can be found in Table 17, which summarizes each study's salient features, stratified according to population of women tested, i.e. asymptomatic antenatal women and women with symptoms of threatened preterm labour.

Figure 23 Methodological quality of studies included in the systematic review of accuracy of cervicovaginal prolactin in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour. Data presented as 100% stacked bars. Figures in the stacks represent number of studies

Symptomatic women


Accuracy of cervico-vaginal prolactin in asymptomatic women

In the single study evaluating the test on asymptomatic women for predicting spontaneous preterm birth before 34 weeks' gestation, LR+ was 19.00 (95% CI 1.76 - 205.15) and LR-was 0.51 (95% CI 0.13 - 2.06)¹³¹ while before 37 weeks' gestation the LR was 3.15 (95% CI 1.62 - 6.12) and LR- was 0.23 (95% CI 0.038 - 1.37)¹³² (Figure 24). The accuracy measures of the test in predicting spontaneous preterm births in asymptomatic women are summarized in Table 18.

Accuracy of cervico-vaginal prolactin in symptomatic women

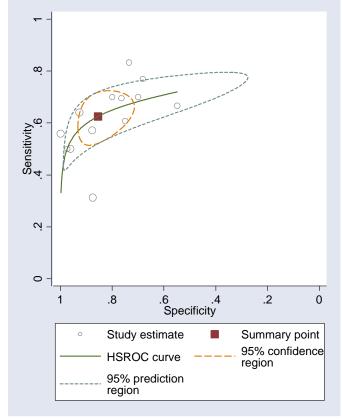

For predicting spontaneous preterm birth within 7days of testing, LR+ was 1.48 (95% CI 0.81 - 2.70) and LR- was 0.61 (95% CI 0.23 - 1.62) (Figure 24). The accuracy for predicting spontaneous preterm birth before 34 weeks' gestation ranged from LR+ 2.42 (95% CI 1.22 - 4.77) and LR- 0.34 (95% CI 0.12 - 0.95)¹³² to LR+ 4.65 (95% CI 1.81 - 11.97) and LR- 0.49 (95% CI 0.21 - 1.16).¹³⁴ Jotterand *et al*¹³⁴ represented the largest higher quality available. The accuracy for predicting spontaneous preterm birth before 37 weeks' gestation ranged from LR+ 2.43 (95% CI 0.87 - 6.76) and LR- 0.52 (95% CI 0.30 - 0.92)¹³¹ to LR+ 36.77 (95% CI 2.31 - 584.80) and LR- 0.45 (95% CI 0.31 - 0.65)¹³⁵ (Figure 24). The largest higher quality study (Jotterand *et al*)¹³⁴ however had LR+ 2.50 (95% CI 0.88 - 7.10) and LR- 0.79 (95% CI 0.56 - 1.11) for this reference standard. Heterogeneity assessment of the LR's did not reveal significant graphical or statistical heterogeneity of the accuracy results except for either positive or negative test results in predicting spontaneous preterm birth before 34 and 37 weeks' gestation in symptomatic women. The accuracy measures of the test in predicting spontaneous preterm births in symptomatic women are summarized in Table 18.

Figure 24 Forest plots of likelihood ratios (LR's) of rapid test for cervico-vaginal prolactin as a predictor of spontaneous preterm birth according to population and outcome gestations*+

^{*}Studies are arranged in descending order of methodological quality

Figure 25 Plot of sensitivity against specificity including summary values of the accuracy of cervicovaginal prolactin testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 37 weeks' gestation

⁺ χ 2 heterogeneity test for 34 weeks' gestation p = 0.54 for LR+ and p = 0.86 for LR-, and for 37 weeks' gestation p = 0.13 for LR+ and p = 0.16 for LR-

Cervico-vaginal phIGFBP-1

The phosphorylated form of insulin-like growth factor binding protein 1 (phIGFBP-1) is produced by placental decidual cells. It is released and leaks into the cervix during the onset of parturition, whether term or preterm, and thus has been purported as a reliable predictor of the onset of preterm labour and hence spontaneous preterm birth. The novel test is an immune-chromatographic dipstick test based on monoclonal antibodies that detects the presence of phosphorylated form of IGFBP-1 release from the decidual cells. The test is readily available in the form of a commercial rapid test kit. 136 A cotton swab is used to collect samples of cervico-vaginal secretions during a speculum examination. The result is either positive (phIGFBP-1 is present) (threshold exceeded $30\mu g/L$), or negative (phIGFBP-1 less than $30\mu g/L$) obtained within 10-15 minutes of performing the test.

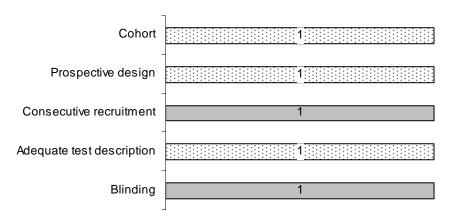
Study characteristics and quality

There were 10 primary studies, involving altogether, a total of 568 women. One potentially eligible study for inclusion was excluded because data was unobtainable. Table 19 summarizes each study's salient features, stratified according to population of women tested, i.e. asymptomatic antenatal women (1 study) and women with symptoms of threatened preterm labour (9 studies). The single study included on asymptomatic antenatal population had targeted the test, which was performed 3 weekly between 24 to 34 weeks' gestation, at women who has previous spontaneous preterm birth. The studies' enrolment ranged from 32 – 135 women, with a median of 46 women.

Only one study reported consecutive enrolment¹³⁹ and only two studies reported blinding to test results and or reference standards.^{140;144} Otherwise all studies used cohort of pregnant women, where all except two reported prospective data collection design,^{145;146} and with one exception,¹⁴⁵ had provided adequate test description. The methodological quality of the included primary studies is summarized in Figure 26. The only study on asymptomatic

women had reported spontaneous preterm birth before 37 weeks' gestation as the reference standard. For studies on symptomatic women, all studies have reported birth before 37 weeks' gestation as their reference standards. Additionally, 3 studies also reported birth within 48 hours of testing, ^{139;140;144} 4 studies reported birth within 7 days of testing, ^{139;140;143;144} and 3 studies reported birth before 34 weeks' gestation. ^{136;143;144}

Accuracy of phIGFBP-1 in asymptomatic women


In the single study evaluating the test on asymptomatic women for predicting spontaneous preterm birth before 37 weeks' gestation, LR+ was 4.17 (95% confidence interval (CI) 2.44 - 7.13) and LR- was 0.21 (95% CI 0.08 - 0.51). 138

Accuracy of phIGFBP-1 in symptomatic women

For predicting spontaneous preterm birth within 48 hours of testing, summary LR+ was 2.53 (95% CI 1.17 – 5.48) and summary LR- was 0.32 (95% CI 0.15 – 0.66) (Figure 27). There were two studies of equal size and representing higher quality studies giving a summary LR+ 1.73 (95% CI 0.92 - 3.25) and summary LR- 0.59 (95% CI 0.24 - 1.45). 139;144 The accuracy for predicting spontaneous preterm birth within 7 days of testing was shown in Figure 28, where the summary LR+ was 3.29 (95% CI 2.24 – 4.83) and summary LR- was 0.20 (95% CI 0.10 – 0.41). For this reference standard (i.e. spontaneous preterm birth within 7 days of testing), the summary LR+ 2.83 (95% CI 1.57 - 5.09) and summary LR- 0.371 (95% CI 0.13 - 1.04) as there were two higher quality studies of equal size. 139;144 The accuracy for predicting spontaneous preterm birth before 34 weeks' gestation was shown in Figure 29, where the summary LR+ was 2.96 (95% CI 2.02 – 4.33) and summary LR- was 0.22 (95% CI 0.08 – 0.64). The largest higher quality study had LR+ 4.15 (95% CI 1.43 - 11.99) and LR- 0.31 (95% CI 0.03 - 3.38). 144 Summary LR+ for predicting spontaneous preterm birth before 37 weeks' gestation was 4.26 (95% CI 2.54 – 7.17) and summary LR- was 0.28 (95% CI 0.20 – 0.38) (Figure 30). The highest quality study has LR+ 3.87 (95% CI 1.54 - 9.72) and LR- 0.33

(95% CI 0.15 - 0.71) for this outcome. Heterogeneity assessment of the likelihood ratios did not reveal significant graphical or statistical heterogeneity for most of the accuracy results except for positive test results in predicting spontaneous preterm birth before 37 weeks' gestation in this clinically similar group of women. The accuracy measures of the test in predicting spontaneous preterm births in symptomatic women were summarized in Table 20.

Figure 26 Methodological quality of studies included in the systematic review of accuracy of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

Symptomatic women

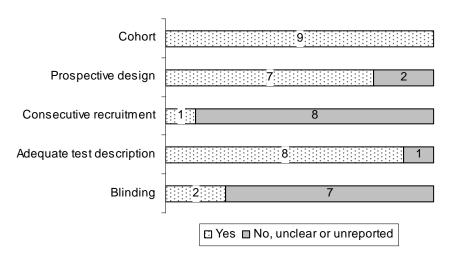
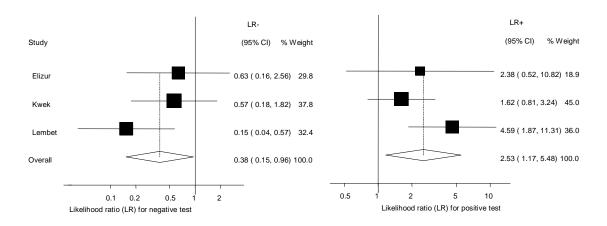
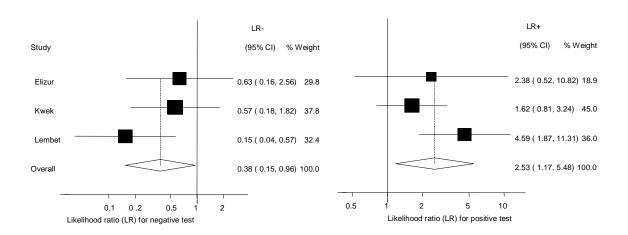
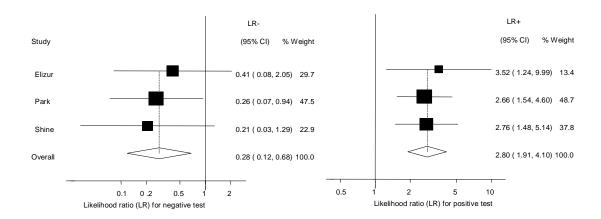




Figure 27 Forest plots of likelihood ratios (LR's) of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion as a predictor of spontaneous preterm birth within 48 hours of testing*+

^{*}Studies are arranged in descending order of methodological quality


Figure 28 Forest plots of likelihood ratios (LR's) of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion as a predictor of spontaneous preterm birth within 7 days of testing*+

^{*}Studies are arranged in descending order of methodological quality $+\chi 2$ heterogeneity test p = 0.57 for LR+ and p = 0.29 for LR-

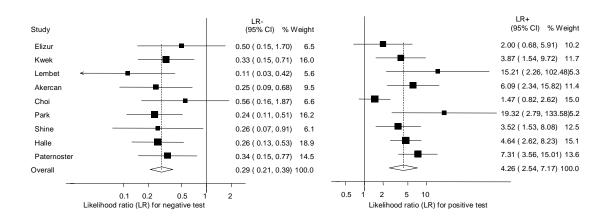

 $^{+\}chi 2$ heterogeneity test p = 0.150 for LR+ and p = 0.22 for LR-

Figure 29 Forest plots of likelihood ratios (LR's) of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion as a predictor of spontaneous preterm birth before 34 weeks' gestation*+

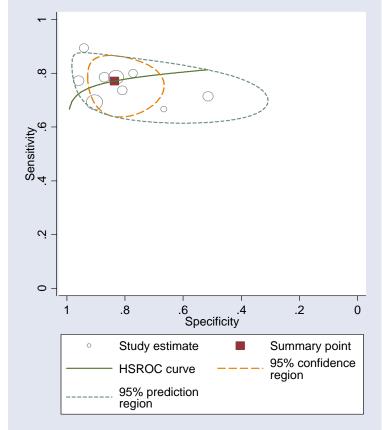

^{*}Studies are arranged in descending order of methodological quality $+\chi 2$ heterogeneity test p=0.76 for LR+ and p=0.85 for LR-

Figure 30 Forest plots of likelihood ratios (LR's) of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion as a predictor of spontaneous preterm birth before 37 weeks' gestation*+

^{*}Studies are arranged in descending order of methodological quality $+\chi2$ heterogeneity test p = 0.0037 for LR+ and p = 0.79 for LR-

Figure 31 Plot of sensitivity against specificity including summary values of the accuracy of phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion testing on women presenting with symptoms of threatened preterm labour as a predictor of spontaneous preterm birth before 37 weeks' gestation

Serum α-fetoprotein (MSAFP)

A high level of maternal serum α -fetoprotein (MSAFP) in the first half of pregnancy has been associated with prematurity for the past three decades. However its utility as a serum marker for predicting spontaneous preterm birth has never been fully evaluated in a systematic review despite it being commonly used as a screening test for fetal neural tube defect and as an integral part of screening for trisomy 21.

Study characteristics and quality

There were 20 primary accuracy articles that met the selection criteria, all in asymptomatic women. Table 21 summarises each study's salient features. ¹⁴⁷⁻¹⁶⁵ One citation contributed to two separate studies and results. ¹⁵⁰ The most common testing gestation was in the midtrimester (14-28 weeks). The threshold at which studies commonly reported their results were 2.0 and 2.5 MoMs. The commonest reference standard was spontaneous preterm birth before 37 weeks' gestation with only 5 studies reporting spontaneous preterm birth before 34 weeks' gestation. ^{148;151;153;154;162} The methodological quality of the included primary studies is summarised in Figure 32 where it is shown that all the included studies were missing one or more ideal quality features.

Accuracy of maternal serum α -fetoprotein (MSAFP) in asymptomatic women

For predicting spontaneous preterm birth before 34 weeks' gestation MSAFP with a most commonly used threshold of 2.5 MoM, had a range of LR+ from $3.03 (95\% \text{ CI } 2.30 - 4.01)^{154}$ to $4.99 (95\% \text{ CI } 3.97 - 6.28)^{162}$ and a range of LR- from $0.14 (95\% \text{ CI } 0.02 - 0.91)^{154}$ to 0.95 (95% CI 0.94 - 0.97). Waller et al represented the higher quality study available. For predicting spontaneous preterm birth before 37 weeks' gestation MSAFP, two thresholds used more commonly than others i.e. 2.0 MoM and 2.5 MoM. With threshold of 2.0 MoM, it had a range of LR+ from $0.97 (95\% \text{ CI } 0.51 - 1.85)^{158}$ to $4.21 (95\% \text{ CI } 3.47 - 5.09)^{159}$ and a range of LR- from $0.45 (95\% \text{ CI } 0.20 - 1.02)^{147}$ to 1.01 (95% CI 0.86 - 1.17). The higher

quality study from Tanaka et al had LR+ 1.63 (95% CI 0.81-3.27) and LR- 0.96 (95% CI 0.89-1.03). With a threshold of 2.5 MoM, LR+ ranged from 1.50 (95% CI 1.03-2.17) to 70.23 (95% CI 21.78-226.38) and LR- form 0.34 (95% CI 0.17-0.69) to 0.99 (95% CI 0.97-1.00). Morssink et al represented the higher quality study available. Figure 33 and Figure 35 summarized the accuracy of both thresholds in predicting spontaneous preterm birth. Individual accuracy results are summarized in Table 22.

Figure 32 Methodological quality of studies included in the systematic review of accuracy of maternal serum α -fetoprotein in predicting spontaneous preterm birth among asymptomatic antenatal women. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

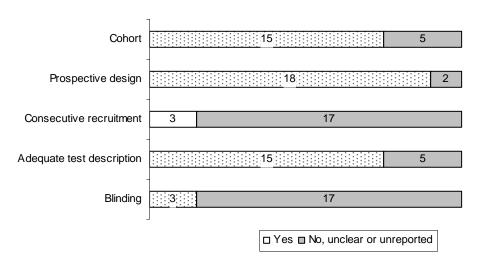
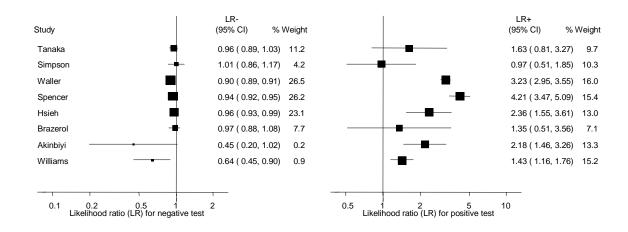



Figure 33 Forest plots of likelihood ratios (LR's) of maternal serum α -fetoprotein (MSAFP) in asymptomatic women (threshold of 2.0 MoM) as a predictor of spontaneous preterm birth before 37 weeks' gestation*

^{*} Studies are arranged in descending order of methodological quality

Figure 34 Plot of sensitivity against specificity including summary values of the accuracy of maternal serum α -fetoprotein (MSAFP) in asymptomatic women (threshold of 2.0 MoM) as a predictor of spontaneous preterm birth before 37 weeks' gestation

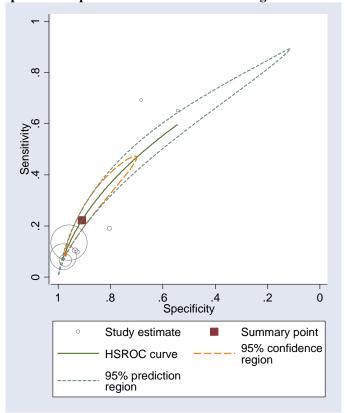
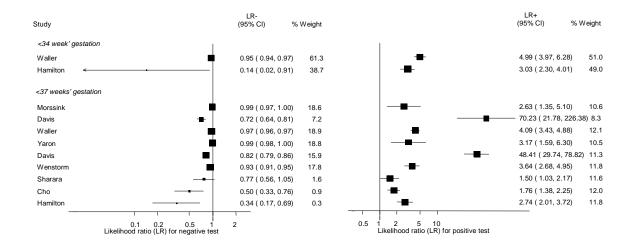
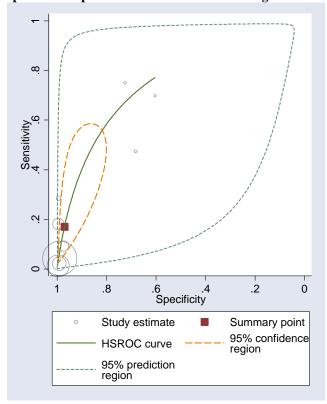




Figure 35 Forest plots of likelihood ratios (LR's) of maternal serum α -fetoprotein (MSAFP) in asymptomatic women (threshold of 2.5 MoM) as a predictor of spontaneous preterm birth before 34 and 37 weeks' gestation*

^{*} Studies are arranged in descending order of methodological quality

Figure 36 Plot of sensitivity against specificity including summary values of the accuracy of maternal serum α -fetoprotein (MSAFP) in asymptomatic women (threshold of 2.5 MoM) as a predictor of spontaneous preterm birth before 37 weeks' gestation

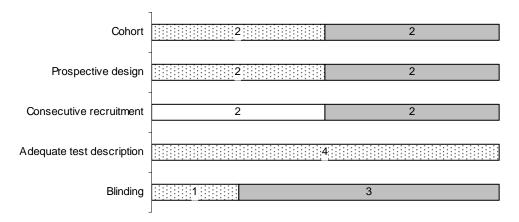
Serum relaxin

Relaxin is a peptide hormone produced by the corpus luteum and known to soften and ripen the human cervix. Hyper-relaxinemia has been associated with prematurity. ¹⁶⁶ Therefore it is purported that measurement of maternal serum relaxin may predict the impending preterm labour that leads to spontaneous preterm birth.

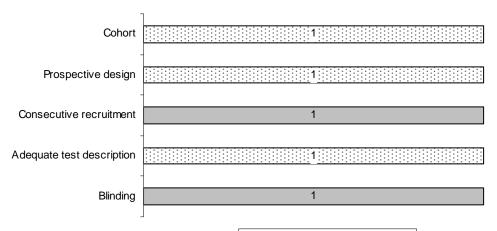
Study characteristics and quality

There were five primary studies on the accuracy of maternal serum relaxin measurements; four were on asymptomatic women (n=3549)^{153;166-168} while one on symptomatic women with threatened preterm labour (n=34).¹⁶⁹ One study evaluated the test's serial testing accuracy in predicting spontaneous preterm birth in asymptomatic women.¹⁶⁶ Table 23 summarizes each study's salient features.

There were no studies included within the systematic review of the accuracy of maternal serum relaxin testing in predicting spontaneous preterm births that fulfil the ideal definition of high quality test accuracy studies either in asymptomatic or symptomatic women. Blinding was absent in all but one study. However, all studies have adequate test description report. The methodological quality of the included primary studies is summarized in Figure 37.

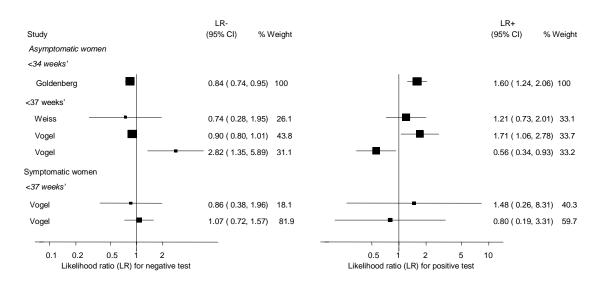

Accuracy of maternal serum relaxin in asymptomatic women

For predicting spontaneous preterm birth before 34 weeks' gestation serum relaxin had an LR+1.60 (95% CI 1.24 - 2.06) and LR- 0.84 (95% CI 0.74 - 0.95). For predicting spontaneous preterm birth before 37 weeks' gestation serum relaxin had an LR+ 1.21 (95% CI 0.73 - 2.10) and LR- 0.74 (95% CI 0.29 - 1.95). These studies represented the largest higher quality studies for the respective outcomes. The accuracy results are summarized in Figure 38. Individual accuracy results are summarized in Table 24.


Accuracy of maternal serum relaxin in symptomatic women

For predicting spontaneous preterm birth before 34 weeks' gestation, maternal serum relaxin had an LR+ of LR+ 1.48 (95% CI 0.26 - 8.31) and LR- 0.861 (95% CI 0.38 - 1.96) and before 37 weeks' gestation it had LR+ 0.80 (95% CI 0.19 - 3.31) and LR- 1.07 (95% CI 0.72 - 1.57) Figure 38). Individual accuracy results for symptomatic women can be found in Table 24.

Figure 37 Methodological quality of studies included in the systematic review of accuracy of maternal serum relaxin in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.



Symptomatic women

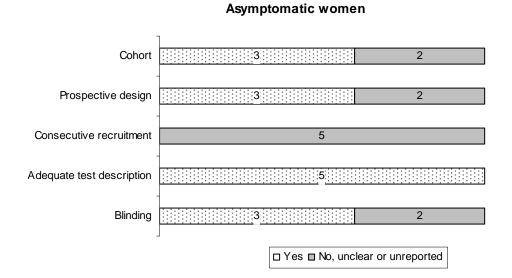
☐ Yes ☐ No, unclear or unreported

Figure 38 Forest plots of likelihood ratios (LR's) of maternal serum relaxin measurement in predicting spontaneous preterm birth stratified according to population and outcomes *

^{*}Studies are arranged in descending order of methodological quality

Serum corticotrophin releasing hormone (CRH)

Corticotrophin-releasing hormone (CRH) is a peptide produced by the hypothalamus that in pregnancy is also produced by the placenta. Its role in pregnancy has been postulated to as one of the primary endocrine mediators of parturition and possibly also of fetal development. Its rise in the maternal serum has been observed to precede the development of labour and therefore its measurement was purported to predict spontaneous preterm birth.


Study characteristics and quality

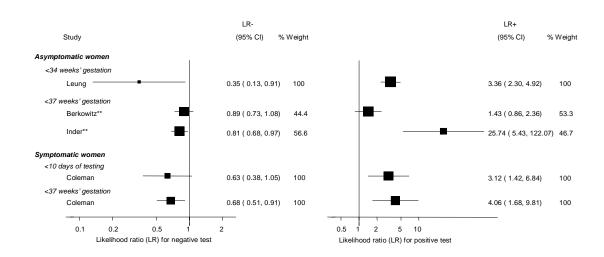
There were 6 primary studies (n = 5,034 women) on the accuracy of CRH testing, comprising of 5 studies on asymptomatic antenatal women (n = 4,940) $^{153;170\cdot173}$ and 1 studies on symptomatic women with presented with threatened preterm labour (n = 94). 174 Table 25 summarizes each study's salient features, stratified according to population of women tested, i.e. asymptomatic antenatal women and women with symptoms of threatened preterm labour. One study was not included because it included multiple gestations in its population and iatrogenic preterm birth in its outcome. 175 The studies' enrolment for asymptomatic women ranged from 181 to 2,929 women women with a median of 396 women. 170

There were no studies included within the systematic review of the accuracy of CRH testing in predicting spontaneous preterm births that fulfil the ideal definition of high quality test accuracy studies either in asymptomatic or symptomatic women. None of the studies in both population reported using consecutive enrolment of women into the study. However, all studies have adequate test description report. Retrospective and case-control study design was used in two studies in asymptomatic women. Blinding of carers to the results of CRH tests were absent from two studies on asymptomatic women. The methodological quality of the included primary studies is summarized in Figure 39.

Only two studies used the same threshold of abnormality, one each on asymptomatic and symptomatic women, of greater than 90th percentile value. Four studies, including the lone study on symptomatic women, used CRH as a single test, ¹⁷¹⁻¹⁷⁴ whilst the remaining utilized it as a serial test. For asymptomatic women, one study used spontaneous preterm birth before 32 weeks' gestation, ¹⁵³ 34 weeks' gestation, ¹⁷³ two each used 35 weeks' gestation, ^{153;171} and 37 weeks' gestation as the reference standard. ^{170;172}

Figure 39 Methodological quality of studies included in the systematic review of accuracy of CRH in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies

Accuracy of CRH in asymptomatic women


For predicting spontaneous preterm birth before 34 weeks' gestation, a single CRH testing had an LR+ of 3.36 (95% CI 2.30 - 4.92) and LR- of 0.35 (95% CI 0.13 - 0.91). For predicting spontaneous preterm birth before 37 weeks' gestation, CRH had a range of LR+ from 1.43 (95% CI 0.86 - 2.36) to 25.74 95% CI 5.428 - 122.07) and LR- from 0.81 (95% CI 0.68 - 0.97) to 0.89 (95% CI 0.74 - 1.08) (Figure 40). The largest higher quality study of

the reference standard was from Berkowitz et al. 170 Individual accuracy results can be found in Table 26.

Accuracy of CRH in symptomatic women

For predicting spontaneous preterm birth within 10 days of testing, CRH had an LR+ of 3.12 (95% CI 1.42 - 6.84) and LR- of 0.63 (95% CI 0.38 - 1.05). For predicting spontaneous preterm birth before 37 weeks' gestation, it had an LR+ of and LR- of 0.68 (95% CI 0.51 -0.91) (Figure 40). Individual accuracy results can be found in Table 26.

Figure 40 Forest plots of likelihood ratios (LR's) of CRH in predicting spontaneous preterm birth within 7-10 days of testing and 37 weeks' gestation in symptomatic women and before 34 and 37 weeks' gestation strain asymptomatic women*

^{*}Studies are arranged in descending order of methodological quality

β -human chorionic gonadotrophin (β -hcg)

The hormone β -hcg manufactured by the feto-placental unit is known to be present in high concentrations in the amniotic fluid and maternal serum during pregnancy. Disruption of the chorion and the decidua as occurs when onset of labour was imminent has been postulated as the mechanism for testing for the presence of the cervico-vaginal secretions, ¹³³ in addition to its presence in the maternal serum. ¹⁵⁵ Measurement of β -hcg can be done either by taking maternal blood serum sample during asymptomatic antenatal period usually as part of 'triple test' to screen for Down syndrome or a cotton-tipped swab of cervico-vaginal secretions specimen obtained from speculum examination.

Study characteristics and quality

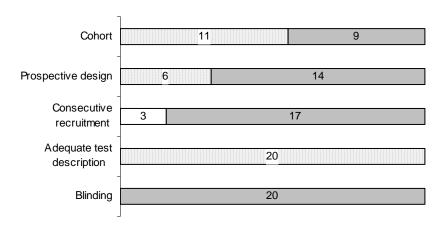
There were 23 primary articles, in which 19 evaluated the use of mid-trimester maternal serum hcg as a predictor of spontaneous preterm birth (n = 177,730 women)^{151;152;155;156;159;160;165;176-187} while an article evaluated it in early first trimester (n = 169),¹⁸⁸ and three articles evaluated cervico-vaginal hcg as a predictor of spontaneous preterm birth in women who presented with symptoms of threatened preterm labour (n = 248).^{133;189;190} Table 27 summarises each study's salient features, stratified according to population of women tested, i.e. asymptomatic antenatal women and symptomatic women with threatened preterm labour.

None of the studies fulfilled ideal quality study design. There were nine case-control studies in asymptomatic ¹⁵⁹;176;177;180-184;186</sup> and one in symptomatic women. ¹³³ Four studies in asymptomatic women reported consecutive enrolments, ¹⁵¹;160;185;187 while none was reported in symptomatic women. There were thirteen retrospective studies in asymptomatic women ¹⁵²;155;159;165;176;177;180-184;186;188 while all the studies in symptomatic women were prospective. None of the studies on asymptomatic women reported blinding and only one

study in symptomatic women reported it.¹⁹⁰ The methodological quality of the included primary studies is summarized in Figure 41.

Most of the study in asymptomatic women reported their thresholds in terms of multiples of median (MoM), except for three studies, $^{179;185;188}$ which used percentiles. The commonest threshold used was 2.0 MoM, above of which abnormal was defined. The three studies that evaluated cervico-vaginal hcg had used 25-27 mIU/ml to define their thresholds for an abnormal result. Except for three studies in asymptomatic women, which used birth before 32 weeks' gestation, 185 the remainder used birth before 37 weeks' gestation as their reference standard. One study reported birth within 7 days of testing in symptomatic women, 189 while the remainders reported before 37 weeks' gestation as their reference standard. There was graphical (Figure 42) and statistical evidence of heterogeneity in the accuracy results (χ 2 heterogeneity test p = 0.00017 for LR+ and χ 2 heterogeneity test p = 0.00011 for LR-) for studies using the commonest clinical characteristics (asymptomatic women, mid-trimester testing gestation, threshold of 2.0 MoM and birth before 37 weeks' gestation as the reference standard).

Accuracy of β-hcg in asymptomatic women


Maternal mid-trimester serum β-hcg, which used threshold of 2.0 MoM showed variable accuracy in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic women. The likelihood ratio for positive tests (LR+) ranged from 0.92 (95% confidence interval (CI) 0.77 - 1.11)¹⁸⁷ to 3.76 (95% CI 2.56 - 5.52)¹⁸⁴ and for negative tests, LR- ranged from 0.50 (95% CI 0.28 - 0.88)¹⁸² to 1.30 (95% CI 0.79 - 2.12)¹⁸⁷ (Figure 42). The largest better quality study reported LR+ 2.77 (95% CI 2.07 - 3.69) and LR- 0.984 (95% CI 0.98 - 0.99) when first percentile was used as threshold to define abnormality. Figure 44 showed plot of sensitivities and specificities and their summary estimates for the accuracy of β-hcg in asymptomatic woman in predicting spontaneous preterm birth. Figure 45 funnel plot analysis

showed asymmetry indicating presence of publication or related biases. The individual accuracy results for asymptomatic women are summarized in Table 28.

Accuracy of β-hcg in symptomatic women

In a study that reported birth within 7 days of testing, the LR+ was 6.07 (95% confidence interval (CI) 3.07 - 11.99) and LR- was 0.04 (95% CI 0.01 - 0.16). Summary LR+ for birth before 37 weeks' gestation was 2.11(95% CI 1.61 - 2.77) (χ 2 heterogeneity test p = 0.42) and summary LR- was 0.45 (95% CI 0.31 - 0.66) (χ 2 heterogeneity test p = 0.57) (Figure 43). The largest higher quality study has LR+ 2.19 (95% CI 1.35 - 3.57) and LR- 0.51 (95% CI 0.30 - 0.85). The individual accuracy results for symptomatic women are summarized in Table 28.

Figure 41 Methodological quality of studies included in the systematic review of accuracy of human chorionic gonadotrophin in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

Symptomatic women

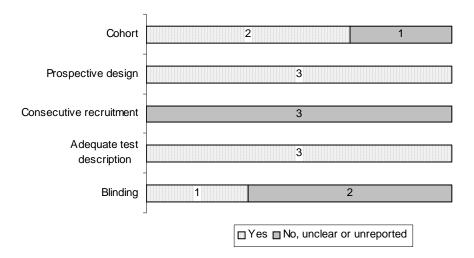
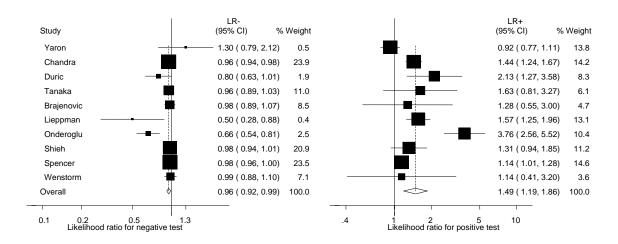
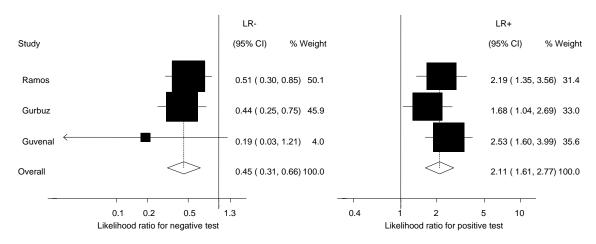
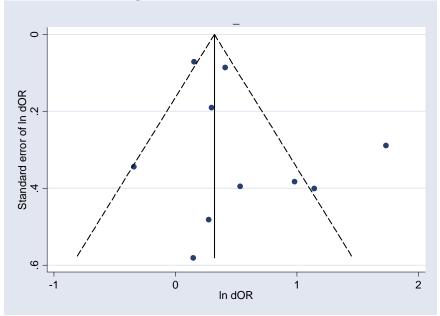




Figure 42 Forest plots of likelihood ratios (LR's) of serum β -human chorionic gonadotrophin (β -hcg) testing in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation*+

 $\chi 2$ heterogeneity test p = 0.0022 for LR+ and $\chi 2$ heterogeneity test p = 0.0049 for LR-

Figure 43 Forest plots of likelihood ratios (LR's) of cervico-vaginal β -human chorionic gonadotrophin (β -hcg) testing in symptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation*+



 $\chi 2$ heterogeneity test p=0.42 for LR+ and $\chi 2$ heterogeneity test p=0.57 for LR-

Figure 44 Plot of sensitivity against specificity including summary values of serum β -human chorionic gonadotrophin (β -hcg) testing in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation

Figure 45 Funnel plot analysis of accuracy studies evaluating the accuracy of serum β -human chorionic gonadotrophin (β -hcg) testing in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation

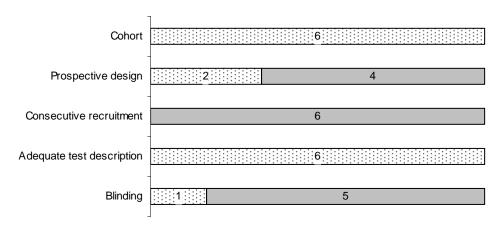
Estriol

Estriol is produced by both mother and fetus in pregnancy. There is a surge in the maternal levels of estriol, which occurs several weeks prior to the onset of spontaneous labour.

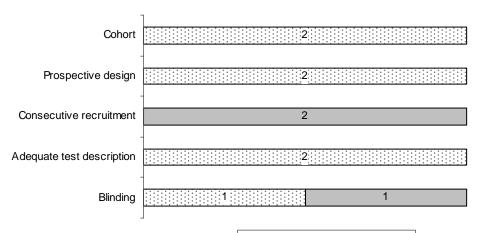
Measurement of either salivary and serum estriol was thus purported to be a predictor of spontaneous preterm birth.

191

Study characteristics and quality


There were 7 primary studies (n = 60,722 women) on the accuracy of estriol testing as predictor of spontaneous preterm birth, comprising of 6 studies on asymptomatic antenatal women (n = 60,417)^{151;152;165;192-194} and 2 studies on symptomatic women with presented with threatened preterm labour (n = 305).^{191;192} Table 29 summarizes each study's salient features, stratified according to population of women tested, i.e. asymptomatic antenatal women and women with symptoms of threatened preterm labour. The studies' enrolment for asymptomatic women ranged from 399 to 33,145 women^{151;194} with a median of 601 women, ¹⁹² while that of symptomatic women ranged from 115 to 190 women. ^{191;192} Two studies evaluated salivary estriol^{191;192} while the remaining evaluated maternal serum estriol. ^{151;152;165;193;194} One study contributed to both asymptomatic and symptomatic population. ¹⁹²

There were no studies included within the systematic review of the accuracy of estriol testing in predicting spontaneous preterm births that fulfil the ideal definition of high quality test accuracy studies either in asymptomatic or symptomatic women. None of the studies in both population reported using consecutive enrolment of women into the study. However, all studies have adequate test description report. Retrospective data collection was used in three studies in asymptomatic women. Blinding of carers to the results of estriol tests were absent from five studies on asymptomatic women asymptomatic women and one study on

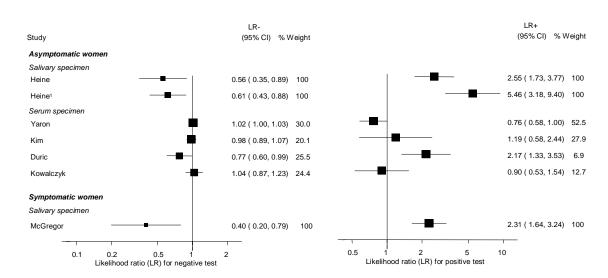

symptomatic women.¹⁹¹ The methodological quality of the included primary studies is summarized in Figure 46.

Three studies used the same threshold of abnormality of 0.75 MoM in asymptomatic women ¹⁵²;1⁹³;1⁹⁴ while the two studies in symptomatic women used 2.1 ng/ml as their thresholds. ¹⁹¹;1⁹² Two studies in asymptomatic women used 0.5 MoM as their thresholds ¹⁵¹;1⁶⁵ and one study in symptomatic women explored the accuracy of 1.4 ng/ml threshold cut-off in predicting spontaneous preterm birth. ¹⁹² One study in asymptomatic women evaluated the accuracy of repeat test in predicting spontaneous preterm birth. ¹⁹² For asymptomatic women, one study used spontaneous preterm birth before 32 weeks' gestation, ¹⁵¹ whilst the remaining reported 37 weeks' gestation as the reference standard. In symptomatic women, one study reported birth within 14 days of testing while another reported 37 weeks' gestation.

Figure 46 Methodological quality of studies included in the systematic review of accuracy of estriol in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies

Symptomatic women

☐ Yes ☐ No, unclear or unreported


Accuracy of estriol in asymptomatic women

For predicting spontaneous preterm birth before 37 weeks' gestation, a single salivary estriol testing had an LR+ 2.55 (95% CI 1.73 - 3.77) and LR- of 0.56 (95% CI 0.35 - 0.89) while a repeat test, where one positive result indicated positivity had an LR+ of 5.46 (95% CI 3.18 - 9.40) and LR- of 0.61 (95% CI 0.43 - 0.88) (Figure 47). For predicting spontaneous preterm birth before 37 weeks' gestation, serum estriol test had a range of LR+ from 0.76 (95% CI 0.58 - 1.00) to 2.17 (95% CI 1.33 - 3.53) and LR- from 0.77 (95% CI 0.60 - 0.99) to 1.02 (95% CI 1.00 - 1.04) (Figure 47). Estimates from Yaron *et al* 165 and Kim *et al* 193 represented the largest higher quality studies of the reference standard, with commonly used thresholds of 0.75 MoM and 0.5 MoM respectively. There was no study which reported spontaneous preterm birth before 34 weeks' gestation. Individual accuracy results can be found in Table 30.

Accuracy of estriol in symptomatic women

For predicting spontaneous preterm birth before 37 weeks' gestation, salivary estriol had an LR+ of 2.31 (95% CI 1.64 - 3.24) and LR- of 0.40 (95% CI 0.20 - 0.79) (Figure 47). There is no study evaluating serum estriol in predicting spontaneous preterm birth in symptomatic women. Individual accuracy results can be found in Table 30.

Figure 47 Forest plots of likelihood ratios (LR's) of salivary and serum estriol in predicting spontaneous preterm birth before 37 weeks' gestation for asymptomatic and symptomatic women*

^{*}Studies are arranged in descending order of methodological quality 1. Repeat testing within 7 days of the first test

C-reactive protein (CRP)

C-reactive protein (CRP) is an acute phase reactant associated with presence of systemic infections and may be, if raised, an indicator of risk for spontaneous preterm birth. It is an easily detectable and reliably measured serological marker obtained from a sample of maternal serum from venepuncture or amniotic fluid from amniocentesis. It is produced by the hepatocytes in response to the circulating inflammatory cytokines released by the presence of infections.¹⁹⁵

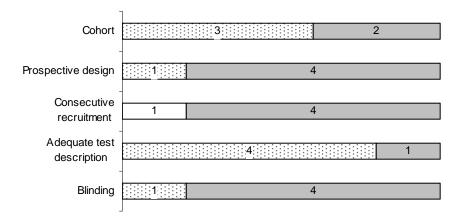
Study characteristics and quality

There were 13 primary articles, involving altogether, a total of 2,142 women. ¹⁹⁵⁻²⁰⁷ summarises each study's salient features, stratified according to population of women tested, i.e. asymptomatic antenatal women and women with symptoms of threatened preterm labour and route of testing i.e. either amniotic sample from an amniocentesis or blood serum from venepuncture. Two studies reported on CRP measurement in amniotic fluid among asymptomatic women obtained at mid-trimester gestation, ^{200;205} whilst remaining studies used maternal blood plasma serum level of CRP obtained either at mid-trimester gestation for asymptomatic women or at presentation for women whom presented with symptoms of threatened preterm labour. The study population ranged from 34 – 506 women, with a median of 69 women. Table 31 summarized the individual study characteristics.

Only one study reported prospective data collection design²⁰⁵ and only seven of the thirteen included studies reported consecutive enrolment. ^{195;196;199;201;204;205;207} Most of the studies had provided adequate test description but blinding was evident in only four studies. ^{195;196;200;201} The methodological quality of the included primary studies is summarised in Figure 48. There was no uniform test threshold used, which ranged from 1 ng/ml to 110 ng/ml, in the included studies. The most commonly used reference standard for asymptomatic women was birth before 37 weeks' gestation, with one study reporting birth before 34 weeks' gestation, ²⁰⁰

while for symptomatic women with threatened preterm labour, they were birth within 7 days of testing, ^{196;198;201;207} 34 weeks' and 37 weeks' gestation.

Accuracy of CRP in asymptomatic women


In one study of amniotic fluid CRP level obtained at mid-trimester for predicting preterm birth before 34 weeks' gestation, the LR+ was 2.63 (95% Confidence interval (CI) 1.85 - 3.75) and LR- was 0.29 (95% CI 0.08 - 0.99). 200 In another study, for predicting spontaneous preterm birth before 37 weeks' gestation, the LR+ was 4.37 (95% CI 3.03 – 6.29) and LR-was 0.09 (95% CI 0.01 to 0.60). 205 In three studies of maternal plasma CRP level measurement on asymptomatic women at mid-trimester for predicting preterm birth before 37 weeks' gestation the range of LR+ was 1.55 (95% CI 1.22 – 2.13) to 2.06 (95% CI 1.29 to 3.29) and that of LR- was 0.77 (95% CI 0.65 – 0.91) to 0.86 (95% CI 0.76 – 0.98). $^{202;203;206}$ Summary LR+ for the accuracy of maternal serum level of CRP measurement in predicting spontaneous preterm birth before 37 weeks' gestation was 1.73 (95% CI 1.38 - 2.16) (heterogeneity test $\chi 2 = 1.06$, p = 0.59) and LR- was 0.83 (95% CI 0.76 - 0.91) ($\chi 2 = 1.20$, p = 0.55) (Figure 49). The accuracy of CRP test in predicting spontaneous preterm births in asymptomatic women is summarized in Table 32 and Table 33.

Accuracy of CRP in symptomatic women

In four studies of maternal plasma CRP level measurement on women with threatened preterm labour for predicting preterm birth within 7 days of testing, the range of LR+ was 1.35~(95%~CI~0.71-2.55) to 34.36~(95%~CI~4.86-243.09) and that of LR- was 0.17~(95%~CI~0.05-0.62) to 0.89~(95%~CI~0.69-1.15). $^{196;198;201;207}$ Summary LR+ for the accuracy of maternal serum level CRP measurement in predicting spontaneous preterm birth within 7 days of testing in symptomatic women with threatened preterm labour was 4.538~(95%~CI~1.48-13.91) ($\chi 2~$ heterogeneity test p = 0.0017) and summary LR- was 0.296~(95%~CI~0.08-1.15) ($\chi 2~$ heterogeneity test p = 0.00021) (Figure 50). A study on maternal measurement plasma

CRP level in women symptomatic with threatened preterm labour used 34 weeks' gestation had an LR+ of 6.75 (95% CI 1.34 – 34.00) and an LR- of 0.66 (0.38 – 1.14). ¹⁹⁹ In four studies of maternal plasma CRP level measurement on women with threatened preterm labour for predicting preterm birth before 37 weeks' gestation, the range of LR+ was 1.67 (95% CI 0.76 – 3.66) to 4.20 (95% CI 1.10 – 15.98) and that of LR- was 0.47 (95% CI 0.25 – 0.87) to 0.76 (95% CI 0.48 – 1.21). ^{195-197;204} Summary LR+ for spontaneous preterm birth before 37 weeks' gestation was 2.29 (95% CI 1.57 - 3.35) (χ 2 heterogeneity test p=0.66) and summary LR- was 0.60 (95% CI 0.46 - 0.79) (χ 2 = 2.23, p=0.53) (Figure 51). Cammu's ¹⁹⁶ result represented the largest higher quality study. Figure 52 showed plot of sensitivities and specificities and their summary estimates for serum CRP in symptomatic women predicting spontaneous preterm birth within 7days of testing. The accuracy of CRP test in predicting spontaneous preterm births in symptomatic women who presented with threatened preterm labour is summarized in Table 32 and Table 33.

Figure 48 Methodological quality of studies of C-reactive protein in predicting spontaneous preterm birth included in the systematic review. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

Symptomatic women

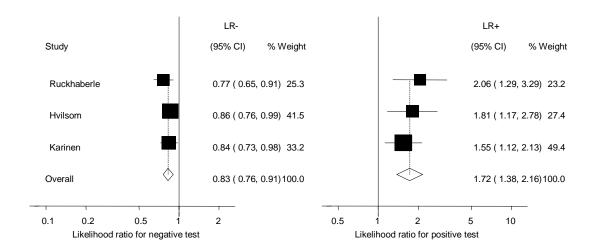
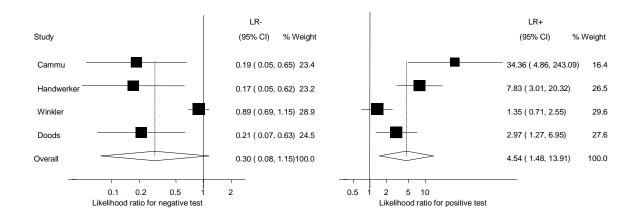




Figure 49 Forest plots of likelihood ratios (LR's) of the accuracy of mid-trimester maternal serum CRP level measurement in asymptomatic women for predicting spontaneous preterm birth before 37 weeks' gestation*+

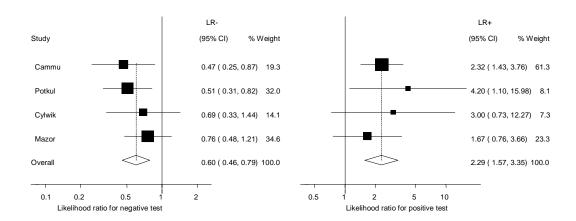

^{*} $\chi 2$ heterogeneity test p = 0.59 for LR+ and p = 0.55 for LR+Studies are arranged in descending order of methodological quality

Figure 50 Forest plots of likelihood ratios (LR's) of the accuracy of maternal serum CRP level measurement in symptomatic women with threatened labour for predicting spontaneous preterm birth within 7 days of testing*+

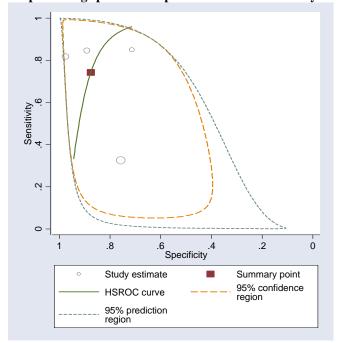

 $^{^*\}chi2$ heterogeneity test p = 0.0017 for LR+ and p = 0.00021 for LR+Studies are arranged in descending order of methodological quality

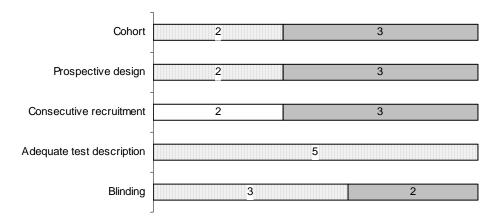
Figure 51 Forest plots of likelihood ratios (LR's) for maternal serum CRP level measurement in symptomatic women with threatened labour for predicting spontaneous preterm birth before 37 weeks' $\frac{1}{2}$

 $^{^*\}chi 2$ heterogeneity test p = 0.66 for LR+ and p = 0.53 for LR+Studies are arranged in descending order of methodological quality

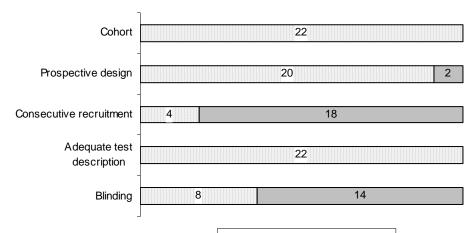
Figure 52 Plot of sensitivity against specificity including summary values of the maternal serum measurement of C-reactive protein (CRP) studies in symptomatic women with threatened preterm labour for predicting spontaneous preterm birth within 7 days of testing

Interleukin-6 (IL6)

Interleukin 6 (IL6) is a protein compound produced in response to presence of inflammation usually in response to presence of an infection. It can be found in amniotic fluid, cervical secretion and in maternal blood serum. Their presence or increasing values have been purported to predict spontaneous preterm birth in symptomatic women who presented with threatened preterm labour.²⁰⁸


Study characteristics and quality

There were 26 primary studies (n = 2,594 women) on the accuracy of IL6 testing in predicting spontaneous preterm birth. However one study, ²⁰⁹ which evaluated cervical IL6 as predictor of spontaneous preterm birth in women who presented with symptoms of threatened preterm labour were excluded as the author was not able to provide the data within the time constraint of the thesis. The number of women enrolled ranged from 73⁹⁶ to 290²¹⁰ with a median of 161 in asymptomatic women ²¹¹ and from 18¹¹⁴ to 146²⁰⁸ with a median of 73 in symptomatic women. ⁹⁶ There were 12 studies evaluating amniotic level of IL6, two in asymptomatic women ^{210;212} and ten in symptomatic women ^{114;208;213-220} as a predictor for spontaneous preterm birth. There were 10 studies evaluating cervical IL6, three in asymptomatic women ^{96;211;221} and seven in symptomatic women ^{83;96;222-226} as predictor of spontaneous preterm birth in women. One study evaluated serial testing of cervical IL6 in asymptomatic women. ²¹¹ There were six studies, all in symptomatic women who presented with threatened preterm labour, which evaluated serum IL6 as a predictor for spontaneous preterm birth. ^{225;227-231} Two studies provided information to more than one categories of either population ⁹⁶ or type of IL6 specimen. ²²⁵ Table 34 summarized individual study characteristics.


Three studies fulfilled the ideal definition of high quality test accuracy studies. ^{96;211;217} All studies in both asymptomatic and symptomatic women provided adequate test description. However, out of 20 studies on symptomatic women, most were lacking in reporting of

consecutive enrolment with only three studies reported consecutive enrolment ^{96;217;223} and blinding of test results, where only eight studies reported it. ^{83;96;114;214;215;217;228;229} The methodological quality of the included primary studies is summarized in Figure 53. No two studies had reported using the same threshold. Three studies on asymptomatic women reported birth before 37 weeks' gestation as their reference standard ^{96;210;211} and one each for birth before 34 weeks' ²¹² and 35 weeks' gestation. ²²¹ For symptomatic women, one study reported spontaneous preterm birth within 24 hours, ²³¹ five studies within 48 hours ^{114;213;215;228;230} and four studies reported birth within 5 - 7 days of testing, ^{216;226;229;232} while the remainder reported birth before 35-37 weeks' gestation. ^{83;96;208;214;217-220;223;225}

Figure 53 Methodological quality of studies included in the systematic review of accuracy of interleukin-6 (IL6) in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

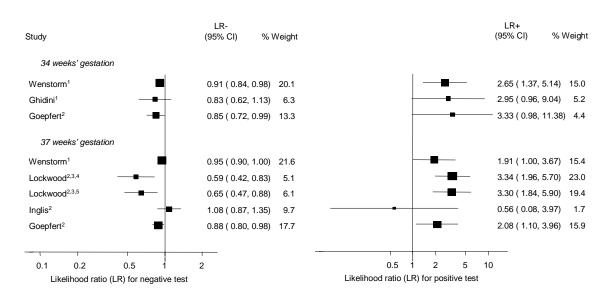
Symptomatic women

Accuracy of IL6 in asymptomatic women

For predicting spontaneous preterm birth before 34 weeks' gestation, a single amniotic fluid IL6 measurement had a range of LR+ of 2.65 (95% CI 1.37 - 5.14) ²¹⁰ to 2.95 (95% CI 0.96 -9.04)²¹² (χ 2 heterogeneity test p = 0.87) and LR- of 0.84 (95% CI 0.62 - 1.13)²¹² to 0.91 (95% CI 0.84 - 0.98)²¹⁰ (χ 2 heterogeneity test p = 0.57) (Figure 54). For predicting spontaneous preterm birth before 37 weeks' gestation, a single amniotic fluid IL6 measurement had an LR+ of 1.91 (95% CI 0.99 - 3.67) and LR- of 0.95 (95% CI 0.90 - 1.00) (Figure 54), ²¹⁰ the latter represented the largest higher quality study available for amniotic fluid IL6 in asymptomatic women for predicting spontaneous preterm birth before 34 and 37 weeks' gestation. 210 Serial testing of cervical IL6 in asymptomatic women had an LR+ of 3.34 (95%) CI 1.96 - 5.70) and LR- of 0.59 (0.42 - 0.83) for predicting spontaneous preterm birth before 37 weeks' gestation. 211 Single testing of cervical IL6 in asymptomatic women had a range of LR+ from 0.564 (95% CI 0.08 - 3.97) ⁹⁶ to 2.08 (95% CI 1.10 - 3.96)²²¹ and a range of LRfrom 0.88 (95% CI 0.80 - 0.98)²²¹ to 1.08 (95% CI 0.87 - 1.35)⁹⁶ for predicting spontaneous preterm birth before 37 weeks' gestation (χ 2 heterogeneity test p = 0.14 for LR+ and p = 0.003 for LR-) where the two studies represented the largest higher quality study available for cervical IL6 in asymptomatic women for preterm birth before 37 weeks' gestation for single and serial testings. 96;211. Figure 54 summarized the accuracy results for amniotic fluid IL6 in predicting spontaneous preterm birth in asymptomatic women. There is no information on birth before 34 weeks' gestation using cervical IL6 testing. Individual accuracy results can be found in Table 35.

Accuracy of IL6 in symptomatic women

For predicting spontaneous preterm birth within 7 - 10 days of testing, cervical IL6 had a range of LR+ from 2.40 (95% CI 1.37 - 4.23)²²⁴ to 4.01 (95% CI 2.02 - 7.96)²²⁶ and a range of LR- from 0.12 (95% CI 0.01 - 1.72)²²⁴ to 0.66 (95% CI 0.51 - 0.85),²²⁶ where the latter


represented the largest higher quality cervical IL6 study available in symptomatic women for predicting spontaneous preterm birth within 7-10 days of testing. Amniotic fluid measurement of IL6 had a range of LR+ from 2.43 (95% CI 1.36 - 4.36) to 7.01 (95% CI 2.75 - 17.90) and a range of LR- from 0.17 (95% CI 0.06 - 0.49) to 0.24 (0.09 - 0.61) LR estimates from Greci et al, the largest higher quality study for this reference standard. Serum measurement of IL6 had an LR+ of 3.34 (95% CI 1.48 - 7.53) and LR- of 0.44 (95% CI 0.30 - 0.66). The accuracy results for the different types of IL6 sources are shown in Figure 55.

For predicting spontaneous preterm birth before 34 weeks' gestation (Figure 56), amniotic fluid IL6 had an LR+ of 7.44 (95% CI 2.01 - 27.52) and LR- of 0.14 (95% CI 0.06 - 0.36). The For predicting spontaneous preterm birth before 34 weeks' gestation, cervical IL6 had a range of LR+ from 2.63 (95% CI 1.44 - 4.79)²²⁴ to 4.92 (95% CI 1.80 - 13.46) and LR- from 0.097 (95% CI 0.01 - 1.45)²²⁴ to 0.74 (95% CI 0.63 - 0.87); the latter represented the largest higher quality study of cervical IL6 in this reference standard. Serum IL6 had an LR+ of 1.44 (95% CI 0.86 - 2.41) and LR- of 0.59 (95% CI 0.22 - 1.58) for predicting spontaneous preterm birth before 34 weeks' gestation. 228

For predicting spontaneous preterm birth before 37 weeks' gestation, amniotic fluid IL6 had a range of LR+ from 4.92~(95%~CI~1.26 - $19.29)^{219}$ to 28.62~(95%~CI~1.78 - $461.04)^{217}$ and LR-from 0.05~(95%~CI~0.003 - $0.76)^{220}$ to 0.66~(95%~CI~0.54 - 0.80), 217 the latter represented the largest higher quality study for this reference standard. For the same reference standard, cervical IL6 had a range of LR+ from 1.83~(95%~CI~0.79 - $4.25)^{96}$ to 14.0~(95%~CI~2.03 - $96.62)^{225}$ and LR- from 0.10~(95%~CI~0.01 - $1.45)^{224}$ to 1.29~(95%~CI~0.75 - $2.20)~(Figure~56).^{83}$ Estimates from Inglis *et al*⁹⁶ represented the sole ideal quality study within this subgroup of reference standard of spontaneous preterm birth before 37 weeks' gestation. Serum IL6 had an LR+ of 1.13~(95%~CI~0.55 - 2.32) and LR- of 0.92~(95%~CI~0.54 - $1.56).^{225}~Figure$

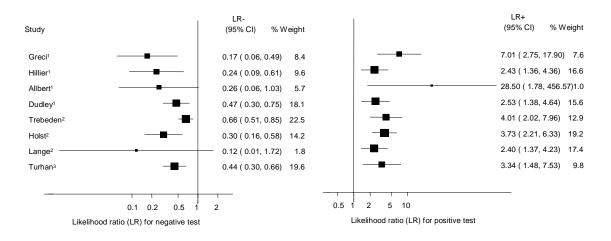
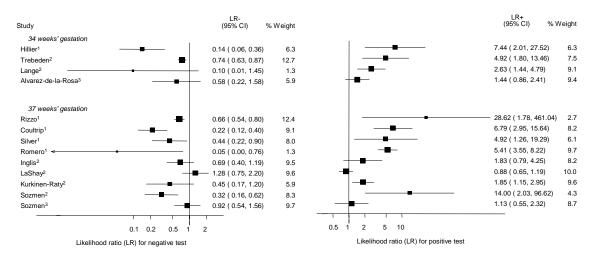

57 showed plot of sensitivities and specificities and their summary estimates for the accuracy of amniotic and cervical fluid in symptomatic women in predicting spontaneous preterm births within 7 days of testing. The accuracy of IL6 in predicting spontaneous preterm birth in asymptomatic and symptomatic women was summarized in Table 35.

Figure 54 Forest plots of likelihood ratios (LR's) of amniotic fluid interleukin-6 (IL6) measurement as a predictor of spontaneous preterm birth before 34 and 37 weeks' gestation in asymptomatic women*

^{*}Studies are arranged in descending order of methodological quality for each type of test


Figure 55 Forest plots of likelihood ratios (LR's) of IL6 measurement from amniotic fluid and cervical specimen as a predictor of spontaneous preterm birth within 7 - 10 days of testing in symptomatic women*

^{1.} Amniotic fluid measurement of IL6, 2. Cervico-vaginal measurements of IL6, 3. Serial measurement (repeated after 3-4 weeks interval), 4. Threshold 250 pg/ml, 5. Threshold 125 pg/ml

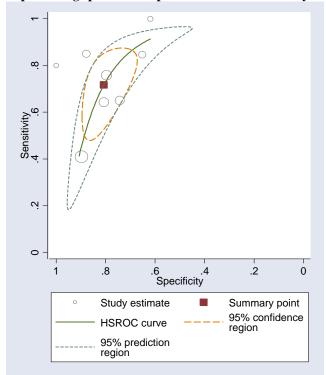

^{*}Studies are arranged in descending order of methodological quality for each type of test
1. Amniotic fluid measurement of IL6, 2. Cervico-vaginal measurements of IL6, 3. Serum measurement of IL6

Figure 56 Forest plots of likelihood ratios (LR's) of IL6 measurement from amniotic fluid, cervical swab and serum specimen as a predictor of spontaneous preterm birth before 34 and 37 weeks' gestation*

^{*}Studies are arranged in descending order of methodological quality for each type of test 1. Amniotic fluid measurement of IL6, 2. Cervico-vaginal measurements of IL6, 3. Serum measurement of IL6

Figure 57 Plot of sensitivity against specificity including summary values of the accuracy of amniotic fluid and cervico-vaginal interleukin -6 (IL6) studies in symptomatic women with threatened preterm labour in predicting spontaneous preterm birth within 7 days of testing

Interleukin-8 (IL8)

Similar to IL6, interleukin-8 (IL8) is a protein compound produced in response to presence of inflammation usually in response to presence of an infection. It can be found in amniotic fluid, cervical secretion and in maternal blood serum. Their presence in cervico-vaginal secretion²⁰⁹ or increasing values in maternal serum²¹³ have been purported to predict spontaneous preterm birth in symptomatic women who presented with threatened preterm labour.

Study characteristics and quality

There were 5 primary studies, involving altogether, a total of 568 women. Three potentially eligible studies for inclusion were excluded because their data were unobtainable. ^{209;231;233}
Table 36 summarizes each study's salient features, stratified according to population of women tested, i.e. asymptomatic antenatal women (2 studies) ^{234;235} and women with symptoms of threatened preterm labour (3 studies). ^{213;222;223} One of the included studies on asymptomatic antenatal population had the test performed 2 weekly between 24 to 28 weeks' gestation. ²³⁵ Except for one study, ²¹³ the remaining studies evaluated IL8 in cervico-vaginal specimen.

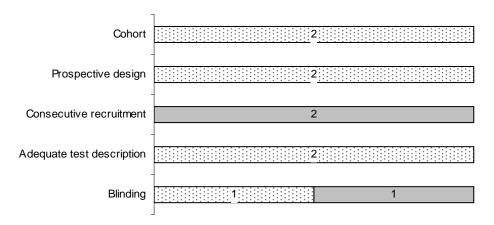
None of the studies fulfilled the ideal definition of high quality test accuracy studies. Blinding and consecutive enrolment were absent from four studies – none of the studies on symptomatic women reported blinding^{213;222;223} and only one study, in symptomatic women, reported consecutive enrolment.²²³ All studies in both asymptomatic and symptomatic women provided adequate test description. The methodological quality of the included primary studies is summarized in Figure 58. No two studies had reported using the same threshold, which varied widely. The two studies on asymptomatic women reported birth before 37 weeks' gestation as their reference standard but one of them²³⁵ additionally reported birth before 32 and 34 weeks' gestation and had performed their performed their test serially with a

two-weekly interval. For symptomatic women, one study reported spontaneous preterm birth within 24 hours, ²³¹ five studies within 48 hours ^{114;213;215;228;230} and four studies reported birth within 5 - 7 days of testing, ^{216;226;229;232} while the remainder reported birth before 35-37 weeks' gestation. ^{83;96;208;214;217-220;223;225} There were insufficient number of studies for statistical heterogeneity analysis to be conducted in the case of IL8.

Accuracy of IL8 in asymptomatic women

In the single study that evaluated the test for predicting spontaneous preterm birth before 34 weeks' gestation on asymptomatic women but which serial testing of cervical IL8 was used, LR+ was 2.23 (95% CI 1.46 - 3.41) and LR- 0.69 (0.50 - 0.97).²³⁵ For predicting spontaneous preterm birth before 37 weeks' gestation, the LR+ ranged from 1.38 (95% CI 1.04 - 1.81)²³⁵ to LR+ 2.75 (95% CI 1.68 - 4.52)²³⁴ while LR- from 0.68 (95% CI 0.49 - 0.95)²³⁴ to 0.91 (95% CI 0.82 - 1.01),²³⁵ where the latter represented the largest higher quality study available for the population. Figure 59 showed the forest plots of the accuracy of the IL8 test in predicting spontaneous preterm birth. Individual accuracy measures of the test are summarized in Table 37.

Accuracy of IL8 in symptomatic women


For predicting spontaneous preterm birth within 48 hours of testing, LR+ was 36.00 (95% CI 2.30 - 564.54) and LR- 0.10 (95% CI 0.007 - 1.42). The accuracy for predicting spontaneous preterm birth within 7 days of testing was shown in Figure 59, where the LR+ ranged from 2.34 (95% CI 1.42 - 3.84) (cervical IL8)²³² to 28.5 (95% CI 1.78 - 456.57) (amniotic fluid IL8)²¹³ and LR- ranged from 0.26 (95% CI 0.06 - 1.03) (amniotic fluid IL8)²¹³ to 0.52 (95% CI 0.32 - 0.84) (cervical IL8). LR+ from Holst *et al*²³² represented the largest higher quality study. For predicting spontaneous preterm birth before 37 weeks gestation, LR+ was 1.4 (95% CI 0.83 - 2.35) and LR- 0.67 (95% CI 0.30 - 1.50). Properties 29 showed

the forest plots of the accuracy of the IL8 test in predicting spontaneous preterm birth.

Individual accuracy measures of the test are summarized in Table 37.

Figure 58 Methodological quality of studies included in the systematic review of accuracy of test for interleukin-8 (IL8) in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

Asymptomatic women

Symptomatic women

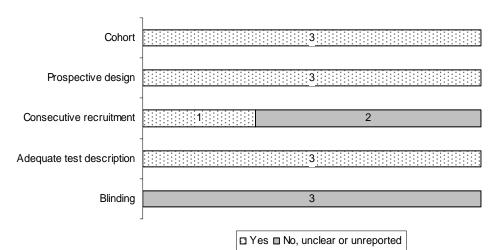
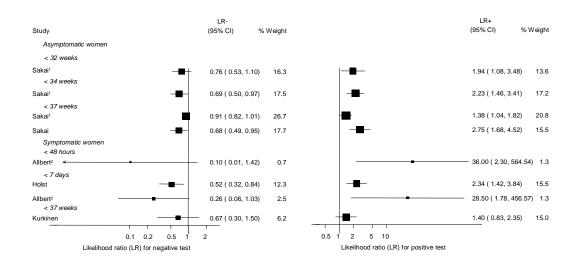
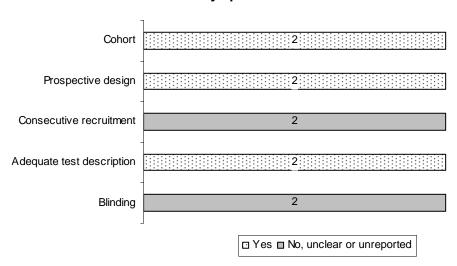



Figure 59 Forest plots of likelihood ratios (LR's) of interleukin-8 (IL8) measurement from amniotic fluid and cervical specimen as a predictor of spontaneous preterm birth stratified according to population and outcome *

^{*}Studies are arranged in descending order of methodological quality and unless otherwise stated, were single testing, using samples obtained from cervico-vaginal swabs 1. Serial testing. 2. Amniotic fluid specimen.

Matrix metalloproteases-9 (MMP-9)

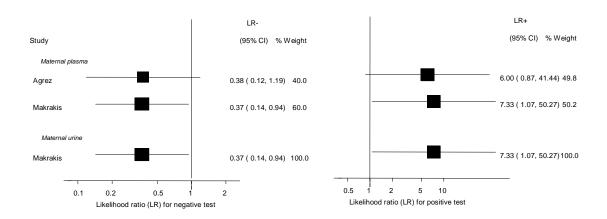
During pregnancy, MMP-9 is produced by the decidua, chorion and amnion. Its expression is increased in the choriodecidual membranes during active labour. It is purported that during the process of labour, which involved the disruption of decidua-membrane interface, measurement of MMP-9 may served as marker for impending preterm labour that lead to spontaneous preterm birth. ²³⁶


Study characteristics and quality

There were 2 primary studies (n = 35) on the accuracy of MMP-9 testing, both were on symptomatic women with threatened preterm labour. One study evaluated MMP-9 in maternal plasma (n = 15)²³⁶ while the other (n = 20) evaluated it in maternal plasma and urine specimens.²³⁷ There were no study on asymptomatic women. Table 38 summarizes each study's salient features.

There were no studies included within the systematic review of the accuracy of MMP-9 testing in predicting spontaneous preterm births that fulfil the ideal definition of high quality test accuracy studies either in asymptomatic or symptomatic women. None of the studies in both population reported using consecutive enrolment of women into the study or blinding of test results to carers or assessors. However, all studies have adequate test description report. The methodological quality of the included primary studies is summarized in Figure 60.

Figure 60 Methodological quality of studies included in the systematic review of accuracy of matrix metalloproteases-9 (MMP-9) in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.



Accuracy of MMP-9 in symptomatic women

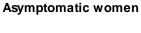
For predicting spontaneous preterm birth before 37 weeks' gestation, maternal plasma MMP-9 had an LR+ of 7.33 (95% CI 1.07 - 50.27)²³⁶ and an LR- of 0.37 (95% CI 0.14 - 0.94)²³⁷ while maternal urinary MMP-9 had a range of LR+ from 6.00 (95% CI 0.87 - 41.44) to 7.33 (95% CI 1.07 - 50.27)²³⁷ and LR- from 0.37 (95% CI 0.14 - 0.94)²³⁷ to LR- of 0.38 (95% CI 0.12 - 1.19) (Figure 61).²³⁶ Estimates from Makrakis *et al*²³⁷ represented the largest higher quality study for this reference standard. Individual accuracy results for symptomatic women can be found in Table 39.

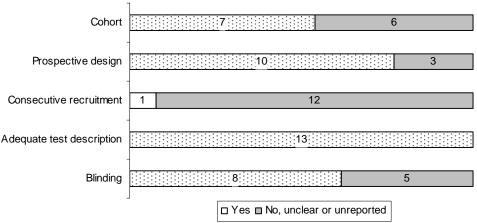
Figure 61 Forest plots of likelihood ratios (LR's) of MMP-9 in predicting spontaneous preterm birth before 37 weeks' gestation in symptomatic women *

^{*}Studies are arranged in descending order of methodological quality

Periodontal assessment

Periodontal health care is provided for free at the point of delivery to pregnant women within the UK. It examines the oral cavities for signs of periodontal disease (e.g. periodontitis), which has been purported to predispose to spontaneous preterm birth.²³⁸

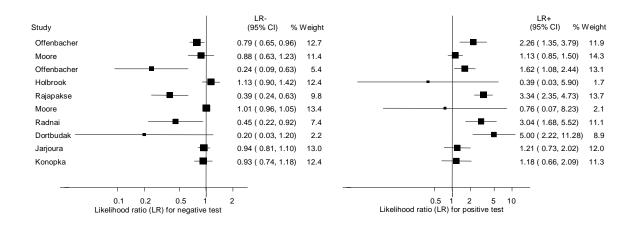

Study characteristics and quality


There were 13 primary articles evaluating the accuracy of the state of antenatal periodontal health in asymptomatic women or in the immediate postnatal period as predictor of spontaneous preterm birth (n = 3,900 women). ²³⁸⁻²⁵⁰ The number of women enrolled ranged from 36²⁴⁰ to 1,313²³⁸ with a median of 128. Two studies published their preliminary results (n = 176 women), full results of which were not available at the time of writing. ^{242;249} The accuracy of one study was not evaluated further as data was not extractable from the publication and the corresponding author was not able to provide it within the time scale of this thesis. ²⁴⁴ There was no study evaluating the accuracy of periodontal assessment as a predictor of spontaneous preterm birth in women who presented with threatened preterm labour. Table 40 summarises each study's salient features, stratified according to population of women tested, i.e. asymptomatic antenatal women and symptomatic women with threatened preterm labour.

None of the studies fulfilled ideal quality study designs. There were ten studies that reported prospective data collection ^{238-242;244;246-248;250} and six that reported case-control design. ^{239;241;243;245;247;249} Consecutive enrolment was only evident in one study. ²³⁸ Blinding was reported in eight studies. ^{238;239;241;244;246-249} Overall, there were adequate reports of test description from the studies. The methodological quality of the included primary studies is summarised in Figure 62.

All but one study assessed women's periodontal status for presence of periodontitis. The one study assessed women's antibodies serology for *Prophyromonas gingivalis*, the predominant organism implicated in periodontitis in general population. Seven studies performed their periodontal assessment in 2nd trimester which the six studies performed theirs within 2 - 5 days of delivery. There were as many criteria for determining periodontitis as the number of studies. No two studies had used the same criteria for determining periodontitis. Except for two studies, which used 32 weeks' gestation, as their reference standard.

Figure 62 Methodological quality of studies included in the systematic review of accuracy of periodontal health status in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.



Accuracy of periodontal assessment in asymptomatic women

The presence of periodontal disease showed variable accuracy in predicting spontaneous preterm birth (Figure 63). The likelihood ratio for positive tests (LR+) ranged from 0.38 (95% confidence interval (CI) 0.04 - 3.33)²⁴⁷ to 5.00 (95% CI 2.22 - 11.28)²⁴⁰ and the LR- ranged from 0.22 (95% CI 0.09 - 0.57)²⁴⁸ to 1.13 (95% CI 0.90 - 1.42).²⁴² The largest higher quality study reported LR+ 2.26 (95% CI 1.35 - 3.79) and LR- 0.79 (95% CI 0.65 - 0.96).²³⁸ Figure 64 showed of sensitivity against specificity including summary values of the accuracy of periodontal health status in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic women. Funnel plot analysis (Figure 65) showed presence of asymmetry indicating presence of publication or related biases. Individual accuracy result of the state of periodontal health in predicting spontaneous preterm birth in asymptomatic women was summarized in Table 41. Meta-analysis was not performed because of the clinical heterogeneity in the criteria defining periodontal disease.

Figure 63 Forest plots of likelihood ratios (LR's) of periodontal health status in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic women*

^{*}Studies are arranged in descending order of methodological quality

Figure 64 Plot of sensitivity against specificity including summary values of the accuracy of periodontal health status in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic women

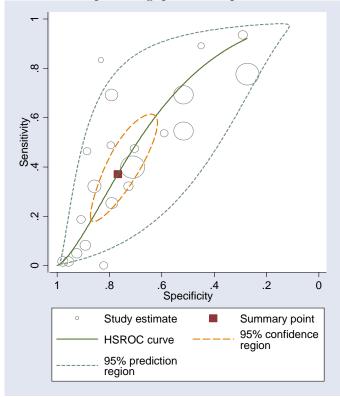
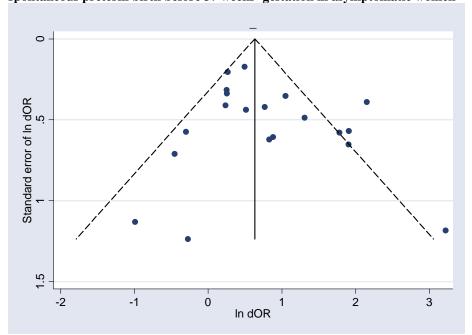



Figure 65 Funnel plot analysis of accuracy studies evaluating periodontal health status in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic women

Asymptomatic bacteriuria assessment

Screening for asymptomatic bacteriuria has been a routine component of an antenatal care. Its finding has been purported to increase the risk of spontaneous preterm birth. The usual specimen obtained was a mid-stream urine specimen sent for bacterial culture and sensitivity analysis. In light of recognised contribution of vaginal colonization in development of spontaneous preterm labour, there is even a call to re-evaluate the usefulness of screening for asymptomatic bacteriuria.²⁵¹ One systematic review had been done before.²⁵²

Study characteristics and quality

There were 26 studies (n=66,824) evaluating the accuracy of screening for asymptomatic bacteriuria in predicting spontaneous preterm birth. ²⁵³⁻²⁷⁸ Three of the included studies (n=11,520) evaluated the accuracy of asymptomatic Group B Streptococcus bacteriuria exclusively. ^{265;266;277} All the studies had used birth before 37 weeks' gestation as their outcome measurement. Table 42 summarized the characteristic of the included studies.

None of the studies fulfilled the criteria for an ideal quality study, specifically blinding was absent from all the studies. Only 6 and 9 studies used consecutive enrolment ^{262;265;266;269;274;278} and prospective data collection respectively. ^{262;265;266;268;269;274;275;278} Figure 66 summarized the methodological quality of the included studies.

Accuracy of asymptomatic bacteriuria in asymptomatic women

Screening for asymptomatic bacteriuria showed a variable accuracy in predicting spontaneous preterm birth before 37 weeks' gestation (Figure 67). LR+ ranged from 0.10 (95% CI 0.01 - 1.70)²⁵⁶ to 3.83 (95% 2.22 - 6.59)²⁶⁰ while LR- ranged from 0.43 (95% CI 0.19 - 0.94) to 1.17 (95% CI 0.64 - 2.13)²⁵⁴ for asymptomatic bacteriuria. For asymptomatic GBS bacteriuria, LR+ ranged from 1.52 (95% CI 0.80 - 2.86)²⁷⁷ to 2.69 (95% CI 1.51 - 4.76)²⁶⁶ and LR- ranged from 0.96 (95% CI 0.88 - 1.04)²⁶⁵ to 0.99 (95% CI 0.98 - 1.01).²⁷⁷ The higher quality study available reported LR+ 2.63 (95% CI 1.54 - 4.50) and LR- 0.96 (95% CI 0.92 - 0.99) was

from Wren *et al*²⁷⁸. Figure 68 showed plot of sensitivities and specificities and their summary estimates for the accuracy of asymptomatic bacteriuria assessment in predicting spontaneous preterm birth before 37 weeks' gestation. Figure 69 did not show asymmetry in the funnel plot analysis of the accuracy of asymptomatic bacteriuria assessment in predicting spontaneous preterm birth before 37 weeks' gestation. Individual accuracy data is summarized in Table 43.

Figure 66 Methodological quality of studies included in the systematic review of accuracy of asymptomatic bacteriuria assessment in predicting spontaneous preterm birth among asymptomatic antenatal women. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

Asymptomatic women

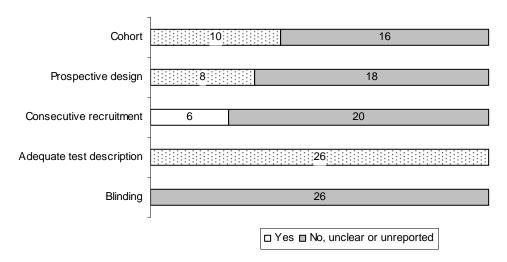
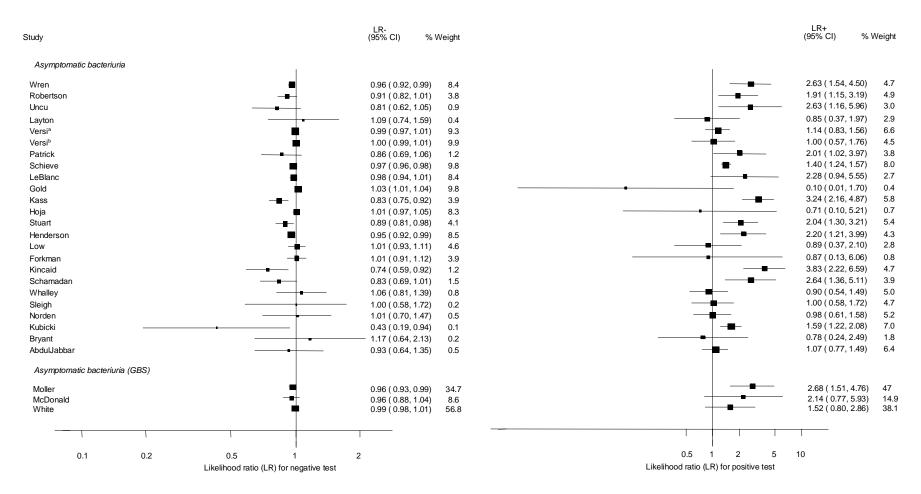



Figure 67 Forest plots of likelihood ratios (LR's) of asymptomatic bacteriuria assessment in asymptomatic women as a predictor of spontaneous preterm birth before 37 weeks' gestation stratified according to the type of asymptomatic bacteriuria*

^{*}Studies are in descending order of quality

a. Caucasian population, b. Bangladeshi population

 $[\]chi 2$ heterogeneity test for asymptomatic bacteriuria p = 0.0019 for LR+ and p = 0.0026 for LR-; for asymptomatic bacteriuria (GBS) p = 0.42 for LR+ and p = 0.16 for LR-

Figure 68 Plot of sensitivity against specificity including summary values of the accuracy of asymptomatic bacteriuria assessment in asymptomatic women as a predictor of spontaneous preterm birth before 37 weeks' gestation

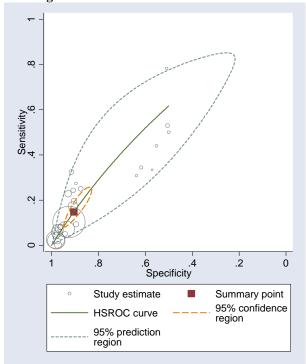
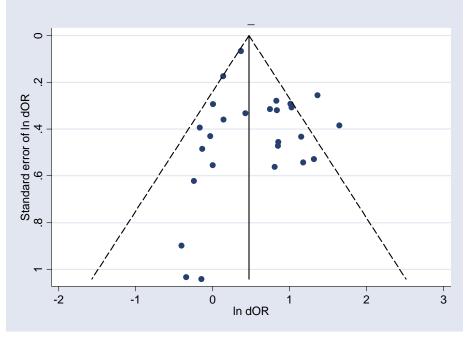



Figure 69 Funnel plot analysis of the accuracy of asymptomatic bacteriuria assessment in asymptomatic women as a predictor of spontaneous preterm birth before 37 weeks' gestation

Bacterial vaginosis (BV)

BV is a condition in women where the normal balance of bacteria in the vagina is disrupted and replaced by an overgrowth of anaerobic bacteria. The condition has been purported to predispose to spontaneous preterm birth. The condition can be tested by taking high vaginal swab specimen during speculum examination for either clinical evaluation (Amsel criteria), ²⁷⁹ Gram staining (Nugent²⁸⁰ or Spiegel²⁸¹ criteria), or standard microbiological culture.

Study characteristics and quality

There were 25 primary studies (n = 35,652 women) on the accuracy of BV testing, comprising of 17 studies on asymptomatic antenatal women (n = 33,628)^{92;282-298} and 8 studies on symptomatic women who presented with threatened preterm labour (n = 2,024)^{232;299-305}. Table 44 summarizes each study's salient features, stratified according to population of women tested, i.e. asymptomatic antenatal women and women with symptoms of threatened preterm labour. The studies' enrolment ranged from 103 to 12,937 women^{282;284} with a median of 646 women in asymptomatic population and from 87 to 753 women^{232;299} with a median of 211 women.

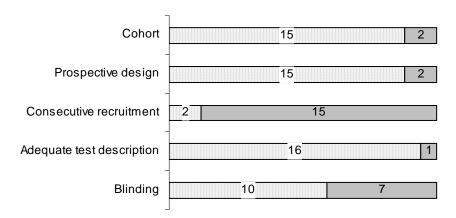
There were no studies included within the systematic review of the accuracy of BV testing in predicting spontaneous preterm births that fulfil the ideal definition of high quality test accuracy studies. Blinding of carers to the results of BV tests were often absent from studies on asymptomatic ^{282;285-290} and symptomatic women. ^{232;299;301-303} For symptomatic women, six studies had used case-control design to assess the accuracy of BV testing in predicting spontaneous preterm births in symptomatic women. ^{232;299;301;303-305} The methodological quality of the included primary studies is summarized in Figure 70.

The commonly used criterion to diagnose BV was Gram staining using Nugent's criteria in the included studies, otherwise the other two methods that were used infrequently included Gram staining using Spiegel's^{232;301;305} and bedside diagnosis using Amsel's clinical criteria.^{92;283;290;303} Three studies evaluated the accuracy or serial BV testing in asymptomatic pregnant women for predicting spontaneous preterm births^{289;291;292} while the remainders evaluated a single BV testing, usually performed at mid-trimester.^{92;282;284-287;289;291-295}

One study in asymptomatic antenatal women collected data for prediction of spontaneous preterm births at 23 – 26 weeks' gestation but which was not published.²⁸⁴ Otherwise, most studies reported births before 37 weeks' gestation as their reference standards with two exceptions; a study used birth before 32 and 34 weeks' gestation as their reference standard.²⁸⁷ whilst another study used birth 35 weeks' gestation as its reference standard.²⁸⁸ Similarly, for symptomatic women, the most commonly used reference standard was births before 37 weeks' gestation, except for 3 studies that reported births within 7 days of testing and before 33 weeks' gestation,³⁰⁰ birth before 34 weeks' gestation.³⁰² One studies reported birth within 7 days of testing.³⁰⁰

Accuracy of BV in asymptomatic women

For predicting spontaneous preterm birth before 37 weeks' gestation, a *single* BV testing (using Nugent's criterion) had a range of LR+ from 0.49 (95% CI 0.07 - 3.16) to 5.31 (95% CI 3.84 - 7.33) with a summary LR+ of 1.77 (95% CI 1.03 to 3.03) (χ 2 heterogeneity test p = 0.0033) and a range of LR- from 0.32 (95% CI 0.23 – 0.43) to 1.15 (95% CI 0.90 – 1.48) with a summary LR- of 0.80 (95% CI 0.69 – 0.93) (χ 2 heterogeneity test p = 0.0029) (Figure 71). LR+ 0.80 (95% CI 0.38 - 1.72) and LR- 1.04 (95% CI 0.92 - 1.17) represented LR from the sole ideal quality study. ²⁸⁵ For predicting spontaneous preterm birth before 37 weeks' gestation, *serial* BV testing (using Nugent's criterion) had a range of LR+ from 1.15 (95% CI 0.67 - 1.96) to 1.92 (95% 0.63 – 5.92) with a summary LR+ of 1.38 (95% CI 0.92 – 2.07) (χ 2 heterogeneity test p = 0.56) and a range of LR- from 0.87 (95% 0.49 – 1.56) to 0.94 (95% 0.85 -1.04) with a summary LR- of 0.94 (95% 0.86 – 1.02) (χ 2 heterogeneity test p = 0.96)


(Figure 72). The largest higher quality study has LR+ 1.92 (95% CI 0.63 - 5.92) and LR- 0.93 (95% CI 0.79 - 1.10). Proposition of the largest higher quality study has LR+ 1.92 (95% CI 0.63 - 5.92) and LR- 0.93 (95% CI 0.79 - 1.10). Proposition of the largest higher quality study has LR+ 1.92 (95% CI 0.79 - 1.10). Proposition of the largest higher quality study has LR+ 1.92 (95% CI 0.79 - 1.10). Proposition of the largest higher quality study has LR+ 1.92 (95% CI 0.79 - 1.10). Proposition of the largest higher quality study has LR+ 1.92 (95% CI 0.79 - 1.10). Proposition of the largest proposition of the larg

Accuracy of BV in symptomatic women

For predicting spontaneous preterm birth before 37 weeks' gestation, BV testing (using Nugent's criterion) had a range of LR+ from 0.91 (95% CI 0.57 - 1.45) to 1.86 (95% CI 1.31 - 2.65) with a summary LR+ of 1.28 (95% CI 0.72 to 2.20) (χ 2 heterogeneity test p = 0.04) and a range of LR- from 0.89 (95% CI 0.84 – 0.95) to 1.04 (95% CI 0.87 – 1.23) with a summary LR- of 0.95 (95% CI 0.86 – 1.05) (χ 2 heterogeneity test p = 0.10) (Figure 76). For predicting spontaneous preterm birth before 37 weeks' gestation, BV testing (using Spiegel's criterion) had a range of LR+ from 1.00 (95% 0.76 – 1.32) to 3.68 (95% CI 1.13 - 11.97) with a summary LR+ of 1.30 (95% CI 0.95 – 1.77) (χ 2 heterogeneity test p = 0.25) and a range of LR- from 0.66 (95% 0.46 – 0.96) to 1.00 (95% 0.73 -1.36) with a summary LR- of 0.94 (95% 0.87 – 1.01) (χ 2 heterogeneity test p = 0.04) (Figure 76). Individual accuracy results can be found in Table 45.

Figure 70 Methodological quality of studies included in the systematic review of accuracy of bacterial vaginosis (BV) testing in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women who presented with threatened preterm labour. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

Asymptomatic women

Symptomatic women

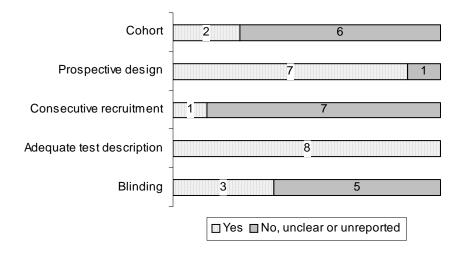
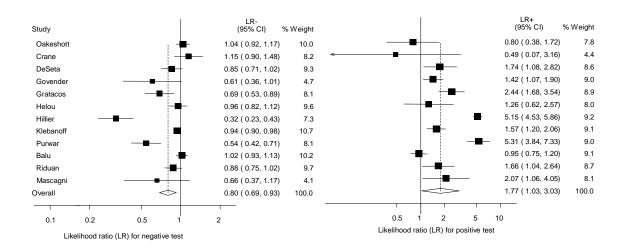
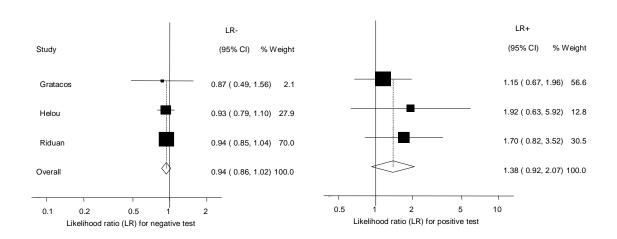




Figure 71 Forest plots of likelihood ratios (LR's) of a single 2^{nd} trimester bacterial vaginosis (BV) testing using Nugent's criteria in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation

 $\chi 2$ heterogeneity test for Nugent's criteria p=0.0033 for LR+ and p=0.0029 for LR-

Figure 72 Forest plots of likelihood ratios (LR's) of serial bacterial vaginosis (BV) testing using Nugent's criteria in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation

 $\chi 2$ heterogeneity test for Nugent's criteria p=0.56 for LR+ and p=0.96 for LR-

Figure 73 Plot of sensitivity against specificity including summary values of the accuracy of a single 2^{nd} trimester bacterial vaginosis (BV) testing using Nugent's criteria in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation

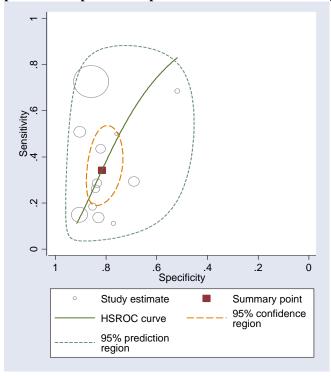


Figure 74 Funnel plot analysis of accuracy studies evaluating the accuracy of a single 2nd trimester bacterial vaginosis (BV) testing using Nugent's criteria in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation

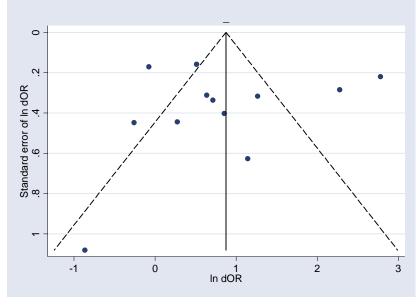
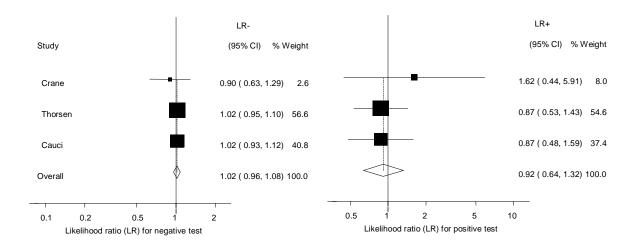
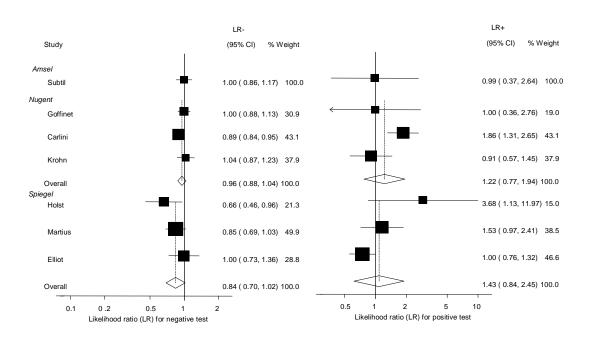




Figure 75 Forest plots of likelihood ratios (LR's) of a single 2^{nd} trimester bacterial vaginosis (BV) testing using Amsel's criteria in asymptomatic pregnant women as a predictor of spontaneous preterm birth before 37 weeks' gestation

 $[\]chi 2$ heterogeneity test for Nugent's criteria p = 0.67 for LR+ and p = 0.79 for LR-

Figure 76 Forest plots of likelihood ratios (LR's) of bacterial vaginosis (BV) testing in symptomatic women as a predictor of spontaneous preterm birth before 37 weeks' gestation

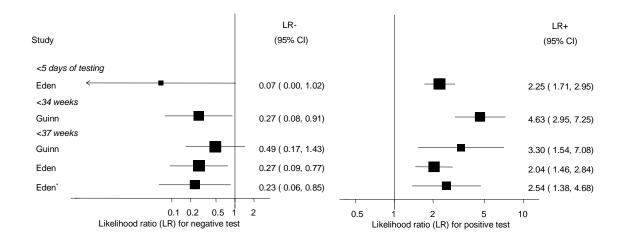
 $[\]chi 2$ heterogeneity test for Nugent's criteria p=0.04 for LR+ and p=0.10 for LR-; for Spiegel's criteria p=0.25 for LR+ and p=0.04 for LR-;

Mammary stimulation test

Antenatal mammary stimulation test is a provocative test of uterine contractility, which purported to identify asymptomatic women at high risk for spontaneous preterm birth. The presence of easily provoked uterine contractility supposed to be an indication of higher risk of spontaneous preterm birth.

Study characteristics and quality

There were 2 studies evaluating mammary stimulation test, both in asymptomatic antenatal women (n = 341). Both studies enrolled their population at the early third trimester. One study evaluated the accuracy in predicting spontaneous preterm birth before 34 weeks' gestation while both evaluated the accuracy for prediction before 37 weeks' gestation. None of the studies fulfilled the criteria for ideal quality study with consecutive enrolment being absent from both studies. Figure 77 summarizes the methodological quality of the included study. Both studies used the same test threshold. Individual study characteristics can be found in Table 46


Figure 77 Methodological quality of studies included in the systematic review of accuracy of mammary stimulation test in asymptomatic women for predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

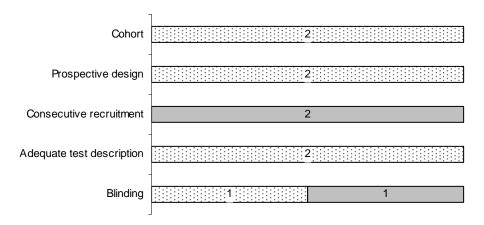
Accuracy of mammary stimulation test in asymptomatic women

For predicting spontaneous preterm birth before 34 weeks' gestation, mammary stimulation test had an LR+ 4.63 (95% CI 2.95 - 7.25) and LR- 0.27 (0.08 - 0.91). 307 For predicting spontaneous preterm birth before 37 weeks' gestation mammary stimulation test had a range of LR+ from 2.04 (95% CI 1.45 - 2.84) 306 to 3.30 (95% CI 1.54 – 7.08) 307 and LR- from 0.23 (0.06 – 0.85) 306 for those with high Creasy risk score to 0.49 (0.17 – 1.43) (Figure 78). 307 The largest higher quality study was Guinn *et al.* 307 Individual accuracy results can be found in Table 47.

Figure 78 Forest plots of likelihood ratios (LR's) of mammary stimulation test as a predictor of spontaneous preterm birth in asymptomatic women stratified according to outcome

^{*}High-risk women according Creasy' risk scoring system

Uterine activity monitoring


Presence of increasingly co-ordinated, frequent and progressively stronger uterine activities often preceded the development of labour. It was thus purported that if uterine activities may be monitored, advance warning of impending onset of labour, whether at term or specifically preterm may be predicted.

Study characteristics and quality

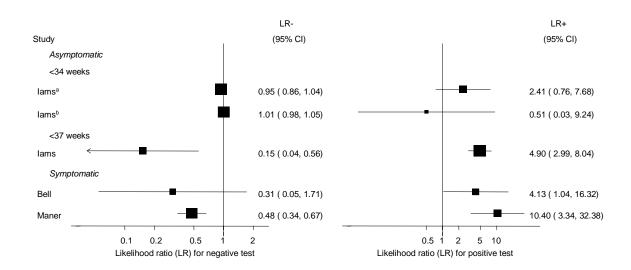

There were 4 studies evaluating uterine activities, 2 asymptomatic antenatal women (n = 370) and 2 in symptomatic women with threatened preterm labour (n = 114). ^{69;308-310} 3 studies utilized tocograph while 1 utilized emerging technology electromyographic recording of uterine activities. ³¹⁰ There was no consensus on threshold defining abnormality. Aside from one study which used birth before 35 weeks' gestation as its outcome, ⁶⁹ the remaining study used birth before 37 weeks' gestation. None of the studies fulfilled the criteria for ideal quality study, consecutive enrolment was absent from any of the studies and blinding were absent from three studies. Figure 79 summarizes the methodological quality of the included study. Individual study characteristics are summarized in Table 48.

Figure 79 Methodological quality of studies included in the systematic review of of home uterine activity monitoring in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

Asymptomatic women

Symptomatic women

☐ Yes ☐ No, unclear or unreported


Accuracy of uterine activity monitoring in asymptomatic women

For predicting spontaneous preterm birth, uterine activity monitoring had a range of LR+ from 0.51 (95% CI 0.03 - 9.24)⁶⁹ when the threshold was set for detection of significant uterine activities during the day time, to 4.90 (95% CI 2.99 - 8.04)³⁰⁹ when 4 significant contractions were detected within an hour period, and a range of LR- from 0.15 (95% CI 0.04 - 0.56)³⁰⁹ when 4 significant contractions were detected within an hour period to 1.01 (95% CI 0.98 - 1.05)⁶⁹ for detection of significant uterine activities during the day time. The higher quality study from Iams *et al* has LR+ 2.41 (95% CI 0.76 - 7.68) and LR- 0.95 (95% CI 0.86 - 1.04).⁶⁹ Figure 80 summarized the accuracy results while Table 49 showed individual accuracy results for each study.

Accuracy of uterine activity monitoring in symptomatic women

For predicting spontaneous preterm birth before 37 weeks' gestation, uterine activity monitoring had a range of LR+ from 4.13 (95% CI 1.04 - 16.32)³⁰⁸ to 10.40 (95% CI 3.34 - 32.38)³¹⁰ and a range of LR- from 0.31 (95% CI 0.05 - 1.71)³⁰⁸ to 0.48 (95% CI 0.34 - 0.67)³¹⁰ when using tocographic and electromyographic recording respectively. Bell *et al* represented the higher quality study available.³⁰⁸ Figure 80 summarized the accuracy results while Table 49 showed individual accuracy results for each study.

Figure 80 Forest plots of likelihood ratios (LR's) of uterine activity monitoring as a predictor of spontaneous preterm birth before 37 weeks' gestation* stratified according to populations

a. Uterine activities at night-time, b. uterine activities in day-time *. Unless otherwise stated

Rheobase

Rheobase in the context of a test to predict spontaneous preterm birth is measurement of the minimum strength of an electrical stimulus (electrical current) of that is able to cause excitation of a muscle, e.g. tibialis anterior muscle in symptomatic women with threatened preterm labour, which would show a higher threshold compared to a quiescent uterus. Mass electrical uterine activities in a genuine spontaneous labour would require greater electrical current to generate muscular excitation in genuine case of threatened preterm labour (compared to the relatively smaller current required when uterus is quiescent) and hence the purported ability of rheobase to predict spontaneous preterm birth in symptomatic women with threatened preterm labour by measuring these greater electrical current.

Study characteristics and quality

There was only one study evaluating rheobase in symptomatic women with threatened preterm labour (n = 176). Two different thresholds were evaluated (2.8 and 3.4 mA) and outcome of spontaneous preterm birth before 37 weeks' gestation was used. The study characteristics can be found Table 50. Methodological quality was summarized in Figure 81.

Accuracy of rheobase measurement in symptomatic women

Depending on the thresholds being used, rheobase had an LR+ that ranged from 2.29 (95% CI 1.50 to 3.52) when 2.8 mA was used to 2.36 (95% CI 1.73 to 3.20) when 3.4 mA was used, and an LR- that ranged from 0.36 (95% CI 0.19 to 0.66) when 3.4 mA was used to 0.60 (95% CI 0.41 to 0.88) when 2.8 mA was used (Figure 82). Individual accuracy results were summarized in Table 51.

Figure 81 Methodological quality of studies included in the systematic review of accuracy of rheobase testing in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies

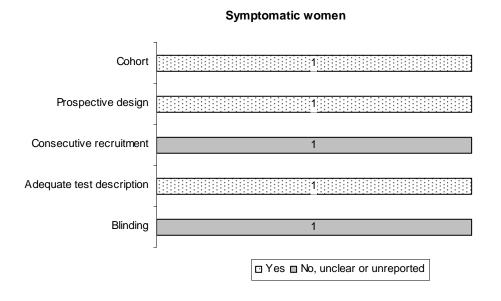
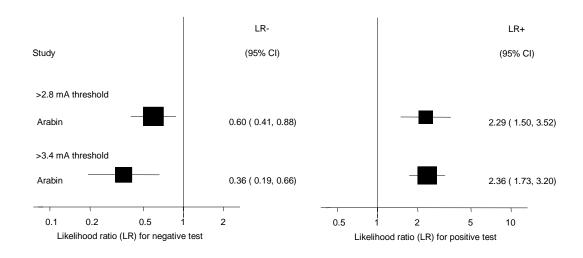



Figure 82 Forest plots of likelihood ratios (LR's) of rheobase measurement as a predictor of spontaneous preterm birth in symptomatic women stratified according to thresholds

Absence of fetal breathing movements on ultrasound

A decrease in fetal breathing movements observed during a 20 minutes observation with realtime ultrasound at the time of admission for threatened preterm labour has been purported to be a predictor of progression to spontaneous preterm birth.³¹²

Study characteristics and quality

There were 8 primary accuracy articles that met the selection criteria, which included a total of 328 women. 85;312-318 (Table 52). All of them evaluated fetal breathing movements for a sustained period of 15-20 seconds in a 30-45 minute period with real time ultrasound. The absence of breathing movements, defined when no sustained fetal breathing movements were noted in the time period, indicated a positive result. In all the studies, the test was carried out once, on the delivery suite, at the time of admission. All the studies were of small size, with enrolment ranging from 24³¹² to 70³¹⁸ women. One study fulfilled the ideal quality criteria. 85 Methodological quality was summarized in Figure 83.

Accuracy of absence of fetal breathing movement in symptomatic women

For predicting preterm birth within 48 hours (Figure 84) and within 7 days of testing (Figure 85), there was a wide variation in the accuracy results. Statistical heterogeneity was not detected in the accuracy results of positive test for birth within 7 days of testing ($\chi 2$ heterogeneity test p = 0.57) and of negative test for birth within 48 hours of testing ($\chi 2$ heterogeneity test p=0.64). However, within each reference standard sub-group, the studies were of variable methodological quality and heterogeneity was present for the corresponding negative and positive LR's respectively. The ideal quality study from Senden et al, showed a LR+ of 4.00 (95% confidence interval (CI) 0.73 - 21.84) and a LR- of 0.67 (95% CI 0.32 - 1.38) for predicting spontaneous preterm birth within 7 days of testing (Figure 85). For predicting preterm birth within 48 hours of testing, where the studies were lacking in one or

more ideal quality features, the LR for a positive test estimated from a better quality study was LR+ 16.08 (95% CI 5.22 - 49.55) and for a negative test of LR- 0.16 (95% CI 0.05 - 0.58)³¹⁸ (Figure 84). Figure 86 Individual accuracy results from the included studies are summarized in Table 53.

Figure 83 Methodological quality of studies included in the systematic review of the accuracy of fetal breathing movements in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

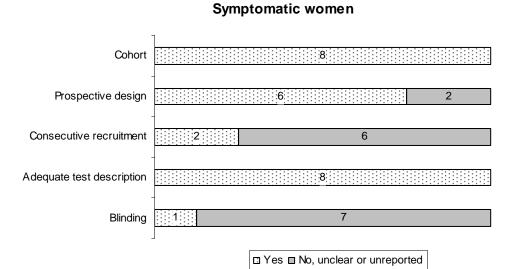
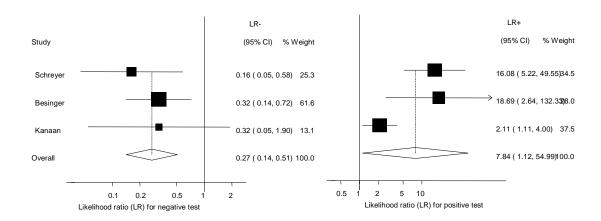
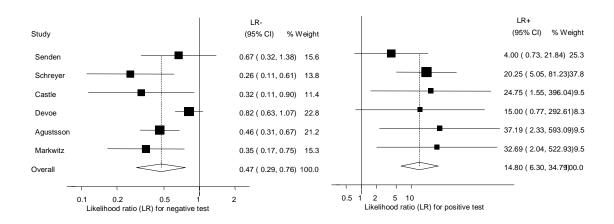




Figure 84 Forest plots of likelihood ratios (LR's) for the absence of fetal breathing movements in predicting spontaneous preterm birth within 48 hours of testing in women presenting with threatened preterm labour *

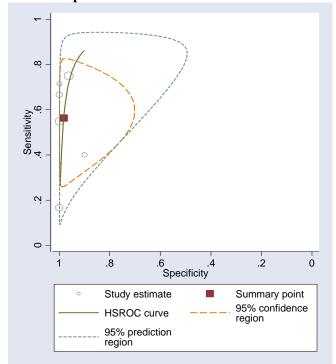

 $^{^*\}chi 2$ heterogeneity test = 17.44, p = 0.00 for LR+ and $\chi 2$ = 0.89, p = 0.64 for LR+Studies are arranged in descending order of methodological quality

Figure 85 Forest plots of likelihood ratios (LR's) for the absence of fetal breathing movements in predicting spontaneous preterm birth within 7 days of testing in women presenting with threatened preterm labour* $\frac{1}{2}$

 $^{^*\}chi2$ heterogeneity test = 3.84, p = 0.57 for LR+ and $\chi2$ = 21.10, p = 0.0013 for LR+Studies are arranged in descending order of methodological quality

Figure 86 Plot of sensitivity against specificity including summary values of the absence of fetal breathing movements in predicting spontaneous preterm birth within 7 days of testing in women presenting with threatened preterm labour

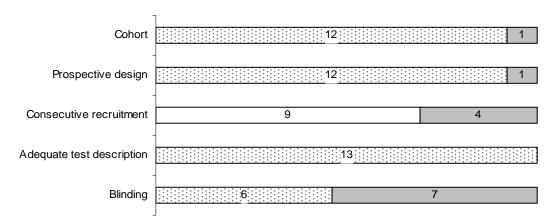
Cervical ultrasound assessment

Antenatal cervical length shortening³¹⁹ and opening of the internal os (funnelling)³²⁰ has been purported to increase the risk in asymptomatic women and the likelihood of spontaneous preterm birth in women who presented with threatened spontaneous preterm labour.

Study characteristics and quality

There were a total of 31 studies comprising 13 primary studies on asymptomatic women (n = 21555 women)^{59;321-332} and 19 primary studies (n = 2849 women)^{57;75;106;223;235;333-347} on symptomatic women with threatened preterm labour evaluating the accuracy of transvaginal ultrasound measurement of cervical length in predicting spontaneous preterm birth. Table 54 and Table 55 summarized individual study characteristics of the included studies of cervical length measurement in predicting spontaneous preterm birth, evaluating antenatal asymptomatic women and women with threatened preterm labour respectively.

Additionally, there were 11 studies, comprising 6 primary studies on asymptomatic women (n = 12855 women)^{319;322;326;327;329;331} and 5 primary studies (n = 509 women)^{223;320;333;337;340} on the accuracy of symptomatic women with threatened preterm labour evaluating the accuracy of transvaginal ultrasound assessment and measurement of cervical funnelling in predicting spontaneous preterm birth. Table 56 summarized individual study characteristics of the included studies of cervical funnelling assessment in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour.


There was a wide variation in gestation at which ultrasound cervical length measurement was carried out in asymptomatic antenatal women and the definition for thresholds of abnormality. The most common gestation at which ultrasound measurement of cervical length was carried was in the late second trimester, between 20 - 24 weeks' gestation. The most common

threshold used in asymptomatic women was 25mm at this gestation and was evaluated in 2 ideal quality studies. ^{319;322} The outcome frequently used by studies on asymptomatic women was 37 weeks' gestation but amongst ideal quality studies, the outcome frequently used was spontaneous preterm birth before 34 weeks' gestation. Among symptomatic women, the most common threshold used was 15mm and the most common outcome used was spontaneous preterm birth within 7 days of testing using this threshold.

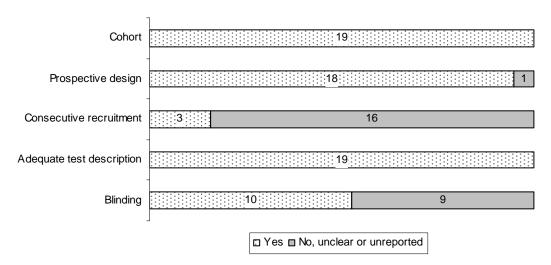

There were 5 studies on asymptomatic women ^{322;323;326;328;332} and 2 studies on symptomatic women on cervical length measurement that fulfilled ideal definition of high quality study ^{333;337} and 3 studies on asymptomatic women ^{319;322;326} and 2 studies on symptomatic women evaluating cervical funnelling that fulfilled ideal definition of high quality study. ^{333;337} The methodological quality of the included primary studies is summarized in Figure 87.

Figure 87 Methodological quality of studies included in the systematic review of accuracy of cervical length in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies.

Asymptomatic women

Symptomatic women

Accuracy of cervical length and funnelling in asymptomatic women When cervical length measurement was performed before 20 weeks' gestation using a threshold of 25 mm (commonest threshold evaluated at this gestation) for predicting spontaneous preterm birth before 34 weeks' gestation, it had sLR+ of 13.38 (95% CI 6.90 -25.96) (χ 2 heterogeneity test p = 0.07) and sLR- of 0.80 (95% CI 0.71 - 0.90) (χ 2 heterogeneity test p = 0.91). ^{322;326;328} Figure 88 showed forest plot of ideal quality studies for cervical length measurement before 20 weeks' gestation in predicting spontaneous preterm birth before 34 weeks' gestation in asymptomatic antenatal women. When performed between 20 -24 weeks' gestation, again using a threshold of 25mm (commonest threshold evaluated at this gestation) it had sLR+ 4.68 (95% CI 3.64 - 6.03) (χ 2 heterogeneity test p = 0.54) and sLR- 0.68 (95% CI 0.60 - 0.78) (χ 2 heterogeneity test p = 0.93). ^{319;322} Cervical funnelling screening in asymptomatic had variable LR's depending on the chosen threshold (some studies did not indicate their threshold, merely indicating presence of the 'funnelling' appearance on ultrasound imaging) (Figure 92). LR+ 4.63 (95% CI 3.31 - 6.48) and LR- 0.79 (95% CI 0.71 - 0.87) from Iams et al using 5mm protrusion of amniotic membrane into the cervical canal as their threshold as predictor for spontaneous preterm birth before 34 weeks' gestation represented higher quality study available for this threshold and reference standard.319

There was no more than a single study of small sample size for any of the evaluated threshold for cervical measurement performed before 20 weeks' gestation in predicting spontaneous preterm birth before 37 weeks (Figure 90). When cervical length was measured between 20 – 24 weeks' gestation for predicting before 37 week's gestation (Figure 91) using threshold of 32.5mm, it had an LR+ of 3.99 (95% CI 2.84 - 5.62) and LR- of 0.33 (95% CI 0.17 - 0.66). Individual accuracy results are summarized in Table 57 and Table 59.

Accuracy of cervical length and funnelling in symptomatic women

For predicting spontaneous preterm birth within 48 hours of testing, cervical length measurement in symptomatic women with threatened preterm labour had a variable LR's depending on the threshold abnormality chosen (Figure 93). LR+ 6.43 (95% CI 5.17 - 8.00) and LR- 0.027 (95% CI 0.0017 - 0.42) from Tsoi *et al* represented higher quality study available for the relatively more common threshold used (15 mm) and reference standard (birth within 48 hours of testing). The predicting spontaneous preterm birth within 7 days of testing, cervical length measurement in symptomatic women with threatened preterm labour had a variable LR's depending on the threshold abnormality chosen (Table 58). Figure 94 showed the forest plot of LR's for the most commonly used threshold (<15mm) for the reference standard of spontaneous preterm birth within 7 days of testing. LR+ 8.61 (95% CI 6.65 - 11.14) and LR- 0.026 (95% CI 0.0038 - 0.182) from Tsoi *et al* represented higher quality study available for the aforementioned threshold and reference standard. The standard of the standard of threshold and reference standard.

For predicting spontaneous preterm birth before 34 weeks' gestation, cervical length measurement in symptomatic women with threatened preterm labour had a variable LR's depending on the threshold abnormality chosen (Table 58). Figure 95 showed the forest plot of LR's for the most commonly used threshold (<30mm) for the reference standard of spontaneous preterm birth before 34 weeks' gestation. LR+ 1.879 (95% CI 1.36 – 2.59) and LR- 0.30 (95% CI 0.083 – 1.07) from Crane *et al* represented the ideal quality study available for the aforementioned threshold and reference standard. For predicting spontaneous preterm birth before 37 weeks' gestation, cervical length measurement in symptomatic women with threatened preterm labour had a variable LR's depending on the threshold abnormality chosen (Figure 95). LR+ 3.36 (95% CI 1.73 - 6.54) and LR- 0.35 (95% CI 0.17 - 0.70) from Gomez *et al* with threshold of <18mm and LR+ 2.29 (1.68 - 3.12 & LR- 0.29 (95% CI 0.15 - 0.58) from Crane *et al* with threshold of <30mm represented ideal quality

study available for the reference standard.³³³ Cervical funnelling screening in symptomatic had variable LR's depending on the chosen threshold (some studies did not indicate their threshold, merely indicating presence of the funnelling appearance on ultrasound imaging) (Figure 97). LR+ 4.70 (95% CI 1.90 - 11.66) and LR- 0.61 (95% CI 0.34 - 1.10) for predicting spontaneous preterm birth before 34 weeks' gestation and LR+ 2.53 (95% CI 1.02 - 6.25) and LR- 0.86 (95% CI 0.71 – 1.03) for predicting spontaneous preterm birth before 37 weeks' gestation from Crane *et al* using the presence of 'V-shaped' ultrasonographic appearance as threshold for funnelling represented ideal quality study available for this threshold and reference standard in symptomatic women. ³³³ Individual accuracy results for cervical length and funnelling measurement symptomatic women can be found in Table 58 and Table 59.

Figure 88 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement before 20 weeks' gestation (listed in ascending order of thresholds of abnormality) in predicting spontaneous preterm birth before 34 weeks' gestation in asymptomatic antenatal women

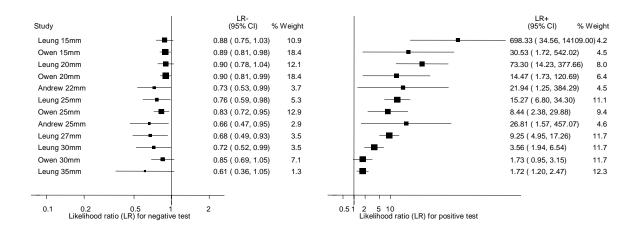


Figure 89 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement between 20 - 24 weeks' gestation (listed in ascending order of thresholds of abnormality) in predicting spontaneous preterm birth before 34 weeks' gestation in asymptomatic antenatal women

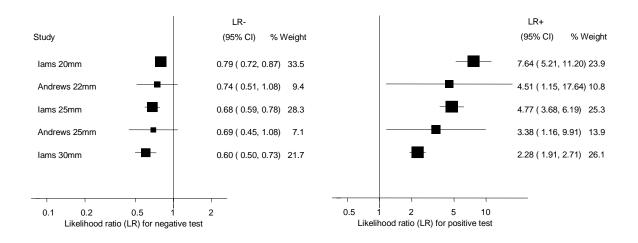


Figure 90 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement before 20 weeks' gestation (listed in ascending order of thresholds of abnormality) in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic antenatal women

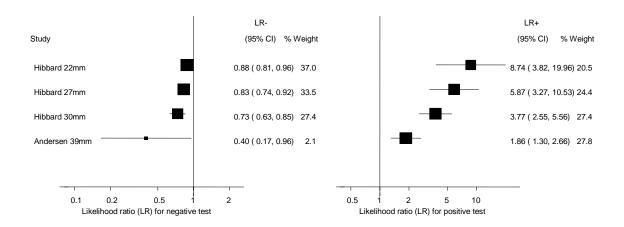


Figure 91 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement between 20-24 weeks' gestation (listed in ascending order of thresholds of abnormality) in predicting spontaneous preterm birth before 37 weeks' gestation in asymptomatic antenatal women

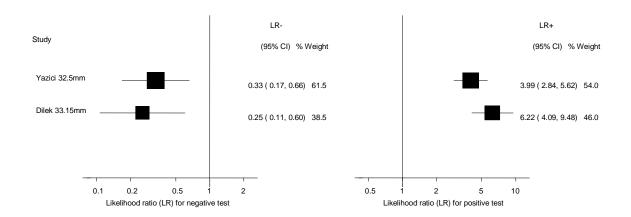
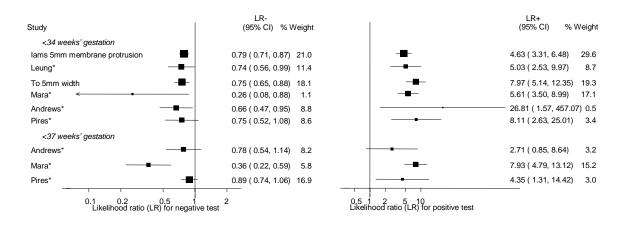



Figure 92 Forest plots of likelihood ratios (LR's) for cervical funnelling between 20-24 weeks' gestation in predicting spontaneous preterm birth stratified according to reference standards (outcomes) in asymptomatic antenatal women

⁺ Studies are arranged in descending order of quality *Any definition of funnelling unless otherwise stated

Figure 93 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement in predicting spontaneous preterm birth within 48 hours of testing in symptomatic women with threatened preterm labour

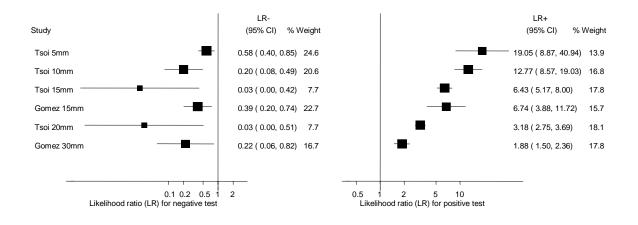
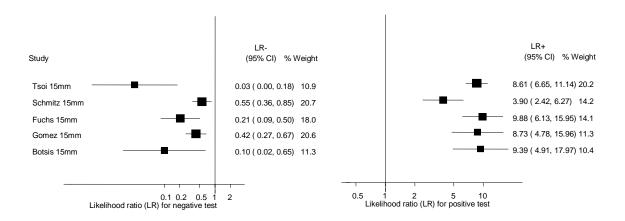
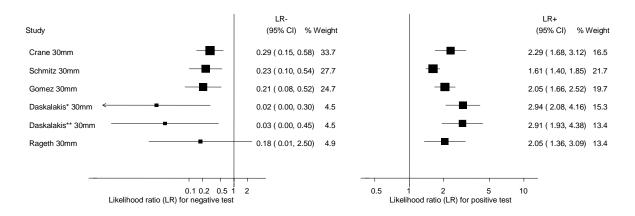




Figure 94 Forest plots of likelihood ratios (LR's) for cervical length measurement utilizing commonly chosen threshold (15mm) in predicting spontaneous preterm birth within 7 days of testing in symptomatic women with threatened preterm labour $^{\scriptscriptstyle +}$

⁺ Studies are arranged in descending order of quality

Figure 95 Forest plots of likelihood ratios (LR's) for cervical length measurement utilizing commonly chosen threshold (30mm) in predicting spontaneous preterm birth before 34 weeks' gestation in symptomatic women with threatened preterm labour $^{\scriptscriptstyle +}$

⁺ Studies are arranged in descending order of quality

Figure 96 Forest plots of likelihood ratios (LR's) from ideal quality studies for cervical length measurement in predicting spontaneous preterm birth before 37 weeks' gestation in symptomatic women with threatened preterm labour

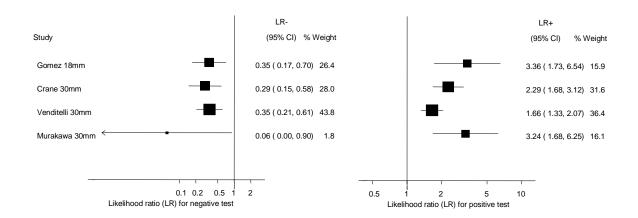
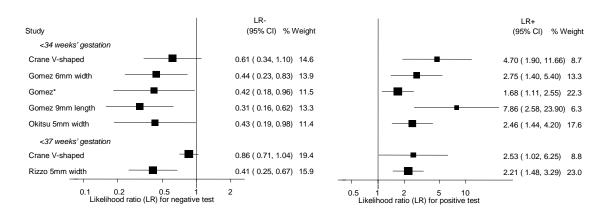
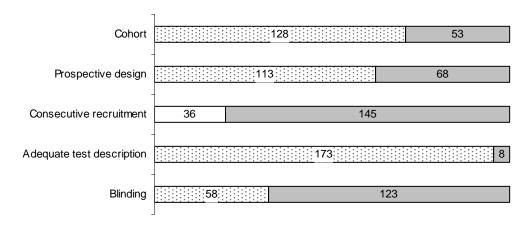



Figure 97 Forest plots of likelihood ratios (LR's) for cervical funnelling between 24-36 weeks' gestation in predicting spontaneous preterm birth stratified according to reference standards (outcomes) in symptomatic women with threatened preterm labour

 $Studies \ are \ arranged \ in \ descending \ order \ of \ quality \ *Any \ definition \ of \ funnelling \ unless \ otherwise \ stated$

Chapter 5 Overview and summary of test accuracy results

There were a large number of studies reviewed but not many promising tests were identified. The numbers of studies for most test were small and of poor quality with few exceptions. The median number of studies was 5 (range 0 - 26) for asymptomatic and was 2 (range 0 - 40) for symptomatic women. It was planned *a-priori* to perform meta-analysis only for highest quality studies to improve the validity of the results. This meant that the number of tests meta-analyzable were small (cervico-vaginal fetal fibronectin and cervical ultrasound) and the number of studies per meta-analysis was similarly small (median = 3), introducing imprecision in estimation of accuracy for these tests.


The overall quality of studies within reviews was variable. There were deficiencies in many areas of methodology (Figure 98) but two quality items, consecutive enrolment and blinding, were more frequently unreported than the other items. No test had universally high quality data, but in some tests e.g. fibronectin, cervico-vaginal phIGFBP-1 or cervical length, a number of high quality studies was available. Overall quality of test accuracy studies in symptomatic women tend to be better than those in asymptomatic women (χ 2 test p \leq 0.001). The interpretations of the accuracy data on all tests were negatively affected by poor reporting and potential threats to validity identified in assessment of study quality. Although the reviews were restricted to singleton pregnancies, some of the included studies where they have not specifically recruited singleton pregnancies were suspected to have included patients across other clinical risk spectrum (e.g. multiple pregnancies). There could be thus, when assessing the published results, uncertainties about the reported predictive ability of the test.

In evaluation of many tests, the limited number of quality studies and the limited number of cases with preterm birth per study seriously constrained conclusions. As spontaneous preterm birth has lower prevalence particularly for important outcomes such as birth before 34 weeks'

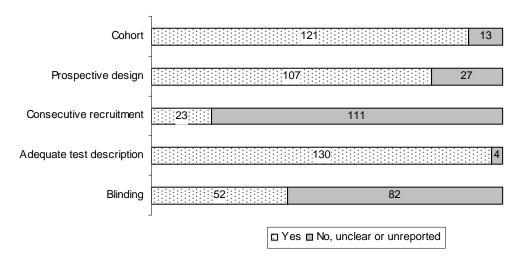
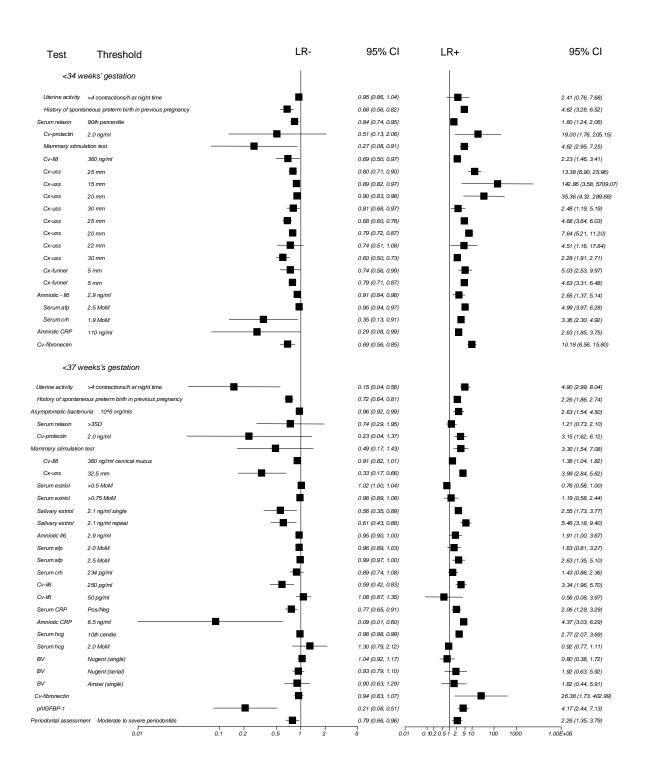

gestation or birth with 48 hours of presentation, the small absolute numbers of affected cases introduced imprecision(i.e. by increasing the variance and therefore widen the calculated confidence intervals).

Figure 98 Summary of methodological quality of studies included in the systematic review of accuracy of rheobase testing in predicting spontaneous preterm birth. Data presented as 100% stacked bars. Figures in the stacks represent number of studies*

Asymptomatic women

Symptomatic women



^{*}Some studies are reported twice because of their contributions to multiple reviews

The main accuracy results are summarised in Figure 99, Figure 100 and Figure 101 representing prediction of spontaneous preterm birth before 34 and 37 weeks' gestation in asymptomatic women, within 48 hours and 7 days of testing, and before 34 and 37 weeks' gestation in symptomatic women respectively. For most of the tests evaluated, results were not pooled due to lack of high quality studies. Where studies were pooled, random effects model were used. This method accounts for statistical heterogeneity that is left unexplained after attempts to identify its sources, where feasible. It produced a more conservative estimate of the confidence intervals.

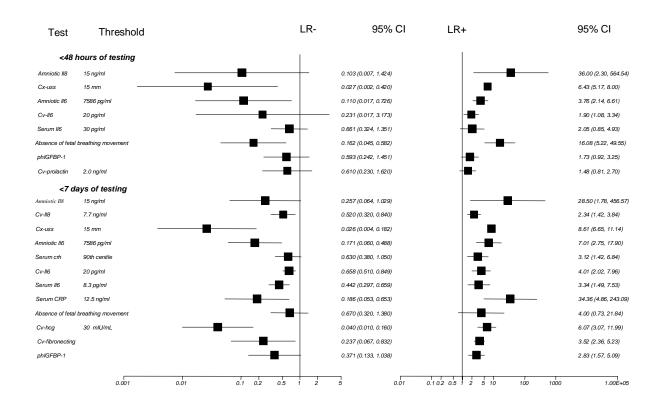

The forest plots below summarize tests' accuracies for the 22 tests for the asymptomatic (for predicting birth before 34 and 37 weeks' gestation) and symptomatic (for predicting birth within 48 hours and 7 days of testing and before 34 and 37 weeks' gestation) population. The more the LR values depart away from 1.0 the greater the change they would bring in post-test probability. As proposed by Jaeschke et al, 46 a useful test should at least have an accuracy of LR+ >5.0 and LR- <0.2. These estimates require at least a moderate disease prevalence for post-test probabilities to show substantial change from pre-test probabilities. In this situation, when a test produces a positive result it will predict with greater likelihood the later development of the condition i.e. spontaneous preterm birth. When the test result is negative, it would provide reassurance that the condition will not likely develop later. Clinically, however, most tests tend to have a greater usefulness for either LR+ or LR-, not both together. This trade-off was apparent from the accuracy reviews. Considering the point estimates of LR's, screening for spontaneous preterm birth in asymptomatic antenatal women tended to be more useful for a positive test result compared to a negative test result, i.e. LR+ tended to be further away from 1.0. This meant that it was unlikely that negative test result would rule out the likelihood of spontaneous preterm birth confidently. In symptomatic women, similarly, there was a predominance of more useful LR+ results compared to LR- results.

Figure 99 Summary forest plots of likelihood ratios (LR's) of various tests accuracy as a predictor of spontaneous preterm birth in asymptomatic women stratified according to reference standards (outcome of spontaneous preterm birth before 34 and 37 weeks' gestation), tests and selected thresholds*

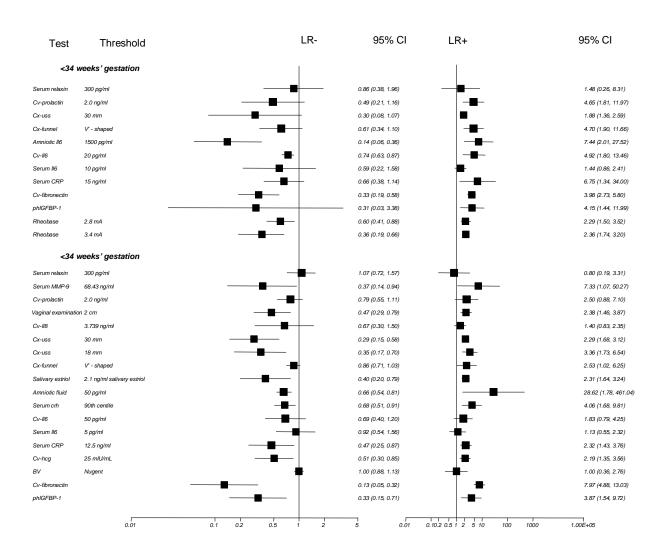

^{*}LR values above are those that were based on results of highest quality studies.

Figure 100 Summary forest plots of likelihood ratios (LR's) of various tests accuracy as a predictor of spontaneous preterm birth in symptomatic women stratified according to reference standards (outcome spontaneous preterm birth within 48 hours and 7 days of testing), tests and selected thresholds*

^{*}LR values above are those that were based on results of highest quality studies.

Figure 101 Summary forest plots of likelihood ratios (LR's) of various tests accuracy as a predictor of spontaneous preterm birth in symptomatic women stratified according to reference standards (outcome spontaneous preterm birth before 34 and 37 weeks' gestation), tests and selected thresholds*

^{*}LR values above are those that were based on results of highest quality studies.

Screening typically involves use of a confirmatory test after initial testing, prior to institution of an intervention. This was not the case in this research thesis where testing was used to identify a risk group in which preventative interventions (both intensive monitoring and or treatments) will be employed directly after test results are known. In this situation, for a test to serve as a good tool for screening, it should perform well. 46 However, given that there is often a trade-off between LR+ and LR-, the balance between LR+ and LR- that is preferable depends largely on the outcomes of the disease and costs (including potential mortality and morbidity) associated with the intervention(s). The consequences of false positive results include both costs of intensive monitoring and treatment associated morbidity, and costs among otherwise normal women. Thus it is important that LR+ is suitably high, since erroneously providing interventions to falsely positive cases leads to unwarranted inconvenience, expense and morbidity when the likelihood of spontaneous preterm birth does not change compared to the background risk due to low LR+ values. Given the consequences of false negative results (both costs and morbidity of cases of spontaneous preterm birth resulting due to lack of treatment), it is important that LR- is suitably low. This is because erroneously withholding effective interventions from falsely negative results lead to excessive morbidity and expense in the face of spontaneous preterm birth. If available effective interventions are convenient, inexpensive, and without adverse effects (to both mother and child), it is better to have the accuracy trade-offs in favour of LR- i.e. a test with a low LRthan a high LR+ and vice-versa.

Figure 99, Figure 100 and Figure 101 demonstrate that considering the point estimates of and imprecision in the LR's, most tests perform either poorly or the level of their performance is uncertain (i.e. with a wide confidence intervals). A few tests in asymptomatic antenatal women reached LR+>5, putting them in the useful tests category in predicting spontaneous preterm birth. These were ultrasonographic cervical length and funnelling measurement, and

cervico-vaginal fetal fibronectin screening. For LR-, only two tests in asymptomatic women had an LR-<0.2. These were detection of uterine contractions (by home uterine monitoring device) and amniotic fluid CRP measurement. In symptomatic women with threatened preterm labour, there were more tests with LR+ >5 compared to asymptomatic women. These were absence of fetal breathing movements, cervical length and funnelling, amniotic fluid IL6, serum CRP for predicting spontaneous preterm birth within 48 hours or 7 days of testing; and MMP-9, amniotic fluid IL6, cervico-vaginal fetal fibronectin and cervico-vaginal hcg testing for predicting spontaneous preterm birth before 34 or 37 weeks' gestation. For symptomatic women with threatened preterm labour: measurement of cervico-vaginal IL8, cervico-vaginal hcg, cervical length measurement, absence of fetal breathing movement, amniotic fluid IL6, and serum CRP all showed LR- <0.2 for predicting spontaneous preterm birth within 48 hours or 7 days of testing. Only cervico-vaginal fetal fibronectin and amniotic fluid IL6 had an LR-<0.2 in predicting spontaneous preterm birth before 34 or 37 weeks' gestation. Depending on level of effectiveness of various interventions and their associated inconvenience, costs and morbidity, a threshold analysis (a subject for further research) will be required to determine which thresholds of accuracy are required to make testing costeffective in prevention of spontaneous preterm birth. Tabular summary of the tests' accuracies for the respective reference standards can be found as Table 3 – Table 8.

 $Table\ 3\ Summary\ of\ tests'\ accuracy\ results\ for\ predicting\ spontaneous\ preterm\ birth\ before\ 34\ weeks'\ gestation\ in\ asymptomatic\ antenatal\ women$

Test (threshold)	No. of studies	LR+ (95% CI)	LR- (95% CI)
Cervical length (15mm @14-20 weeks)	3	142.86 (3.58 - 5709.07)	0.89 (0.82 - 0.97)
Cervical length (20mm @14-20 weeks)	3	35.36 (4.32 - 289.68	0.90 (0.83 - 0.98)
Cervico-vaginal prolactin (2.0ng/ml)	5	19.00 (1.76 - 205.15)	0.51 (0.13 - 2.06)
Cervical length (25mm @14-20 weeks)	3	13.38 (6.90 - 25.96	0.80 (0.71 - 0.90)
Cervico-vaginal fetal fibronectin	7	10.18 (6.56 - 15.80	0.69 (0.56 - 0.85)
Cervical length (20mm @20-24 weeks)	2	7.64 (15.21 - 1.20)	0.79 (0.72 - 0.87)
Cervical funnelling (5mm @16-20 weeks)	1	5.03 (2.53 - 9.97)	0.74 (0.56 - 0.99)
Serum α-fetoprotein (2.5 MoM)	9	4.99 (3.97 - 6.28)	0.95 (0.94 - 0.97)
Cervical length (25mm 20-24)	2	4.68 (3.64 - 6.03)	0.68 (0.60 - 0.78)
Cervical funnelling (5mm @20-24 weeks)	1	4.63 (3.31 - 6.48)	0.79 (0.71 - 0.87)
History of spontaneous preterm birth	10	4.62 (3.28 - 6.52)	0.68 (0.56 - 0.82)
Mammary stimulation test	2	4.62 (2.95 - 7.25)	0.27 (0.08 - 0.91)
Cervical length (22mm @20-24 weeks)	5	4.51 (1.16 - 17.64	0.74 (0.51 - 1.08)
Serum CRH (1.9MoM)	5	3.36 (2.30 - 4.92)	0.35 (0.13 - 0.91)
Amniotic fluid IL6 (2.9ng/ml)	2	2.65 (1.37 - 5.14)	0.91 (0.84 - 0.98)
Amniotic fluid CRP (110ng/ml)	1	2.63 (1.85 - 3.75)	0.29 (0.08 - 0.99)
Cervical length (30mm @14-20 weeks)	3	2.48 (1.19 - 5.19)	0.81 (0.68 - 0.97)
HUAM (≥4 contractions/h at night time)	1	2.41 (0.76 - 7.68)	0.95 (0.86 - 1.04)
Cervical length (30mm @20-24)	5	2.28 (1.91 - 2.71)	0.60 (0.50 - 0.73)
Cervico-vaginal IL8 (360ng/ml)	4	2.23 (1.46 - 3.41)	0.69 (0.50 - 0.97)
Serum relaxin (90th centile)	5	1.60 (1.24 - 2.06)	0.84 (0.74 - 0.95)

 $Table\ 4\ Summary\ of\ tests'\ accuracy\ results\ for\ predicting\ spontaneous\ preterm\ birth\ before\ 37\ weeks'\ gestation\ in\ asymptomatic\ antenatal\ women$

Test (threshold)	No. of studies	LR+ (95% CI)	LR- (95% CI)
Comics vesinal fatal fibrancetin	15	26.38 (1.73 - 402.99)	0.94 (0.83 - 1.07)
Cervico-vaginal fetal fibronectin		,	` '
Salivary estriol (serial)	2	5.46 (3.18 - 9.40)	0.61 (0.43 - 0.88)
HUAM (≥4 contractions/h at night time)	3	4.90 (2.99 - 8.04)	0.15 (0.04 - 0.56)
Amniotic fluid CRP (6.5ng/ml)	3	4.37 (3.03 - 6.29)	0.09 (0.01 - 0.60)
phIGFBP-1	1	4.17 (2.44 - 7.13)	0.21 (0.08 - 0.51)
Cervical length (32.5mm @20-24 weeks)	1	3.99 (2.84 - 5.62)	0.33 (0.17 - 0.66)
Cervico-vaginal IL6 (250pg/ml)	3	3.34 (1.96 - 5.70)	0.59 (0.42 - 0.83)
Mammary stimulation test	2	3.30 (1.54 - 7.08)	0.49 (0.17 - 1.43)
Cervico-vaginal prolactin (2.0ng/ml)	5	3.15 (1.62 - 6.12)	0.23 (0.04 - 1.37)
Serum β-hcg (10th centile)	2	2.77 (2.07 - 3.69)	0.98 (0.98 - 0.99)
Asymptomatic bacteriuria testing	26	2.63 (1.54 - 4.50)	0.96 (0.92 - 0.99)
Serum α-fetoprotein (2.5MoM)	9	2.63 (1.35 - 5.10)	0.99 (0.97 - 1.00)
Salivary estriol (single)	2	2.55 (1.73 - 3.77)	0.56 (0.35 - 0.89)
Moderate to severe periodontitis	13	2.26 (1.35 - 3.79)	0.79 (0.66 - 0.96)
History of spontaneous preterm birth	10	2.26 (1.86 - 2.74)	0.72 (0.64 - 0.81)
Serum CRP (positive or negative)	1	2.06 (1.29 - 3.29)	0.77 (0.65 - 0.91)
Bacterial vaginosis (Nugent serial)	3	1.92 (0.63 - 5.92)	0.93 (0.79 - 1.10)
Amniotic fluid il6 (2.9ng/ml)	2	1.91 (1.00 - 3.67)	0.95 (0.90 - 1.00)
Serum α-fetoprotein (2.0MoM))	9	1.63 (0.81 - 3.27)	0.96 (0.89 - 1.03)
Bacterial vaginosis (Amsel single)	3	1.62 (0.44 - 5.91)	0.90 (0.63 - 1.29)
Serum CRH (234 pg/ml)	5	1.43 (0.86 - 2.36)	0.89 (0.74 - 1.08)
Cervico-vaginal IL8 (360ng/ml)	4	1.38 (1.04 - 1.82)	0.91 (0.82 - 1.01)
Serum relaxin (>3SD)	5	1.21 (0.73 - 2.10)	0.74 (0.29 - 1.95)
Serum estriol (<0.75MoM)	5	1.19 (0.58 - 2.44)	0.98 (0.89 - 1.08)
Serum β-hcg (2.0MoM)	10	0.92 (0.77 - 1.11)	1.30 (0.79 - 2.12)
Bacterial vaginosis (Nugent single)	12	0.80 (0.38 - 1.72)	1.04 (0.92 - 1.17)
Serum estriol (<0.5MoM)	5	0.76 (0.58 - 1.00)	1.02 (1.00 - 1.04)
Cervico-vaginal IL6 (50pg/ml)	3	0.56 (0.08 - 3.97)	1.08 (0.87 - 1.35)

Table 5 Summary of tests' accuracy results for predicting spontaneous preterm birth within 48 hours of testing in symptomatic women with threatened preterm labour

Test (threshold)	No. of studies	LR+ (95% CI)	LR- (95% CI)
Amniotic fluid IL8 (15ng/ml)	4	36.00 (2.30 - 564.54)	0.10 (0.01 - 1.42)
Absence of fetal breathing movement	3	16.08 (5.22 - 49.55)	0.16 (0.05 - 0.58)
Cervical length (15mm)	2	6.43 (5.17 - 8.00)	0.03 (0.00 - 0.42)
Amniotic fluid IL6 (7.5ng/ml)	10	3.76 (2.14 - 6.61)	0.11 (0.02 - 0.73)
Serum IL6 (30pg/ml)	5	2.05 (0.85 - 4.93)	0.66 (0.32 - 1.35)
Cervico-vaginal IL6 (20pg/ml)	7	1.90 (1.08 - 3.34)	0.23 (0.02 - 3.17)
phIGFBP-1	3	1.73 (0.92 - 3.25)	0.59 (0.24 - 1.45)

Table 6 Summary of tests' accuracy results for predicting spontaneous preterm birth within 7-10 days of testing in symptomatic women with threatened preterm labour

Test (threshold)	No. of studies	LR+ (95% CI)	LR- (95% CI)
Serum CRP (12.5ng/ml)	4	34.36 (4.86 - 243.09)	0.19 (0.05 - 0.65)
Amniotic fluid IL8 (15ng/ml)	4	28.50 (1.78 - 456.57)	0.26 (0.06 - 1.03)
Cervical length (15mm)	6	8.61 (6.65 - 11.14)	0.03 (0.00 - 0.18)
Amniotic fluid IL6 (7.5ng/ml)	10	7.01 (2.75 - 17.90)	0.17 (0.06 - 0.49)
Cervico-vaginal β-hcg (30mIU/ml)	3	6.07 (3.07 - 11.99)	0.04 (0.01 - 0.16)
Cervico-vaginal IL6 (20pg/ml)	7	4.01 (2.02 - 7.96)	0.66 (0.51 - 0.85)
Absence of fetal breathing movement	6	4.00 (0.73 - 21.84)	0.67 (0.32 - 1.38)
Cervico-vaginal fetal fibronectin	18	3.52 (2.36 - 5.23)	0.24 (0.07 - 0.83)
Serum IL6 (8.30pg/ml)	5	3.34 (1.49 - 7.53)	0.44 (0.30 - 0.66)
Serum CRH (90th centile)	1	3.12 (1.42 - 6.84)	0.63 (0.38 - 1.05)
phIGFBP-1	3	2.83 (1.57 - 5.09)	0.37 (0.13 - 1.04)
Cervico-vaginal IL8 (7.7ng/ml)	4	2.34 (1.42 - 3.84)	0.52 (0.32 - 0.84)
Cervico-vaginal prolactin (2.0ng/ml)	5	1.48 (0.81 - 2.70)	0.61 (0.23 - 1.62)

 $Table\ 7\ Summary\ of\ tests'\ accuracy\ results\ for\ predicting\ spontaneous\ preterm\ birth\ before\ 34\ weeks'\ gestation\ in\ symptomatic\ women\ with\ threatened\ preterm\ labour$

Test (threshold)	No. of studies	LR+ (95% CI)	LR- (95% CI)
Amniotic fluid IL6 (1500pg/ml)	10	7.44 (2.01 - 27.52)	0.14 (0.06 - 0.36)
Serum CRP (15ng/ml)	1	6.75 (1.34 - 34.00)	0.66 (0.38 - 1.14)
Cervico-vaginal IL6 (20pg/ml)	7	4.92 (1.80 - 13.46)	0.74 (0.63 - 0.87)
Cervical funnelling (V-shaped)	1	4.70 (1.90 - 11.66)	0.61 (0.34 - 1.10)
Cervico-vaginal prolactin (2.0ng/ml)	5	4.65 (1.81 - 11.97)	0.49 (0.21 - 1.16)
phIGFBP-1	3	4.15 (1.44 - 11.99)	0.31 (0.03 - 3.38)
Cervico-vaginal fetal fibronectin	8	3.98 (2.73 - 5.80)	0.33 (0.19 - 0.58)
Cervical length (30mm)	4	1.88 (1.36 - 2.59)	0.30 (0.08 - 1.07)
Serum relaxin (300pg/ml)	5	1.48 (0.26 - 8.31)	0.86 (0.38 - 1.96)
Serum IL6 (10pg/ml)	5	1.44 (0.86 - 2.41)	0.59 (0.22 - 1.58)

Table 8 Summary of tests' accuracy results for predicting spontaneous preterm birth before 37 weeks' gestation in symptomatic women with threatened preterm labour

Test (threshold)	No. of studies	LR+ (95% CI)	LR- (95% CI)
Amniotic fluid IL6 (50pg/ml)	10	28.62 (1.78 - 461.04)	0.66 (0.54 - 0.81)
Cervico-vaginal fetal fibronectin	31	7.97 (4.88 - 13.03)	0.13 (0.05 - 0.32)
Serum MMP-9 (68.43ng/ml)	2	7.33 (1.07 - 50.27)	0.37 (0.14 - 0.94)
Serum CRH (90th centile)	1	4.06 (1.68 - 9.81)	0.68 (0.51 - 0.91)
phIGFBP-1	9	3.87 (1.54 - 9.72)	0.33 (0.15 - 0.71)
Cervical length (18mm)	1	3.36 (1.73 - 6.54)	0.35 (0.17 - 0.70)
Cervical funnelling (V-shaped)	1	2.53 (1.02 - 6.25)	0.86 (0.71 - 1.03)
Cervico-vaginal prolactin (2.0ng/ml)	5	2.50 (0.88 - 7.10)	0.79 (0.55 - 1.11)
Digital vaginal examination (2cm dilatation)	10	2.38 (1.46 - 3.87)	0.47 (0.29 - 0.79)
Rheobase (>3.4 mA)	1	2.36 (1.74 - 3.20)	0.36 (0.19 - 0.66)
Serum CRP (12.5ng/ml)	4	2.32 (1.43 - 3.76)	0.47 (0.25 - 0.87)
Salivary estriol (2.1ng/ml)	2	2.31 (1.64 - 3.24)	0.40 (0.20 - 0.79)
Cervical length (30mm)	3	2.29 (1.68 - 3.12)	0.29 (0.15 - 0.58)
Rheobase (>2.8mA)	1	2.29 (1.50 - 3.52)	0.60 (0.41 - 0.88)
Cervico-vaginal β-hcg (25mIU/ml)	3	2.19 (1.35 - 3.56)	0.51 (0.30 - 0.85)
Cervico-vaginal IL8 (50pg/mL)	7	1.83 (0.79 - 4.25)	0.69 (0.40 - 1.20)
Cervico-vaginal IL8 (3.739ng/ml)	4	1.40 (0.83 - 2.35)	0.67 (0.30 - 1.50)
Serum IL6 (5pg/ml)	5	1.13 (0.55 - 2.32)	0.92 (0.54 - 1.56)
Bacterial vaginosis (Nugent)	8	1.00 (0.36 - 2.76)	1.00 (0.88 - 1.13)
Serum relaxin (300pg/ml)	5	0.80 (0.19 - 3.31)	1.07 (0.72 - 1.57)

Chapter 6 Discussion

Methodological quality of the reviews undertaken for the thesis

The strength of the inferences derived from this thesis depends upon the rigor of the methodology and the reliability of the accuracy estimates. In undertaking the research for this thesis, all contemporaneous criteria for performing a quality systematic review were followed (Chapter 3). A range of databases were searched and no language restriction was applied. Cognizant of the fact that reviews of test accuracy studies are often fraught with difficulty due to poor methodological quality of the primary studies, each of the selected studies were scrutinised for their methodological quality. However, some of the methodological issues that have empirically been shown to overestimate accuracy such as the absence of test descriptions and the use of different reference tests were generally not applicable to the studies selected for review due to the clinical nature of spontaneous preterm birth.

Limitations arising from problems with primary data

The interpretations of the accuracy data on tests are affected by threats to validity identified in assessment of study quality (Figure 98). Only a few tests had been evaluated and reported in studies which met generally accepted definition of ideal study design as defined in the method section, both in asymptomatic and symptomatic women. The following tests were evaluated in at least one ideal quality study: cervical length and funnelling, IL6, and cervico-vaginal fetal fibronectin in asymptomatic women, with the addition of absence of fetal breathing movement in symptomatic women. The overall quality of studies within reviews was variable with deficiencies in many areas of methodology (Figure 98). Association between design quality components and diagnostic performance has been empirically studied. Accordance to the stressed enough that before any measures of test accuracy (whatever their magnitude) count as scientific evidence, it would require adequate reporting of the study's population (clinical spectrum), design and execution in evaluating the test's accuracy. Idealistic

expectations of the level of detail that should be provided in the literature of the primary studies including adherence to the current standards of reporting for diagnostic studies, were perhaps unrealistic given that initiatives to improve test accuracy study design and its subsequent reporting are only recent phenomena.

In evaluating many of included studies for the reviews, blinding and consecutive enrolment, in particular, were often either unreported or were not part of the study design. The extent to which these deficiencies have impact on accuracy estimates depends on a number of factors. In both asymptomatic antenatal women and symptomatic women with threatened preterm labour, there is a time interval between (screening) testing and potential outcome of spontaneous preterm birth. In this situation, the absence of blinded assessment may lead to alteration(s) of usual antenatal care that would affect the outcome i.e. spontaneous preterm birth, which in turn would influence the final accuracy estimates. This is known as 'treatment paradox' where test positive women given effective treatments leading to prevention of spontaneous preterm birth, makes an otherwise reasonable test appears inaccurate.

Lack of consecutive enrolment may have resulted in differing clinical spectrum of women being enrolled in the study, leading to a spectrum bias potentially influencing the final accuracy estimates. Spectrum bias refers to the possibility that a test's LR+ and/or LR- may vary in groups of patients with differing risks of spontaneous preterm birth. In other words, spectrum bias refers to variation across subgroups, (or, to use the technical term, effect measure modification). This effect can be minimized, not withstanding the inherent study design and reporting inadequacy, by constraining the inclusion criteria for the reviews to singleton and low-risk pregnancies.

Where studies were available, absence of primary data in key areas (e.g. description of population, threshold, or outcome) limited the ability to extract and explore the data as

completely as would have been desired. As an example, some studies reported mean ± SD for non-Gaussian distributions of index test results and did not provide 2x2 tables. Such study had to be excluded from the review. Attempts to minimize this problem by writing to the corresponding author(s) for the required data met with variable results: An initial (usually via e-mail) communiqué followed by another a week later in case of non-response. Generally, cooperation was obtained but for some, their work commitment schedules meant that they were not able to extend co-operation where they would have otherwise liked to. In some circumstances, data were no longer available, accessible or simply no response was forthcoming. Only after this approach was exhausted, were the studies excluded that would otherwise have met the inclusion criteria. Indeed, from the preceding discussion, better quality primary test accuracy studies with better reporting would have improved the assessment of the test accuracy.

This discussion would be remiss without touching on the issue of interpreting a test's accuracy in light of information obtained by any preceding test(s), which has so far been overlooked in diagnostic research. Diagnostic confounding, which refers to one or more tests having predictive abilities that are related to each other and the outcome, such that it is difficult to assess the independent prediction from each of the tests on the diagnosis of the outcome can occur in this situation. Additionally, it remains to be elucidated whether the very act of performing some the tests within the vaginal and cervical milieu (e.g. cervical digital examination, transvaginal ultrasound scanning or obtaining samples for subsequent assays) may contribute to the cascading process that manifest eventually as spontaneous preterm birth. This thesis did not assess these emerging issues. There may or may not be increased accuracy when two or more tests were combined in the prediction of spontaneous preterm birth depending on the overlap of information between test. These issues may only be optimally dealt with by multivariable analysis of the primary studies or Individual Patient

Data (IPD) meta-analyses. Such an analysis would generate probabilities of spontaneous preterm birth for patient characteristics and test results to obtain a predictive probability for each profile, e.g. the probability of spontaneous preterm birth from a cervical length measurement in a nulliparous obese woman. If no multivariable analysis is planned, such confounding may be attenuated by selection of patient groups that are as homogeneous as possible with respect to their other characteristics (e.g. patient history and obstetric risk profile in multiparous women). However, such an approach is difficult given the large amount of clinical information that usually exists (e.g. age, parity, and co-morbidities to name a few).

Limitations arising from review methods

The accuracy review was carried out using a comprehensive search strategy so as to minimise the risk of missing tests and studies. Nevertheless the amount of research identified per test was often of variable quality and insufficient to produce precise estimates of accuracy in either or both groups of populations of asymptomatic antenatal women and symptomatic women with threatened preterm labour. For both asymptomatic women and symptomatic women populations, only three tests had >20 accuracy studies: asymptomatic bacteriuria (26 studies), serum β -hcg (20 studies) and serum α -fetoprotein for asymptomatic women (20 studies); cervico-vaginal fetal fibronectin (58 studies), cervical length and funnelling (42 studies), and IL6 (22 studies) for symptomatic women. Where there was scarcity of primary studies, it was not surprising that some of the LR estimates were affected by imprecision. Thus when assessing their results about the range of reported predictive ability (accuracy) of the tests especially when there was only a small number of studies with small sample size in each could not be ascertain with a high degree of confidence.

Thus far, the thesis in carrying the systematic reviews had already made explicit the deficiencies in the quality of studies (see above). In light of this, it would have been preferred to base any inferences on high quality studies e.g. ideal quality features in asymptomatic

antenatal women population, using a single threshold and outcome (reference standard). To that end, it was planned *a-priori* subgroup analyses according to study quality within predefined populations and outcomes. However, due to the low number of included studies per test or per specific threshold, compounded by oft lack of reporting clarity, such subgroup analyses were often not possible or had insufficient power. In cases where it had been possible e.g. cervico-vaginal fetal fibronectin and cervical length measurement, their subgroup analyses were based on small number of studies.

Variation in test thresholds for determining abnormality meant that generating summaries of findings was not straightforward. For some tests e.g. cervical ultrasound measurement of either length or funnelling, the same study may have provided estimates from different thresholds. This precluded valid statistical comparison of these indices due to violation of the principle that the compared study samples should be statistically independent. For some other tests e.g. CRP and interleukins, none of the studies had used the same thresholds, thus limiting the ability to compare and infer the accuracy estimates obtained. In these situations, a systematic attempt (see methods section) was made at translating results in a summary ROC space into clinically relevant information. For pooling test results that can be pooled, a random effects approach was used where unexplained statistical heterogeneity is formally taken into account. Detailed exploration of reasons for heterogeneity was constrained largely because poor reporting and the small number of studies per test would have rendered use of explorative statistical methods such as meta-regression underpowered. If the pooled results amalgamate heterogeneous individual estimates, these should be interpreted with caution. In situations where it was not sensible to pool given the absence of high quality studies, an arbitrarily chosen accuracy estimates from the largest higher quality study available for the particular test would have been shown for comparison. The thesis conservative method and judgement, given the uncertain impact of these study design issues on the magnitudes of the

accuracy estimates, would likely to have generated summaries of the best available results for clinical interpretation.

Limitations arising from things not done (omissions)

For some tests where only few studies (e.g. rheobase (1 study), mammary stimulation test (2 studies), MMP-9 (2 studies)) were found, besides reporting their individual accuracy estimates no meaningful analyses could be carried out. It had been expected, at the inception of the thesis research, that there would be some studies on the accuracy of abdominal palpation for uterine contractions in symptomatic women with threatened preterm labour as a predictor for spontaneous preterm birth. However within the extensive literature searches, no studies were found on this aspect of physical examination, which forms the cornerstone of daily clinical practice. For some tests, and this has to be borne in mind, researchers were only just beginning to make headway in evaluating their accuracies where the relevant studies were only just emerging (e.g. periodontal assessment, serum relaxin, phIGFBP-1). Additionally as understanding of the aetiology, physiology and pathology of spontaneous preterm birth evolves, more tests would appear that may not have been included in the current review.

Interpretation of the findings

Typically, confirmatory test usually follows the initial screening, before institution of therapy. In the research for this thesis, this is not the case. Screening is used to identify a risk group that may benefit from preventative interventions (e.g. intensive monitoring and treatments), which will be employed directly when screening results are known, and without further confirmatory test(s). Screening and tests, which offer high LR+ have the potential to minimise unwarranted inconvenience, expense and morbidity associated with false positive results, which led to unnecessary interventions; while those, which offer low LR- have the potential to minimise unwarranted inconvenience, expense and morbidity associated with false negative results, which led to spontaneous preterm births. Additionally, tests that detect changes of the

final common pathway of spontaneous preterm labour (irrespective of the initial stimulus e.g. be it sub-clinical infection or a cervical structural abnormality) e.g. cervical shortening/funnelling or vaginal fibronectin are more likely to be accurate than screening e.g. for infection. Once these tests become positive it may be less likely that an intervention would be effective.

Given the quality, level and precision of the accuracy evidence, the thesis found that no single test emerged as a front runner neither in predicting spontaneous preterm births when the test result was positive nor to exclude it when the test result was negative. On a few occasions, this was due to imprecision of the LR estimates i.e. given a useful LR point estimate; its CI's should not be wide enough so as to make the LR less useful due to its imprecision. For example absence of fetal breathing movement had an LR+ 6.08 (95% CI 5.22 - 49.55) which would have made it a useful test in predicting spontaneous preterm birth within 48 hours testing when the result is positive. However, it had and LR- 0.16 (95% CI 0.05 - 0.58) where the upper limit of its confidence would have made it less than a useful test when the test result is negative. Had the estimate of the LR- including its CI's be <0.2, absence of fetal breathing movement would have been a useful test indeed. It may well be that no single screening or testing modality would suffice in the prediction of spontaneous preterm birth and that an IPD to better delineate the accuracy of test combinations has to be considered in the absence of a novel accurate test.

Recommendations for practice

How, and before, accuracy results from this thesis are considered for incorporation into clinical practice, there are several factors to be appraised. They include dealing with challenges relating to the systematic review process (covered above), patient acceptance and preferences as well as cost-effectiveness' analysis of any interventions (taking account both the tests' and interventions' benefits and harmful side-effects to both mother and fetus

(newborn)). Notwithstanding such challenges, one such consideration for application of thesis is modelling the integration of accuracy results with results from effectiveness studies to derive corresponding number needed to treat (NNTreat) and number needed to test (NNTest), which will aid and inform decision making. Of patients' acceptance and preference, the issues have not been explored in the literature especially in relation to more invasive tests yet potentially accurate (e.g. amniotic fluid measurement of interleukins). One of the key issues concerning screening or predictive tests for spontaneous preterm birth is that, if available effective interventions are convenient, inexpensive, and without particular risk of harm or side effects, it is better to have tests with better LR- than LR+ values. It is worth speculating that in preventing spontaneous preterm birth, it may be difficult from a clinical and patient perspective to distinguish between false positive and false negative results and so from this perspective the optimal screening or testing modality will be one which minimizes both false positive (i.e. the test showed a high LR+) and false negative (i.e. the test showed a low LR-) results. Where screening and or testing have low LR- than high LR+, they are unlikely to improve cost-effectiveness when used in combination with cheap, safe and effective treatments. Similarly, where screening and or testing have higher LR+ it will minimize the unwarranted cost, complications from exposure of women and the fetus to treatments. Depending on the cost-effectiveness' analysis, there is a small risk of overlooking potentially accurate screening or testing modalities in the face of cheap, safe and effective interventions to prevent spontaneous preterm birth. Data provided in Figure 99 - Figure 101 would be ideal for consideration into a cost-effectiveness' future research analysis because it provided the most robust estimates, which was either derived from meta-analysis of ideal quality studies or from the largest higher quality study available for the particular test. Such a cost-effective analysis would have shown the level of LR+ and LR- that would be required to make testing cost-effective in prevention of spontaneous preterm birth. Until such a consideration (i.e. costeffectiveness), there are no practical recommendations for clinicians for prevention of spontaneous preterm birth with testing performed before preventative treatment, beyond stating, which of those available tests that are accurate and are thus worthy for further considerations.

Table 9 Testing among symptomatic pregnant women for risk of spontaneous preterm birth and number of women needed to be tested and treated with antenatal maternal administration of corticosteroids to prevent respiratory distress syndrome before 34 weeks' gestation for anticipated birth within 7 days of testing, based on a prevalence of spontaneous preterm birth of 4.5%, risk of respiratory distress syndrome (RDS) of 53% and relative risk treatment effect of corticosteroids of 0.66¹

	Probability of spontaneous preterm birth after testing positive (%)	Probability of RDS without treatment (%) ²	Probability of RDS after treatment (%)	NNTreat ³	NNTest ⁴
No test, no treatment	_	2.4	2.4	_	_
No test, treat all	_	2.4	1.6	123	-
Test all, treat positives					
Serum CRP	61.8	32.8	21.6	9	112
Cervical length (15mm)	28.9	15.3	10.1	19	48
Amniotic fluid IL6 (7.5ng/ml)	24.8	13.2	8.7	22	56
Cervico-vaginal HCG (30mIU/mL)	22.2	11.8	7.8	25	49
Absence of fetal breathing movement	15.9	8.4	5.9	29	65
Cervico-vaginal fetal fibronectin	14.2	7.5	5.6	39	58
phIGFBP-1	11.8	6.2	4.1	48	95

^{1.} Risk of RDS at this gestation was derived from Usher et al 350 and Sinclair et al 351 while that of corticosteroids treatment effect was derived from Roberts et al. 352

^{2.} Further detail for the calculation for probability of RDS can be found from Honest et al. 23

^{3.} Number needed to treat (NNTreat) to prevent one additional case of an adverse outcome was calculated by 1/(post-test disease probability after tested positive – probability of disease after tested positive & received treatment).

^{4.} Number needed to test (NNTest) to prevent one additional case of an adverse outcome with the treatment of test positive case was calculated by 1/(true positives as a proportion of population (TP) - (TP * RR)).

Recommendations for research

- New more robustly designed test accuracy studies are required to develop tests that have superior LR- values.
- Such studies should evaluate the added value of new test using multivariable analyses and include cost-effectiveness' analysis taking into account subsequent interventions together with both tests and interventions benefits and side-effects profile as well as women's acceptance and preference.
- Where such studies are not forthcoming, individual patient data (IPD) of test accuracy meta-analysis should be considered as an alternative.

Chapter 7 Conclusions

There are a number of promising tests identified by this thesis in spite of the aforementioned provisos and limitation. For asymptomatic women, only testing for asymptomatic bacteriuria, cervico-vaginal fibronectin, assessment for periodontitis and bacterial vaginosis, and serum β-hcg were evaluated in more than 10 studies while for symptomatic women, aside from fetal fibronectin, and amniotic fluid IL6 which has been evaluated in 31 and 10 studies respectively, the remainder have only been evaluated in a handful of studies. Some tests were able to achieve high predictive value when positive, but at the expense of compromised low predictive value when negative. Only a few tests reached LR+ point estimates >5. In asymptomatic antenatal women these were ultrasonographic cervical funnelling and length measurement, cervico-vaginal prolactin and cervico-vaginal fetal fibronectin screening for predicting spontaneous preterm birth before 34 weeks' gestation. In this group, tests with LR-point estimates approaching <0.2 were detection of uterine contraction (by mammary stimulating test) and amniotic fluid CRP measurement. In symptomatic women with threatened preterm labour tests with LR+ point estimate >5 were absence of fetal breathing movements, cervical length measurement, amniotic fluid IL6 and IL8, serum CRP and

cervico-vaginal hcg (for predicting birth within 2-7 days of testing); and serum CRP, amniotic fluid IL6, and MMP-9, cervico-vaginal fetal fibronectin and cervico-vaginal hcg (for predicting spontaneous preterm birth before 34 or 37 weeks' gestation). In this group tests with LR- point estimate <0.2 were measurement of cervico-vaginal hcg, cervical length measurement, absence of fetal breathing movement, amniotic fluid IL6 and IL8, and serum CRP (for predicting birth within 2 - 7 days of testing); and cervico-vaginal fetal fibronectin and amniotic fluid IL6 (for predicting spontaneous preterm birth before 34 or 37 weeks' gestation).

The prominence of the detection of absence of fetal breathing movement, cervical funnelling and cervical length measurement provide a stronger impetus for a universal provision for high quality ultrasound machine in labour wards for predicting spontaneous preterm birth among women with a viable pregnancy who present with threatened preterm labour to direct management (e.g. administration of tocolysis, corticosteroids and in-utero transfer). Nevertheless, provision for round the clock trained personnel to perform such a scan in the interim is a challenge. Additionally, the feasibility and acceptability to mothers and health providers of such tests including more invasive (but potentially more accurate amniotic fluid assessment of IL6 and 8) strategies needs to be explored. Rigorous evaluation is needed of tests with minimal cost (i.e. tests that are 'inexpensive') or invasiveness whose initial assessments suggest that they may have high levels of accuracy. Similarly, there is a need for high quality, adequately powered randomized controlled trials to investigate whether interventions are indeed effective in reducing (in asymptomatic women) and/or delaying (in symptomatic women with threatened preterm labour) spontaneous preterm birth. In future, an economic model (cost-effectiveness) should be developed which considers not just spontaneous preterm birth, but other related outcomes, particularly those relevant to the infant like perinatal death and shorter and longer term outcomes amongst survivors. Such a

modelling project should make provision for primary data collection on the safety of interventions and their associated costs.

Appendices

Appendices

Appendix I - List of tests

List of tests for predicting spontaneous preterm birth

Type of tests or investigation	Predictive and diagnostic tests for preterm birth	Last updated
History	Previous history of either spontaneous preterm birth*	
Examination	Abdominal palpation ⁺	
	Cervical digital examination ⁺	
Biochemistry	Cervico-vaginal glycoproteins: Interleukins (IL-6, IL-8) ⁺ β-hcg ⁺ Fetal fibronectin ^{*+} Phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) ⁺ Serum glycoproteins: α-fetoprotein, human chorionic gonadotrophin (as part of Down's screening) [*] Endocrine hormones: Salivary estriol ⁺ Corticotrophin releasing hormone ⁺ Inflammatory markers (serum): C-reactive protein ^{*+} Matrix metalloprotease (MMP) ⁺	2001
	Interleukins*+	
Microbiology	Detection of bacterial vaginosis*+ Periodontal screening* Midstream urine culture*+	2002 2006 1989
Physiological	Uterine activity monitoring* Rheobase+ Mammary stimulation test+	
Ultrasound scan	Absence of fetal breathing movements ⁺	2003
	Measurement of cervical length*+	2003

^{*}Test applied on asymptomatic women +Test applied on symptomatic women

Appendix II - Search strategies

MEDLINE (Ovid Gateway). 2000-2005/Aug week 1. 10th August 2005.

186 records were retrieved.

- 1. Meta-Analysis/
- 2. Review-Literature/
- 3. meta analysis.pt.
- 4. review literature.pt.
- 5. (meta analy\$ or meta-analy\$).tw.
- 6. (systematic adj4 (review\$ or overview\$)).tw.
- 7. (data adj synthesis).ti,ab.
- 8. (published adj studies).ti,ab.
- 9. (data adj extract\$).ti,ab.
- 10. or/1-9
- 11. letter.pt.
- 12. comment.pt.
- 13. editorial.pt.
- 14. 11 or 12 or 13
- 15. Animal/
- 16. Human/
- 17. 15 not (15 and 16)
- 18. 10 not (14 or 17)
- 19. Labor, Premature/
- 20. ((premature or preterm or pre term or pre-term) adj3 birth\$).ti,ab.
- 21. ((premature or preterm or pre term or pre-term) adj3 deliver\$).ti,ab.
- 22. ((preterm or pre term or pre-term) adj3 (labor or labour)).ti,ab.
- 23. (premature adj3 (labor or labour or parturition)).ti,ab.
- 24. Fetal Membranes, Premature Rupture/
- 25. ((premature or preterm or pre term or pre-term) adj3 rupture\$).ti,ab.
- 26. (PROM or PPROM).ti,ab.
- 27. or/19-26
- 28. 18 and 27

MEDLINE (Ovid Gateway). 2002/April-2005/Sep week 1. 20th September 2005.

2858 records were retrieved in MEDLINE and 184 records were retrieved in MEDLINE In-Process & Other Non-Indexed Citations.

- 1. Labor, Premature/
- 2. ((premature or preterm or pre term) adj3 birth\$).ti,ab.
- 3. ((premature or preterm or pre term) adj3 deliver\$).ti,ab.
- 4. ((preterm or pre term) adj3 (labor or labour)).ti,ab.
- 5. (premature adj3 (labor or labour or parturition)).ti,ab.
- 6. or/1-5
- 7. exp Socioeconomic Factors/
- 8. Social Class/
- 9. Ethnic Groups/
- 10. risk factors/
- 11. Life Style/
- 12. exp Substance-Related Disorders/
- 13. exp smoking/
- 14. Pregnancy, High-Risk/
- 15. Pregnancy in Adolescence/
- 16. exp Pregnancy, Multiple/
- 17. Pregnancy Complications/
- 18. Parity/
- 19. Reproductive History/
- 20. Fetal Membranes, Premature Rupture/
- 21. Cervix Incompetence/
- 22. exp Abdominal Pain/
- 23. Uterine Contraction/
- 24. Uterine Hemorrhage/
- 25. Cervical Ripening/
- 26. Treponema pallidum/ 27. Neisseria gonorrhoeae/
- 28. Chlamydia trachomatis/
- 29. exp Sexually Transmitted Diseases, Bacterial/
- 30. exp Bacteroidaceae Infections/
- 31. exp Chlamydiaceae Infections/
- 32. exp Herpes Genitalis/
- 33. Vaginosis, Bacterial/
- 34. mobiluncus/

- 35. Streptococcus agalactiae/
- 36. Mycoplasma hominis/
- 37. Trichomonas vaginalis/
- 38. Bacteroides Infections/
- 39. Gardnerella vaginalis/
- 40. Bacteriuria/
- 41. Granuloma Inguinale/
- 42. exp Mycoplasmatales Infections/
- 43. exp Neisseriaceae Infections/
- 44. exp Treponemal Infections/
- 45. exp Staphylococcal Infections/
- 46. exp Streptococcal Infections/
- 47. Ureaplasma Infections/
- 48. exp Lactobacillus/
- 49. exp Urinary Tract Infections/
- 50. exp "Diagnostic Techniques, Obstetrical and Gynecological"/
- 51. exp Diagnostic Equipment/
- 52. exp Diagnostic Imaging/
- 53. Diagnostic Tests, Routine/
- 54. exp Reagent Kits, Diagnostic/
- 55. exp Ultrasonography, Prenatal/56. Medical History Taking/
- 57. Risk Assessment/
- 58. exp Physical Examination/
- 59. Uterine Monitoring/
- 60. exp Culture Techniques/
- 61. exp Body Constitution/
- 62. Body Temperature/
- 63. exp fever/
- 64. Palpation/
- 65. exp Corpus Luteum Hormones/
- 66. Relaxin/
- 67. exp Prostaglandins/
- 68. exp Estrogens/
- 69. exp Inhibins/
- 70. exp Estradiol/
- 71. exp Estriol/
- 72. exp Estrone/
- 73. exp Estrogen Receptor Modulators/
- 74. exp Receptors, Estrogen/
- 75. exp Prostaglandin Antagonists/
- 76. exp Receptors, Prostaglandin/
- 77. exp Leukotrienes/
- 78. exp Thromboxanes/
- 79. exp Collagenases/
- 80. Fetal Proteins/
- 81. Fibronectins/
- 82. exp Acute-Phase Proteins/
- 83. exp Immunoproteins/
- 84. Platelet-Derived Growth Factor/
- 85. Tumor Necrosis Factor-alpha/
- 86. Chorioamnionitis/
- 87. Esterases/
- 88. exp Cytokines/
- 89. exp Amniotic Fluid/
- 90. exp Leukocytes/
- 91. Saliva/
- 92. exp Biological Markers/
- 93. Corticotropin-Releasing Hormone/
- 94. (risk factor\$ or socioeconomic factor\$ or socioeconomic status).ti,ab.
- 95. (occupation\$ or socioeconomic or ethnic or ethnicity or manual work or long hours).ti,ab.
- 96. (cocaine or heroin or narcotics or crack or dope or cannabis or substance abuse\$ or addiction).ti,ab. 97. (substance disorder\$ or smoking or tobacco or alcohol\$ or lifestyle\$ or life-style\$).ti,ab.
- 98. (low adj3 pregnancy adj3 weight).ti,ab.
- 99. high parity.ti,ab.
- 100. (early adj3 bleeding adj3 pregnancy).ti,ab.
- 101. vaginal bleeding.ti,ab.
- 102. ((uterine or antepartum) adj3 (hemorrhage or haemorrhage)).ti,ab.
- 103. (abdominal pain or uterine contraction\$).ti,ab.
- 104. (pyrexia or febrile or fever).ti,ab.
- 105. (short adj3 pregnancies).ti,ab.
- 106. (interpregnancy interval\$ or inter-pregnancy interval\$).ti,ab.
- 107. (older women or elderly women).ti,ab.
- 108. (adolescent\$ or teenage\$).ti,ab.
- 109. (clinical histor\$ or patient histor\$ or patient record\$ or pregnan\$ histor\$ or birth histor\$ or reproductive histor\$).ti,ab.
- 110. (obstetric histor\$ or previous preterm or repeat preterm).ti,ab.

- 111. (premature adj3 rupture adj3 membrane\$).ti,ab.
- 112. Chorioamnionitis.ti,ab.
- 113. (estriol or plasma crf or vaginal infection\$).ti,ab.
- 114. ((biophysical or biochemical) adj3 marker\$).ti,ab.
- 115. (bishop\$ adj1 (score or scores)).ti,ab.
- 116. (cervical adj1 (change\$ or length or measurement)).ti,ab.
- 117. (endocervical adj1 (effacement or assessment or examination)).ti,ab.
- 118. (cervical adj1 (effacement or assessment or state or examination\$)).ti,ab.
- 119. (risk scor\$ or physical examination\$).ti,ab.
- 120. (physical exam or physical exams or cervical dilation or (cervix adj3 length)).ti,ab.
- 121. (dilation adj3 cervix).ti,ab.
- 122. tocodynamo\$.ti,ab.
- 123. (uterine tocography or uterine anomal\$ or tocometry).ti,ab.
- 124. ((cervical or cervix) adj3 (abnormal\$ or incompetence or incompetent)).ti,ab.
- 125. ((cervical or cervix) adj3 (ultrasound or ultrasonography or sonography)).ti,ab.
- 126. ((vaginal or endovaginal or transvaginal or obstetric) adj3 (ultrasound or ultrasonography or sonography)).ti,ab.
- 127. (uterine activity or huam or uterine excitability).ti,ab.
- 128. ((myometrial or myometrium) adj3 excitability).ti,ab.
- 129. ((oncofetal or c-reactive) adj3 protein\$).ti,ab.
- 130. fibronectin.ti,ab.
- 131. (asymptomatic bacteriuria or genital tract infection\$).ti,ab.
- 132. (leucocyte esterase\$ or cytokines).ti,ab.
- 133. (culture\$ adj3 (amniotic or blood or genital or vaginal or cervical or urine)).ti,ab.
- 134. (timp or collagenase or relaxin or tissue inhibitor\$).ti,ab.
- 135. plasma corticotropin releasing hormone\$.ti,ab.
- 136. (estrogen or oestrogen or progestogen).ti,ab.
- 137. (glucose concentration\$ adj3 amniotic).ti,ab.
- 138. (zinc adj3 amniotic).ti,ab.
- 139. or/7-138
- 140. exp "Sensitivity and Specificity"/
 141. ROC Curve/
- 142. Logistic Models/
- 143. Likelihood Functions/
- 144. exp Diagnostic Errors/
- 145. (predictive value\$ or reproducibility or logistic regression).ti,ab.
- 146. (ability adj3 predict\$).ti,ab.
- 147. (logistic model\$ or sroc or roc or positive rate or positive rates).ti,ab.
- 148. (likelihood ratio\$ or negative rate or negative rates).ti,ab.
- 149. (receiver operating characteristic or correlation or correlated).ti,ab.
- 150. ((tests or test) adj3 accuracy).ti,ab.
- 151. (curve or curves or test outcome).ti,ab.
- 152. ((pretest or pre-test or posttest or post-test) adj3 probabilities).ti,ab.
- 153. diagnosis.ti,ab.
- 154. or/140-153
- 155. 6 and 139 and 154
- 156, 6 and 139
- 157. Animals/
- 158. Humans/
- 159. 157 not (157 and 158)
- 160. 155 not 159
- 161. 156 not 159
- 162. (200204\$ or 200205\$ or 200206\$ or 200207\$ or 200208\$ or 200209\$ or 200210\$ or 200211\$ or 200212\$).ed.
- 163. (2003\$ or 2004\$ or 2005\$).ed.
- 164. 162 or 163
- 165. 161 and 164

EMBASE (Ovid Gateway). 2002/Mar-2005/week 38. 20th September 2005.

- 1. Premature Labor/
- 2. ((premature or preterm or pre term or pre-term) adj3 birth\$).ti,ab.
- 3. ((premature or preterm or pre term or pre-term) adj3 deliver\$).ti,ab.
- 4. ((preterm or pre term or pre-term) adj3 (labor or labour)).ti,ab.
- 5. (premature adj3 (labor or labour or parturition)).ti,ab.
- 6. Premature Fetus Membrane Rupture/
- 7. ((premature or preterm or pre term or pre-term) adj3 rupture\$).ti,ab.
- 8. (PROM or PPROM).ti,ab.
- 9. or/1-8
- 10. exp socioeconomics/
- 11. Social Class/
- 12. Risk Factor/
- 13. exp "Ethnic and Racial Groups"/
- 14. Smoking/
- 15. exp Addiction/

- 16. Substance Abuse/
- 17. lifestyle/
- 18. High Risk Pregnancy/
- 19. Adolescent Pregnancy/
- 20. parity/
- 21. ANAMNESIS/
- 22. Pregnancy Disorder/
- 23. exp Pregnancy Complication/
- 24. Obstetric Hemorrhage/
- 25. Premature Fetus Membrane Rupture/
- 26. Abdominal Pain/
- 27. Uterus Contraction/
- 28. exp Uterine Complication/
- 29. Uterus Bleeding/
- 30. Fever/
- 31. exp Estrogen/
- 32. Relaxin/
- 33. Treponema Pallidum/
- 34. Neisseria Gonorrhoeae/
- 35. Streptococcus Agalactiae/
- 36. Mycoplasma Hominis/
- 37. Chlamydia Trachomatis/
- 38. Trichomonas Vaginalis/
- 39. bacteroides/
- 40. Vaginitis/
- 41. mobiluncus/
- 42. Gardnerella Vaginalis/
- 43. exp Multiple Pregnancy/ 44. Uterine Cervix Incompetence/
- 45. Uterine Cervix Ripening/
- 46. Fetoprotein/
- 47. Fibronectin/
- 48. Bacteriuria/
- 49. exp Diagnostic Procedure/
- 50. exp Laboratory Diagnosis/ 51. Virus Diagnosis/
- 52. Venereal Disease Reaction Test/
- 53. Transvaginal Echography/
- 54. equipment/
- 55. Diagnostic Imaging/
- 56. Test Strip/
- 57. Reagent/
- 58. ultrasound/
- 59. Diagnostic Test/ 60. Risk Assessment/
- 61. exp Physical Examination/
- 62. exp examination/
- 63. Home Monitoring/
- 64. exp Urogenital System Examination/
- 65. Clinical Observation/
- 66. Fetus Monitoring/
- 67. Esterase/
- 68. exp Tissue Culture/
- 69. exp Cytokine/
- 70. Acute Phase Protein/
- 71. exp Immunoglobulin/
- 72. Platelet Derived Growth Factor/
- 73. Tumor Necrosis Factor/
- 74. Sex Hormone/
- 75. Progesterone/
- 76. Inhibin/
- 77. Estradiol/
- 78. Estriol/ 79. Estrone/
- 80. exp Estrogen Receptor/
- 81. exp Prostaglandin Receptor Blocking Agent/
- 82. exp Leukotriene/
- 83. exp Thromboxane/
- 84. Collagenase/
- 85. Body Constitution/
- 86. exp "Physical Constitution and Health"/ 87. exp Body Temperature/
- 88. palpation/
- 89. exp Sexually Transmitted Disease/
- 90. exp bacteroides/
- 91. chlamydiaceae/

- 92. Granuloma Inguinale/
- 93. mycoplasmatales/
- 94. Gram Negative Infection/
- 95. neisseriaceae/
- 96. Bacterial Infection/
- 97. Staphylococcus Infection/
- 98. Streptococcus Infection/
- 99. exp lactobacillus/
- 100. Genital Herpes/
- 101. exp Urinary Tract Infection/
- 102. exp Chorioamnionitis/
- 103. exp Amnion Fluid/
- 104. exp leukocyte/
- 105. saliva/
- 106. Biological Marker/
- 107. Blood Analysis/
- 108. Blood Culture/
- 109. exp urinalysis/
- 110. Amnion Fluid Analysis/
- 111. Image Analysis/
- 112. Saliva Analysis/
- 113. Sputum Analysis/
- 114. exp assay/
- 115. exp Chemical Analysis/
- 116. Corticotropin Releasing Factor/
- 117. (risk factor\$ or socioeconomic factor\$ or socioeconomic status).ti,ab.
- 118. (occupation\$ or socioeconomic or ethnic or ethnicity or manual work or long hours).ti,ab.
- 119. (cocaine or heroin or narcotics or crack or dope or cannabis or substance abuse\$ or addiction).ti,ab.
- 120. (substance disorder\$ or smoking or tobacco or alcohol\$ or lifestyle\$ or life-style\$).ti,ab.
- 121. (low adj3 pregnancy adj3 weight).ti,ab.
- 122. high parity.ti,ab.
- 123. (early adj3 bleeding adj3 pregnancy).ti,ab.
- 124. vaginal bleeding.ti,ab.
- 125. ((uterine or antepartum) adj3 (hemorrhage or haemorrhage)).ti,ab.
- 126. (abdominal pain or uterine contraction\$).ti,ab.
- 127. (pyrexia or febrile or fever).ti,ab.
- 128. (short adj3 pregnancies).ti,ab.
- 129. (interpregnancy interval\$ or inter-pregnancy interval\$).ti,ab.
- 130. (older women or elderly women).ti,ab.
- 131. (adolescent\$ or teenage\$).ti,ab.
- 132. (clinical histor\$ or patient histor\$ or patient record\$ or pregnan\$ histor\$ or birth history\$ or reproductive history\$).ti,ab.
- 133. (obstetric histor\$ or previous preterm or repeat preterm).ti,ab.
- 134. (premature adj3 rupture adj3 membrane\$).ti,ab.
- 135. Chorioamnionitis.ti,ab.
- 136. (estriol or plasma crf or vaginal infection\$).ti,ab.
- 137. ((biophysical or biochemical) adj3 marker\$).ti,ab.
- 138. (bishop\$ adj1 (score or scores)).ti,ab.
- 139. (cervical adj1 (change\$ or length or measurement)).ti,ab.
- 140. (endocervical adj1 (effacement or assessment or examination)).ti,ab.
- 141. (cervical adj1 (effacement or assessment or state or examination\$)).ti,ab.
- 142. (risk scor\$ or physical examination\$).ti,ab.
- 143. (physical exam or physical exams or cervical dilation or (cervix adj3 length)).ti,ab.
- 144. (dilation adj3 cervix).ti,ab.
- 145. tocodynamo\$.ti,ab.
- 146. (uterine tocography or uterine anomal\$ or tocometry).ti,ab.
- 147. ((cervical or cervix) adj3 (abnormal\$ or incompetence or incompetent)).ti,ab.
- 148. ((cervical or cervix) adj3 (ultrasound or ultrasonography or sonography)).ti,ab.
- 149. ((vaginal or endovaginal or transvaginal or obstetric) adj3 (ultrasound or ultrasonography or sonography)).ti,ab.
- 150. (uterine activity or huam or uterine excitability).ti,ab.
- 151. ((myometrial or myometrium) adj3 excitability).ti,ab.
- 152. ((oncofetal or c-reactive) adj3 protein\$).ti,ab.
- 153. fibronectin.ti,ab.
- 154. (asymptomatic bacteriuria or genital tract infection\$).ti,ab.
- 155. (leucocyte esterase\$ or cytokines).ti,ab.
- 156. (culture\$ adj3 (amniotic or blood or genital or vaginal or cervical or urine)).ti,ab.
- 157. (timp or collagenase or relaxin or tissue inhibitor\$).ti,ab.
- 158. plasma corticotropin releasing hormone\$.ti,ab.
- 159. (estrogen or oestrogen or progestogen).ti,ab.
- 160. (glucose concentration\$ adj3 amniotic).ti,ab.
- 161. (zinc adj3 amniotic).ti,ab.
- 162. or/10-161
- 163. Diagnostic Error/
- 164. Diagnostic Accuracy/
- 165. Diagnostic Value/
- 166. Differential Diagnosis/
- 167. Quantitative Diagnosis/

```
168. exp Statistical Analysis/
```

- 169. Discriminant Analysis/
- 170. statistics/
- 171. Statistical Model/
- 172. reliability/
- 173. variance/
- 174. Receiver Operating Characteristic/
- 175. Multiple Regression/
- 176. (predictive value\$ or reproducibility or logistic regression).ti,ab.
- 177. (ability adj3 predict\$).ti,ab.
- 178. (logistic model\$ or sroc or roc or positive rate or positive rates).ti,ab.
- 179. (likelihood ratio\$ or negative rate or negative rates).ti,ab.
- 180. (receiver operating characteristic or correlation or correlated).ti,ab.
- 181. ((tests or test) adj3 accuracy).ti,ab.
- 182. (curve or curves or test outcome).ti,ab.
- 183. ((pretest or pre-test or posttest or post-test) adj3 probabilities).ti,ab.
- 184. diagnosis.ti,ab.
- 185. (sensitivity or specificity).ti,ab.
- 186. or/163-185
- 187. 9 and 162 and 186
- 188. 9 and 162
- 189. exp animal/
- 190. Nonhuman/
- 191. (rat or rats or mouse or mice or hamster or hamsters or animal or animals or dogs or dog or cats or bovine or sheep).ti,ab,sh.
- 192. 189 or 190 or 191
- 193. exp human/
- 194. 192 not (192 and 193)
- 195. 187 not 194
- 196. 188 not 194
- 197. (2002\$ or 2003\$ or 2004\$ or 2005\$).em.
- 198. 196 and 197

BIOSIS (DIALOG), 2002/June-2005/Sep. 22nd September 2005.

- s (premature or preterm)(3n)birth??
- s (premature or preterm)(3n)deliver?
- s (premature or preterm)(3n)(labo?r or parturition)
- s risk(w)factor?? or socioeconomic(w)factor??
- s low(3w)pregnancy(3w)weight
- s high(w)parity
- s early(3n)bleeding(3n)pregnancy
- s vaginal(3n)bleeding
- s (uterine or antepartum)(3w)(hemorrhag? or haemorrhag?)
- s abdominal(w)pain or uterine(w)contraction??
- s pyrexia or febrile
- s short(3n)between(3n)pregnancies
- s interpregnancy(w)interval??
- s pregnancy(3n)multiple
- s pregnancy(3n)complication? ?
- s pregnancy(3n)(high(w)risk)
- s pregnancy(3n)(adolescen? or teenage?)
- s (older or elderly)(n)women
- s occupation? or socioeconomic or ethnic or ethnicity or manual(w)work or long(w)hours
- s cocaine or heroin or narcotics or crack or dope or cannabis or substance(w)abuse
- $s\ substance (w) disorder ?\ ?\ or\ smoking\ or\ to bacco\ or\ alcohol?\ or\ lifestyle?\ ?$
- s estriol or plasma(w)crf or vaginal(3n)infection??
- s (biophysical or biochemical)(3w)marker??
- s bishop?(w)score??
- s cervical(w)(change? or length or measurement)
- s endocervical(w)(effacement or assessment)
- s cervical(w)(effacement or assessment or state)
- s medical(w)histor? or clinical(w)histor? or patient(w)histor? or patient(w)record? ?
- s obstetric(w)histor? or previous(w)preterm or repeat(w)preterm
- s risk(w)scor? or risk(w)assessment
- s physical(w)examination? or cervical(w)dilation or cervix(3n)length
- s dilation(3n)cervix
- s uterine(w)tocography or uterine(w)anomal? or tocometry
- s (cervical or cervix)(3n)(abnormal? or incompetence or incompetent)
- s (cervical or cervix)(3n)(ultrasound or ultrasonography)
- s (vaginal or endovaginal or transvaginal or obstetric)(3n)(ultrasound or ultrasonography)
- s diagnostic(n)(technique? or equipment or test? ?)
- s uterine(3n)activity or huam or uterine(3n)excitability
- s (myometrial or myometrium)(3n)excitability

```
s (oncofetal or c-reactive)(w)(protein?)
```

- s fibronectin?
- s sexually(w)transmitted(w)disease?
- s asymptomatic(w)bacteriuria or genital(w)tract(w)infection?
- s chlamydia or gonorrhea or herpes
- s leucocyte(w)esterase? or cytokines
- s culture?(3n)(amniotic or blood or genital or vaginal or cervical)
- s timp or collagenase or relaxin or tissue(w)inhibitor?
- s plasma(w)corticotropin(w)releasing(w)hormone?
- s estrogen or oestrogen or progestogen
- s (glucose(w)concentration?)(n)amniotic
- s zinc(n)amniotic
- s s1:s3
- s s4:s51
- s s52 and s53
- s s54/2002-2005

PASCAL (DIALOG). 2002/June-2005/Sep. 22nd September 2005.

- s (premature or preterm)(3n)birth??
- s (premature or preterm)(3n)deliver?
- s (premature or preterm)(3n)(labo?r or parturition)
- s risk(w)factor? ? or socioeconomic(w)factor? ?
- s low(3w)pregnancy(3w)weight
- s high(w)parity
- s early(3n)bleeding(3n)pregnancy
- s vaginal(3n)bleeding
- s (uterine or antepartum)(3w)(hemorrhag?) or haemorrhag?)
- s abdominal(w)pain or uterine(w)contraction??
- s pyrexia or febrile
- s short(3n)between(3n)pregnancies
- s interpregnancy(w)interval??
- s pregnancy(3n)multiple
- s pregnancy(3n)complication??
- s pregnancy(3n)(high(w)risk)
- s pregnancy(3n)(adolescen? or teenage?)
- s (older or elderly)(n)women
- s occupation? or socioeconomic or ethnic or ethnicity or manual(w)work or long(w)hours
- s cocaine or heroin or narcotics or crack or dope or cannabis or substance(w)abuse
- s substance(w)disorder? ? or smoking or tobacco or alcohol? or lifestyle? ?
- s estriol or plasma(w)crf or vaginal(3n)infection??
- s (biophysical or biochemical)(3w)marker??
- s bishop?(w)score??
- s cervical(w)(change? or length or measurement)
- s endocervical(w)(effacement or assessment)
- s cervical(w)(effacement or assessment or state)
- s medical(w)histor? or clinical(w)histor? or patient(w)histor? or patient(w)record? ?
- s obstetric(w)histor? or previous(w)preterm or repeat(w)preterm
- s risk(w)scor? or risk(w)assessment
- s physical(w)examination? or cervical(w)dilation or cervix(3n)length
- s dilation(3n)cervix
- s uterine(w)tocography or uterine(w)anomal? or tocometry
- s (cervical or cervix)(3n)(abnormal? or incompetence or incompetent)
- s (cervical or cervix)(3n)(ultrasound or ultrasonography)
- s (vaginal or endovaginal or transvaginal or obstetric)(3n)(ultrasound or ultrasonography)
- s diagnostic(n)(technique? or equipment or test? ?)
- s uterine(3n)activity or huam or uterine(3n)excitability
- s (myometrial or myometrium)(3n)excitability s (oncofetal or c-reactive)(w)(protein?)
- s fibronectin?
- s sexually(w)transmitted(w)disease?
- s asymptomatic(w)bacteriuria or genital(w)tract(w)infection?
- s chlamydia or gonorrhea or herpes
- s leucocyte(w)esterase? or cytokines
- s culture?(3n)(amniotic or blood or genital or vaginal or cervical)
- s timp or collagenase or relaxin or tissue(w)inhibitor?
- s plasma(w)corticotropin(w)releasing(w)hormone?
- s estrogen or oestrogen or progestogen
- s (glucose(w)concentration?)(n)amniotic
- s zinc(n)amniotic
- s s1:s3
- s s4:s51
- s s52 and s53

Science Citation Index (SCI) (DIALOG). 2002/June-2005/Sep. 22nd September 2005.

```
643 records were retrieved.
```

```
s (premature or preterm)(3n)birth??
```

- s (premature or preterm)(3n)deliver?
- s (premature or preterm)(3n)(labo?r or parturition)
- s risk(w)factor? ? or socioeconomic(w)factor? ?
- s low(3w)pregnancy(3w)weight
- s high(w)parity
- s early(3n)bleeding(3n)pregnancy
- s vaginal(3n)bleeding
- s (uterine or antepartum)(3w)(hemorrhag? or haemorrhag?)
- s abdominal(w)pain or uterine(w)contraction??
- s pyrexia or febrile
- s short(3n)between(3n)pregnancies
- s interpregnancy(w)interval??
- s pregnancy(3n)multiple
- s pregnancy(3n)complication??
- s pregnancy(3n)(high(w)risk)
- s pregnancy(3n)(adolescen? or teenage?)
- s (older or elderly)(n)women
- s occupation? or socioeconomic or ethnic or ethnicity or manual(w)work or long(w)hours
- s cocaine or heroin or narcotics or crack or dope or cannabis or substance(w)abuse
- s substance(w)disorder? ? or smoking or tobacco or alcohol? or lifestyle? ?
- s estriol or plasma(w)crf or vaginal(3n)infection??
- s (biophysical or biochemical)(3w)marker??
- s bishop?(w)score??
- s cervical(w)(change? or length or measurement)
- s endocervical(w)(effacement or assessment)
- s cervical(w)(effacement or assessment or state)
- s medical(w)histor? or clinical(w)histor? or patient(w)histor? or patient(w)record? ?
- $s\ obstetric(w) histor?\ or\ previous(w) preterm\ or\ repeat(w) preterm$
- s risk(w)scor? or risk(w)assessment
- s physical(w)examination? or cervical(w)dilation or cervix(3n)length
- s dilation(3n)cervix
- s uterine(w)tocography or uterine(w)anomal? or tocometry
- s (cervical or cervix)(3n)(abnormal? or incompetence or incompetent)
- s (cervical or cervix)(3n)(ultrasound or ultrasonography)
- s (vaginal or endovaginal or transvaginal or obstetric)(3n)(ultrasound or ultrasonography) s diagnostic(n)(technique? or equipment or test? ?)
- s uterine(3n)activity or huam or uterine(3n)excitability
- s (myometrial or myometrium)(3n)excitability s (oncofetal or c-reactive)(w)(protein?)
- s fibronectin?
- s sexually(w)transmitted(w)disease?
- s asymptomatic(w)bacteriuria or genital(w)tract(w)infection?
- s chlamydia or gonorrhea or herpes
- s leucocyte(w)esterase? or cytokines
- s culture?(3n)(amniotic or blood or genital or vaginal or cervical)
- s timp or collagenase or relaxin or tissue(w)inhibitor?
- s plasma(w)corticotropin(w)releasing(w)hormone?
- s estrogen or oestrogen or progestogen
- s (glucose(w)concentration?)(n)amniotic
- s zinc(n)amniotic
- s s1:s3
- s s4:s51
- $s\ s52\ and\ s53$
- s s54/2002-2005

Inside Conferences (DIALOG). 2002/June-2005/Sep. 22nd September 2005.

- s (premature or preterm)(3n)birth??
- s (premature or preterm)(3n)deliver?
- s (premature or preterm)(3n)(labo?r or parturition) s risk(w)factor? ? or socioeconomic(w)factor? ?
- s low(3w)pregnancy(3w)weight
- s high(w)parity
- s early(3n)bleeding(3n)pregnancy
- s vaginal(3n)bleeding

```
s (uterine or antepartum)(3w)(hemorrhag?) or haemorrhag?)
s abdominal(w)pain or uterine(w)contraction??
s pyrexia or febrile
s short(3n)between(3n)pregnancies
s interpregnancy(w)interval??
s pregnancy(3n)multiple
s pregnancy(3n)complication??
s pregnancy(3n)(high(w)risk)
s pregnancy(3n)(adolescen? or teenage?)
s (older or elderly)(n)women
s occupation? or socioeconomic or ethnic or ethnicity or manual(w)work or long(w)hours
s cocaine or heroin or narcotics or crack or dope or cannabis or substance(w)abuse
s substance(w)disorder? ? or smoking or tobacco or alcohol? or lifestyle? ?
s estriol or plasma(w)crf or vaginal(3n)infection??
s (biophysical or biochemical)(3w)marker??
s bishop?(w)score??
s cervical(w)(change? or length or measurement)
s endocervical(w)(effacement or assessment)
s cervical(w)(effacement or assessment or state)
s medical(w)histor? or clinical(w)histor? or patient(w)histor? or patient(w)record??
s obstetric(w)histor? or previous(w)preterm or repeat(w)preterm
s risk(w)scor? or risk(w)assessment
s physical(w)examination? or cervical(w)dilation or cervix(3n)length
s dilation(3n)cervix
s uterine(w)tocography or uterine(w)anomal? or tocometry
s (cervical or cervix)(3n)(abnormal? or incompetence or incompetent)
s (cervical or cervix)(3n)(ultrasound or ultrasonography)
s (vaginal or endovaginal or transvaginal or obstetric)(3n)(ultrasound or ultrasonography)
s diagnostic(n)(technique? or equipment or test? ?)
s uterine(3n)activity or huam or uterine(3n)excitability
s (myometrial or myometrium)(3n)excitability
s (oncofetal or c-reactive)(w)(protein?)
s fibronectin?
s sexually(w)transmitted(w)disease?
s asymptomatic(w)bacteriuria or genital(w)tract(w)infection?
s chlamydia or gonorrhea or herpes
s leucocyte(w)esterase? or cytokines
s culture?(3n)(amniotic or blood or genital or vaginal or cervical)
s timp or collagenase or relaxin or tissue(w)inhibitor?
s plasma(w)corticotropin(w)releasing(w)hormone?
s estrogen or oestrogen or progestogen
s (glucose(w)concentration?)(n)amniotic
s zinc(n)amniotic
s s1:s3
s s4:s51
s s52 and s53
s s54/2002-2005
```

Cochrane Database of Systematic Reviews (CDSR) and Cochrane Central Register of Controlled Trials (CENTRAL). Cochrane Library, Issue 2:2002-3:2005. 20th September 2005.

 $1\ \mathrm{new}$ protocol was identified in CDSR and $144\ \mathrm{records}$ were retrieved in CENTRAL.

Labor, Premature (MeSH) (premature or preterm or pre*term) NEAR/3 birth (premature or preterm or pre*term) NEAR/3 deliver* (preterm or pre*term) NEAR/3 (labour or labor) premature NEAR/3 (labour or labor or parturition) Fetal Membranes, Premature Rupture (MeSH) (premature or preterm or pre*term) NEAR/3 ruptur* PROM or PPROM #1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 Socioeconomic Factors (MeSH) Social Class (MeSH) Risk Factors (MeSH) Ethnic Groups (MeSH) Smoking (MeSH) Life Style(MeSH) Substance-Related Disorders(MeSH) Pregnancy, High-Risk (MeSH) Parity (MeSH) Reproductive History (MeSH) Abdominal Pain (MeSH)

Pregnancy Complications (MeSH) Uterine Contraction (MeSH) Uterine Hemorrhage (MeSH)

Fever (MeSH)

Estriol (MeSH)

Relaxin (MeSH)

Treponema pallidum (MeSH)

Neisseria gonorrhoeae (MeSH)

Streptococcus agalactiae (MeSH)

Mycoplasma hominis (MeSH)

Chlamydia trachomatis (MeSH) Trichomonas vaginalis (MeSH)

Bacteroides Infections (MeSH)

Vaginosis, Bacterial (MeSH)

Mobiluncus (MeSH)

Gardnerella vaginalis (MeSH)

Prostaglandins (MeSH)

Pregnancy, Multiple (MeSH)

Cervix Incompetence (MeSH)

Cervical Ripening (MeSH)

Fetal Proteins (MeSH)

Bacteriuria (MeSH)

Diagnostic Techniques, Obstetrical and Gynecological (MeSH)

Diagnostic Equipment (MeSH)

Diagnostic Imaging (MeSH)

Reagent Kits, Diagnostic (MeSH)

Ultrasonography, Prenatal (MeSH)

Diagnostic Tests, Routine (MeSH)

Medical History Taking (MeSH)

Risk Assessment (MeSH)

Physical Examination (MeSH)

Uterine Monitoring (MeSH)

Esterases (MeSH)

Cytokines (MeSH)

Immunoproteins (MeSH)

Platelet-Derived Growth Factor (MeSH)

Tumor Necrosis Factor-alpha (MeSH)

Gonadal Steroid Hormones (MeSH)

Corpus Luteum Hormones (MeSH)

Estrogens (MeSH)

Inhibins (MeSH)

Estradiol (MeSH)

Estrone (MeSH)

Receptors, Estrogen (MeSH)

Prostaglandin Antagonists (MeSH)

Receptors, Prostaglandin (MeSH) Leukotrienes (MeSH)

Receptors, Thromboxane (MeSH)

Collagenases (MeSH)

Body Constitution (MeSH)

Body Temperature (MeSH)

Palpation (MeSH)

Sexually Transmitted Diseases, Bacterial (MeSH)

Bacteroidaceae Infections (MeSH)

Chlamydiaceae Infections (MeSH)

Granuloma Inguinale (MeSH)

Mycoplasmatales Infections (MeSH)

Neisseriaceae Infections (MeSH)

Treponemal Infections (MeSH)

Staphylococcal Infections (MeSH)

Streptococcal Infections (MeSH) Ureaplasma Infections (MeSH)

Lactobacillus (MeSH)

Herpes Genitalis (MeSH)

Urinary Tract Infections (MeSH)

Chorioamnionitis (MeSH)

Amniotic Fluid (MeSH)

Leukocytes (MeSH)

Saliva (MeSH)

Biological Markers (MeSH)

Corticotropin-Releasing Hormone (MeSH)

(older or elderly) NEAR women

fibronectin* or tocodynamo* or (risk NEAR factor*) or (socioeconomic NEAR factor*)

low NEAR pregnancy NEAR weight

(high NEAR parity) or (early NEAR bleeding) or (vaginal NEAR bleeding) or (uterine or antepartum) NEAR hemorrhage or (abdominal NEAR pain) or (uterine NEAR contraction*) or pyrexia or febrile or fever or short NEAR/3 between NEAR/3 pregnancies

interpregnancy and interval* or occupation* or socioeconomic or ethnic or ethnicity or (manual NEAR work) or (long NEAR hours) or cocaine or heroin or narcotics or crack or dope or cannabis or (substance NEAR abuse) or smoking or tobacco or alcohol* or lifestyle* or estriol or (plasma NEAR crf) or (vaginal NEAR infection*)

(biophysical or biochemical) and marker* or bishop* and (score or scores) or cervical NEAR (change* or length or measurement) or endocervical NEAR (effacement or assessment) or cervical NEAR (effacement or assessment or state)

(clinical NEAR histor*) or (patient NEAR histor*) or (patient NEAR record*) or (obstetric NEAR histor*) or (previous NEAR preterm) or (repeat NEAR preterm) or (risk NEAR scor*) or (physical NEAR examination*) or (physical NEAR exam) or (physical NEAR exams) or (cervical NEAR dilation) or (cervix NEAR length) or dilation NEAR cervix

(uterine NEAR tocography) or (uterine NEAR anomal*) or tocometry or (cervical or cervix) NEAR (abnormal* or incompetence or incompetent) or (cervical or cervix) NEAR (ultrasound or ultrasonography) or (vaginal or endovaginal or transvaginal or obstetric) NEAR (ultrasound or ultrasonography) or uterine NEAR (activity or huam or excitability)

(myometrial or myometrium) NEAR excitability or (oncofetal or reactive) NEAR (protein*) or (asymptomatic NEAR bacteriuria) or (genital NEAR tract NEAR infection*) or leucocyte NEAR (esterase* or cytokines) or culture* NEAR (amniotic or blood or genital or vaginal or cervical)

timp or collagenase or relaxin or (tissue NEAR inhibitor*) or plasma NEAR corticotropin NEAR releasing NEAR hormone* or estrogen or oestrogen or progestogen or glucose NEAR concentration* NEAR amniotic or zinc NEAR amniotic

#10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20

#21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR #35 OR #36 OR #36 OR #37 OR #38 OR #39 OR #39 OR #40

#41 OR #42 OR #43 OR #44 OR #45 OR #46 OR #47 OR #48 OR #49 OR #50 OR #51 OR #52 OR #53 OR #54 OR #55 OR #56 OR #57 OR #58 OR #59 OR #60

#61 OR #62 OR #63 OR #64 OR #65 OR #66 OR #66 OR #67 OR #68 OR #69 OR #70 OR #71 OR #72 OR #73 OR #74 OR #75 OR #76 OR #76 OR #77 OR #78 OR #79 OR #80

#81 OR #82 OR #83 OR #84 OR #85 OR #86 OR #87 OR #88 OR #89 OR #90 OR #91 OR #92 OR #93 OR #94 OR #95 OR #96 OR #97 OR #98 OR #99 OR #100 OR #101

#102 OR #103 OR #104 OR #105 OR #106

National Research Register (NRR). (Update Software). 2002:1-2005:3. 21st September 2005.

192 records were retrieved.

LABOR PREMATURE

((premature next birth) or (preterm next birth) or (preterm next birth))

((premature next deliver*) or (preterm next deliver*) or (preterm next deliver*))

((preterm next labour) or (preterm next labour))

((preterm next labor) or (preterm next labor))

((premature next labour) or (premature next labor) or (premature next parturition))

#1 or #2 or #3 or #4 or #5 or #6

SOCIOECONOMIC FACTORS

SOCIAL CLASS RISK FACTORS

SMOKING

ETHNIC GROUPS

SUBSTANCERELATED DISORDERS

LIFE STYLE

PREGNANCY HIGHRISK

PREGNANCY IN ADOLESCENCE

PARITY

REPRODUCTIVE HISTORY

PREGNANCY COMPLICATIONS

FETAL MEMBRANES PREMATURE RUPTURE

ABDOMINAL PAIN

UTERINE CONTRACTION

UTERINE HEMORRHAGE

FEVER

ESTRIOL

RELAXIN

TREPONEMA PALLIDUM

NEISSERIA GONORRHOEAE

STREPTOCOCCUS AGALACTIAE

MYCOPLASMA HOMINIS

CHLAMYDIA TRACHOMATIS

TRICHOMONAS VAGINALIS BACTEROIDES INFECTIONS

VAGINOSIS BACTERIAL

MOBILUNCUS

GARDNERELLA VAGINALIS

PROSTAGLANDINS

PREGNANCY MULTIPLE

CERVIX INCOMPETENCE

CERVICAL RIPENING FETAL PROTEINS

BACTERIURIA

DIAGNOSTIC TECHNIQUES OBSTETRICAL AND GYNECOLOGICAL

DIAGNOSTIC EQUIPMENT

DIAGNOSTIC IMAGING

REAGENT KITS DIAGNOSTIC

ULTRASONOGRAPHY PRENATAL

DIAGNOSTIC TESTS ROUTINE

MEDICAL HISTORY TAKING

RISK ASSESSMENT

PHYSICAL EXAMINATION

UTERINE MONITORING

ESTERASES

CYTOKINES

TISSUE CULTURE

ACUTEPHASE PROTEINS

IMMUNOPROTEINS

PLATELETDERIVED GROWTH FACTOR

TUMOR NECROSIS FACTOR

CORPUS LUTEUM HORMONES

ESTROGENS

INHIBINS

ESTRADIOL

ESTRIOL

ESTRONE

ESTROGEN RECEPTOR MODULATORS

RECEPTORS ESTROGEN

PROSTAGLANDIN ANTAGONISTS

RECEPTORS PROSTAGLANDIN

LEUKOTRIENES

THROMBOXANES

COLLAGENASES

BODY CONSTITUTION

BODY TEMPERATURE

PALPATION

SEXUALLY TRANSMITTED DISEASES BACTERIAL

BACTEROIDACEAE INFECTIONS

CHLAMYDIACEAE INFECTIONS

GRANULOMA INGUINALE

MYCOPLASMATALES INFECTIONS

NEISSERIACEAE INFECTIONS

TREPONEMAL INFECTIONS

STAPHYLOCOCCAL INFECTIONS

STREPTOCOCCAL INFECTIONS UREAPLASMA INFECTIONS

LACTOBACILLUS

HERPES GENITALIS

URINARY TRACT INFECTIONS

CHORIOAMNIONITIS

AMNIOTIC FLUID LEUKOCYTES

SALIVA

BIOLOGICAL MARKERS

CORTICOTROPINRELEASING HORMONE

((older near women) or (elderly near women))

fibronectin*

((premature near rupture) near membrane*)

tocodynamo*

((risk near factor*) or (socioeconomic near factor*))

((low near pregnancy) near weight)

(high next parity)

((early near bleeding) near pregnancy)

(vaginal near bleeding)

((uterine near hemorrhage) or (antepartum near hemorrhage))

((abdominal next pain) or (uterine next contraction*))

((pyrexia or febrile) or fever)

((short near between) near pregnancies)

(interpregnancy and interval*)

(((((occupation* or socioeconomic) or ethnic) or ethnicity) or (manual next work)) or (long next hours))

((((((cocaine or heroin) or narcotics) or crack) or dope) or cannabis) or (substance next abuse))

(((((substance and disorder*) or smoking) or tobacco) or alcohol*) or lifestyle*)

((estriol or (plasma near crf)) or (vaginal near infection*))

((biophysical or biochemical) and marker*)

(bishop* and (score or scores))

((cervical near change*) or (cervical near length) or (cervical near measurement))

((endocervical near effacement) or (endocervical near assessment))

((cervical near effacement) or (cervical near assessment) or (cervical near state)) (((clinical near histor*) or (patient near histor*)) or (patient near record*))

(((obstetric near histor*) or (previous near preterm)) or (repeat near preterm))

((risk next scor*) or (physical next examination*))

```
(dilation near cervix)
(((uterine near tocography) or (uterine near anomal*)) or tocometry)
((cervical near abnormal*) or (cervical near incompetence) or (cervical near incompetent))
((cervix near abnormal*) or (cervix near incompetence) or (cervix near incompetent))
((cervical near ultrasound) or (cervical near ultrasonography))
((cervix near ultrasound) or (cervix near ultrasonography))
((vaginal near ultrasound) or (ultrasound near endovaginal) or (transvaginal near ultrasound) or (obstetric near ultrasound) or (vaginal near
ultrasonography) or (ultrasonography near endovaginal) or (transvaginal near ultrasonography) or (obstetric near ultrasonography))
((uterine near activity) or (uterine near huam) or (uterine near excitability))
((myometrial near excitability) or (myometrium near excitability))
((oncofetal near protein*) or ((c next reactive) near protein*)
((asymptomatic next bacteriuria) or (genital next tract next infection*))
((leucocyte next esterase*) or (leucocyte next cytokines))
((amniotic near culture*) or (blood near culture*) or (genital near culture*) or (vaginal near culture*) or (cervical near culture*))
(((timp or collagenase) or relaxin) or (tissue next inhibitor*))
(plasma next corticotropin next releasing next hormone*)
((estrogen or oestrogen) or progestogen)
((glucose next concentration*) near amniotic)
(zinc near amniotic)
(#8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20)
(#21 or #22 or #23 or #24 or #25 or #26 or #27 or #28 or #29 or #30 or #31 or #32 or #33 or #34 or #35 or #36 or #37 or #38 or #39 or #40)
(#21 or #22 or #23 or #24 or #25 or #26 or #27 or #28 or #29 or #30 or #31 or #32 or #33 or #34 or #35 or #36 or #37 or #38 or #39 or #40)
(#41 or #42 or #43 or #44 or #45 or #46 or #47 or #48 or #49 or #50 or #51 or #52 or #53 or #54 or #55 or #56 or #57 or #58 or #59 or #60)
(#61 or #62 or #63 or #64 or #65 or #66 or #67 or #68 or #69 or #70 or #71 or #72 or #73 or #74 or #75 or #76 or #77 or #78 or #79 or #80)
(#81 or #82 or #83 or #84 or #85 or #86 or #87 or #88 or #89 or #90 or #91 or #92 or #93 or #94 or #95 or #96 or #97 or #98 or #99 or #100)
(#101 or #102 or #103 or #104 or #105 or #106 or #107 or #108 or #109 or #110 or #111 or #112 or #113 or #114 or #115 or #116 or #117
or #118 or #119 or #120)
(#121 or #122 or #123 or #124 or #125 or #126 or #127 or #128 or #129 or #130 or #131 or #132 or #133 or #134 or #135 or #136 or #137
or #138 or #139)
(#141 or #142 or #143 or #144 or #145 or #146 or #147)
(#7 and #148)
```

MEDION. 2005. 27th September 2005.

8 records were retrieved. Separate searches were performed using the abstract, title and ICPC code fields.

((((physical next exam) or (physical next exams)) or (cervical next dilation)) or (cervix near length))

ICPC code: W Pregnancy, childbearing, family planning

Abstract, Title: 'premature', 'preterm', 'pre term', 'pre-term'

Appendix III - Data extraction pro-forma

Pro-forma for study inclusion and data extraction

Reviewer	Language	1st author	Publication year	
Data extraction				
Country				
Population	Asymptomatic	Symptomatic		
Study design	Cohort	Case-control	Can't tell	Others (state)
Data collection	Prospective	Retrospective	Can't tell	Others (state)
Enrolment	Consecutive	Arbitrary	Can't tell	Others (state)
Blinding	Yes	No	Can't tell	Others (state)
Test description	Yes	No	Can't tell	Others (state)
Inclusion criteria				
Exclusion criteria				
Testing gestation(s)				
Threshold(s)				
Reference standard(s))			
Sample size				
2x2 data extraction he	ere (reproduce table as	many times as require	ed)	
Test positive Test negative	Birth <48h/7d/34wks	s/37wks Birth >48h/	7d/34wks/37wks	Total

Appendix IV - Characteristics and results of individual included test accuracy studies

Table 10 Characteristic of studies on accuracy of maternal history of previous spontaneous preterm birth in predicting subsequent spontaneous preterm birth

Authors	Year	Country	_	C4 J J	Inclusion	Exclusion	T4:	Threshold	Outcome (weeks'
Authors	Y ear	Country	n	Study designs	Inclusion	Exclusion	Testing gestation	Inresnoid	gestation)
Goldenberg ⁶¹	1998	USA	1711	Cohort Prospective Test described	Singleton pregnancies	Placenta previa, congenital fetal anomaly	First antenatal appointment	Previous spontaneous preterm birth	<35, <37
Iams ⁶²	1998	USA	1282	Cohort Prospective Test described	Singleton pregnancies	anomary	First antenatal appointment	Previous spontaneous preterm birth before 26, 31 or 36 weeks' gestation	37
Botsis ⁵⁷	2004	Greece	104	Cohort Prospective Test described	Singleton pregnancies		First antenatal appointment	Previous spontaneous preterm birth	36
Kristensen ⁶³	1995	Denmark	13764	Cohort Retrospective Test described	Singleton pregnancies		First antenatal appointment	Previous spontaneous preterm birth	37
Berkowitz ⁵⁶	1998	USA	13197	Cohort Retrospective Test described	Singleton pregnancies		First antenatal appointment	Previous spontaneous preterm birth	37
Carr-Hill ⁵⁸	1985	UK	6072 ^a 1463 ^b	Cohort Retrospective Test described	Singleton pregnancies		First antenatal appointment	One, two previous spontaneous preterm birth	37
deCarvalho ⁵⁹	2005	Brazil	1958	Cohort Retrospective Test described	Singleton pregnancies		First antenatal appointment	Previous spontaneous preterm birth	34
Ancel ⁵⁵	1999	France	13292	Case-control Retrospective Test described	Singleton pregnancies		First antenatal appointment	Previous spontaneous preterm birth	37
Weidinger ⁶⁴	1974	Germany	911	Case-control Retrospective Test described	Singleton pregnancies		First antenatal appointment	One, two previous spontaneous preterm birth	37
deHaas ⁶⁰	1991	USA	420	Case-control Retrospective Test described	Singleton pregnancies		First antenatal appointment	Previous spontaneous preterm birth	37

a. One previous spontaneous preterm birth, b. Two previous spontaneous preterm births

Table 11 Individual accuracy results of maternal history of previous spontaneous preterm birth in predicting subsequent spontaneous preterm birth

Authors	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Goldenberg ⁶¹	85	278	119	1229	0.42	0.35	0.49	0.82	0.80	0.83	2.26	1.86	2.74	0.72	0.64	0.81
Goldenberg ^{\$61}	55	308	32	1316	0.63	0.52	0.73	0.81	0.79	0.83	3.33	2.76	4.03	0.45	0.34	0.60
Iams ⁺⁶²	15	83	67	1117	0.18	0.11	0.28	0.93	0.91	0.94	2.64	1.60	4.37	0.88	0.79	0.97
Iams ⁺⁺⁶²	27	149	55	1051	0.33	0.23	0.44	0.88	0.86	0.89	2.65	1.88	3.74	0.77	0.66	0.89
Iams ⁺⁺⁺⁶²	55	323	27	877	0.67	0.56	0.77	0.73	0.70	0.76	2.49	2.09	2.98	0.45	0.33	0.61
Botsis ⁵⁷	1	10	10	83	0.09	0.00	0.41	0.89	0.81	0.95	0.85	0.12	5.99	1.02	0.83	1.24
Kristensen ⁶³	55	433	241	13035	0.19	0.14	0.23	0.97	0.96	0.97	5.78	4.47	7.46	0.84	0.80	0.89
Berkowitz ⁵⁶	214	1049	465	11469	0.32	0.28	0.35	0.92	0.91	0.92	3.76	3.32	4.26	0.75	0.71	0.79
Carr-Hill ^{x58}	76	418	261	537	0.23	0.18	0.27	0.56	0.53	0.59	0.52	0.42	0.64	1.38	1.27	1.49
Carr-Hillxx58	8	17	57	1381	0.12	0.05	0.23	0.99	0.98	0.99	10.12	4.54	22.59	0.89	0.81	0.97
deCarvalho ⁵⁹	25	155	41	1737	0.38	0.26	0.51	0.92	0.90	0.93	4.62	3.28	6.52	0.68	0.56	0.82
Ancel ⁵⁵	850	526	4477	7439	0.16	0.15	0.17	0.93	0.93	0.94	2.42	2.18	2.68	0.90	0.89	0.91
Weidinger ^{x64}	73	18	370	450	0.16	0.13	0.20	0.96	0.94	0.98	4.28	2.60	7.06	0.87	0.83	0.91
Weidinger ^{xx64}	25	4	370	450	0.06	0.04	0.09	0.99	0.98	1.00	7.18	2.52	20.46	0.95	0.92	0.97
deHaas ⁶⁰	21	14	119	266	0.15	0.10	0.22	0.95	0.92	0.97	3.00	1.57	5.72	0.89	0.83	0.96

^{\$} Spontaneous preterm birth <35 weeks' gestation
+ Previous spontaneous preterm birth before 26 weeks' gestation
++ Previous spontaneous preterm birth before 31 weeks' gestation
+++ Previous spontaneous preterm birth before 36 weeks' gestation
x One previous spontaneous preterm birth
xx Two previous spontaneous preterm birth

Table 12 Characteristics of test accuracy studies of digital examination in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and women symptomatic with threatened preterm labour

Authors	Year	Country	n	Study designs	Inclusion	Exclusion	Testing gestation (weeks)	Frequency of testing	Threshold	Outcome (weeks' gestation)
Asymptomatic										
Leveno ⁷⁰	1986	USA	185	Cohort Prospective Consecutive Blinded Test described	Low risk pregnancy	Х	26 - 30	Single	2cm dilated	<34
Parikh ⁷²	1961	India	463	Cohort Prospective Consecutive Test described	Singleton pregnancies	Pre-eclampsia, infection, placenta previa, previous history of miscarriages	24 - 36	Biweekly	Admit digit at internal os	<37
Iams	2002	USA	270	Cohort Prospective Blinded Test described	Singleton pregnancies	Women who had received or were scheduled to receive an ambulatory monitor or tocolytic medication or to undergo cerclage were complicated by placenta previa or a major fetal anomaly detected by ultrasonography. Women who did not have telephones were not enrolled, because the transmission of data collected by the monitoring system required a telephone.	<35	Quads	Bishop score changes	<35
Stubbs ⁷⁴	1986	USA	108	Cohort Prospective Blinded Test described	Singleton pregnancies	Uterine or fetal anomaly, previous history of IUGR, spontaneous preterm birth, or cone biopsy, PPROM, history of second trimester miscarriage	28, 32 and 34	Thrice	1cm internal os dilatation, 30% effacement	<37
Chambers ⁶⁷	1991	France	5066	Cohort Prospective Test described	Low risk pregnancy	x	28 and <37	Biweekly	< 1cm long cervix at 28 weeks, >1cm internal os dilatation before 37 weeks	<37

Blondel ⁶⁶	1990	France	3159	Cohort Prospective Test described	Singleton pregnancies able to attend antenatal clinic at 25 - 28 and 29 - 31 weeks' gestation, divided into nulliparous and multiparous groups	Unknown gestation, iatrogenic preterm delivery	25 – 28, 29 - 31	Twice	1cm internal os dilatation, 1cm long cervix, mid- position, soft cervix	<37
Newman ⁷¹	1997	USA	2916	Cohort Prospective Test described	Singleton pregnancies	х	22 – 24, 26 - 29	Twice	Bishop score ≥4 or cervical score <1.5	<35
Schaffner ⁷³	1966	USA	83	Cohort Blinded Test described	All pregnant women seen at routine antenatal clinic between 28 - 32 weeks' gestation, divided into nulliparous and multiparous groups	Operative cervical procedure, threatened or chronic miscarriage, hormone administration during pregnancy, PPROM, previous CS, uncertain dates	28 - 32	Single	2-3cm dilated	<37
Chabra ⁶⁸	1991	India	75	Cohort Prospective Test described	Singleton pregnancies	Polyhydramnios, pre-eclampsia, vaginal bleeding, previous bad obstetrics history or history of preterm birth	28 - 28	Single	Central cervix position: ≥2.6, ≥1.5 cm long and posterior cervix position: ≥2.6, ≥1.5 cm long	<37
Symptomatic Onderoglu ⁷⁵	1997	Turkey	90	Cohort Prospective Blinded Test described	Singletons, intact membrane, cervical dilatation <3cm, absence of fetal and maternal complication		25 - 36	Single	>2cm dilated, >40% effacement	<37

Table 13 Individual accuracy results of digital examination in predicting spontaneous preterm birth stratified according to population of asymptomatic antenatal women and symptomatic women with threatened preterm labour

	Testing																	
Authors	gestation (weeks)	Threshold	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Asymptomatic																		
Leveno ⁷⁰	26 - 30	2cm dilated	4	11	3	167	0.57	0.18	0.90	0.94	0.89	0.97	9.25	3.91	21.85	0.46	0.19	1.08
Parikh ⁷²	24 - 36	admit finger at internal os	28	174	29	232	0.49	0.36	0.63	0.57	0.52	0.62	1.15	0.86	1.53	0.89	0.68	1.16
Stubbs ⁷⁴	34	30% effacement	2	22	2	104	0.50	0.07	0.93	0.83	0.75	0.89	2.86	1.00	8.19	0.61	0.23	1.62
Stubbs ⁷⁴	32	30% effacement	5	23	5	103	0.50	0.19	0.81	0.82	0.74	0.88	2.74	1.33	5.64	0.61	0.33	1.14
Stubbs ⁷⁴	28	1cm internal os	2	15	6	85	0.25	0.03	0.65	0.85	0.76	0.91	1.67	0.46	6.04	0.88	0.59	1.33
Stubbs ⁷⁴	32	1cm internal os	4	28	6	98	0.40	0.12	0.74	0.78	0.70	0.85	1.80	0.79	4.11	0.77	0.46	1.29
Stubbs ⁷⁴	28	30% effacement	0	9	8	91	0.00	0.00	0.37	0.91	0.84	0.96	0.59	0.04	9.34	1.04	0.88	1.24
Stubbs ⁷⁴	34	1cm internal os	3	51	1	75	0.75	0.19	0.99	0.60	0.50	0.68	1.85	1.01	3.39	0.42	0.08	2.31
Chambers ⁶⁷	<37	1cm internal os	65	846	109	4046	0.37	0.30	0.45	0.83	0.82	0.84	2.16	1.77	2.64	0.76	0.67	0.85
Chambers ⁶⁷	28	1cm long cervix	29	487	109	4046	0.21	0.15	0.29	0.89	0.88	0.90	1.96	1.40	2.73	0.88	0.81	0.97
Chambers ⁶⁷	<37	Combined	30	146	109	4046	0.22	0.15	0.29	0.97	0.96	0.97	6.20	4.35	8.84	0.81	0.74	0.89
Blondel ^{a66}	29 - 31	1cm long cervix	26	228	92	2271	0.22	0.15	0.31	0.91	0.90	0.92	2.42	1.68	3.47	0.86	0.78	0.95
Blondel ^{a66}	25 - 28	1cm long cervix	22	149	140	2848	0.14	0.09	0.20	0.95	0.94	0.96	2.73	1.80	4.15	0.91	0.86	0.97
Blondel ^{a66}	25 - 28	mid-position cervix	45	520	117	2476	0.28	0.21	0.35	0.83	0.81	0.84	1.60	1.23	2.08	0.87	0.79	0.96
Blondel ^{a66}	29 - 31	mid-position cervix	34	427	84	2072	0.29	0.21	0.38	0.83	0.81	0.84	1.69	1.25	2.27	0.86	0.76	0.96
Blondel ^{a66}	29 - 31	1cm internal os	25	135	386	2071	0.06	0.04	0.09	0.94	0.93	0.95	0.99	0.66	1.50	1.00	0.97	1.03
Blondel ^{a66}	29 - 31	Soft cervix	103	1742	15	757	0.87	0.80	0.93	0.30	0.28	0.32	1.25	1.16	1.35	0.42	0.26	0.68
Blondel ^{a66}	25 - 28	1cm internal os	21	48	139	2950	0.13	0.08	0.19	0.98	0.98	0.99	8.20	5.03	13.35	0.88	0.83	0.94
Blondel ^{a66}	25 - 28	Soft cervix	130	1870	30	1129	0.81	0.74	0.87	0.38	0.36	0.39	1.30	1.20	1.41	0.50	0.36	0.69
Blondel ^{b66}	29 - 31	1cm long cervix	14	130	56	1509	0.20	0.11	0.31	0.92	0.91	0.93	2.52	1.53	4.14	0.87	0.77	0.98
Blondel ^{b66}	25 - 28	Soft	95	1434	21	616	0.82	0.74	0.88	0.30	0.28	0.32	1.17	1.07	1.28	0.60	0.41	0.89

Blondel ^{b66}	25 - 28	mid-position cervix	30	384	88	1664	0.25	0.18	0.34	0.81	0.79	0.83	1.36	0.98	1.87	0.92	0.82	1.02
Blondel ^{b66}	25 - 28	1cm long cervix	12	96	103	1955	0.10	0.06	0.18	0.95	0.94	0.96	2.23	1.26	3.94	0.94	0.88	1.00
Blondel ^{b66}	29 - 31	Soft cervix	59	1242	11	397	0.84	0.74	0.92	0.24	0.22	0.26	1.11	1.00	1.24	0.65	0.37	1.12
Blondel ^{b66}	29 - 31	1cm internal	20	151	49	1489	0.29	0.19	0.41	0.91	0.89	0.92	3.15	2.11	4.69	0.78	0.67	0.91
Blondel ^{b66}	25 - 28	os 1cm internal os	17	59	98	1992	0.15	0.09	0.23	0.97	0.96	0.98	5.14	3.10	8.52	0.88	0.81	0.95
Blondel ^{b66}	29 - 31	mid-position cervix	16	292	50	1351	0.24	0.15	0.36	0.82	0.80	0.84	1.36	0.88	2.12	0.92	0.80	1.06
Schaffner ^{a73}	28 - 32	2-3cm	0	12	5	56	0.00	0.00	0.52	0.82	0.71	0.91	0.46	0.03	6.85	1.12	0.86	1.46
Schaffner ^{b73}	28 - 32	dilated 2-3cm dilated	5	60	10	141	0.33	0.12	0.62	0.70	0.63	0.76	1.12	0.53	2.36	0.95	0.66	1.37
Chabra ⁶⁸	28	central 1.5cm long cervix	5	0	36	34	0.12	0.04	0.26	1.00	0.90	1.00	9.17	0.52	160.08	0.88	0.78	1.00
Chabra ⁶⁸	28	posterior 2.6 cm long cervix	1	4	6	54	0.14	0.00	0.58	0.93	0.83	0.98	2.07	0.27	16.03	0.92	0.67	1.26
Chabra ⁶⁸	28	central 2.6cm long cervix	24	5	17	29	0.59	0.42	0.74	0.85	0.69	0.95	3.98	1.70	9.31	0.49	0.33	0.72
Chabra ⁶⁸	28	posterior 1.5 cm long cervix	7	57	0	1	1.00	0.59	1.00	0.02	0.00	0.09	0.96	0.80	1.16	2.46	0.11	55.35
Symptomatic																		
Onderoglu ⁷⁵	25 - 36	2cm dilated cervix	21	16	11	42	0.66	0.47	0.81	0.72	0.59	0.83	2.38	1.46	3.87	0.47	0.29	0.79
Onderoglu ⁷⁵	25 - 36	40% effacement	20	18	12	40	0.63	0.44	0.79	0.69	0.55	0.80	2.01	1.26	3.22	0.54	0.34	0.88

Table 14 Characteristic of studies on the accuracy of bedside cervico-vaginal fetal fibronectin testing as a predictor of spontaneous preterm birth stratified according to study population of asymptomatic antenatal women and symptomatic women who presented with threatened preterm labour

Authors	Year	n	Study designs	Inclusion criteria	Exclusion criteria	Testing gestation (weeks' gestation)	Reference standards (weeks' gestation)*
Asymptomatic							
Ruiz ⁹⁸	2001	78	Cohort Prospective Test described	Asymptomatic women	<18 or >40 years old, Rh iso-immunization, multiple gestation, cervical cerclage, use of tocolytics agents in the current pregnancy, maternal medical disorders, non-English speaking, >28 weeks' gestation at enrolment, misses > 1 monthly antenatal check-up.	23 – 26, 27 – 30, and both times	<37
Arinami ⁸⁷	1999	438	Prospective Consecutive Test described	Singleton pregnancies without medical or obstetrical complications.	None stated	26-28	<34 weeks <37 weeks
Goldenberg ⁸⁹	1996	2929	Prospective Blind Test described	Singletons pregnancies.	Placenta previa. Fetal anomalies	22, 24, 26, 28, 30	<34 weeks
Goldenberg ⁹⁰	1997	1870	Prospective Blind Test described	Singleton pregnancies of women who are not randomised to treatment for Trichomonas vaginalis or Bacterial vaginosis.	None stated	8-22	<35 weeks
Goldenberg ⁷⁶	2000	6508	Prospective Blind Test described	Singletons pregnancies.	None stated	8-22	<28 weeks <32 weeks <35 weeks <37 weeks
Hux ⁹¹	1995	54	Prospective Blind Test described	Intact membrane and undilated cervix.	Candida infection, fetal anomalies, vaginal bleeding, placenta previa, and threatened preterm labour.	26-29	<37 weeks
Heath ⁸¹	2000	5146	Prospective Consecutive Blind Test described	Singletons pregnancies of women attending an inner city ante-natal clinic	Fetal abnormalities.	22-24	<33 weeks
Chang ⁸⁸	1997	234	Prospective Blind Test described	Singletons pregnancies without previous history of spontaneous preterm labour or birth Intact membrane.	Vaginal bleeding. Pre-eclampsia. Placenta previa. Uncertain date. Fetal anomaly	28	<34 weeks <37 weeks

Faron ⁸⁰	1997	155	Prospective Consecutive Blind Test described	All asymptomatic women in antenatal clinic with known gestation.	Vaginal bleeding	24-33	<37 weeks
Hellemans ⁸²	1995	133	Blind Consecutive Prospective Test described	Low risk singletons pregnancies. Intact membrane.	Placenta previa. Vaginal bleeding. Cervical dilatation >1cm or cervical cerclage. Threatened preterm labour <26 weeks, Unknown date.	26-36	<37 weeks
Garcia ⁹⁴	1999	263	Blind Prospective Test described	Low risk singletons Intact membrane.	Cerclage.	24-37	<32 weeks <37 weeks
Greenhagen ⁹⁵	1996	108	Blind Prospective Test described	Low risk singletons pregnancies. Intact membrane.	Previous history of spontaneous preterm labour or birth Vaginal bleeding. Fetal anomaly.	24-34	<37 weeks
DiStefano ⁹³	1999	60	Prospective Test described	Singletons pregnancies Intact membrane.	Previous history of spontaneous preterm labour or birth Vaginal bleeding. Fetal anomaly Cervical cerclage. Genital infection. Maternal or fetal complications during gestation &/or examination	24-36	<37 weeks
Crane ⁹²	1999	140	Blind Consecutive Prospective Test described	Singleton pregnancies. Intact membrane.	Cerclage. Fetal anomalies or death. Vaginal bleeding. Recently treated bacterial vaginosis.	20-24	<37 weeks
Inglis ⁹⁶	1994	73	Blind Prospective Test described	Intact membrane	Fetal anomalies, placenta previa, genital or urinary infection, use of antibiotics in the preceding 7 days	<37	<37 weeks
Lockwood ⁹⁷	1991	429	Blind Prospective Test described	Asymptomatic women from an inner city antenatal clinic.	Uncertain date, placenta previa, iatrogenic preterm delivery	24-37	<28 day <37 weeks
Vercoustre ⁹⁹	1996	58	Test described	Asymptomatic women	Coitus <24 hours and vaginal bleeding.	27-37	<37 weeks
Zamora ⁷⁷	2000	20	Blind Test described	Asymptomatic pregnant women Intact membrane.	Coitus <24 hours. Recent usage of vaginal pessary	28-36	<37 weeks

Symptomatic							
Luzzi ¹¹⁰	2003	133	Cohort Consecutive Prospective Test described	Preterm labour, intact membrane, < 3 cm cervical dilatation	Scheduled caesarean section, induced delivery within 21 days of testing.	24 - 35	<7, <14 and <21 days of testing
Tekesin ⁸⁶	2005	170	Cohort Consecutive Prospective Blinded Test described	Preterm labour, intact membrane, < 3 cm cervical dilatation	Multiple gestations, cervical manipulations (examination, intercourse, ultrasound), vaginal bleeding, major fetal anomaly, PPROM, cervical cerclage, suspected fetal asphyxia	24 - 35	<7, <14, <21 days of testing and <34 and <37
Musaad ¹¹⁷	2005	27	Cohort Consecutive Prospective Test described	Preterm labour, intact membrane, < 3 cm cervical dilatation	Vaginal bleeding	24 - 33	<34, <37
Dolinska ¹²⁶	2005	115	Cohort Retrospective Test described	Singleton, preterm labour, intact membrane, $< 3 \text{ cm}$ cervical dilatation, no cerclage.	x	24 - 34	<37
Topete ¹²¹	2004	74	Cohort Retrospective Test described	Preterm labour, intact membrane, < 3 cm cervical dilatation	X	24 - 34	<37
Foxman ¹⁰⁴	2004	139	Cohort Prospective	Preterm labour, intact membrane, < 3 cm cervical dilatation	x	x	<7
Hincz ¹²²	2002	82	Cohort Prospective Blinded Test described	Preterm labour, intact membrane, < 3 cm cervical dilatation	Cerclage, clinical criteria of intrauterine infection, vaginal bleeding, IUGR, pre-eclampsia	24 - 34	<37
Sakai ¹¹³	2003	116	Cohort Test described	Preterm labour, intact membrane, < 4 cm cervical dilatation	PROM, multiple pregnancy, elective preterm delivery, pre-eclampsia, abruption, placenta previa, maternal medical conditions	20 - 36	<7 days of testing, and <37
Closset ¹⁰³	2001	61	Cohort Prospective Blinded	Preterm labour, intact membrane, < 3 cm cervical dilatation	x	24 - 36	<7, <14, <21 days of testing, and <37
Gomez ¹⁰⁶	2005	215	Test described Cohort Prospective Test described	Preterm labour, intact membrane, < 3 cm cervical dilatation	X	22 - 35	<48 hours, <7, <14 days of testing and <32, <35

Hansen ¹⁰⁹	2004	41	Cohort Prospective	>16 years of age, preterm labour, < 3cm dilatation for primigravida and < 4cm for multiparous.	Multiple gestations, major fetal anomaly, vaginal bleeding, PPROM, cervical cerclage, suspected fetal	23 - 34	<7, <14 days of testing, and <37
Stevens ¹²⁹	2004	185	Test described Cohort Prospective Test described	Preterm labour, intact membrane, \geq 2cm dilatation, \geq 50% effacement	asphyxia.	24 - 34	<32, <37
LaShay ⁸³	2000	118	Cohort Consecutive Prospective Blind Test described	Singleton pregnancies. Intact membrane. Cervical dilatation <3 cm.	Coitus or digital vaginal examination within 24 hours Vaginal bleeding Placenta previa Placental abruption Polyhydramnios Pre-eclampsia Known uterine or fetal abnormalities	24-34	<48 hours <7 days <37 weeks
Senden ⁸⁵	1996	49	Cohort Consecutive Prospective Blind Test described	Singleton pregnancies. Intact membrane. Cervical dilatation <4 cm.	Vaginal bleeding. Clinical chorioamnionitis. Diabetes mellitus.	25-35	<7 days
Bartnicki ¹⁰¹	1996	112	Cohort Prospective Blind Test described	Intact membrane, cervical dilatation <2 cm.		22-35	<7 days <14 days <21 days <28 days <34 weeks
Benattar ¹⁰²	1997	124	Cohort Prospective Blind Test described	Singletons and twin pregnancies. Intact membrane, cervical dilatation <3 cm.	Vaginal bleeding. Coitus < 24 hours.	24-36	<7 days <14 days <21 days <32 weeks <34 weeks
Malak ¹¹¹	1996	112	Cohort Prospective Blind Test described	Singletons pregnancies. Intact membrane. Cervical dilation < 2 cm.	Placenta previa. Vaginal bleeding. Coitus < 24 hours.	24-34	<7 days <14 days <21 days <37 weeks
McKenna ¹¹²	1999	50	Cohort Consecutive Prospective Test described	Cervical dilation < 3 cm.	Coitus < 24 hours. Vaginal digital examination or transvaginal ultrasounds scan procedure. Cervical cerclage. Uterine anomalies. Placenta previa. Placental abruption.	22-34	<7 days <14 days <37 weeks

Peaceman ⁷⁹	1997	725	Cohort Prospective Blind Test described	Singleton, twin pregnancies and 1 triplet. Intact membrane. Cervical dilatation <3 cm.	Placenta previa. Cerclage. Trauma leading to preterm labour.	24-34	<7 days <14 days <37 weeks
Iams ¹⁰⁷	1995	192	Cohort Prospective Blind Test described	Intact membrane. Cervical dilation < 3 cm.	Placenta previa. Cerclage. Uterine anomalies. Vaginal bleeding.	24-34	<7 days <37 weeks
Giles ¹⁰⁵	2000	150	Cohort Prospective Test described	Intact membrane.	Vaginal bleeding. Coitus < 24 hours. Recent digital vaginal examination.	24-34	<7 days <36 weeks
Lopez ¹⁰⁸	2000	85	Cohort Retrospective	Singletons pregnancies. Intact membrane. Cervical dilation < 3 cm.	Uncertain date. Lost to follow up. Incomplete data.	24-35	<7 days 14 days <34 weeks <37 weeks
Cox (Abstract) ¹¹⁵	1995	175	Test described	Intact membrane. Cervical dilatation < 3 cm.	None stated	24-34	<37 weeks
Chuileannain ¹¹⁸	1998	50	Cohort Retrospective Test described	Singletons pregnancies. Intact membrane. Cervical dilation < 2 cm.	Placenta previa. Placental abruption. Cerclage. Fetal anomalies.	<34	<34 weeks
Goffeng ¹¹⁶	1997	63	Cohort Consecutive Prospective Test described	Singletons pregnancies with intact membrane.	Pre-eclampsia. Uterine or cervical abnormalities. Placenta previa, placental abruption. Fetal anomalies. Diabetes mellitus.	23-34	<34 weeks <37 weeks
Parker ¹¹⁹	1995	36	Cohort Prospective Blind Test described	Singletons pregnancies. Intact membrane. Cervical dilation < 2 cm.	Placenta previa. Placental abruption. Cerclage. Fetal anomalies. Coitus < 24 hours.	20-34	<34
Burrus ¹¹⁴	1995	37	Cohort Prospective Blind Test described	Symptomatic women in their first pregnancy. Intact membrane Cervical dilatation <3 cm and changing, no contraindication to tocolytic	Amnionitis. Placental abruption.	<34	<37 weeks

Grandi ⁷⁸	1996	26	Cohort Consecutive Prospective Blind Test described	Singletons pregnancies. Intact membrane. Cervical dilation < 2cm	Placenta previa. Placental abruption. Fetal anomalies. Coitus <24 hours, Iatrogenic preterm labour.	24-36	<37 weeks
Inglis ⁹⁶	1994	38	Cohort Prospective Blind Test described	Singletons pregnancies. Intact membrane.	Fetal anomalies. Placenta previa. Genital or urinary infection. Use of antibiotics in the preceding 7 days	<37	<37 weeks
Irion ¹²³	1995	64	Cohort Prospective Blind Test described	Intact membrane. Cervical dilation < 2 cm.	Fetal anomalies. Vaginal bleeding. Coitus < 24 hours. Iatrogenic preterm delivery.	24-36	<37 weeks
Langer ¹²⁴	1997	61	Cohort Prospective Blind Test described	Intact membrane.	Vaginal bleeding. Coitus < 24 hours. Progressive cervical dilatation. Abnormal fetal heart rate monitoring.	24-34	<37 weeks
Lockwood ⁹⁷	1991	117	Cohort Prospective Blind Test described	Intact membrane	Fetal anomalies. Placenta previa. Coitus < 24 hours. Intra-uterine growth restriction. Fetal distress. Previous pregnancy terminated due to severe preeclampsia.	25-35	<37 weeks
Morrison ⁸⁴	1993	28	Cohort Blind Consecutive Prospective Test described	Singleton pregnancies. Intact membrane.	Uterine or cervical abnormalities. Vaginal bleeding. Placenta previa. Suspected placental abruption. Coitus or douching <24 hours. Diabetes mellitus. Unknown date. Pre-eclampsia. <15 years old.	24-34	<37 weeks
Rizzo ¹²⁷	1997	106	Cohort Prospective Blind Test described	Singleton pregnancies. Intact membrane. Cervical dilatation <3 cm.	Fetal or maternal complications. Urinary or genital infection. Use of antibiotic in the preceding 14 days	24-36	<37 weeks

Rozenberg ¹²⁸	1997	76	Cohort Prospective Blind Test described	Singleton pregnancies. Intact membrane. Cervical dilatation <2 cm.	Gestation <24 or >34 weeks. Cerclage. Placenta previa. Placental abruption. Iatrogenic preterm delivery.	24-34	<37 weeks
Calda ¹²⁰	1995	84	Cohort Prospective Test described	Intact membrane.		24-34	<36 weeks
Mansouri ¹²⁵	1996	90	Cohort Retrospective Test described	Intact membrane.	Vaginal bleeding Coitus < 24 hours	24-34	<37 weeks
Vercoustre ⁹⁹	1996	86	Test described	Singleton pregnancies with threatened preterm labour	Coitus < 24 hours Vaginal bleeding	<37	<37 weeks
Vetr ¹³⁰	1996	46	Cohort Prospective Test described	Intact membrane.	Fetal anomalies Placenta previa Vaginal bleeding Intra-uterine growth restriction Fetal distress Diabetes mellitus Pre-eclampsia	25-36	<37 weeks

^{*}unless otherwise state

Table 15 Individual accuracy results of cervico-vaginal fetal fibronectin (fFN) in predicting spontaneous preterm birth among symptomatic women with threatened preterm labour

Authors	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
<7 – 10 days																
Tekesin ⁸⁶	9	37	2	122	0.82	0.48	0.98	0.77	0.69	0.83	3.52	2.36	5.23	0.24	0.07	0.83
Closset ¹⁰³	5	11	1	44	0.83	0.36	1.00	0.80	0.67	0.90	4.17	2.20	7.89	0.21	0.03	1.25
LaShay ⁸³	3	10	2	103	0.60	0.15	0.95	0.91	0.84	0.96	6.78	2.68	17.16	0.44	0.15	1.29
Luzzi ¹¹⁰	4	34	3	92	0.57	0.18	0.90	0.73	0.64	0.81	2.12	1.05	4.28	0.59	0.25	1.39
Senden ⁸⁵	4	4	1	20	0.80	0.28	0.99	0.83	0.63	0.95	4.80	1.77	13.00	0.24	0.04	1.40
Bartnicki ¹⁰¹	3	33	1	79	0.75	0.19	0.99	0.71	0.61	0.79	2.55	1.35	4.80	0.35	0.06	1.94
Benattar ¹⁰²	8	11	1	104	0.89	0.52	1.00	0.90	0.84	0.95	9.29	5.06	17.06	0.12	0.02	0.78
Gomez ¹⁰⁶	18	34	10	153	0.64	0.44	0.81	0.82	0.76	0.87	3.54	2.34	5.33	0.44	0.26	0.72
Hansen ¹⁰⁹	2	7	1	31	0.67	0.09	0.99	0.82	0.66	0.92	3.62	1.28	10.27	0.41	0.08	2.04
Iams ¹⁰⁷	13	32	1	146	0.93	0.66	1.00	0.82	0.76	0.87	5.17	3.66	7.30	0.09	0.01	0.58
Malak ¹¹¹	8	10	2	92	0.80	0.44	0.97	0.90	0.83	0.95	8.16	4.20	15.87	0.22	0.06	0.77
McKenna ¹¹²	5	13	1	35	0.83	0.36	1.00	0.73	0.58	0.85	3.08	1.71	5.53	0.23	0.04	1.38
Peaceman ⁷⁹	19	123	2	581	0.90	0.70	0.99	0.83	0.80	0.85	5.18	4.19	6.40	0.12	0.03	0.43
Plaut ¹⁰⁰	1	8	1	86	0.50	0.01	0.99	0.91	0.84	0.96	5.88	1.26	27.30	0.55	0.14	2.19
Giles ¹⁰⁵	11	34	5	100	0.69	0.41	0.89	0.75	0.66	0.82	2.71	1.75	4.21	0.42	0.20	0.87
Sakai ¹¹³	11	27	7	71	0.61	0.36	0.83	0.72	0.63	0.81	2.22	1.36	3.62	0.54	0.30	0.97
Foxman ¹⁰⁴	6	25	1	107	0.86	0.42	1.00	0.81	0.73	0.87	4.53	2.84	7.20	0.18	0.03	1.08
Lopez ¹⁰⁸	8	12	1	64	0.89	0.52	1.00	0.84	0.74	0.92	5.63	3.19	9.94	0.13	0.02	0.84
<34 weeks																
Musaad ¹¹⁷	5	5	1	21	0.83	0.36	1.00	0.81	0.61	0.93	4.33	1.82	10.29	0.21	0.03	1.25
Tekesin ⁸⁶	20	26	8	116	0.71	0.51	0.87	0.82	0.74	0.88	3.90	2.57	5.93	0.35	0.19	0.63
Burrus ¹¹⁴	23	6	3	5	0.88	0.70	0.98	0.45	0.17	0.77	1.62	0.93	2.83	0.25	0.07	0.88
Goffeng ¹¹⁶	7	7	4	45	0.64	0.31	0.89	0.87	0.74	0.94	4.73	2.08	10.75	0.42	0.19	0.93
Parker ¹¹⁹	6	7	1	25	0.86	0.42	1.00	0.78	0.60	0.91	3.92	1.90	8.06	0.18	0.03	1.13
Chuileannain ¹¹⁸	9	11	1	49	0.90	0.55	1.00	0.82	0.70	0.90	4.91	2.77	8.70	0.12	0.02	0.79
Cox ¹¹⁵	3	22	11	139	0.21	0.05	0.51	0.86	0.80	0.91	1.57	0.53	4.60	0.91	0.69	1.20
Lopez ¹⁰⁸	11	9	4	61	0.73	0.45	0.92	0.87	0.77	0.94	5.70	2.88	11.28	0.31	0.13	0.71

<37 weeks																
Tekesin ⁸⁶	31	15	4	120	0.89	0.73	0.97	0.89	0.82	0.94	7.97	4.88	13.03	0.13	0.05	0.32
Closset ¹⁰³	12	4	11	34	0.52	0.31	0.73	0.89	0.75	0.97	4.96	1.81	13.56	0.53	0.34	0.83
Grandi ⁷⁸	4	9	4	9	0.50	0.16	0.84	0.50	0.26	0.74	1.00	0.43	2.30	1.00	0.43	2.30
Hincz ¹²²	10	5	4	63	0.71	0.42	0.92	0.93	0.84	0.98	9.71	3.92	24.05	0.31	0.13	0.71
LaShay ⁸³	10	8	24	76	0.29	0.15	0.47	0.90	0.82	0.96	3.09	1.33	7.15	0.78	0.62	0.98
Morrison ⁸⁴	9	5	1	13	0.90	0.55	1.00	0.72	0.47	0.90	3.24	1.50	7.02	0.14	0.02	0.91
Musaad ¹¹⁷	5	3	5	15	0.50	0.19	0.81	0.83	0.59	0.96	3.00	0.90	10.01	0.60	0.31	1.15
Bartnicki ¹⁰¹	27	7	13	65	0.68	0.51	0.81	0.90	0.81	0.96	6.94	3.33	14.49	0.36	0.23	0.57
Benattar ¹⁰²	9	9	16	90	0.36	0.18	0.57	0.91	0.83	0.96	3.96	1.76	8.93	0.70	0.52	0.95
Goffeng ¹¹⁶	10	4	18	31	0.36	0.19	0.56	0.89	0.73	0.97	3.13	1.10	8.91	0.73	0.54	0.98
Hansen ¹⁰⁹	3	6	6	26	0.33	0.07	0.70	0.81	0.64	0.93	1.78	0.55	5.74	0.82	0.50	1.34
Iams ¹⁰⁷	27	18	35	112	0.44	0.31	0.57	0.86	0.79	0.92	3.15	1.88	5.26	0.66	0.52	0.82
Inglis ⁹⁶	7	2	9	20	0.44	0.20	0.70	0.91	0.71	0.99	4.81	1.15	20.18	0.62	0.39	0.97
Irion ¹²³	15	11	7	31	0.68	0.45	0.86	0.74	0.58	0.86	2.60	1.45	4.66	0.43	0.23	0.82
Langer ¹²⁴	10	8	8	35	0.56	0.31	0.78	0.81	0.67	0.92	2.99	1.41	6.32	0.55	0.32	0.93
Lockwood ⁹⁷	49	10	11	47	0.82	0.70	0.90	0.82	0.70	0.91	4.66	2.62	8.28	0.22	0.13	0.38
Malak ¹¹¹	17	5	10	109	0.63	0.42	0.81	0.96	0.90	0.99	14.36	5.81	35.47	0.39	0.24	0.63
Peaceman ⁷⁹	61	81	78	505	0.44	0.35	0.53	0.86	0.83	0.89	3.17	2.41	4.18	0.65	0.56	0.76
Rizzo ¹²⁷	40	12	9	45	0.82	0.68	0.91	0.79	0.66	0.89	3.88	2.31	6.52	0.23	0.13	0.43
Rozenberg ¹²⁸	14	17	6	39	0.70	0.46	0.88	0.70	0.56	0.81	2.31	1.41	3.76	0.43	0.22	0.86
Stevens ¹²⁹	32	20	37	86	0.46	0.34	0.59	0.81	0.72	0.88	2.46	1.54	3.93	0.66	0.52	0.84
Calda ¹²⁰	19	13	2	50	0.90	0.70	0.99	0.79	0.67	0.89	4.38	2.65	7.26	0.12	0.03	0.45
Giles ¹⁰⁵	12	33	7	99	0.63	0.38	0.84	0.75	0.67	0.82	2.53	1.61	3.97	0.49	0.27	0.89
Sakai ¹¹³	26	12	36	42	0.42	0.30	0.55	0.78	0.64	0.88	1.89	1.06	3.37	0.75	0.58	0.96
Vetr ¹³⁰	5	11	4	26	0.56	0.21	0.86	0.70	0.53	0.84	1.87	0.87	4.02	0.63	0.30	1.35
Chuileannain ¹¹⁸	13	7	1	49	0.93	0.66	1.00	0.88	0.76	0.95	7.43	3.66	15.08	0.08	0.01	0.54
Dolinska ¹²⁶	28	8	10	69	0.74	0.57	0.87	0.90	0.81	0.95	7.09	3.58	14.04	0.29	0.17	0.50
Mansouri ¹²⁵	13	12	12	53	0.52	0.31	0.72	0.82	0.70	0.90	2.82	1.49	5.31	0.59	0.39	0.90
Topete ¹²¹	24	4	10	36	0.71	0.53	0.85	0.90	0.76	0.97	7.06	2.72	18.34	0.33	0.19	0.56
Vercoustre ⁹⁹	12	21	1	44	0.92	0.64	1.00	0.68	0.55	0.79	2.86	1.94	4.20	0.11	0.02	0.75
Lopez ¹⁰⁸	17	3	31	34	0.35	0.22	0.51	0.92	0.78	0.98	4.37	1.38	13.80	0.70	0.56	0.88

Table 16 Individual accuracy results of cervico-vaginal fetal fibronectin (fFN) in predicting spontaneous preterm birth among asymptomatic antenatal women

Authors	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
<34 weeks																
Arinami	1	1	4	432	0.20	0.01	0.72	1.00	0.99	1.00	86.60	6.26	1198.92	0.80	0.52	1.24
Heath	15	167	30	4934	0.33	0.20	0.49	0.97	0.96	0.97	10.18	6.56	15.80	0.69	0.56	0.85
Chang	3	2	3	226	0.50	0.12	0.88	0.99	0.97	1.00	57.00	11.57	280.92	0.50	0.23	1.12
Goldenberg	13	144	33	1680	0.28	0.16	0.43	0.92	0.91	0.93	3.58	2.20	5.82	0.78	0.65	0.93
Goldenberg	29	88	98	2714	0.23	0.16	0.31	0.97	0.96	0.97	7.27	4.97	10.63	0.80	0.72	0.88
Goldenberg	79	457	331	5641	0.19	0.16	0.23	0.93	0.92	0.93	2.57	2.07	3.19	0.87	0.83	0.92
Hux	3	5	1	45	0.75	0.19	0.99	0.90	0.78	0.97	7.50	2.74	20.51	0.28	0.05	1.52
<37 weeks																
Arinami	1	1	15	421	0.06	0.00	0.30	1.00	0.99	1.00	26.38	1.73	402.99	0.94	0.83	1.07
Crane	1	34	8	97	0.11	0.00	0.48	0.74	0.66	0.81	0.43	0.07	2.78	1.20	0.93	1.54
Faron	4	6	11	134	0.27	0.08	0.55	0.96	0.91	0.98	6.22	1.97	19.60	0.77	0.56	1.04
Hellemans	6	18	4	105	0.60	0.26	0.88	0.85	0.78	0.91	4.10	2.11	7.95	0.47	0.22	1.00
Chang	3	2	15	214	0.17	0.04	0.41	0.99	0.97	1.00	18.00	3.21	100.86	0.84	0.68	1.03
Garcia	22	9	5	227	0.81	0.62	0.94	0.96	0.93	0.98	21.37	10.98	41.57	0.19	0.09	0.42
Goldenberg	118	418	675	5297	0.15	0.12	0.18	0.93	0.92	0.93	2.03	1.68	2.46	0.92	0.89	0.95
Goldenberg	24	133	144	1569	0.14	0.09	0.21	0.92	0.91	0.93	1.83	1.22	2.74	0.93	0.87	0.99
Greenhagen	5	16	3	84	0.63	0.24	0.91	0.84	0.75	0.91	3.91	1.94	7.87	0.45	0.18	1.10
Inglis	2	11	9	51	0.18	0.02	0.52	0.82	0.70	0.91	1.02	0.26	4.01	0.99	0.74	1.34
Lockwood	30	108	19	272	0.61	0.46	0.75	0.72	0.67	0.76	2.15	1.64	2.83	0.54	0.38	0.77
Ruiz	0	8	6	62	0.00	0.00	0.46	0.89	0.79	0.95	0.60	0.04	9.28	1.05	0.84	1.32
DiStefano	4	8	2	46	0.67	0.22	0.96	0.85	0.73	0.93	4.50	1.92	10.57	0.39	0.13	1.22
Zamora	4	13	1	15	0.80	0.28	0.99	0.54	0.34	0.72	1.72	0.95	3.11	0.37	0.06	2.23
Vercoustre	1	6	0	58	1.00	0.03	1.00	0.91	0.81	0.96	7.50	2.54	22.14	0.28	0.03	3.07

Table 17 Characteristics of studies on test accuracy of cervico-vaginal prolactin in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and symptomatic women with threatened preterm labour

Authors	Year	Country	n	Study designs	Inclusion	Exclusion	Testing gestation (weeks)	Frequency of testing	Thresholds	Outcome (weeks' gestation)*
110010	2002	country		Study designs		Zizerusion.	(Weekley)	or testing	TIII USII OIG	gestation
Asymptomatic										
				Cohort Prospective Blinded	Asymptomatic antenatal	Rupture of membrane, fetal anomalies, vaginal bleeding, contra-indication to				
O'Brien ¹³¹	1994	USA	40	Test described Cohort	women Singleton pregnancies,	tocolysis	24-32	Single	2.0 ng/ml	<34
Koca ¹³²	1999	Turkey	40	Prospective Test described	asymptomatic antenatal women	Rupture of membrane, fetal anomalies, contra-indication to tocolysis	24-32	Single	1.5 ng/ml	<37
Symptomatic										
				Cohort Prospective Blinded	Singleton pregnancies,	Rupture of membrane, fetal anomalies, vaginal bleeding, fetal distress, placenta				
Jotterand ¹³⁴	1997	France	64	Test described	threatened preterm labour	previa, contra-indication to tocolysis	21-34	Single	2.0 ng/ml	<34, <37 Within 7
121				Cohort Prospective Blinded		Rupture of membrane, fetal anomalies, vaginal bleeding, contra-indication to				and 14 days of testing,
O'Brien ¹³¹	1994	USA	40	Test described Cohort	Threatened preterm labour	tocolysis	24-32	Single	2.0 ng/ml	<34, <37 Within 12
Leylek ¹³⁵	1997	Turkey	66	Prospective Test described Cohort	Singleton pregnancies, threatened preterm labour		29-36	Single	50 ng/ml	days of testing and <37
Koca ¹³²	1999	Turkey	35	Prospective Test described	Singleton pregnancies, threatened preterm labour	Rupture of membrane, fetal anomalies, contra-indication to tocolysis Rupture of membrane, fetal anomalies,	24-32	Single	1.5 ng/ml	<34, <37
Guvenal ¹³³	2001	Turkey	60	Case-control Retrospective Test described	Singleton pregnancies, threatened preterm labour	contra-indication to tocolysis, maternal hypertension, IUGR, fetal distress, placenta previa	24-36	Single	1.8 ng/ml	37

^{*}Unless otherwise stated

Table 18 Individual accuracy results of cervico-vaginal prolactin measurement in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour

Authors	Outcome	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Asymptomatic																	
O'Brien ¹³¹	34	1	1	1	37	0.50	0.01	0.99	0.97	0.86	1.00	19.00	1.76	205.15	0.51	0.13	2.06
Koca ¹³²	37	5	9	1	25	0.83	0.36	1.00	0.74	0.56	0.87	3.15	1.62	6.12	0.23	0.04	1.37
Symptomatic																	
O'Brien ¹³¹	7	6	14	3	17	0.67	0.30	0.93	0.55	0.36	0.73	1.48	0.81	2.70	0.61	0.23	1.62
O'Brien ¹³¹	34	16	4	7	13	0.70	0.47	0.87	0.76	0.50	0.93	2.96	1.20	7.26	0.40	0.20	0.78
Koca ¹³²	34	10	7	3	15	0.77	0.46	0.95	0.68	0.45	0.86	2.42	1.22	4.77	0.34	0.12	0.95
Jotterand ¹³⁴	34	4	7	3	50	0.57	0.18	0.90	0.88	0.76	0.95	4.65	1.81	11.97	0.49	0.21	1.16
O'Brien ¹³¹	37	17	3	11	9	0.61	0.41	0.78	0.75	0.43	0.95	2.43	0.87	6.76	0.52	0.30	0.92
Leylek ¹³⁵	37	19	0	15	32	0.56	0.38	0.73	1.00	0.89	1.00	36.77	2.31	584.80	0.45	0.31	0.65
Koca ¹³²	37	14	3	6	12	0.70	0.46	0.88	0.80	0.52	0.96	3.50	1.22	10.02	0.38	0.18	0.77
Guvenal ¹³³	37	4	2	4	50	0.50	0.16	0.84	0.96	0.87	1.00	13.00	2.83	59.76	0.52	0.26	1.04
Jotterand ¹³⁴	37	5	6	11	42	0.31	0.11	0.59	0.88	0.75	0.95	2.50	0.88	7.10	0.79	0.56	1.11

Table 19 Characteristic of studies on the accuracy of rapid test for phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in cervical secretion as a predictor of spontaneous preterm birth stratified according to study population of asymptomatic antenatal women and symptomatic women who presented with threatened preterm labour

Authors	Year	n	Study design	Inclusion criteria	Exclusion criteria	Testing gestation (weeks' gestation)	Reference standards (weeks' gestation)*
Asymptomatic							
Bittar ¹³⁸	2001	53	Cohort Prospective Test described	Previous premature delivery, intact membrane, no vaginal bleeding, screened and treated for Trichomonas, Candida, N. gonorrhoea, C. trachomatis, Group B Streptococcus	Lost to follow-up	24 - 34, 3 weekly	<37
Symptomatic							
Shine ¹³⁶	2001	32	Cohort Prospective Test described	Threatened preterm labour, cervix < 2 cm dilated, intact membrane		24 - 36	<34 and <37
Lembet ¹⁴⁰	2002	36	Cohort Prospective Blinded Test described	Threatened preterm labour	Uterine anomaly, congenital fetal abnormality, intra-uterine growth restriction, pre-eclampsia, vaginal bleeding	20 - 36	<48 hours, <7 days, and <37
Choi ¹⁴²	2003	42	Cohort Prospective Test described	Threatened preterm labour		20 - 36	<37
Park ¹⁴³	2003	50	Cohort Prospective Test described	Threatened preterm labour, cervix < 3 cm dilated, intact membrane		24 - 34	<7 days, <34, and <37
Akercan ^{141;143}	2004	45	Cohort Prospective Test described	Threatened preterm labour	Pre-eclampsia, ruptured membrane, vaginal bleeding, intra-uterine growth restriction, congenital fetal abnormality, and uterine anomaly	24 - 36	<37
Kwek ¹³⁹	2004	47	Cohort Consecutive Prospective Test described	Threatened preterm labour	Antepartum haemorrhage, cervix >3 cm dilated, contra-indication to tocolysis, insertion of cervical cerclage	24 - 34	<48 hours, <7 days, and <36

Elizur ¹⁴⁴	2005	35	Cohort Prospective Blinded Test described	Threatened preterm labour		24 - 35	<48 hours, <7 days, <34, and <37
Halle ¹⁴⁶	1999	93	Cohort Test described	Threatened preterm labour		23 - 32	<37
Paternoster ¹⁴⁵	2005	135	Cohort	Threatened preterm labour	Pre-eclampsia, ruptured membrane, vaginal bleeding, intra-uterine growth restriction, congenital fetal abnormality, and uterine anomaly	Not stated	<37
Turnell ¹³⁷	2005	100	Cohort Consecutive	Threatened preterm labour		Not stated	<37

^{*}Unless otherwise stated

Table 20 Individual accuracy results of bedside rapid test cervico-vaginal phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) in predicting spontaneous preterm birth among symptomatic women with threatened preterm labour

Authors	Year	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	LR+ (95% CI)	LR- (95% CI)
48 hours									
Lembet ¹⁴⁰	2002	14	4	1	17	0.88 (0.62 - 0.98)	0.81 (0.58 - 0.95)	4.59 (1.87 - 11.31)	0.15 (0.04 - 0.57)
Kwek ¹³⁹	2004	4	14	2	20	0.67 (0.22 - 0.96)	0.59 (0.41 - 0.75)	1.62 (0.81 - 3.24)	0.57 (0.18 - 1.82)
Elizur ¹⁴⁴	2005	0	7	0	29	0.50 (0.01 - 0.99)	0.79 (0.63 - 0.90)	2.38 (1.52 - 10.82)	0.63 (0.16 - 2.56)
							Summary LR's	2.53 (1.17 – 5.48)	0.32(0.15-0.66)
7 days							·		
Lembet ¹⁴⁰	2002	15	3	1	17	0.94 (0.70 - 1.00)	0.85 (0.62 - 0.97)	6.25 (2.19 - 17.88)	0.07 (0.01 - 0.49)
Park ¹⁴³	2003	11	10	2	27	0.85 (0.55 - 0.98)	0.73 (0.56 - 0.86)	3.13 (1.76 - 5.58)	0.21 (0.06 - 0.77)
Kwek ¹³⁹	2004	10	8	2	20	0.83 (0.52 - 0.98)	0.71 (0.51 - 0.87)	2.92 (1.54 - 5.52)	0.23 (0.06 - 0.84)
Elizur ¹⁴⁴	2005	0	7	0	29	0.50 (0.01 - 0.99)	0.79 (0.63 - 0.90)	2.38 (0.52 - 10.82)	0.63 (0.16 - 2.56)
							Summary LR's	3.29 (2.24 – 4.83)	0.20 (0.10 - 0.41)
34 weeks									
Shine ¹³⁶	2001	5	8	0	19	1.00 (0.48 - 1.00)	0.70 (0.50 - 0.86)	3.02 (1.64 - 5.56)	0.12 (0.01 - 1.72)
Park ¹⁴³	2003	9	12	2	27	0.82 (0.48 - 0.98)	0.69 (0.52 - 0.83)	2.66 (1.54 - 4.60)	0.26 (0.07 - 0.94)
Elizur ¹⁴⁴	2005	1	6	0	29	1.00 (0.03 - 1.00)	0.83 (0.66 - 0.93)	4.15 (1.44 - 11.99)	0.31 (0.03 - 3.38)
							Summary LR's	2.96 (2.02 – 4.33)	0.22 (0.08 - 0.64)
37 weeks									
Halle ¹⁴⁶	1999	22	11	6	54	0.79 (0.59 - 0.92)	0.83 (0.72 - 0.91)	4.64 (2.62 - 8.23)	0.26 (0.13 - 0.53)
Shine ¹³⁶	2001	8	5	2	17	0.80 (0.44 - 0.97)	0.77 (0.55 - 0.92)	3.52 (1.53 - 8.08)	0.26 (0.07 - 0.91)
Lembet ¹⁴⁰	2002	17	1	2	16	0.89 (0.67 - 0.99)	0.94 (0.71 - 1.00)	15.21 (2.26 - 102.48)	0.11 (0.03 - 0.42)
Choi ¹⁴²	2003	5	17	2	18	0.71 (0.29 - 0.96)	0.51 (0.34 - 0.69)	1.47 (0.82 - 2.62)	0.56 (0.16 - 1.87)
Park ¹⁴³	2003	17	1	5	24	0.77 (0.55 - 0.92)	0.96 (0.80 - 1.00)	19.32 (2.79 - 133.58)	0.24 (0.11 - 0.51)
Akercan ^{141;143}	2004	11	4	3	27	0.79 (0.49 - 0.95)	0.87 (0.70 - 0.96)	6.09 (2.34 - 15.82)	0.25 (0.09 - 0.68)
Kwek ¹³⁹	2004	14	4	5	17	0.74 (0.49 - 0.91)	0.81 (0.58 - 0.95)	3.87 (1.54 - 9.72)	0.33 (0.15 - 0.71)
Elizur ¹⁴⁴	2005	4	3	2	6	0.67 (0.22 - 0.96)	0.67 (0.30 - 0.93)	2.00 (0.68 - 5.91)	0.50 (0.15 - 1.70)
Paternoster ¹⁴⁵	2005	9	9	4	86	0.69 (0.39 - 0.91)	0.91 (0.83 - 0.96)	7.31 (3.56 - 15.0)1	0.34 (0.15 - 0.77)
							Summary LR's	4.26 (2.54 – 7.17)	0.28 (0.20 - 0.38)

Table 21 Characteristics of the included studies on accuracy of maternal serum α -fetoprotein (MSAFP) testing in predicting spontaneous preterm birth for asymptomatic pregnant women

Authors	Year	Country	n	Study designs	Inclusion	Exclusion	Testing gestation (weeks')	Frequency of testing	Thresholds	Outcome (weeks' gestation)
Goldenberg ¹	2001	USA	2929	Cohort Prospective Blinded Test described	Singleton pregnancies	Pregnant women with cervical dilatation >2 cm (nulliparous) and >3 cm (multiparous), Placenta previa, Fetal anomaly	23-24	Single	90th centile	<32, <35
Tanaka ¹⁶⁰	1994	Japan	1097	Cohort Consecutive Prospective Test described	Singleton pregnancies	Fetal and chromosomal abnormalities	18-20	Single	2.0 MoM	<37
Simpson ¹⁵⁸	1995	USA	650	Cohort Prospective Blinded Test described	Singletons pregnant women who provided specimen on the two specified occasions	Congenital anomaly	15-20, 24-36	Single	2.0 MoM	<37
Dugoff ¹⁵¹	2005	USA	33145	Cohort Prospective Test described	Singleton gestation, women >16 years	Fetal chromosomal or structural abnormalities	15-19	Single	2.0 MoM	<32
Morssink ¹⁵⁶	1995	Netherlands	7992	Cohort Prospective Test described	Singletons who underwent neural tube or Down's syndrome screening	Congenital anomaly, Delivery before 25 weeks' gestation, Insulin dependent diabetes mellitus	15-20	Single	2.5 MoM	<37
Davis* 150	1992	USA	843	Cohort Prospective Test described	Singleton pregnancies	Non-viable pregnancy, Stillbirths, Fetal anomaly	14-22	Single	2.5 MoM	<37
Waller ¹⁶²	1996	USA	51008	Cohort Retrospective Test described	Singleton pregnancies	Fetal anomaly, Fetal death, Multiple gestations, (Non-lethal chromosomal abnormalities might have been included)	15-19	Single	2.0, 2.5 MoM	<28, <32, <34, <37
Spencer ¹⁵⁹	2000	UK	27129	Case-control Prospective Test described	Singleton pregnancies	Fetal anomaly, Chromosomal abnormality, Pregnancy termination, Loss before 24 weeks' gestation	14-18	Single	2.0 MoM	<35, <37
Yaron ¹⁶⁵	1999	USA	20982	Cohort Retrospective Test described	Singleton pregnancies	Fetal anomaly, Chromosomal abnormality	14-22	Single	2.5 MoM	<37
Hsieh ¹⁵⁵	1997	Taiwan	5885	Cohort Retrospective Test described	Singleton pregnancies	Multiple gestation, diabetes mellitus, fetal and chromosomal abnormalities	14-22	Single	2.0 MoM	<37
Davis*150	1992	USA	5555	Cohort Retrospective Test described	Singleton pregnancies	Non-viable pregnancy, Stillbirths, Fetal anomaly	14-22	Single	2.5 MoM	<37

Wenstorm ¹⁶³	1996	USA	4574	Cohort Retrospective Test described	Singleton pregnancies	Fetal and Chromosomal abnormality	14-20	Single	2.5 MoM	<37
Brazerol ¹⁴⁸	1994	USA	776	Cohort Retrospective Test described	Singleton pregnancies	Fetal anomaly, Oligohydramnios, Fetal death	15-20	Single	2.0 MoM	<28, <37
Duric ¹⁵²	2002	Croatia	672	Cohort Retrospective Test described	Singleton pregnancies	Fetal chromosomal or structural abnormalities	15-22	Single	2.02 MoM	37
Sharara ¹⁵⁷	1995	Qatar	360	Case-control Prospective Test described	Singleton pregnancies	Fetal anomaly, Chromosomal abnormality, Diabetes mellitus, Pre-existing hypertension, Threatened miscarriage, Molar pregnancy	16-18	Single	2.5 MoM	37
Akinbiyi ¹⁴⁷	1996	UK	300	Case-control Retrospective Test described	Singleton pregnancies	Fetal and chromosomal abnormality	16-18	Single	2.0 MoM	37
Cho ¹⁴⁹	1997	USA	255	Case-control Prospective Test described	Singleton pregnancies	Non-viable pregnancies, Fetal anomaly, Chromosomal abnormality	14-20	Single	2.5 MoM	37
Williams ¹⁶⁴	1992	USA	412	Case-control Retrospective Test described	Singleton pregnancies	Fetal anomaly, Chromosomal abnormality, Fetal death	14-20	Single	2.0 MoM	37
Hamilton ¹⁵⁴	1985	USA	286	Case-control Retrospective Test described	Singleton pregnancies	Congenital anomaly	16-20	Single, twice	2.5 MoM	<34, <37
Wald ¹⁶¹	1977	UK	188	Case-control Retrospective Test described	Singleton pregnancies	Congenital abnormalities	14-22	Single	3.0 MoM	37

^{*}Initial retrospective study consisted of 5555 pregnant women, followed by a prospective study on 843 women

Table 22 Individual accuracy results of maternal serum α -fetoprotein (MSAFP) testing in predicting spontaneous preterm birth among antenatal asymptomatic women

Authors	Threshold (MoM)*	Outcome (weeks' gestation)	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Goldenberg ¹⁵³	90th centile 90th	32	18	184	32	2695	0.36	0.23	0.51	0.94	0.93	0.94	5.63	3.79	8.36	0.68	0.56	0.84
Goldenberg ¹⁵³	centile	35	45	389	82	2490	0.35	0.27	0.44	0.86	0.85	0.88	2.62	2.04	3.38	0.75	0.66	0.85
Tanaka ¹⁶⁰	2.0	37	8	65	69	955	0.10	0.05	0.19	0.94	0.92	0.95	1.63	0.81	3.27	0.96	0.89	1.03
Simpson ⁺¹⁵⁸	2.0	37	8	119	34	489	0.19	0.09	0.34	0.80	0.77	0.84	0.97	0.51	1.85	1.01	0.86	1.17
Simpson ⁺⁺¹⁵⁸	2.0	37	4	62	38	546	0.10	0.03	0.23	0.90	0.87	0.92	0.93	0.36	2.44	1.01	0.91	1.12
Dugoff ¹⁵¹	2.0	32	28	531	229	32357	0.11	0.07	0.15	0.98	0.98	0.99	6.75	4.71	9.67	0.91	0.87	0.95
Morssink ¹⁵⁶	2.5	37	10	60	467	7455	0.02	0.01	0.04	0.99	0.99	0.99	2.63	1.35	5.10	0.99	0.97	1.00
Davis ¹⁵⁰	2.5	37	29	3	73	738	0.28	0.20	0.38	1.00	0.99	1.00	70.23	21.78	226.38	0.72	0.64	0.81
Waller ¹⁶²	2.0	28	48	2418	237	48305	0.17	0.13	0.22	0.95	0.95	0.95	3.53	2.72	4.59	0.87	0.83	0.92
Waller ¹⁶²	2.5	28	21	629	264	50094	0.07	0.05	0.11	0.99	0.99	0.99	5.94	3.91	9.03	0.94	0.91	0.97
Waller ¹⁶²	2.0	32	118	2348	576	47966	0.17	0.14	0.20	0.95	0.95	0.96	3.64	3.08	4.31	0.87	0.84	0.90
Waller ¹⁶²	2.5	32	47	603	647	49711	0.07	0.05	0.09	0.99	0.99	0.99	5.65	4.24	7.53	0.94	0.92	0.96
Waller ¹⁶²	2.0	34	227	2239	1149	47393	0.16	0.15	0.19	0.95	0.95	0.96	3.66	3.23	4.15	0.87	0.85	0.90
Waller ¹⁶²	2.5	34	79	571	1297	49061	0.06	0.05	0.07	0.99	0.99	0.99	4.99	3.97	6.28	0.95	0.94	0.97
Waller ¹⁶²	2.0	37	499	1967	3212	45330	0.13	0.12	0.15	0.96	0.96	0.96	3.23	2.95	3.55	0.90	0.89	0.91
Waller ¹⁶²	2.5	37	158	492	3553	46805	0.04	0.04	0.05	0.99	0.99	0.99	4.09	3.43	4.88	0.97	0.96	0.97
Spencer ¹⁵⁹	2.0	35	57	548	607	25917	0.09	0.07	0.11	0.98	0.98	0.98	4.15	3.19	5.39	0.93	0.91	0.96
Spencer ¹⁵⁹	2.0	37	123	482	1429	25095	0.08	0.07	0.09	0.98	0.98	0.98	4.21	3.47	5.09	0.94	0.92	0.95
Yaron ¹⁶⁵	2.5	37	9	75	757	20141	0.01	0.01	0.02	1.00	1.00	1.00	3.17	1.59	6.30	0.99	0.98	1.00
Hsieh ¹⁵⁵	2.0	37	23	153	329	5380	0.07	0.04	0.10	0.97	0.97	0.98	2.36	1.55	3.61	0.96	0.93	0.99
Davis ¹⁵⁰	2.5	37	87	19	393	5056	0.18	0.15	0.22	1.00	0.99	1.00	48.41	29.74	78.82	0.82	0.79	0.86
Wenstorm ¹⁶³	2.5	37	62	99	609	3804	0.09	0.07	0.12	0.97	0.97	0.98	3.64	2.68	4.95	0.93	0.91	0.95
Brazerol ¹⁴⁸	2.0	28	6	51	9	710	0.40	0.16	0.68	0.93	0.91	0.95	5.97	3.04	11.71	0.64	0.43	0.97
Brazerol ^{148;148}	2.0	37	4	53	37	682	0.10	0.03	0.23	0.93	0.91	0.95	1.35	0.51	3.56	0.97	0.88	1.08
Duric ¹⁵²	2.0	37	1	39	32	601	0.03	0.00	0.16	0.94	0.92	0.96	0.50	0.07	3.51	1.03	0.97	1.10
Sharara ¹⁵⁷	2.5	37	18	102	20	220	0.47	0.31	0.64	0.68	0.63	0.73	1.50	1.03	2.17	0.77	0.56	1.05
Akinbiyi ¹⁴⁷	2.0	37	9	91	4	196	0.69	0.39	0.91	0.68	0.63	0.74	2.18	1.46	3.26	0.45	0.20	1.02
Cho ¹⁴⁹	2.5	37	37	80	16	122	0.70	0.56	0.82	0.60	0.53	0.67	1.76	1.38	2.25	0.50	0.33	0.76

Williams ¹⁶⁴	2.0	37	43	158	23	188	0.65	0.52	0.76	0.54	0.49	0.60	1.43	1.16	1.76	0.64	0.45	0.90
Hamilton**154	2.5	34	19	81	1	185	0.95	0.75	1.00	0.70	0.64	0.75	3.12	2.53	3.84	0.07	0.01	0.49
Hamilton**154	2.5	37	26	74	6	180	0.81	0.64	0.93	0.71	0.65	0.76	2.79	2.16	3.60	0.26	0.13	0.55
Hamilton ¹⁵⁴	2.5	34	9	78	1	185	0.90	0.55	1.00	0.70	0.64	0.76	3.03	2.30	4.01	0.14	0.02	0.91
Hamilton ¹⁵⁴	2.5	37	18	68	6	180	0.75	0.53	0.90	0.73	0.67	0.78	2.74	2.01	3.72	0.34	0.17	0.69
Wald ¹⁶¹	3.0	37	23	4	71	90	0.24	0.16	0.34	0.96	0.89	0.99	5.75	2.07	15.99	0.79	0.70	0.89

⁺ Tested at 15-20 weeks' gestation ++ Tested at 24-36 weeks' gestation * Unless otherwise stated ** Tested twice

Table 23 Characteristics of studies on test accuracy of maternal serum relaxin in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and symptomatic women with threatened preterm labour

Authors	Year	Country	n	Study designs	Inclusion	Exclusion	Testing gestation (weeks)	Frequenc y of testing	Threshold	Outcome (weeks' gestation)
				v G						
Asymptomatic										
Weiss ¹⁶⁶	1993	USA	76	Cohort Prospective Consecutive Test described	All 18 - 42 years old women who achieved singleton pregnancies from either ovulatory induction with or without IVF/ET	No previous history of preterm birth, uterine or fetal abnormalities, more than one major cervical surgery, no previous DES exposure, placenta previa, pre-eclampsia	6 - 12	Serial	+3SD*	<37
Vogel ¹⁶⁸	2006	USA	61	Cohort Prospective Consecutive Test described	Asymptomatic women with at least 1 previous late spontaneous miscarriage or early spontaneous preterm delivery between 16 - 30 weeks' gestation	Multiple gestation, PPROM, uterine or fetal abnormalities, threatened preterm labour	12 - 25	Single	406 mg/L	<37
Goldenberg ¹⁵³	2001	USA	2929	Case-control Retrospective Blinded Test described	Singleton pregnancy	Cervical dilatation >3cm in multiparous, >2cm in nulliparous, PPROM, bulging membrane at cervical os, placenta previa	24	Single	90th centile	<32, <35
Vogel ¹⁶⁷	2005	Denmark	483	Case-control Retrospective Test described	Singleton asymptomatic pregnancies	Multiple gestation, PPROM, fetal abnormalities, diabetes	18 - 24	Single	932 pg/ml	<37
Symptomatic Vogel ¹⁶⁹	2002	Denmark	34	Cohort Prospective Test described	Singleton pregnancy presenting with threatened preterm labour and intact membrane and without evidence of ripening cervix	Elevated blood pressure, women with major medical disease, vaginal bleeding	24 - 34	Single	300 pg/ml	<34, <37

^{*}Standard deviation

Table 24 Individual accuracy results of maternal serum relaxin measurement in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour

	Outcome (weeks'																
Authors	gestation)	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
A																	
Asymptomatic																	
Weiss ¹⁶⁶	37	6	37	3	30	0.67	0.30	0.93	0.45	0.33	0.57	1.21	0.73	2.01	0.74	0.28	1.95
Vogel ¹⁶⁸	37	9	33	11	8	0.45	0.23	0.68	0.20	0.09	0.35	0.56	0.34	0.93	2.82	1.35	5.89
Vogel ¹⁶⁷	37	18	50	66	350	0.21	0.13	0.32	0.88	0.84	0.91	1.71	1.06	2.78	0.90	0.80	1.01
Goldenberg ¹⁵³	32	11	628	39	2251	0.22	0.12	0.36	0.78	0.77	0.80	1.01	0.60	1.71	1.00	0.86	1.16
Goldenberg ¹⁵³	35	43	595	84	2214	0.34	0.26	0.43	0.79	0.77	0.80	1.60	1.24	2.06	0.84	0.74	0.95
Symptomatic																	
Vogel ¹⁶⁹	34	1	7	2	24	0.33	0.01	0.91	0.77	0.59	0.90	1.48	0.26	8.31	0.86	0.38	1.96
Vogel ¹⁶⁷	37	2	6	8	18	0.20	0.03	0.56	0.75	0.53	0.90	0.80	0.19	3.31	1.07	0.72	1.57

Table 25 Characteristics of studies on test accuracy of corticotrophin releasing hormone (CRH) in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and symptomatic women with threatened preterm labour

Authors	Year	Country	Population	Quality of studies	Inclusion criteria	Exclusion criteria	Testing gestation (weeks' gestation)	Frequency of testing	Thresholds	Outcome (weeks' gestation)
Asymptomatic	c									
Leung ¹⁷³	1999	Hong Kong	1014	Blinded Cohort Prospective Test described	Singleton pregnancies	Mid-trimester miscarriage	15-20	Single	1.9 MoM	<34
Berkowitz ¹⁷⁰	1996	USA	396	Cohort Prospective Test described	Asymptomatic Hispanic women	Multiple gestations, stillbirths, congenital malformation, iatrogenic preterm birth, women with chronic hypertension, pre-eclampsia	20-24 24-28 29-33 33-37	Serial	3.1, 41.3, 234, 665.7 pg/ml	<37
Inder ¹⁷²	2001	USA	297	Cohort Prospective Test described	Antenatal women from a local area medical practice	None stated	26	Single**	50, 70, 90, 110, 130, 150 pmol/l	
Goldenberg ¹⁵³	2001	USA	2929	Blinded Case-control Retrospective Test described	Singleton pregnancies	Fetal anomalies, chromosomal abnormalities, placenta previa, cervical dilatation >3 cm, or bulging membrane	23-24	Single	90th centile	<32 and <35
Holzman ¹⁷¹	2001	USA	304 (White), 181(Black)	Blinded Case-control Retrospective Test described	Antenatal patients at tertiary referral centre	Other ethnic groups beside black or white, multiple gestations, diabetes before pregnancy, chromosomal abnormalities		Single	1.0, 1.5 MoM	<35
Symptomatic Coleman ¹⁷⁴	2000	New Zealand	94	Blinded Cohort Prospective Test described	Non-diabetic singleton pregnancies presenting with preterm labour, intact membrane, and cervical dilatation <3 cm	Fetal anomaly and chromosomal abnormality	24-36	Single	90th centile	<10 days of testing and <37

^{*(}Sample was collected weekly from 17-30 weeks' gestation) but only the sample closest to 22^{nd} weeks' gestation was used in the analysis) **(Sample was collected weekly from 16-20 weeks' gestation) but only the sample closest to 26^{th} weeks' gestation was used in the analysis)

Table 26 Individual accuracy results of maternal serum corticotrophin releasing hormone (CRH) measurement in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour

Authors	Thresholds	Outcome	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Asymptomatic																		
Leung ¹⁷³	1.9 MoM	34	8	217	3	786	0.73	0.39	0.94	0.78	0.76	0.81	3.36	2.30	4.92	0.35	0.13	0.91
Berkowitz ¹⁷⁰	3.1 pg/ml	37	4	25	41	326	0.09	0.02	0.21	0.93	0.90	0.95	1.25	0.46	3.42	0.98	0.89	1.08
Berkowitz ¹⁷⁰	41.3 pg/ml	37	11	71	34	280	0.24	0.13	0.40	0.80	0.75	0.84	1.21	0.69	2.10	0.95	0.80	1.13
Berkowitz ¹⁷⁰	234 pg/ml	37	13	71	32	280	0.29	0.16	0.44	0.80	0.75	0.84	1.43	0.86	2.36	0.89	0.73	1.08
Berkowitz ¹⁷⁰	665.7 pg/ml	37	9	74	36	277	0.20	0.10	0.35	0.79	0.74	0.83	0.95	0.51	1.76	1.01	0.87	1.18
Inder ¹⁷²	90 pmol/l	37	14	16	17	250	0.45	0.27	0.64	0.94	0.90	0.97	7.51	4.07	13.86	0.58	0.42	0.80
Inder ¹⁷²	70 pmol/l	37	17	29	14	237	0.55	0.36	0.73	0.89	0.85	0.93	5.03	3.15	8.04	0.51	0.34	0.75
Inder ¹⁷²	110 pmol/l	37	11	9	20	257	0.35	0.19	0.55	0.97	0.94	0.98	10.49	4.72	23.31	0.67	0.51	0.87
Inder ¹⁷²	130 pmol/l	37	8	6	23	260	0.26	0.12	0.45	0.98	0.95	0.99	11.44	4.25	30.82	0.76	0.62	0.93
Inder ¹⁷²	150 pmol/l	37	6	2	25	264	0.19	0.12	0.43	0.99	0.97	1.00	25.74	5.43	122.07	0.70	0.68	0.97
Inder ¹⁷²	50 pmol/l	37	21	60	10	204	0.19	0.49	0.83	0.77	0.72	0.82	3.00	2.16	4.18	0.42	0.25	0.70
Goldenberg ¹⁵³	90 th centile	32	6	242	44	2637	0.00	0.45	0.83	0.77	0.72	0.93	1.43	0.67	3.05	0.42	0.23	1.06
Goldenberg ¹⁵³	90 th centile	35	15	233	112	2569	0.12	0.03	0.24	0.92	0.91	0.93	1.42	0.87	2.32	0.96	0.90	1.03
Goldenberg	1.0 MoM	33	13	233	112	2309	0.12	0.07	0.19	0.92	0.91	0.93	1.42	0.67	2.32	0.90	0.90	1.05
Holzman ¹⁷¹	(Black)	35	33	78	8	62	0.80	0.65	0.91	0.44	0.36	0.53	1.44	1.17	1.78	0.44	0.23	0.84
Holzman ¹⁷¹	1.0 MoM (White)	35	34	120	22	128	0.61	0.47	0.74	0.52	0.45	0.58	1.25	0.98	1.61	0.76	0.54	1.08
	1.5 MoM	33	54	120		120	0.01	0.47	0.74	0.52	0.43	0.50	1.23	0.70	1.01	0.70	0.54	1.00
Holzman ¹⁷¹	(Black)	35	17	32	24	108	0.41	0.26	0.58	0.77	0.69	0.84	1.81	1.13	2.91	0.76	0.58	1.00
Holzman ¹⁷¹	1.5 MoM (White)	35	16	48	40	200	0.29	0.17	0.42	0.81	0.75	0.85	1.48	0.91	2.40	0.89	0.74	1.06
Symptomatic																		
Coleman ¹⁷⁴	90 th centile	10	6	12	7	69	0.46	0.19	0.75	0.85	0.76	0.92	3.12	1.42	6.84	0.63	0.38	1.05
Coleman Coleman Coleman Coleman	90 th centile	37	12	6	19	57	0.40	0.19	0.73	0.83	0.70	0.92	4.06	1.68	9.81	0.68	0.58	0.91
Colcinali	50 centile	١٤	12	U	19	31	0.39	0.22	0.38	0.90	0.80	0.90	4.00	1.08	9.81	0.08	0.31	0.71

Table 27 Characteristics of the included studies on accuracy of β -human chorionic gonadotrophin (β -hcg) testing in predicting spontaneous preterm birth for asymptomatic pregnant women and women who presented with threatened preterm labour

Authors	Year	Country	N	Study designs	Inclusion	Exclusion	Testing gestation (weeks)	Frequency of testing	Threshold (MoM)+*	Outcome (weeks' gestation)*
Yaron ¹⁶⁵	2002	Israel	1,622	Cohort Consecutive Prospective Test described	Singleton pregnancies without fetal and chromosomal abnormalities	x	10 - 13	Single	\geq 1.0, \geq 2.0, \geq 3.0, \geq 4.0, \geq 5.0	<37
Dugoff ¹⁵¹	2005	USA	33,145	Cohort Consecutive Prospective Test described	Singleton pregnancies without fetal and chromosomal abnormalities	x	15 - 19	Single	>2.0	<32
Ong ¹⁸⁵	2000	UK	5,297	Cohort Consecutive Prospective Test described	Singleton pregnancies without fetal and chromosomal abnormalities	x	10 - 14	Single	5th, 10th centile	<34, <37
Dugoff ¹⁷⁹	2004	USA	34,271	Cohort Prospective Test described	Singleton pregnancies without fetal and chromosomal abnormalities	x	10 - 14	Single	1st, 5th, and 10th centile	<32, <37
Morssink ¹⁵⁶	1995	Netherland	7,992	Cohort Prospective Test described	Singleton pregnancies	Unknown pregnancy outcome, a congenital anomaly, delivery before 25 weeks of amenorrhea, or known insulin-dependent diabetes	15 - 20	Single	≥2.5	<37
Chandra ¹⁷⁸	2003	Canada	8,585	Cohort Prospective Test described	< 35 years, low risk singleton pregnancies without fetal or chromosomal abnormalities	x	15 - 20	Single	≥2.0	<37
Tanaka ¹⁶⁰	1994	Japan	1,097	Cohort Consecutive Prospective Test described	Consecutive pregnant women in whom gestation was dated by ultrasonography, with singleton pregnancies	x	18 - 20	Single	≥2.0	<37
Haddad ¹⁸⁸	1999	France	169	Cohort Retrospective Test described	IVF singleton pregnancies	No fetal or chromosomal abnormalities	6 - 7	Serial	90th centile	<37

Duric ¹⁵²	2002	Croatia	672	Cohort Retrospective Test described	< 35 years women with singleton pregnancies without fetal or chromosomal abnormalities	X	15 - 22	Single	≥2.02	<37
Spencer ¹⁵⁹	2000	UK	26,918	Case-control Retrospective Test described	Control of singleton uncomplicated pregnancies outcome. Cases were those with spontaneous preterm delivery	X	14 - 18	Single	≥2.0	<35, <37
Lieppman ¹⁸	1993	USA	460	Case-control Retrospective Test described	Non-diabetic women with singleton pregnancies between 15 and 18 weeks' gestation	Multiple gestations, diabetic pregnancies, fetal and chromosomal abnormalities	15 - 18	Single	≥2.0	<37
Onderoglu ¹	1997	Turkey	562	Case-control Retrospective Test described	Singleton non-diabetic pregnancies with know outcomes	Fetal and chromosomal abnormalities or maternal serum alpha feto-protein > 2.0 MoM	15 - 20	Single	≥2.0	<37
Hsieh ¹⁵⁵	1997	Taiwan	5,885	Cohort Retrospective Test described	Taiwanese women under 35 years of age with singleton pregnancies without fetal or chromosomal abnormalities	х	14 - 22	Single	≥2.0	<37
Wenstorm ¹	1994	USA	252	Case-control Retrospective Test described	Cases were singleton pregnancies without fetal or chromosomal abnormalities who underwent amniocentesis with matched control who did not have amniocentesis	X	15 - 20	Single	≥2.0	<37
Gonen ¹⁸⁰	1992	Israel	493	Case-control Retrospective Test described	Cases were singleton pregnancies with confirmed gestational age	Fetal or chromosomal abnormalities and maternal serum alpha feto-protein > 2.5 MoM	16 - 20	Single	≥2.5	<37
Yaron ¹⁶⁵	1999	Israel	45,565	Cohort Retrospective Test described	All singleton pregnancies screened for Down' syndrome risks	Fetal or chromosomal abnormalities	14 - 22	Single	>2.5	<37
Benn ¹⁷⁶	1996	USA	1,079	Case-control Retrospective Test described	<35 years, singleton pregnancies without diabetes mellitus, fetal and chromosomal abnormalities	X	15 - 22	Single	≥3.0	<37
Brajenovic ¹	2004	Croatia	1,507	Case-control Retrospective Test described	Singleton pregnancies without fetal or chromosomal abnormalities		15 - 20	Single	≥2.0	<37
Lepage ¹⁸¹	2003	Canada	2,256	Case-control Retrospective Test described	Singleton pregnancies without fetal anomalies	x	15 - 20	Single	≥4.0	<37

Liu ¹⁸³	1999	USA	72	Case-control Retrospective Test described	Unexplained elevated maternal serum hcg levels compared with controls with normal ms-hcg levels delivering during the same period	x	15 - 20	Not stated	≥2.0	<36
Ramos ¹⁹⁰	2003	USA	86	Cohort Prospective Blinded Test described	Preterm labour, < 4cm cervical dilatation, intact membrane	PPROM, presence of gross blood in vagina, cervical cerclage, fetal anomaly, IUGR, pre-eclampsia	24 - 34	Single	25 mIU/ml	<37
Gurbuz ¹⁸⁹	2004	Turkey	102	Cohort Prospective Test described	Preterm labour, < 3cm cervical dilatation, intact membrane	Fetal compromise, placenta previa, abruption, fetal anomaly, PPROM, pre-eclampsia.	25 - 35	Single	32 mIU/ml 42 mIU/ml 30 mIU/ml 33 mIU/ml 27 mIU/ml	<100 hours <100 hours < 7 days <14 days of testing, <35 and <37
Guvenal ¹³³	2001	Turkey	60	Case-control Prospective Test described	Singleton pregnancies without fetal or chromosomal abnormalities, cervical dilatation <3cm	Placenta previa, vaginal bleeding, pre-eclampsia, hypertension, IUGR, fetal distress, rupture of membrane at presentation	24 - 36	Single	27.1 mIU/ml	<37

Table 28 Individual accuracy results of β -human chorionic gonadotrophin (β -hcg) testing in predicting spontaneous preterm birth among asymptomatic and symptomatic women with threatened preterm labour

Authors	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Asymptomatic	women,	threshold	l 2.0 MoN	Л, <37 we	eks gestat	ion										
Yaron ¹⁶⁵	32	1246	12	332	0.73	0.57	0.85	0.21	0.19	0.23	0.92	0.77	1.11	1.30	0.79	2.12
Chandra ¹⁷⁸	203	637	1352	6393	0.13	0.11	0.15	0.91	0.90	0.92	1.44	1.24	1.67	0.96	0.94	0.98
Duric ¹⁵²	11	97	23	541	0.32	0.17	0.51	0.85	0.82	0.87	2.13	1.27	3.58	0.80	0.63	1.01
Tanaka ¹⁶⁰	8	65	69	955	0.10	0.05	0.19	0.94	0.92	0.95	1.63	0.81	3.27	0.96	0.89	1.03
Brajenovic ¹⁷⁷	5	116	44	1342	0.10	0.03	0.22	0.92	0.91	0.93	1.28	0.55	3.00	0.98	0.89	1.07
Lieppman ¹⁸²	25	200	9	226	0.74	0.56	0.87	0.53	0.48	0.58	1.57	1.25	1.96	0.50	0.28	0.88
Onderoglu ¹⁸⁴	27	54	39	442	0.41	0.29	0.54	0.89	0.86	0.92	3.76	2.56	5.52	0.66	0.54	0.81
Shieh ¹⁵⁵	33	383	329	5140	0.09	0.06	0.13	0.93	0.92	0.94	1.31	0.94	1.85	0.98	0.94	1.01
Spencer ¹⁵⁹	250	3713	1302	22541	0.16	0.14	0.18	0.86	0.85	0.86	1.14	1.01	1.28	0.98	0.96	1.00
Wenstorm ¹⁸⁶	4	18	37	193	0.10	0.03	0.23	0.91	0.87	0.95	1.14	0.41	3.20	0.99	0.88	1.10
Dugoff ^{1 179}	54	278	2137	30926	0.02	0.02	0.03	0.99	0.99	0.99	2.77	2.07	3.69	0.98	0.98	0.99
Dugoff ² 151	187	1485	2004	29719	0.09	0.07	0.10	0.95	0.95	0.95	1.79	1.55	2.07	0.96	0.95	0.97
Dugoff ^{3 151}	329	2945	1862	28259	0.15	0.14	0.17	0.91	0.90	0.91	1.59	1.43	1.77	0.94	0.92	0.96
Symptomatic v	vomen, th	reshold :	30 mIU/n	nL, withir	n 7 days o	f testing										
Gurbuz ¹⁸⁹	56	7	2	37	0.97	0.88	1.00	0.84	0.70	0.93	6.07	3.07	11.99	0.04	0.01	0.16
Symptomatic v	vomen, th	reshold :	30 mIU/n	nL, <37 w	eeks ' ges	tation										
Ramos ¹⁹⁰	18	17	10	41	0.64	0.44	0.81	0.71	0.57	0.82	2.19	1.35	3.56	0.51	0.30	0.85
Gurbuz ¹⁸⁹	61	10	19	12	0.76	0.65	0.85	0.55	0.32	0.76	1.68	1.04	2.69	0.44	0.25	0.75
Guvenal ¹³³	7	18	1	34	0.88	0.47	1.00	0.65	0.51	0.78	2.53	1.60	3.99	0.19	0.03	1.21

^{1.} Threshold = 0.28 MoM (i.e. 1st centile), 2. Threshold = 0.42 MoM (5th centile) and 3. Threshold = 0.52 MoM (10th centile)

Table 29 Characteristics of studies on test accuracy of estriol in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and symptomatic women with threatened preterm labour

Authors	Year	Country	n	Study designs	Inclusion	Exclusion	Testing gestation (weeks')	Frequency of testing	Threshold	Outcome (weeks' gestation)*
Asymptomatic										
Heine ¹⁹²	2000	USA	601	Cohort Prospective Blinded Test described	Singleton gestation, women >18 years	Placenta previa, cerclage, PPROM, pre-eclampsia, medications known to affect hormone levels, planned caesarean section, major congenital abnormalities, intrauterine growth restriction, fetal chromosomal and structural abnormalities, erythroblastosis fetalis, oral conditions that interfere with saliva collections, maternal medical complications	21-25	Single and twice (7 days apart)	2.1 ng/ml	37
Dugoff ¹⁵¹	2005	USA	33145	Cohort Prospective Test described	Singleton gestation, women >16 years	Fetal chromosomal or structural abnormalities	15-19	Single	0.5 MoM	32
Yaron ¹⁶⁵	1999	USA	24504	Cohort Retrospective Test described	All singleton pregnancies	Fetal chromosomal or structural abnormalities	14-22	Single	0.5 MoM	37
Kim ¹⁹³	2000	Korea	1096	Cohort Test described	All singletons <35 years old	Multiple pregnancies, diabetes mellitus, smoking abnormal alpha feto-protein and or human chorionic gonadotrophin	15-20	Single	0.75 MoM	37
Duric ¹⁵²	2003	Croatia	672	Cohort Retrospective Test described	Singleton pregnancies	Fetal chromosomal or structural abnormalities	15-22	Single	0.74 MoM	37
Kowalczyk ¹⁹⁴	1998	USA	399	Cohort Retrospective Test described	Singleton pregnancies, <35 years old	Elevated hcg and/or AFP	15-21	Single	0.75 MoM	37
Symptomatic										
Heine ¹⁹²	2000	USA	115	Cohort Prospective Blinded Test described	Symptomatic with threatened preterm labour	Placenta previa, tocolytics therapy, cerclage, PPROM, pre-eclampsia, medications known to affect hormone levels, planned caesarean section, major congenital abnormalities, intra-uterine growth restriction, fetal chromosomal and structural abnormalities, erythroblastosis fetalis, oral conditions that interfere with saliva collections, maternal medical complications	21-25	Single	1.4 ng/ml and 2.1 ng/ml	Within 14 days of testing
McGregor ¹⁹¹	1995	USA	190	Cohort Prospective Test described	Singleton pregnancies presenting with threatened preterm labour	Fetal anomalies, IUGR,	22-26	Single	2.1 ng/ml	37

^{*}Unless otherwise stated

Table 30 Individual accuracy results of maternal estriol measurement in predicting spontaneous preterm birth among asymptomatic antenatal women and symptomatic women with threatened preterm labour⁺

Authors	Thresholds																	
	I III CSHOIGS	(weeks)*	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	$LR+_LB$	LR+_UB	LR-	LRLB	LRUB
Asymptomatic																		
Heine ¹⁹²	2.1 ng/ml	37	10	46	13	532	0.43	0.23	0.66	0.92	0.90	0.94	5.46	3.18	9.40	0.61	0.43	0.88
Heine** ¹⁹²	2.1 ng/ml	37	13	128	10	450	0.57	0.34	0.77	0.78	0.74	0.81	2.55	1.73	3.77	0.56	0.35	0.89
Dugoff (0.5 MoM	32	5	369	252	32519	0.02	0.01	0.04	0.99	0.99	0.99	1.73	0.72	4.15	0.99	0.97	1.01
Yaron ¹⁶⁵	0.5 MoM	37	50	1688	865	21901	0.05	0.04	0.07	0.93	0.93	0.93	0.76	0.58	1.00	1.02	1.00	1.03
Kim ¹⁹³ (0.75 MoM	37	7	100	54	935	0.11	0.05	0.22	0.90	0.88	0.92	1.19	0.58	2.44	0.98	0.89	1.07
Duric ¹⁵²	0.74 MoM	37	12	104	22	534	0.35	0.20	0.54	0.84	0.81	0.86	2.17	1.33	3.53	0.77	0.60	0.99
Kowalczyk ¹⁹⁴ (0.75 MoM	37	12	69	38	190	0.24	0.13	0.38	0.73	0.68	0.79	0.90	0.53	1.54	1.04	0.87	1.23
Symptomatic																		
102		<14 days																
Heine ¹⁹²	1.4 ng/ml	of testing <14 days	14	22	9	70	0.61	0.39	0.80	0.76	0.66	0.84	2.55	1.56	4.16	0.51	0.31	0.87
Heine ¹⁹²	2.1 ng/ml	of testing	7	1	16	91	0.30	0.13	0.53	0.99	0.94	1.00	28.00	3.62	216.39	0.70	0.54	0.92
McGregor ¹⁹¹	2.1 ng/ml	37	16	53	6	115	0.73	0.50	0.89	0.68	0.61	0.75	2.31	1.64	3.24	0.40	0.20	0.79

⁺Single testing unless otherwise stated *Unless otherwise stated

^{**}Serial testing 7 days apart

Table 31 Characteristic of studies on accuracy of maternal C-reactive protein (CRP) measurement in predicting spontaneous preterm birth

Author	Year	n	Study quality	Gestation at testing (weeks)	Cut-off [ng/mL]*	Reference Standard
Amniotic fluid CR	P in asympto	matic w	omen			
Ghezzi ²⁰⁰	2002	306	Cohort, blinding, test described	14-20	110	34 weeks' gestation
Ozer ²⁰⁵	2005	141	Cohort, consecutive, prospective, test described	15-20	6.5	37 weeks' gestation
Blood serum CRP	In asymptom	atic wor	men			
Hvilsom ²⁰²	2002	484	Case-control, test described	14-18	7.6	37 weeks' gestation
Karinen ²⁰³	2005	506	Case-control, test described	12-16	4.3	37 weeks' gestation
Rückhäberle ²⁰⁶	1991	216	Cohort	Not reported	pos/neg	37 weeks' gestation
Blood serum CRP	In symptoma	ıtic wom	en			
Cammu ¹⁹⁶	1989	87	Cohort, consecutive, blinding, test described	22-35	12,5	7 days after testing, 37 weeks' gestation
Cylwik ¹⁹⁷	1997	35	Cohort, retrospective, test described	>24	10	37 weeks' gestation
Dodds ¹⁹⁸	1987	34	Cohort, retrospective, test described	24-35	8	7 days after testing
Foulon ¹⁹⁹	1995	44	Cohort, consecutive, retrospective, test described	20-34	15	34 weeks' gestation
Handwerker ²⁰¹	1984	50	Cohort, consecutive, blinding, test described	24-34	0,8-1,0	7 days after testing
Mazor ²⁰⁴	1993	48	Cohort, consecutive, test described	24-36	8	37 weeks' gestation
Potkul ¹⁹⁵	1985	40	Cohort, consecutive, blinding, test described	24-36	7	37 weeks' gestation
Winkler ²⁰⁷	1987	98	Cohort, consecutive	Not reported	10	7 days after testing

^{*}unless otherwise stated

 $Table \ 32 \ Sensitivity \ and \ specificity \ (with \ corresponding \ 95\% \ Confidence \ Intervals \ (CI)) \ of \ C-reactive \ protein \ (CRP) \ among \ individual \ studies \ in \ predicting \ spontaneous \ preterm \ birth \ according \ to \ type \ of \ tests, \ reference \ standards, \ and \ populations$

Author	Year	Cut-off	TP*	FP*	FN*	TN*	Sensitivity	95% CI	95% CI	Specificity	95% CI	95% CI
		[ng/ml]						lower limit	upper limit		lower limit	upper lim
Amniotic fluid CRP fo	or predicting birth	h before 34 weeks'	gestation									
Asymptomatic women		v										
Ghezzi ²⁰⁰	2002	110	8	90	2	206	0.80	0.44	0.97	0.70	0.64	0.75
Amniotic fluid CRP fo	or predicting birth	h before 37 weeks'	gestation									
Asymptomatic women												
Ozer ²⁰⁵	2005	6.5	13	27	1	100	0.93	0.66	0.99	0.79	0.72	0.85
Blood Serum CRP for	predicting birth	within 7 days of te	sting									
Symptomatic women												
Cammu ¹⁹⁶	1989	12,5	9	1	2	41	0.82	0.48	0.98	0.98	0.87	1.00
Dodds ¹⁹⁸	1987	8	17	4	3	10	0.85	0.62	0.97	0.71	0.42	0.92
Handwerker ²⁰¹	1984	0,8-1,0	11	4	2	33	0.85	0.55	0.98	0.89	0.75	0.97
Winkler ²⁰⁷	1987	10	13	14	27	44	0.33	0.19	0.49	0.76	0.63	0.86
Blood Serum CRP for	predicting birth	before 37 weeks' g	gestation									
Asymptomatic women												
Hvilsom ²⁰²	2002	7.6	22	58	62	342	0.26	0.17	0.37	0.86	0.82	0.89
Karinen ²⁰³	2005	4.3	36	90	68	312	0.35	0.26	0.46	0.78	0.73	0.82
Rückhäberle ²⁰⁶	1991	pos/neg	39	20	66	91	0.37	0.28	0.47	0.82	0.74	0.89
Symptomatic women												
Cammu ¹⁹⁶	1989	12,5	14	19	7	47	0.67	0.43	0.85	0.71	0.59	0.82
Cylwik ¹⁹⁷	1997	10	2	4	3	26	0.40	0.05	0.85	0.87	0.69	0.96
Foulon**199	1995	15	3	2	5	34	0.38	0.09	0.76	0.94	0.81	0.99
Mazor ²⁰⁴	1993	8	8	8	10	22	0.44	0.22	0.69	0.73	0.54	0.88
Potkul ¹⁹⁵	1985	7	14	2	11	13	0.56	0.35	0.76	0.87	0.60	0.98

^{*}TP = true positive, FP = false positive, FN = false negative, TN = true negative. **Reference standard births < 34 weeks' gestation

Table 33 Likelihood Ratios for positive (LR+) and negative (LR-) test results (with corresponding 95% Confidence Intervals (CI)) of C-reactive protein (CRP) in predicting spontaneous preterm birth among individual studies according to type of tests, reference standard and populations

Author	Year	Cut-off [ng/ml]	LR+	95% CI lower limit	95% CI upper limit	LR-	95% CI lower limit	95% CI upper limit
Amniotic fluid CR	P for predictin	g birth before 34 weeks' ges	tation					
Asymptomatic wor		g on on serore e : weens ges						
Ghezzi ²⁰⁰	2002	110	2.63	1.85	3.75	0.29	0.08	0.99
Ozer ²⁰⁵	2005	6.5	4.37	3.03	6.29	0.09	0.014	0.60
Dlood Comm. CDD	for prodicting	hinth within 7 days of testin						
		birth within 7 days of testin	g					
Symptomatic wom Cammu ¹⁹⁶	1989	12,5	34.36	4.86	243.09	0.19	0.05	0.65
Dodds ¹⁹⁸	1989	8	2.98	1.27	6.95	0.19	0.03	0.63
Handwerker ²⁰¹								
	1984	0,8-1,0	7.83	3.01	20.32	0.17	0.05	0.62
Winkler ²⁰⁷	1987	10	1.35	0.71	2.55	0.89	0.69	1.15
		Summary	4.54	1.48	13.91	0.30	0.08	1.15
Blood Serum CRP	for predicting	birth before 37 weeks' gesta	ition					
Asymptomatic wor	men	C						
Hvilsom ²⁰²	2002	7.6	1.81	1.17	2.78	0.86	0.76	0.98
Karinen ²⁰³	2005	4.3	1.55	1.22	2.13	0.84	0.73	0.98
Rückhäberle ²⁰⁶	1991	pos/neg	2.06	1.29	3.29	0.77	0.65	0.91
	-,,-	Summary	1.72	1.38	2.16	0.83	0.76	0.91
g , , ,								
Symptomatic wom		10.5	2.22	1.40	2.76	0.47	0.25	0.07
Cammu ¹⁹⁶	1989	12,5	2.32	1.43	3.76	0.47	0.25	0.87
Cylwik ¹⁹⁷	1997	10	3.00	0.73	12.27	0.69	0.33	1.44
Foulon ¹⁹⁹	1995	15	6.75	1.34	34.00	0.66	0.38	1.14
Mazor ²⁰⁴	1993	8	1.67	0.76	3.66	0.76	0.48	1.21
Potkul ¹⁹⁵	1985	7	4.20	1.10	15.98	0.51	0.31	0.82
		Summary	2.29	1.57	3.35	0.60	0.46	0.79

^{**}Reference standard births < 34 weeks' gestation

⁺ See table 1 for patient characteristics

Table 34 Characteristics of the included studies on accuracy of interleukin-6 (IL6) testing in predicting spontaneous preterm birth for asymptomatic pregnant women and symptomatic women who presented with threatened preterm labour, stratified according to specimen source

Authors	Year	Country	n	Study designs	Inclusion criteria	Exclusion criteria	Testing gestations	Frequency of testing	Thresholds	Outcome (weeks' gestation)*
Asymptomatic Amniotic fluid										
Wenstorm ²¹⁰	1998	USA	482	Case-control Retrospective Test described	Singleton pregnancies that underwent amniocentesis for various reasons (e.g. prenatal diagnosis)	Aneuploidies, anomalies, pregnancy loss within 30 days of amniocentesis	14 - 18	Single	2.9 ng/ml	34, 37
Ghidini ²¹²	1997	USA	179	Case-control Retrospective Test described	Singleton uncomplicated pregnancy	Multiple gestations, uterine, fetal or neonatal abnormalities, cytogenetic evidence of karyotypical abnormalities.	15 - 20	Single	1740 pg/ml	34
Cervico-vaginal										
Lockwood ²¹¹	1994	USA	161	Cohort Prospective Consecutive Blinding Test described	Singleton pregnancies. Intact membrane. Cervical dilatation <3 cm	Unknown dates, placenta previa, hydatidiform mole, major congenital anomaly, serious maternal medical complications.	24 - 36	Serial 3 - 4 weekly	125 & 250 pg/ml	37
Inglis ⁹⁶	1994	USA	73	Cohort Prospective Consecutive Blinding Test described	All patients between 15 and 40 years old with singleton pregnancies.	Congenital anomalies, placenta previa, kwon genital or urinary tract infection, use of antibiotics within the past 7 days.	20 - 36	Single	50 pg/ml	37
Goepfert ²²¹	2001	USA	250	Case-control Retrospective Blinding Test described	Singleton pregnancies. Intact membrane. Cervical dilatation <3 cm	Placenta previa, fetal abnormalities, maternal medical complications, uterine abnormalities.	22 - 24	Single	305 pg/ml	35, 37
Symptomatic Amniotic fluid										

243

Rizzo ²¹⁷	1996	Italy	92	Cohort Prospective Consecutive Blinding Test described	Singleton gestation in premature labour with intact membrane, cervical dilatation	Presence of other fetal or maternal complications, known genital or urinary infection, antibiotics use within the last 14 days.	24 - 36	Single	50 pg/ml	37
Romero ²⁰⁸	1993	USA	146	Cohort Prospective Consecutive Test described	Singleton pregnant women with threatened preterm labour	X	20 - 34	Single	0.5, 2.0 & 11.30 ng/ml	36
Coultrip ²¹⁴	1994	USA	89	Cohort Prospective Blinding Test described	Symptomatic women singleton pregnancies with intact membrane.	X	20 - 36	Single	0.38, 0.617 & 1.13 ng/ml	Within 3 days of testing (0.38 ng/ml only),
Greig ²²⁹	1993	USA	57	Cohort Prospective Blinding Test described	Singleton gestation in premature labour with intact membrane	Cervical dilatation >4 cm, antibiotic treatment in the past 7 days, any medical condition requiring antibiotic treatment.	24 - 34	Single	600 pg/ml	37 3
Greci ²¹⁵	1998	USA	53	Cohort Prospective Blinding Test described	Women who presented with threatened preterm labour and intact membrane	Vaginal bleeding, placenta previa, abruption, multiple gestations, polyhydramnios, pre- eclampsia, cervical cerclage, known uterine or fetal anomalies.	24 - 34	Single	7586 pg/ml	Within 2 & 7 days of testing
Burrus ¹¹⁴	1995	USA	18	Cohort Prospective Blinding Test described	Symptomatic women in first pregnancy. Intact membrane. Cervical dilatation <3 cm	Chorioamnionitis, placental abruption.	24 - 34	Single	1500 pg/ml	48
Hillier ²¹⁶	1993	USA	50	Cohort Prospective Test described	Afebrile women who presented with threatened preterm labour with intact membrane	<16 or >40 years old, uterine or fetal abnormalities, multiple pregnancies, polyhydramnios, cervical cerclage, placenta previa, abruption, hypertension, diabetes or had received antibiotics the previous week.	23 - 34	Single	1500 pg/ml	Within 7 days of testing, 34

Silver ²¹⁹	1993	USA	29	Cohort Prospective Test described	Symptomatic women singleton pregnancies with intact membrane.	Additional medical or obstetrics problems e.g. diabetes, chronic hypertension, placental abruption	24 - 37	Single	400 & 500 ng/ml	37
Allbert ²¹³	1994	USA	23	Cohort Prospective Test described	Singleton gestation in premature labour with intact membrane	Fetal distress, IUGR, abruption, clinical amnionitis, substantial haemorrhage, fetal anomalies, or stillbirth.	20 - 32	Single	20 ng/ml	Within 2 & 7 days of testing
Romero ²²⁰	1993	USA	120	Cohort Test described	Singleton pregnant women with threatened preterm labour	Patients who received antibiotics before amniocentesis, abnormal GTT or diabetes mellitus.	22 - 36	Single	11.30 ng/ml	37
Dudley ²²⁷	1994	USA	75	Cohort Retrospective Test described	Women who presented with threatened preterm labour, intact membrane who delivered		Х	Single	200 pg/ml	7
Romero ²¹⁸	1990	USA	56	Cohort Test described	Women admitted with threatened preterm labour and intact membrane		X	Single	46 ng/ml	35
Cervico-vaginal										
Inglis ⁹⁶	1994	USA	38	Cohort Prospective Consecutive Blinding Test described	All pregnant women between 15 and 40 years, singleton, less than 37 weeks and in	Fetal congenital anomalies, placenta previa, known genital or UTI, use of antibiotics within 7 days of testing.	24 - 37	Single	50 pg/ml	37
LaShay ⁸³	2000	USA	118	Cohort Prospective Blinding Test described	Singleton pregnancies. Intact membrane. Cervical dilatation <3 cm	Coitus or digital vaginal examination within 24 hours. Vaginal bleeding. Placenta previa. Placental abruption. Polyhydramnios. Preeclampsia. Known uterine or fetal abnormalities.	24 - 34	Single	100 pg/ml	37

Kurkinen-Raty ²²³	2001	Finland	77	Cohort Prospective Consecutive Test described	Consecutive singleton pregnant women between 22 - 32 weeks' gestation who present	Coitus or digital vaginal examination within 24 hours. Vaginal bleeding. Placenta previa. Placental abruption. Polyhydramnios. Preeclampsia. Known uterine or fetal abnormalities.	22 - 32	Single	61 ng/L	37
Trebeden ²²⁶	2001	France	142	Cohort Prospective Test described	Pregnant women with threatened preterm labour and intact membrane.	X	22 - 34	Single	20 pg/ml	Within 7 days of testing, 34
Holst ²²²	2005	Sweden	91	Cohort Prospective Test described	Women with singleton pregnancy presenting with threatened preterm labour and intact membrane.	Uterine and fetal abnormalities, vaginal bleeding, imminent delivery and fetal distress.	22 - 34	Single	1.3 ng/ml	7
Sozmen ²²⁵	2005	Turkey	40	Cohort Prospective Test described	Singleton pregnancies. Intact membrane. Cervical dilatation <3 cm	Vaginal bleeding, placenta previa, abruption, intercourse within last 24 hours, signs of intrauterine infection, polyhydramnios, IUGR, hypertension, diabetes, cervical cerclage, known uterine or fetal anomalies.	28 - 36	Single	172 pg/ml	37
Lange ²²⁴	2003	Germany	27	Cohort Prospective Test described	Singleton pregnancies. Intact membrane. Cervical dilatation <3 cm	Multiple gestations.	24 - 34	Single	20 pg/ml	Within 2 & 7 days of testing, 34
Serum										
Greig ²²⁹	1997	USA	56	Cohort Prospective Blinded Test described	Pregnant women who presented to the clinic or hospital in suspected preterm labour	Refusal to participate, premature pre-labour rupture of membrane, multiple pregnancy, HIV infection, evidence of chorioamnionitis, UTI, pre-eclampsia, maternal age <17 or >40.	22 - 34	Single	6 pg/ml	Within 5 days of testing
Alvarez-de-la- Rosa ²²⁸	2000	Spain	49	Cohort Prospective Blinded Test described	Pregnant women who presented to the clinic or hospital in suspected preterm labour	Refusal to participate, multiple pregnancies, HIV infection, evidence of chorioamnionitis or fetal distress.	26 - 37	Single	10 pg/ml	Within 2 days of testing, 34

Turhan ²³⁰	2000	Turkey	82	Cohort Prospective Test described	Singleton pregnancies with threatened preterm labour. Intact membrane.	Fetal or uterine abnormalities, diabetes mellitus, placenta previa, bleeding consistent with placental abruption, cervical cerclage, preeclampsia, known or suspected maternal infectious disease, positive urine culture or known maternal medical condition leading to preterm delivery.	24 - 36	Single	8.3 pg/ml	Within 2 & 7 days of testing
vonMinckwitz ²³¹	2000	Germany	72	Cohort Prospective Test described	Singleton pregnancies with threatened preterm labour. Intact membrane.	Multiple gestation, diabetes mellitus, polyhydramnios, severe concomitant disease, clotting disorders, drug addictions.	25 - 37	Single	4 pg/ml	24
Sozmen ²²⁵	2005	Turkey	40	Cohort Prospective Test described	Singleton pregnancies. Intact membrane. Cervical dilatation <3 cm	Vaginal bleeding, placenta previa, abruption, intercourse within last 24 hours, signs of intra- uterine infection, polyhydramnios, IUGR, hypertension, diabetes, cervical cerclage, known uterine or fetal anomalies.	28 - 36	Single	5 pg/ml	37

^{*}Unless otherwise stated

Table 35 Individual accuracy results of interleukin-6 (IL6) testing in predicting spontaneous preterm birth among asymptomatic and symptomatic women with threatened preterm labour, stratified according to outcome (weeks' gestation) and specimen source

Authors	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Asymptomatic																
34 weeks																
Wenstorm ^{1 210}	17	15	107	275	0.14	0.08	0.21	0.95	0.92	0.97	2.65	1.37	5.14	0.91	0.84	0.98
Ghidini ^{1 212}	3	13	107	153	0.14	0.05	0.54	0.93	0.92	0.96	2.95	0.96	9.04	0.83	0.62	1.13
Goepfert ^{2 221}	10	3	39	46	0.20	0.10	0.34	0.94	0.83	0.99	3.33	0.98	11.38	0.85	0.72	0.99
37 weeks	x	x	X	x	x	X	X	X	X	X	X	x	x	x	x	х
Wenstorm ^{1 210}	19	15	173	275	0.10	0.06	0.15	0.95	0.92	0.97	1.91	1.00	3.67	0.95	0.90	1.00
Lockwood ^{2 211}	17	19	17	108	0.50	0.32	0.68	0.85	0.78	0.91	3.34	1.96	5.70	0.59	0.42	0.83
Lockwood ^{2 211}	15	17	19	110	0.44	0.27	0.62	0.87	0.79	0.92	3.30	1.84	5.90	0.65	0.47	0.88
Inglis ^{2 96}	1	10	10	52	0.09	0.00	0.41	0.84	0.72	0.92	0.56	0.08	3.97	1.08	0.87	1.35
Goepfert ^{2 221}	25	12	100	113	0.20	0.13	0.28	0.90	0.84	0.95	2.08	1.10	3.96	0.88	0.80	0.98
Symptomatic																
7 - 10 days																
Greci ^{1 215}	17	4	3	29	0.85	0.62	0.97	0.88	0.72	0.97	7.01	2.75	17.90	0.17	0.06	0.49
Hillier ^{1 216}	22	8	4	15	0.85	0.65	0.96	0.65	0.43	0.84	2.43	1.36	4.36	0.24	0.09	0.61
Allbert ^{1 213}	4	0	1	18	0.80	0.28	0.99	1.00	0.81	1.00	28.50	1.78	456.57	0.26	0.06	1.03
Dudley ^{1 227}	26	9	14	26	0.65	0.48	0.79	0.74	0.57	0.88	2.53	1.38	4.64	0.47	0.30	0.75
Trebeden ^{2 226}	18	10	26	88	0.41	0.26	0.57	0.90	0.82	0.95	4.01	2.02	7.96	0.66	0.51	0.85
Holst ^{2 222}	22	13	7	51	0.76	0.56	0.90	0.80	0.68	0.89	3.73	2.21	6.33	0.30	0.16	0.58
Lange ^{2 224}	6	8	0	13	1.00	0.54	1.00	0.62	0.38	0.82	2.40	1.37	4.23	0.12	0.01	1.72
Turhan ^{3 230}	36	5	20	21	0.64	0.50	0.77	0.81	0.61	0.93	3.34	1.48	7.53	0.44	0.30	0.66
34 weeks																
Hillier ^{1 216}	28	2	4	15	0.88	0.71	0.96	0.88	0.64	0.99	7.44	2.01	27.52	0.14	0.06	0.36
Trebeden ^{2 226}	24	4	54	60	0.31	0.21	0.42	0.94	0.85	0.98	4.92	1.80	13.46	0.74	0.63	0.87
Lange ^{1 224} Alvarez-de-la-Rosa ³	7	7	0	13	1.00	0.59	1.00	0.65	0.41	0.85	2.63	1.44	4.79	0.10	0.01	1.45
228	7	19	3	20	0.70	0.35	0.93	0.51	0.35	0.68	1.44	0.86	2.41	0.59	0.22	1.58

34 weeks																
Rizzo ^{1 217}	18	0	34	40	0.35	0.22	0.49	1.00	0.91	1.00	28.62	1.78	461.04	0.66	0.54	0.80
Coultrip ^{1 214}	38	5	9	37	0.81	0.67	0.91	0.88	0.74	0.96	6.79	2.95	15.64	0.22	0.12	0.40
Silver ^{1 219}	8	2	5	14	0.62	0.32	0.86	0.88	0.62	0.98	4.92	1.26	19.29	0.44	0.22	0.90
Romero ^{1 208}	11	19	0	90	1.00	0.72	1.00	0.83	0.74	0.89	5.41	3.55	8.22	0.05	0.00	0.76
Inglis ^{2 96}	1	10	10	52	0.09	0.00	0.41	0.84	0.72	0.92	0.56	0.08	3.97	1.08	0.87	1.35
LaShay ^{2 83}	21	59	13	25	0.62	0.44	0.78	0.30	0.20	0.41	0.88	0.65	1.19	1.28	0.75	2.20
Kurkinen-Raty ^{2 223}	8	26	3	40	0.73	0.39	0.94	0.61	0.48	0.72	1.85	1.15	2.95	0.45	0.17	1.20
Sozmen ^{2 225}	14	1	6	19	0.70	0.46	0.88	0.95	0.75	1.00	14.00	2.03	96.62	0.32	0.16	0.62
Sozmen ^{3 225}	9	8	11	12	0.45	0.23	0.68	0.60	0.36	0.81	1.13	0.55	2.32	0.92	0.54	1.56

^{1.} Amniotic fluid specimen, 2. Cervico-vaginal specimen, 3. Maternal serum specimen

Table 36 Characteristics of the included studies on accuracy of interleukin-8 (IL8) testing in predicting spontaneous preterm birth for asymptomatic pregnant women and symptomatic women who presented with threatened preterm labour

Authors	Year	Country	n	Study designs	Inclusion criteria	Exclusion criteria	Testing gestation (weeks)	Frequency of testing	Thresholds	Outcomes (weeks' gestation)*
Asymptomatic										
Sakai ²³⁵	2004	Japan	4203	Cohort Prospective Blinding Test described	Asymptomatic women with singleton pregnancy and intact membrane	Preterm pre-labour rupture of membrane, threatened or impending miscarriage or preterm delivery, genital bleeding	20 - 28	Serial (2weekly)	360 ng/ml	32, 34, 37
Sakai ²³⁴	2004	Japan	501	Cohort Prospective Test described	Asymptomatic women with singleton pregnancy	Iatrogenic prematurity, fetal asphyxia, abruption, placenta previa, pre-eclampsia	20 - 24	Single	377 ng/ml	37
Symptomatic										
Kurkinen ²²³	2001	Finland	77	Cohort Prospective Consecutive Test described	Consecutive singleton pregnant women between 22 - 32 weeks' gestation who presented with threatened preterm labour.	Preterm pre-labour rupture of membrane, impending preterm delivery	22 - 32	Single	3739 ng/L	37
Holst ²²²	2005	Sweden	91	Cohort Prospective Test described	Women with singleton pregnancy presenting with threatened preterm labour and intact membrane	Uterine and fetal abnormalities, vaginal bleeding, imminent delivery and fetal distress	22 - 34	Single	7.7 ng/ml	Within 7 days of testing
Allbert** 213	1994	USA	23	Cohort Prospective Test described	Singleton gestation in premature labour with intact membrane	Fetal distress, IUGR, abruption, clinical amnionitis, substantial haemorrhage, fetal anomalies, or stillbirth	20 - 32	Single	15 ng/ml	Within 2 & 7 days of testing

^{*}Unless otherwise stated

^{**}Amniotic fluid specimen

Table 37 Individual accuracy results of interleukin-8 (IL8) testing in predicting spontaneous preterm birth among asymptomatic and symptomatic women with threatened preterm labour and stratified according to outcome (weeks' gestation)*

	Outcome (weeks'																
Authors	gestation)	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Asymptomatic																	
Sakai ^{1 235}	32	7	838	11	3347	0.39	0.17	0.64	0.80	0.79	0.81	1.94	1.08	3.48	0.76	0.53	1.10
Sakai ^{1 235}	34	12	833	15	3343	0.44	0.25	0.65	0.80	0.79	0.81	2.23	1.46	3.41	0.69	0.50	0.97
Sakai ^{1 235}	37	38	807	101	3257	0.27	0.20	0.36	0.80	0.79	0.81	1.38	1.04	1.82	0.91	0.82	1.01
Sakai ²³⁴	37	11	73	15	402	0.42	0.23	0.63	0.85	0.81	0.88	2.75	1.68	4.52	0.68	0.49	0.95
Symptomatic																	
Allbert ^{2 213}	2^{3}	4	0	0	19	1.00	0.40	1.00	1.00	0.82	1.00	36.00	2.30	564.54	0.10	0.01	1.42
Holst ²²²	7^3	18	17	11	47	0.62	0.42	0.79	0.73	0.61	0.84	2.34	1.42	3.84	0.52	0.32	0.84
Allbert ^{2 213}	7^{3}	4	0	1	18	0.80	0.28	0.99	1.00	0.81	1.00	28.50	1.78	456.57	0.26	0.06	1.03
Kurkinen ²²³	37	7	30	4	36	0.64	0.31	0.89	0.55	0.42	0.67	1.40	0.83	2.35	0.67	0.30	1.50

^{*}Unless otherwise stated, testing were done on a single occasion and cervico-vaginal samples of IL8 were used 1. Serial testing 2. Amniotic fluid 3. Birth within the stated number of days of testing

Table 38 Characteristics of the included studies on accuracy of matrix metalloprotease 9 (MMP-9) testing in predicting spontaneous preterm birth in symptomatic women who presented with threatened preterm labour

Authors	Year	Country	n	sample	Study designs	Inclusion	Exclusion	Testing gestation (weeks)	Frequency of testing	Threshold	Outcome (weeks' gestation)
Makrakis ²³⁷	2003	Greece	20	Urine, plasma	Cohort Prospective Test described	Symptomatic women who presented with threatened preterm labour, 20 - 35 years, no	Absence of cervical dilatation, no evidence of rupture membrane or	24 - 36	Single	7.71 ng/ml (urine), 68.43 ng/ml	<37
Agrez ²³⁶	1999	Australia	15	urine	Cohort Prospective Test described	other pregnancy complication Symptomatic women who presented with threatened preterm labour	chorioamnionitis x	27 - 34	Single	(plasma) 5 ng/ml	<37

Table 39 Individual accuracy results of matrix metalloprotease 9 (MMP-9) testing in predicting spontaneous preterm birth among asymptomatic and symptomatic women with threatened preterm labour

Authors	Thresholds	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Agrez ²³⁶	5 ng/ml	4	1	2	8	0.67	0.22	0.96	0.89	0.52	1.00	6.00	0.87	41.44	0.38	0.12	1.19
Makrakis ²³⁷	7.71 ng/ml	6	1	3	10	0.67	0.30	0.93	0.91	0.59	1.00	7.33	1.07	50.27	0.37	0.14	0.94
Makrakis ²³⁷	68.43 ng/ml	6	1	3	10	0.67	0.30	0.93	0.91	0.59	1.00	7.33	1.07	50.27	0.37	0.14	0.94

Table 40 Characteristics of the included studies on accuracy of periodontal health assessment in predicting spontaneous preterm birth among asymptomatic pregnant women

Authors	Year	Country	N	Study designs	Inclusion	Exclusion	Testing gestation	Threshold	Outcome
Jeffcoat ²⁴⁴	2001	USA	1313	Cohort Prospective Blinded Test described	All pregnant women being studied by the Perinatal Emphasis Research Center at UAB	Women who required antibiotic prophylaxis for dental examination or who is taking antibiotics	21 - 24	Periodontitis ≥3 sites with ≥3mm attachment loss (AL), severe periodontitis ≥90 sites, and healthy <3 sites <3mm AL	37
Offenbacher ²	2001	USA	812	Cohort Prospective Blinded Test described	Pregnant women enrolled before 26 weeks' gestation		Before 26 weeks' gestation and within 48 hours of deliveries	Periodontitis: Periodontal health (absence of any probe depth (PD) >3mm and no sites with attachment loss (AL) >2mm), moderate severe disease (≥4 sites with PD ≥5mm & ≥2mm AL at ≥4 sites), and mild periodontitis i.e. less than the moderate to severe group but had more than the healthy group.	37
								Progression of periodontitis	
Moore ²⁴⁶	2004	UK	539	Cohort Prospective Blinded Test described	Women who attended for NT Down syndrome screening at 12 weeks' gestation	Pregnancy less than 10 or more than 15 weeks' gestation, multiple pregnancy and need for antibiotics before dental treatment	10 -15	Healthy: <10% sites with probe depth (PD) ≥3mm & <5% sites with loss of attachment (LA) ≥2mm, Severe: >5 sites with PD ≥5mm & >3 sites with LA ≥3mm	32, 37
Offenbacher ²	1996	USA	124	Cohort Prospective Blinded Test described	Pregnant women under routine antenatal care in a University Hospital Prenatal Clinic	Concurrent genito-urinary tract infection, use of antibiotics and if at risk for bacterial endocarditis	Day 3 postnatal	Probe depth and loss of attachment ≥3mm affecting >60% (Extent 3:60) in all women and in primiparous	37
Holbrook ²⁴²	2004	Iceland	96	Cohort Consecutive Prospective Test described	Healthy otherwise unselected pregnant women. Bacterial vaginosis testing using Amsel's criteria was also performed on enrolled women		28 - 30	>4 pockets >4mm probe depth	37
Rajapakse ²⁵⁰	2005	Sri Lanka	227	Cohort Prospective Test described	Nulliparous, 18 - 34 years, singleton pregnancy	Hypertension, diabetes, smoking, betel chewing, alcohol and drug abuse	24 - 37	Mean pocket depth, plaque scores, and bleeding scores composite that are greater than the median value in the total cohort.	37

Moore ²⁴⁷	2005	UK	154	Case-control Prospective Blinded Test described	Cases were women who had spontaneous preterm birth before 37 weeks' gestation. Controls were uncomplicated term vaginal or elective caesarean section delivery.	Multiple pregnancy, medical history that require antibiotic cover, iatrogenic preterm delivery, hypertension, pre-eclampsia, diabetes mellitus.	Day 5 postnatal	Probe depth (\geq 4mm, \geq 5mm) and loss of attachment (\geq 2mm, \geq 3mm)	37
Goepfert ²⁴¹	2004	USA	103	Case-control Prospective Blinded Test described	Cases were women who delivered between 24 and 32 weeks' gestation.		Day 3 postnatal	>3mm and >5mm loss of attachment	32
Dasanayake ²	2001	USA	80	Case-control Prospective Blinded Test described	Cases were women who had spontaneous preterm birth before 37 weeks' gestation. Controls were term delivery.	Missing second trimester samples and elective preterm deliveries	14 - 24	Median and >75% Ig Prophyromonas gingivalis presence in serology.	37
Dortbudak ²⁴⁰	2005	Austria	36	Cohort Prospective Test described	Pregnant women undergoing amniocentesis for medical conditions	X	15 - 20	Probe depth ≥5mm	37
Radnai ²⁴⁹	2004	Hungary	85	Case-control Retrospective Blinded Test described	Systematically healthy women, cases were spontaneous premature birth before 37 weeks' gestation.	Diabetes, asthma, cardiac or renal problems, thyroid problems, chronic infectious disease or multiple pregnancies, patients who needed prophylaxis antibiotics.	Day 3 postnatal	Probe depth ≥4mm, bleeding on probing, and combination of probe depth, bleeding on probing	37
Jarjoura ²⁴³	2005	USA	203	Case-control Retrospective Test described	Singleton pregnancies	Fetal or uterine anomalies, cervical incompetence, iatrogenic premature delivery, women who required antibiotics prophylaxis before dental assessment	Day 3 postnatal	Clinical attachment loss (CAL) ≥3mm in ≥5 sites	37
Konopka ²⁴⁵	2003	Poland	128	Case-control Retrospective Test described	Cases were women who had spontaneous preterm birth before 37 weeks' gestation of infant who weighed <2500g	Multiple pregnancy, developmental defects, treated infertility patients, IVF, iatrogenic preterm births and systemic infection (apart from UTI)	Day 3 postnatal	Periodontal index >4	37

Table 41 Individual accuracy results of periodontal health assessment in predicting spontaneous preterm birth among asymptomatic women

Authors	Thresholds	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Offenbacher ²³⁸	Mild periodontitis Moderate-	132	434	38	163	0.78	0.71	0.84	0.27	0.24	0.31	1.07	0.97	1.17	0.82	0.60	1.12
Offenbacher ²³⁸	severe periodontitis Progressive	18	27	38	163	0.32	0.20	0.46	0.86	0.80	0.90	2.26	1.35	3.79	0.79	0.65	0.96
Offenbacher ²³⁸	periodontitis	75	180	113	444	0.40	0.33	0.47	0.71	0.67	0.75	1.38	1.12	1.71	0.84	0.74	0.96
Moore* 246	Severe periodontitis	9	254	4	272	0.69	0.39	0.91	0.52	0.47	0.56	1.43	0.99	2.08	0.60	0.26	1.35
Moore ²⁴⁶	Severe periodontitis All women	24	239	20	256	0.55	0.39	0.70	0.52	0.47	0.56	1.13	0.85	1.50	0.88	0.63	1.23
Offenbacher ²⁴⁸	with periodontitis Primiparous	87	22	6	9	0.94	0.86	0.98	0.29	0.14	0.48	1.32	1.05	1.66	0.22	0.09	0.57
Offenbacher ²⁴⁸	with periodontitis PD≥4mm in >	41	11	5	9	0.89	0.76	0.96	0.45	0.23	0.68	1.62	1.08	2.44	0.24	0.09	0.63
Holbrook ²⁴²	pockets	0	16	6	74	0.00	0.00	0.46	0.82	0.73	0.89	0.39	0.03	5.90	1.13	0.90	1.42
Rajapakse ²⁵⁰	PD≥ cohort median value	27	39	12	149	0.69	0.52	0.83	0.79	0.73	0.85	3.34	2.35	4.73	0.39	0.24	0.63
Moore ²⁴⁷	PD≥4mm	5	10	56	83	0.08	0.03	0.18	0.89	0.81	0.95	0.76	0.27	2.12	1.03	0.93	1.14
Moore ²⁴⁷	LA≥3mm	1	2	60	91	0.02	0.00	0.09	0.98	0.92	1.00	0.76	0.07	8.23	1.01	0.96	1.05
Moore ²⁴⁷	LA≥2mm	3	7	58	86	0.05	0.01	0.14	0.92	0.85	0.97	0.65	0.18	2.43	1.03	0.95	1.12
Moore ²⁴⁷	PD≥5mm	1	4	60	89	0.02	0.00	0.09	0.96	0.89	0.99	0.38	0.04	3.33	1.03	0.97	1.08
Goepfert*241	Extent 5	11	4	48	40	0.19	0.10	0.31	0.91	0.78	0.97	2.05	0.70	6.01	0.89	0.77	1.04
Goepfert* 241	Extent 3	28	13	31	31	0.47	0.34	0.61	0.70	0.55	0.83	1.61	0.95	2.73	0.75	0.55	1.02
Dortbudak ²⁴⁰	PD≥5mm	5	6	1	30	0.83	0.36	1.00	0.83	0.67	0.94	5.00	2.22	11.28	0.20	0.03	1.20
Radnai ²⁴⁹	PD≥4mm	22	18	19	26	0.54	0.37	0.69	0.59	0.43	0.74	1.31	0.83	2.07	0.78	0.52	1.18
Radnai ²⁴⁹	Bleeding on probing (BOP) PD≥4mm +	20	9	21	35	0.49	0.33	0.65	0.80	0.65	0.90	2.38	1.23	4.62	0.64	0.46	0.90
Radnai ²⁴⁹	BOP	19	5	22	39	0.46	0.31	0.63	0.89	0.75	0.96	4.08	1.68	9.92	0.61	0.45	0.82
Jarjoura ²⁴³	Periodontitis Periodontal index greater	21	25	62	95	0.25	0.16	0.36	0.79	0.71	0.86	1.21	0.73	2.02	0.94	0.81	1.10
Konopka ²⁴⁵	than 4	27	12	57	32	0.32	0.22	0.43	0.73	0.57	0.85	1.18	0.66	2.09	0.93	0.74	1.18

Spontaneous preterm birth before 32 weeks' gestation

Table 42 Characteristics of the included studies on accuracy of asymptomatic bacteriuria assessment in predicting spontaneous preterm birth before 37 weeks' gestation for asymptomatic pregnant women

Authors	Year	Country	n	Study designs	Inclusion	Exclusion	Testing gestation (weeks)	Frequency of testing	Outcome (weeks' gestation)
114411015		Country		Staay acsigns		23.17.43.701	(Weels)	or testing	gestation)
MSU									
Wren ²⁷⁸	1969	Australia	3099	Cohort Consecutive Prospective Test described	All pregnant patient booking at their first antenatal visit	Twin pregnancies and women who moved hospital	Antenatal	Repeat if positive	<37
Robertson ²⁶⁹	1968	UK	2184	Cohort Consecutive Prospective Test described	Singleton pregnancies	Miscarriages, treated women, delivered elsewhere	Booking	Single	<37
Uncu ²⁷⁴	2002	Turkey	186	Cohort Consecutive Prospective Test described	Singleton pregnancies	Patient with renal disease, recent or current antibiotic treatment, current or recent asymptomatic bacteriuria	<32	Repeat if positive	<37
Layton ²⁶²	1964	UK	176	Cohort Consecutive Prospective Test described	Antenatal asymptomatic women		<32	Single	<37
Versi ²⁷⁵	1997	UK	6864	Cohort Prospective Test described	Singleton pregnancies (Caucasian & Bangladeshi populations only)		11 - 14	Single	<37
Patrick ²⁶⁸	1967	UK	575	Cohort Prospective Test described	Antenatal asymptomatic women		Booking	Single	<37
Schieve ²⁷¹	1994	USA	25663	Cohort Retrospective Test described	Singleton pregnancies		Antenatal	Single	<37
LeBlanc ²⁶³	1964	USA	1248	Case-control Retrospective	Singleton pregnancies		<20	Single	<37
Gold ²⁵⁶	1966	USA	1246	Test described Case-control Retrospective	Singleton pregnancies		<20	Single	<37
Kass ²⁵⁹	1962	USA	1095	Test described Case-control Retrospective	Singleton pregnancies		<20	Single	<37
Hoja ²⁵⁸	1964	USA	879	Test described Case-control Retrospective Test described	Singleton pregnancies		<20	Single	<37

Stuart ²⁷³	1965	UK	817	Case-control Retrospective	Singleton pregnancies		<20	Single	<37
Henderson ²⁵⁷	1965	USA	808	Test described Case-control Retrospective Test described	Singleton pregnancies	Placenta previa, pre-eclampsia, abruption, induced labour, erythroblastosis fetalis	<22	Single	<36
Low ²⁶⁴	1964	USA	771	Case-control Retrospective Test described	Singleton pregnancies		<20	Single	<37
Forkman ²⁵⁵	1964	Sweden	595	Case-control Retrospective Test described	Singleton pregnancies		<20	Single	<37
Schamadan ²⁷⁰	1965	USA	556	Case-control Retrospective Test described	Singleton pregnancies		<20	Single	<37
Kincaid ²⁶⁰	1964	USA	556	Case-control Retrospective Test described	Singleton pregnancies		<20	Single	<37
Whalley ²⁷⁶	1965	USA	283	Case-control Retrospective Test described	Singleton pregnancies		<20	Single	<37
Sleigh ²⁷²	1964	UK	200	Case-control Retrospective Test described	Singleton pregnancies		<20	Single	<37
Norden ²⁶⁷	1965	USA	197	Case-control Retrospective Test described	Singleton pregnancies		<20	Single	<37
Kubicki ²⁶¹	1976	Poland	192	Case-control Retrospective Test described	Singleton pregnancies		18 - 23	Single	<37
Bryant ²⁵⁴	1964	USA	66	Case-control Retrospective Test described	Singleton pregnancies		<20	Single	<37
Abdul- Jabbar ²⁵³	1991	Saudi		Case-control Retrospective Test described	Pregnant women without apparent ailments		Booking	Single	<37
GBS									
Moller ²⁶⁶	1984	Denmark	2745	Cohort Consecutive Prospective Test described	Singleton pregnancies		Antenatal	Single	<37
McDonald ²⁶⁵	1989	Australia	692	Cohort Consecutive Prospective Test described	Singleton pregnancies		20 - 24	Single	<37

White ²⁷⁷	1984	UK	8083	Cohort	Singleton pregnancies	Antenatal	Single	<37
				Retrospective				
				Test described				

Table 43 Individual accuracy results of asymptomatic bacteriuria assessment in predicting spontaneous preterm birth before 37 weeks' gestation among asymptomatic antenatal women

Authors	TP	FP	FN	TN	SENS	SENS LB	SENS_UB	SPECS	SPEC LB	SPEC UB	LR+	LR+ LB	LR+_UB	LR-	LR- LB	LRUB
11umors				211	BLITE	BEI 15_EB	SEI IS_CE	BILES	SI EC_EB	SIEC_CB	DIC.	ER+_EB	ERCD	- DIK	ER _ED	LR _CD
MSU																
Wren ²⁷⁸	15	75	204	2805	0.07	0.04	0.11	0.97	0.97	0.98	2.63	1.54	4.50	0.96	0.92	0.99
Robertson ²⁶⁹	13	191	62	1918	0.17	0.10	0.28	0.91	0.90	0.92	1.91	1.15	3.19	0.91	0.82	1.01
Uncu ²⁷⁴	6	17	16	147	0.27	0.11	0.50	0.90	0.84	0.94	2.63	1.16	5.96	0.81	0.62	1.05
Layton ²⁶²	4	59	9	104	0.31	0.09	0.61	0.64	0.56	0.71	0.85	0.37	1.97	1.09	0.74	1.59
Versi ^{a 275}	13	139	624	6694	0.02	0.01	0.03	0.98	0.98	0.98	1.00	0.57	1.76	1.00	0.99	1.01
Versi ^{b 275}	39	393	512	5920	0.07	0.05	0.10	0.94	0.93	0.94	1.14	0.83	1.56	0.99	0.97	1.01
Patrick ²⁶⁸	7	68	21	479	0.25	0.11	0.45	0.88	0.85	0.90	2.01	1.02	3.97	0.86	0.69	1.06
Schieve ²⁷¹	293	1687	2546	21137	0.10	0.09	0.11	0.93	0.92	0.93	1.40	1.24	1.57	0.97	0.96	0.98
LeBlanc ²⁶³	6	21	133	1088	0.04	0.02	0.09	0.98	0.97	0.99	2.28	0.94	5.55	0.98	0.94	1.01
Gold ²⁵⁶	0	30	168	1048	0.00	0.00	0.02	0.97	0.96	0.98	0.10	0.01	1.70	1.03	1.01	1.04
Kass ²⁵⁹	26	69	88	912	0.23	0.15	0.32	0.93	0.91	0.94	3.24	2.16	4.87	0.83	0.75	0.92
Hoja ²⁵⁸	1	21	54	803	0.02	0.00	0.10	0.97	0.96	0.98	0.71	0.10	5.21	1.01	0.97	1.05
Stuart ²⁷³	20	68	83	646	0.19	0.12	0.28	0.90	0.88	0.93	2.04	1.30	3.21	0.89	0.81	0.98
Henderson ²⁵⁷	33	15	371	389	0.08	0.06	0.11	0.96	0.94	0.98	2.20	1.21	3.99	0.95	0.92	0.99
Low ²⁶⁴	5	75	49	642	0.09	0.03	0.20	0.90	0.87	0.92	0.89	0.37	2.10	1.01	0.93	1.11
Forkman ²⁵⁵	1	33	19	542	0.05	0.00	0.25	0.94	0.92	0.96	0.87	0.13	6.06	1.01	0.91	1.12
Schamadan ²⁷⁰	8	48	25	475	0.24	0.11	0.42	0.91	0.88	0.93	2.64	1.36	5.11	0.83	0.69	1.01
Kincaid ²⁶⁰	12	44	25	475	0.32	0.18	0.50	0.92	0.89	0.94	3.83	2.22	6.59	0.74	0.59	0.92
Whalley ²⁷⁶	11	96	21	155	0.34	0.19	0.53	0.62	0.55	0.68	0.90	0.54	1.49	1.06	0.81	1.39
Sleigh ²⁷²	7	93	7	93	0.50	0.23	0.77	0.50	0.43	0.57	1.00	0.58	1.72	1.00	0.58	1.72
Norden ²⁶⁷	11	77	14	95	0.44	0.24	0.65	0.55	0.47	0.63	0.98	0.61	1.58	1.01	0.70	1.47
Kubicki ²⁶¹	18	83	5	86	0.78	0.56	0.93	0.51	0.43	0.59	1.59	1.22	2.08	0.43	0.19	0.94
Bryant ²⁵⁴	2	30	4	40	0.33	0.04	0.78	0.57	0.45	0.69	0.78	0.24	2.49	1.17	0.64	2.13
Abdul- Jabbar ²⁵³	18	180	16	184	0.53	0.35	0.70	0.51	0.45	0.56	1.07	0.77	1.49	0.93	0.64	1.35
GBS																
Moller ²⁶⁶	14	54	228	2449	0.06	0.03	0.10	0.98	0.97	0.98	2.68	1.51	4.76	0.96	0.93	0.99
McDonald ²⁶⁵	4	24	46	618	0.08	0.02	0.19	0.96	0.94	0.98	2.14	0.77	5.93	0.96	0.88	1.04
White ²⁷⁷	10	127	389	7557	0.03	0.01	0.05	0.98	0.98	0.99	1.52	0.80	2.86	0.99	0.98	1.01

a. Caucasian population, b. Bangladeshi population

Table 44 Characteristics of the included studies on accuracy of bacterial vaginosis (BV) testing in predicting spontaneous preterm birth for asymptomatic pregnant women and women who presented with threatened preterm labour

	Stu	dy			Population			Reference standards	
Population Author, publication year	Country	Study quality*	n	Inclusion criteria	Exclusion criteria	Gestational age at testing	Site and frequency of testing	Criteria for diagnosis of BV	Gestational age at birth (weeks' gestation)
Asymptomatic pre	gnant women								
Oakeshott, 2004 ²⁸⁵	USA	Cohort Consecutive Prospective Test described	887	All consecutive <10 weeks' gestation.	Miscarriages, terminations, multiple gestations, antibiotics treatment, missing specimen slides.	<10	Vaginal swab Single	Gram's staining (Nugent's criteria)	<37
Klebanoff, 2005 ²⁸⁴	USA	Cohort Prospective Blinded Test described	12937	Did not report genital itching, burning, malodour to questioning, no major medical or obstetrics complications in current pregnancy, not received or expected to receive antibiotics, could be followed after delivery.		<13, 13-14, 15-16, 17- 18, 19-20, 21-22	Vaginal swab Single	Gram's staining (Nugent's criteria)	<37 (data was collected for 23-26 weeks' gestation births but this was not published)
DeSeta, 2005 ²⁸⁶	Italy	Cohort Consecutive Prospective Test described	598	Singleton, negative urine culture the past two weeks, no other genito-urinary tract infection	Diabetes, hypertension, cardiac or chronic renal disease, Rh iso-immunization, cervical cerclage, antibiotics treatment, un-protected intercourse or vaginal washing in the last 48 hours.	13-18	Vaginal swab Single	Gram's staining (Nugent's criteria)	<37
Purwar, 2001 ²⁹⁵	India	Cohort Blind Prospective Test described	938	Arbitrary selection of singleton pregnancies	Multiple pregnancy Placenta previa Symptomatic vaginal discharge History suggestive of cervical incompetence Vaginal bleeding Leaking membrane Antibiotic use in the preceding 15 days Suspected uterine malformation	16-28	Vaginal swab Single	Gram's staining (Nugent's criteria)	<37

Hillier, 1995 ²⁹⁴	USA	Cohort Blind Prospective Test described	8197	Women with singleton pregnancies who has completed 23-26 weeks' gestation and attending routine antenatal clinic	<16 years old Rhesus iso-immunisation disease Preceding 2 weeks or current use of antibiotics Chronic renal disease Organic heart disease Insulin dependent diabetes mellitus Multiple gestation Cervical cerclage Hypertension requiring treatment	23-26	Posterior fornix Single	Gram's staining (Nugent's criteria) Or Vaginal pH >4.5	<37
Govender, 1996 ²⁹³	S Africa	Cohort Blind Prospective Test described	168	Singleton pregnancies less than 30 weeks' gestation	Previous spontaneous premature birth Antibiotics in the current pregnancy Symptomatic discharge Urinary tract infection Multiple pregnancy	<30 weeks	Vaginal swab Single	Gram's staining (Nugent's criteria)	<37
Kurki, 1992 ²⁹⁶	Finland	Cohort Blind Prospective Test described	733	Singletons First pregnancy	Antibiotics in current pregnancy Multiple pregnancy Induction prior to 37 weeks	8-17	Posterior fornix Single	Gram's staining (Spiegel's criteria)	<37
Crane, 1999 ⁹²	Canada	Cohort Blind Prospective Test described	140	Singletons	Multiple pregnancy Pre-labour rupture of membranes Placenta previa Previously treated for BV in current pregnancy Cerclage Major fetal anomalies	20-24	Posterior fornix Single	Gram staining (Nugent's criteria) Or Clinical criteria	<37
Hay, 1994 ²⁹⁷	England	Cohort Blind Prospective Test described	706	Singletons First antenatal visit between 9-24 weeks' gestation	Multiple pregnancy Lethal congenital malformations Antibiotics in the current pregnancy	9-24	Posterior fornix Single	Gram's staining (Spiegel's criteria)	<37
McGregor, 1990 ²⁹⁸	USA	Cohort Blind Prospective Test described	194	Singletons Women receiving care at 2 prenatal clinics	Multiple pregnancy Cerclage Placenta previa Vaginal bleeding Preterm labour. Preceding 2 weeks antibiotics course Douching within 24 hours of examination	24	Mid-vaginal swab Single	Gram's staining (Spiegel's criteria)	<37
Gratacos, 1998 ²⁹¹	Spain	Cohort Blind Prospective Test described	635	Singletons	Multiple pregnancy Abortion or termination Congenital malformation Lost to follow-up	<24 and <35	Posterior fornix Single	Gram's staining (Nugent's criteria)	<37

Helou, 1996 ²⁹²	Israel	Cohort Blind Prospective Test described	400	Singletons	Iatrogenic preterm delivery	15-20 and 27-32	Vaginal swab Serial (twice)	Gram's staining (Nugent's criteria)	<37
Balu, 2003 ²⁸⁷	USA	Cohort Prospective Test described	646	Singleton pregnancy, access to telephone, >16 years old, planned to continue care in the same hospital		24-29		Gram's staining (Nugent's criteria)	<32, <34, and <37
Riduan, 1993 ²⁸⁹	Indonesia	Cohort Prospective Test described	490	Singletons	Medical conditions associated with preterm delivery Previous tocolysis or steroids treatment Antibiotics within 2 weeks of enrolment Incompetent cervix	16-20 and 28-32	Vaginal swab Serial (twice)	Gram's staining (Nugent's criteria)	<37
Meis, 1995 ²⁸⁸	USA	Cohort Prospective Test described	2929	Singletons	Cerclage Major congenital anomaly Placenta previa, Polyhydramnios Oligohydramnios Cervix >2cm dilated in nulliparous and >3cm multiparous women	24 and 28	Posterior fornix Serial (twice)	Gram's staining (Nugent's criteria)	<35
Cauci, 2003 ²⁸³	USA	Cohort Retrospective Test described	417	Singletons	Major congenital anomaly	8-24	Posterior fornix (Single)	Clinical criteria	<37
Thorsen, 1996 ²⁹⁰	USA	Cohort Test described	2927	Singletons	Congenital malformations Placenta previa, pre-eclampsia Cerclage, placental abruption Serious medical disease Rhesus iso-immunisation	7-24	Posterior fornix Single	Clinical criteria	<37
Mascagni, 2004 ²⁸²	USA	Retrospective Case-control	103	Singleton pregnancy, 18 - 34 years old, asymptomatic from vaginal infection	Medical or obstetrics problem requiring elective preterm delivery, cigarette smoking, diabetes, hypertension, STD.	15-16	Vaginal swab Single	Gram's staining (Nugent's criteria)	<37
Women with threa	tened preterm	labour							
Goffinet, 2003 ³⁰⁰	France	Cohort Prospective Blind Test described	212	Singleton with threatened preterm labour and intact membrane.	Rupture of membrane, chorioamnionitis, suspected fetal distress, fetal malformation, maternal disorder requiring delivery, > 3cm dilatation.	24 - 34	Vaginal swab Single	Gram staining (Nugent's criteria)	<7 days of testing, <33, and <35

Martius, 1988 ³⁰⁵	USA	Blind Prospective Case-control Test described	212	Singletons	<16 years Antibiotics within 2 weeks Insulin dependent diabetes mellitus Congenital heart disease Pre-eclampsia Renal disease Essential hypertension Placental abruption Placenta previa Multiple gestation Congenital malformation	20-36	Vaginal swab Single	Gram's staining (Spiegel's criteria)	<37
Holst, 1994 ²³²	Sweden	Prospective Case-control Consecutive Test described	87	Women with singleton pregnancies admitted for preterm labour Control were women admitted in labour at term	Diabetics Pre-eclampsia Placental abruption Placenta previa Multiple gestation Cervical cerclage Pre-labour preterm rupture of membrane	24-36	Vaginal swab Single	Gram's staining (Spiegel's criteria)	< 34 and <37
Eschenbach, 1984 ³⁰⁴	USA	Blind Prospective Case-control Test described	171	Women admitted in labour and had vaginal exam 2 controls, women who delivered at term, were selected for each case enrolled	Vaginal swab was not obtained Iatrogenic preterm birth Congenital malformation Placental abruption Placenta previa Vaginal bleeding of indeterminate origin	24-36	Vaginal swab Single	Gas liquid chromatography	<37
Elliott, 1990 ³⁰¹	Kenya	Retrospective Case-control Test described	276	Preterm singleton pregnancies who presented with preterm labour Control were women who delivered >36 weeks' gestation	None stated	24-36	Vaginal swab Single	Gram's staining (Spiegel's criteria)	<36
Subtil, 2002 ³⁰³	France	Prospective Case-control Test described	102	Women presented with preterm labour with either cervical dilatation >2 cm or history of previous preterm labour. Control matched for gestation and admitted preterm for reasons unrelated to preterm labour (e.g. pre-eclampsia, diabetes, intra-uterine growth restriction, and cholestasis).	Gestational age less than 20 or more than 34 weeks' gestation, local or general antibiotic therapy within the past 8 days, premature rupture of membrane, bleeding, or presence of a clear cause for preterm labour (e.g. multiple pregnancy, hydramnios).	20-34	Vaginal swab Single	Clinical criteria	<37

Krohn, 1991 ³⁰²	USA	Prospective Test described	211	Women who presented with preterm labour	Less than 16 or more than 40 years old Uterine or fetal anomaly Hypertension Diabetics Cervical cerclage Placenta previa Placenta abruption	22-34	Vaginal swab Single	Gram's staining (Nugent's criteria)	<35
Carlini, 2003 ²⁹⁹	USA	Case-control Prospective Test described	753	Singleton with threatened preterm labour and intact membrane	Elective preterm delivery	20 – 37	Vaginal swab Single	Gram's staining (Nugent's criteria)	<37

 $Table \ 45 \ Individual \ accuracy \ results \ of \ bacterial \ vaginosis \ (BV) \ testing \ in \ predicting \ spontaneous \ preterm \ birth \ among \ symptomatic \ women \ with \ threatened \ preterm \ labour$

Authors	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Asymptomatic																
Single testing (Nugent)																
Oakeshott ²⁸⁵	6	143	38	700	0.14	0.05	0.27	0.83	0.80	0.86	0.80	0.38	1.72	1.04	0.92	1.17
Crane ⁹²	1	30	8	101	0.11	0.00	0.48	0.77	0.69	0.84	0.49	0.07	3.16	1.15	0.90	1.48
DeSeta ²⁸⁶	14	90	35	459	0.29	0.17	0.43	0.84	0.80	0.87	1.74	1.08	2.82	0.85	0.71	1.02
Govender ²⁹³	24	64	11	69	0.69	0.51	0.83	0.52	0.43	0.61	1.43	1.07	1.90	0.61	0.36	1.01
Gratacos ²⁹¹	20	105	26	484	0.43	0.29	0.59	0.82	0.79	0.85	2.44	1.68	3.54	0.69	0.53	0.89
Helou ²⁹²	7	53	31	309	0.18	0.08	0.34	0.85	0.81	0.89	1.26	0.62	2.57	0.96	0.82	1.12
Hillier ²⁹⁴	77	1141	29	6949	0.73	0.63	0.81	0.86	0.85	0.87	5.15	4.53	5.86	0.32	0.23	0.43
Klebanoff ²⁸⁴	74	121	423	1156	0.15	0.12	0.18	0.91	0.89	0.92	1.57	1.20	2.06	0.94	0.90	0.98
Purwar ²⁹⁵	30	83	29	783	0.51	0.37	0.64	0.90	0.88	0.92	5.31	3.84	7.33	0.54	0.42	0.71
Balu ²⁸⁷	71	157	171	350	0.29	0.24	0.36	0.69	0.65	0.73	0.95	0.75	1.20	1.02	0.93	1.13
Riduan ²⁸⁹	17	67	48	358	0.26	0.16	0.39	0.84	0.80	0.88	1.66	1.04	2.64	0.88	0.75	1.02
Mascagni ²⁸²	6	22	6	69	0.50	0.21	0.79	0.76	0.66	0.84	2.07	1.06	4.05	0.66	0.37	1.17
Single testing (Amsel)																
Crane ⁹²	2	18	7	113	0.22	0.03	0.60	0.86	0.79	0.92	1.62	0.44	5.91	0.90	0.63	1.29
Thorsen ²⁹⁰	14	438	91	2434	0.13	0.07	0.21	0.85	0.83	0.86	0.87	0.53	1.43	1.02	0.95	1.10
Cauci ²⁸³	11	61	75	356	0.13	0.07	0.22	0.85	0.82	0.89	0.87	0.48	1.59	1.02	0.93	1.12
Serial testing (Nugent)																
Gratacos ²⁹¹	8	33	7	38	0.53	0.27	0.79	0.54	0.41	0.65	1.15	0.67	1.96	0.87	0.49	1.56
Helou ²⁹²	3	24	20	330	0.13	0.03	0.34	0.93	0.90	0.96	1.92	0.63	5.92	0.93	0.79	1.10
Riduan ²⁸⁹	8	31	53	370	0.13	0.06	0.24	0.92	0.89	0.95	1.70	0.82	3.52	0.94	0.85	1.04
Symptomatic																
Subtil ³⁰³ Amsel	6	8	38	50	0.14	0.05	0.27	0.86	0.75	0.94	0.99	0.37	2.64	1.00	0.86	1.17
Goffinet ³⁰⁰ Nugent	4	19	33	156	0.11	0.03	0.25	0.89	0.84	0.93	1.00	0.36	2.76	1.00	0.88	1.13
Carlini ²⁹⁹ Nugent	85	39	321	308	0.21	0.17	0.25	0.89	0.85	0.92	1.86	1.31	2.65	0.89	0.84	0.95
Krohn ³⁰² Nugent	35	20	104	52	0.25	0.18	0.33	0.72	0.60	0.82	0.91	0.57	1.45	1.04	0.87	1.23

Holst ²³² Spiegel	9	3	13	24	0.41	0.21	0.64	0.89	0.71	0.98	3.68	1.13	11.97	0.66	0.46	0.96
Martius ³⁰⁵ Spiegel	21	34	40	117	0.34	0.23	0.48	0.77	0.70	0.84	1.53	0.97	2.41	0.85	0.69	1.03
Elliot ³⁰¹ Spiegel	30	115	27	104	0.53	0.39	0.66	0.47	0.41	0.54	1.00	0.76	1.32	1.00	0.73	1.36

Table 46 Characteristic of studies on test accuracy of mammary stimulation test in predicting spontaneous preterm birth among asymptomatic women

Authors	Year	Country	Population	Quality of studies	Inclusion criteria	Exclusion criteria	Testing gestation (weeks' gestation)	Frequency of testing	Outcome (weeks' gestation)
Eden ³⁰⁶	1991	USA	94	Cohort Blinded Prospective Test described	Inner city pregnant women	None stated	24-32	Single	<5 days of testing, <34 <37
Guinn ³⁰⁷	1994	USA	247	Cohort Blinded Prospective Test described	Nulliparous women receiving private ante-natal care with singleton pregnancies	Placenta previa Multiple gestations Preterm pre-labour rupture of membrane	26-28	Single	<34 and <37

Table 47 Individual accuracy results of mammary stimulation test in predicting spontaneous preterm birth among asymptomatic women stratified according testing gestation and outcome gestations

	Outcome (weeks'																
Authors	gestation)	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Guinn ³⁰⁷	34	7	40	2	198	0.78	0.40	0.97	0.83	0.78	0.88	4.63	2.95	7.25	0.27	0.08	0.91
Guinn ³⁰⁷	37	3	44	2	198	0.60	0.15	0.95	0.82	0.76	0.86	3.30	1.54	7.08	0.49	0.17	1.43
Eden ³⁰⁶	37	16	31	3	44	0.84	0.60	0.97	0.59	0.47	0.70	2.04	1.46	2.84	0.27	0.09	0.77
Eden* 306	37	11	8	2	16	0.85	0.55	0.98	0.67	0.45	0.84	2.54	1.38	4.68	0.23	0.06	0.85
Eden ³⁰⁶	5**	12	35	0	47	1.00	0.74	1.00	0.57	0.46	0.68	2.25	1.71	2.95	0.07	0.00	1.02

^{*}High risk women according to Creasy risk scoring system **Within 5 days of testing

Table 48 Characteristics of test accuracy studies of uterine activities monitoring in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and women symptomatic with threatened preterm labour

Authors	Year	Country	n	Test	Study designs	Inclusion	Exclusion	Testing gestation (weeks)	Frequency of testing	Threshold	Outcome (weeks' gestation)
Asymptomatic											
Iams ⁶⁹	2002	USA	270	Tocograph	Cohort Prospective Blinded Test described	Singleton pregnancies	Women who had received or were scheduled to receive an ambulatory monitor or tocolytic medication or to undergo cerclage were complicated by placenta previa or a major fetal anomaly detected by ultrasonography. Women who did not have telephones were not enrolled, because the transmission of data collected by the monitoring system required a telephone.	22 - 30	Four times – two sessions of at least two hours apart (one at night, one at day time) before 28 week and two more sessions between 28 – 30 weeks	Max night- time and day time contraction of ≥4/h	<35
Iams ³⁰⁹	1988	USA	100	Tocograph	Cohort Prospective Test described	Asymptomatic singleton pregnancies data only	x	20 - 34	Single	≥4contractio ns/hour	<37
Symptomatic											
Bell ³⁰⁸	1983	UK	15	Tocograph	Cohort Test described	Singleton pregnancy presenting with threatened preterm labour		20 - 28	Single	Pmax ≥15mmHg	<37
Maner ³¹⁰	2003	USA	99	Electromyography	Case-control Retrospective Test described	Singleton pregnancies presenting with threatened preterm labour leading to vaginal deliveries, intact membrane, dilatation <2cm, no evidence of systemic infection or fetal distress	To ensure optimal recording, patient over 230 lb was excluded	24 - 42	Single	0.463	<37

Table 49 Individual accuracy results of uterine activities monitoring in predicting spontaneous preterm birth stratified according to population of asymptomatic antenatal women and symptomatic women with threatened preterm labour

Authors	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Asymptomatic																
Iams ^{a 69}	4	8	42	214	0.09	0.02	0.21	0.96	0.93	0.98	2.41	0.76	7.68	0.95	0.86	1.04
Iams ^{b 69}	0	4	48	218	0.00	0.00	0.07	0.98	0.95	1.00	0.51	0.03	9.24	1.01	0.98	1.05
Iams ³⁰⁹	14	15	2	69	0.88	0.62	0.98	0.82	0.72	0.90	4.90	2.99	8.04	0.15	0.04	0.56
Symptomatic																
Bell ³⁰⁸	3	2	1	9	0.75	0.19	0.99	0.82	0.48	0.98	4.13	1.04	16.32	0.31	0.05	1.71
Maner ³¹⁰	23	3	19	54	0.55	0.39	0.70	0.95	0.85	0.99	10.40	3.34	32.38	0.48	0.34	0.67

a. night-time contraction, b. day time contraction

Table 50 Characteristic of studies on test accuracy of rheobase measurement in predicting spontaneous preterm birth among symptomatic women

Authors	Year	Country	n	Quality of studies	Inclusion criteria	Exclusion criteria	Testing gestation (weeks' gestation)	Frequency of testing	Thresholds	Outcome (weeks' gestation)
Arabin ³¹¹	1985	Germany	176	Cohort Prospective Test described	Singleton pregnancies presenting with threatened preterm labour from 20 weeks' gestation onwards	Iatrogenic preterm delivery, suspected chorioamnionitis, fetal distress, placental bleeding, polyhydramnios	20 - 36	Serial	>2.8, >3.4 mA	37

Table 51 Individual accuracy results of rheobase measurement in predicting spontaneous preterm birth among asymptomatic women stratified according testing gestation and outcome gestations

Authors	Threshold (mA)	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Arabin ³¹¹	2.8	18	34	15	109	0.55	0.36	0.72	0.76	0.68	0.83	2.29	1.50	3.52	0.60	0.41	0.88
Arabin ³¹¹	3.4	25	46	8	97	0.76	0.58	0.89	0.68	0.60	0.75	2.36	1.73	3.20	0.36	0.19	0.66

Table 52 Characteristic of studies on test accuracy of absence of fetal breathing movement (FBM) in predicting spontaneous preterm birth in symptomatic women

Study	Year Language	Study quality	Population	Inclusion criteria	Exclusion criteria	Frequency of testing	Testing gestation (weeks' gestation)	Definitions of thresholds for abnormality	Outcome
Senden ⁸⁵	1996 English	Cohort Prospective Consecutive Blinding Test described	25	Singletons presenting with threatened preterm labour	PPROM Vaginal bleeding Chorioamnionitis Diabetes mellitus Cervical dilatation >4cm History suggestive of cervical incompetence	Single	25-35	Absence of sustained FBM in a 30s period during a 30 minutes observations	<7 days
Schreyer ³¹⁸	1988 English	Cohort Prospective Consecutive Test described	70	Uncomplicated singleton pregnancies presenting with threatened preterm labour	Multiple pregnancies PPROM Vaginal bleeding Pyrexia Non-recordable uterine contractions on tocodynamometer Non-reassuring fetal heart rate recording	Single	32-36	No sustained FBM (lasting >20s) in a 45 minutes observation period	<24 hours <48 hours <7 days
Agustsson ³¹³	1987 English	Cohort Retrospective Test described	64	Women suspected of preterm labour	Advanced cervical dilatation Regular contraction not detectable	Single	26-36	No sustained FBM (lasting >20s) in a 45 minutes observation period	<56 hours <7 days
Besinger ³¹⁴	1987 English	Cohort Prospective Test described	50	Women suspected of threatened preterm labour	None stated	Single	26-34	No sustained FBM (lasting >20s) in a 20 minutes observation period	<48 hours
Kanaan ³¹⁶	1991 English	Cohort Prospective Test described	34	Singletons Healthy volunteers Regular preterm uterine contractions	Vaginal bleeding PPROM	Single	24-36	Absence of FBM in a 20s period or decreased FBM in a 15 minutes observation	<48 hours
Markwitz ³¹⁷	2001 Polish	Cohort Retrospective Test described	36	Singleton pregnancies with suspected preterm labour	None stated	Single	28-36	No sustained FBM (lasting >20s) in a 30 minutes observation period	<7 days
Devoe ³¹⁵	1994 English	Cohort Prospective Test described	25	Regular uterine contractions No clinical signs of chorioamnionitis No significant vaginal bleeding Singletons	Congenital abnormalities Maternal medical or obstetrical complications	Single	28-36	Absence of FBM within 6s period in a 45 minutes observation	<7 days

Castle ³¹²	1983 English	Cohort Prospective Test described	24	Women suspected of preterm labour	None stated	Single	25-34	No sustained FBM (lasting >20s) <7 days in a 45 minutes observation period

Table 53 Individual accuracy results of absence of fetal breathing movement in predicting spontaneous preterm birth among symptomatic women with threatened preterm labour

Study	Intact membrane (Intact) or Pre-labour premature rupture of membrane (PPROM)	Reference standards (hours to delivery or within days of testing)	FP	FP	FN	TN	Likelihood ratios for positive test (LR+) (95% confidence interval)	Likelihood ratios for negative test (LR-) (95% confidence interval)
Study		iesung)	T.I.	T.I.	FIV	111		
Agustsson ³¹³	Intact	<56 hours	17	0	5	42	65.43 (4.12 - 1039.20)	0.23 (0.11 - 0.49)
Agustsson ³¹³	Intact	<7 days	17	0	14	33	37.19 (2.33 - 93.09)	0.45 (0.31 - 0.67)
Besinger ³¹⁴	Intact	<48 hours	9	1	4	26	18.69 (2.64 - 132.33)	0.32 (0.14 - 0.72)
Besinger ³¹⁴	PPROM	<48 hours	7	0	0	3	7.50 (0.56 - 100.87)	0.07 (0.00 - 1.07)
Castle ³¹²	Intact	<7 days	5	0	2	17	24.75 (1.55 - 396.04)	0.29 (0.09 - 0.92)
Castle ³¹²	PPROM	<7 days	10	0	6	1	2.47 (0.22 - 28.05)	0.38 (0.20 - 0.71)
Devoe ³¹⁵	Intact	<7 days	2	0	10	38	15.00 (0.77 - 292.61)	0.83 (0.65 - 1.07)
Devoe ³¹⁵	Intact	<72 hours	2	0	8	40	18.64 (0.96 - 360.56)	0.80 (0.59 - 1.09)
Devoe ³¹⁵	PPROM	<7 days	9	0	14	2	2.38 (0.18 - 31.28)	0.61 (0.44 - 0.84)
Devoe ³¹⁵	PPROM	<72 hours	11	0	9	5	6.57 (0.45 - 96.05)	0.45 (0.28 - 0.73)
Kanaan ³¹⁶	Intact	<48 hours	4	11	1	18	2.11 (1.11 - 4.00)	0.32 (0.05 - 1.90)
Markwitz ³¹⁷	Intact	<7 days	8	0	4	24	32.69 (2.04 - 522.93)	0.33 (0.15 - 0.74)
Markwitz ³¹⁷	PPROM	<7 days	16	0	6	2	4.30 (0.34 - 54.76)	0.27 (0.14 - 0.54)
Schreyer ³¹⁸	Intact	<24 hours	7	7	1	55	7.75 (3.68 - 16.33)	0.14 (0.02 - 0.88)
Schreyer ³¹⁸	Intact	<48 hours	11	3	2	54	16.08 (5.22 - 49.55)	0.16 (0.05 - 0.58)
Schreyer ³¹⁸	Intact	<7 days	12	2	4	52	20.25 (5.05 - 81.23)	0.26 (0.11 - 0.61)
Senden ⁸⁵	Intact	<7 days	2	2	3	18	4.00 (0.73 - 21.84)	0.67 (0.32 - 1.38)

Table 54 Characteristics of test accuracy studies of cervical length measurement in predicting spontaneous preterm birth in antenatal asymptomatic women

Authors	Year	Country	n	Study designs	Inclusion	Exclusion	Test gestation	Frequency of testing	Threshold (mm)	Outcome (weeks' gestation)
- 226				Cohort Prospective Consecutive Blinded	Singleton pregnancy of ethnic Chinese	Fetal abnormalities, non-viable pregnancies, lack of outcome			<15, <20, <25, <27,	
Leung ³²⁶	2005	НК	2952	Test described Cohort Prospective Consecutive	women only Singleton pregnancies in the absence	information, outside test gestation Uterine or fetal anomalies, pregnancy	18 - 22	Single	<30, <35	<34
Yazici ³³²	2004	Turkey	357	Blinded Test described Cohort	of history of cervical incompetence, PPROM or previous preterm delivery	related complications, maternal systemic disease	24	Single	<32.5	<36
Owen ³²⁸	2001	USA	183	Prospective Consecutive Blinded Test described	Singletons with at least one previous spontaneous preterm birth.	Cervical cerclage, uterine anomaly, chronic medical problem which may cause iatrogenic preterm delivery.	16 - 18	Single	<15, <20, <25, <30	<35
				Cohort Prospective Consecutive Blinded	Singletons, previous spontaneous preterm birth, >2 previous abortions, previous cone biopsy, Ehler-Danlos	Cervical cerclage, placenta previa,				
Berghella ³²³	1997	USA	96	Test described Cohort Prospective	syndrome.	major fetal anomaly. Medical or obstetrics complication.	14 - 22	Single	<16, <25	<35
Andrews ³²²	2000	USA	69	Consecutive Blinded Test described Cohort Prospective Consecutive	Singleton pregnancies with previous history of spontaneous preterm birth between 16 - 30 weeks' gestation	History of incompetent cervix that required cerclage. Presented for antenatal care after 28 weeks	<20	Thrice	<22, <25	<35
To ³³¹	2001	UK	6334	Test described Cohort Prospective	Singleton pregnancies	x Preterm pre-labour rupture of membrane, threatened or impending	22 - 24	Single	<15	33
Sakai ²³⁵	2004	Japan	4203	Blinding Test described Cohort	Asymptomatic women with singleton pregnancy and intact membrane	miscarriage or preterm delivery, genital bleeding	20 - 28	Single	25	<32, <34, <37
Taipale ³³⁰	1998	Finland	3694	Prospective Consecutive Test described Cohort	Singleton pregnancies	Inadequate imaging, iatrogenic preterm delivery, fetal death or malformation	18 - 22	Single	<25, <29, <35, <40, <45, <50	<35, <37
Hibbard ³²⁵	2000	USA	760	Prospective Consecutive Test described	Singleton pregnancies	x	16 - 22	Single	<22, <27, <30	<35

Dilek ³²⁴	2006	Turkey	250	Cohort Prospective Consecutive Test described Cohort	Singleton pregnancies in the absence of history of cervical incompetence, PPROM or previous preterm delivery	Uterine or fetal anomalies, pregnancy related complications, maternal systemic disease	22	Single	<33.15	<37
221				Prospective Blinded		Placenta previa, patient thought to be				
Andersen ³²¹	1990	USA	113	Test described Cohort	Singletons Singleton pregnancy attending routine	at risk from cervical incompetence.	7 - 30	Single	<39 <10, <15,	<37
				Retrospective	antenatal care at 21 - 24 weeks'	Iatrogenic preterm delivery, missing			<20, <25,	
deCarvalho ⁵⁹	2005	Brazil	1958	Test described Cohort Prospective	gestation	outcomes Previous history of preterm delivery, uterine or fetal abnormalities, miscarriage, fetal death, alteration in amniotic fluid, placenta previa, previous uterine or cervical surgery, surgical procedures during gestation and conditions requiring iatrogenic	21 - 24	Single	<30	<34
Pires ³²⁹	2005	Brazil	338	Test described Case-control	Singleton uncomplicated pregnancy	preterm delivery Congenital or chromosomal abnormalities, history of uterine or	21 - 24	Single	<20	<35, <37
Mara ³²⁷	2002	Czech	247	Prospective Test described	Singleton viable pregnancy, delivering at investigating institution	cervix surgery, greater than 3 previous vaginal deliveries	18 - 20	Single	<20	<34

Table 55 Characteristics of test accuracy studies of cervical length measurement in predicting spontaneous preterm birth in women symptomatic with threatened preterm labour

Authors	Year	Country	n	Study designs	Inclusion	Exclusion	Testing gestation (weeks)	Frequency of Testing	Threshold (mm)	Outcome (weeks' gestation)*
Crane ³³³	1997	USA	136	Cohort Prospective Consecutive Blinded Test described Cohort Prospective Consecutive	Singleton pregnancies whose contraction has been arrested by tocolysis	Cervical dilatation > 3cm, placenta previa, PPROM	24 - 34	Single	<30	<34
Gomez ³³⁷	1994	USA	59	Blinded Test described Cohort	Singleton pregnancies	PPROM, cervix dilatation >3 cm	21 - 35	Single	<18	<37
Tsoi ³⁴⁶	2005	UK	510	Prospective Blinded Test described	Singleton pregnancy presenting with threatened preterm labour, intact membrane, cervical dilatation <3cm	x Cervical manipulation, PPROM, fetal or uterine anomalies, vaginal	24 - 34	Single	<5, <10, <15, <20	<48 hours, <7 days of testing, <37
Schmitz ³⁴²	2006	France	359	Prospective Blinded Test described Cohort Prospective	Singleton pregnancy presenting with threatened preterm labour, intact membrane, cervical dilatation <3cm Singleton pregnancy presenting with	bleeding, placenta previa, abruption, IUGR, pre-eclampsia, iatrogenic preterm delivery PPROM, cervical cerclage, requirement for iatrogenic preterm	18 - 34	Single	<15, <25, <30	<7 days of testing, <35
Fuchs ³³⁵	2004	Germany	253	Blinded Test described Cohort	threatened preterm labour, intact membrane, cervical dilatation <3cm	delivery, abruption, placenta previa, suspected fetal distress	24 - 36	Single	<15	<7 days of testing
Tsoi ³⁴⁴	2003	UK	216	Prospective Blinded Test described Cohort	Singleton viable pregnancies presenting with threatened preterm labour	Cervical dilatation >3 cm or PPROM	24 - 36	Single	<15	<7 days of testing
Onderoglu ⁷	1997	Turkey	90	Prospective Blinded Test described	Singletons, intact membrane, cervical dilatation <3cm, absence of fetal and maternal complication	x Fetal abnormalities, PPROM,	25 - 36	Single	<28	<37
Tekesin ³⁴³	2005	Germany	85	Cohort Prospective Blinded Test described Cohort Prospective	Singleton pregnancy presenting with threatened preterm labour, intact membrane, cervical dilatation <3cm Consecutive singleton pregnant women between 22 - 32 weeks'	cervical cerclage, requirement for iatrogenic preterm delivery, abruption, placenta previa, suspected fetal distress Preterm pre-labour rupture of	24 - 36	Single	<25	<37
Kurkinen ²²³	2001	Finland	76	Consecutive Test described	gestation who presented with threatened preterm labour.	membrane, impending preterm delivery	22 - 32	Single	<29.3	<37

Tsoi ³⁴⁵	2004	UK	63	Cohort Prospective Blinded Test described	Singleton pregnancy presenting with threatened preterm labour, intact membrane, cervical dilatation <3cm	PPROM History of cervical incompetence with cerclage, suspected	24 - 36	Single	<15	<7 days of testing
Rozenberg ³	2003	France	28	Cohort Prospective Blinded Test described	Singleton pregnancy presenting with threatened preterm labour, intact membrane, cervical dilatation <3cm	chorioamnionitis, PPROM, polyhydramnios, placenta previa, abruption, IUGR, pre-eclampsia, feta distress, other maternal or fetal distress requiring preterm delivery	24 - 34	Single	<26	<37 <48 hours, <7, <14
Gomez ¹⁰⁶	2005	Chile	215	Cohort Prospective Test described	Singleton pregnancy presenting with threatened preterm labour, intact membrane, cervical dilatation <3cm	x Cervical dilatation >3 cm, PPROM,	22 - 35	Single	<15, <30	days of testing, <32, <35
Venditelli ³⁴	2001	France	174	Cohort Prospective Test described Cohort	Singleton pregnancies Singleton pregnancy presenting with	cervical cerclage, active vaginal bleeding, known fetal malformation or death, placenta previa PPROM, cervical cerclage, requirement for iatrogenic preterm	18 - 36	Single	<30	<37
Daskalakis ³	2005	Greece	172	Prospective Test described Cohort Prospective	threatened preterm labour, intact membrane, cervical dilatation <3cm	delivery, abruption, placenta previa, suspected fetal distress Cervical cerclage, PPROM, cervical dilatation >2cm, introgenic preterm	24 - 34	Single	<20, <25, <30, <35	<34
Goffinet ³³⁶	1997	France	108	Test described Cohort	Singleton pregnancies Singletons pregnancies, intact membrane, cervical dilatation <3cm,	delivery	24 - 34	Single	<26	<37
Rizzo ³⁴⁰	1996	Italy	108	Prospective Test described Cohort	absence of maternal or fetal complication Singleton viable pregnancy presenting with threatened preterm labour between 24 - 36 weeks'		24 - 36	Single	<20	<37
Botsis ⁵⁷	2005	Greece	104	Prospective Test described Cohort	gestation with intact fetal membrane and cervical dilatation <2cm		24 - 36	Single	<15	<7 days of testing
Murakawa ³	1993	Japan	32	Prospective Test described Cohort	Singleton pregnancies Singleton pregnancies whose	Suspicion of cervical incompetence	25 - 35	Single	<30, <35	<37
Rageth ³³⁹	1997	Switzerland	61	Retrospective Test described	contraction has been arrested by tocolysis	IUGR, pre-eclampsia, diabetes	25 - 35	Single	<30	<34

^{*}Unless otherwise stated

Table 56 Characteristics of test accuracy studies of cervical funnelling assessment in predicting spontaneous preterm birth stratified according to population of antenatal asymptomatic women and women symptomatic with threatened preterm labour

Authors	Year	Country	n	Study designs	Inclusion	Exclusion	Testing gestation (weeks)	Frequency of Testing	Threshold	Outcome (weeks' gestation)*
Asymptomatic										
	2007		2072	Cohort Prospective Consecutive Blinded	Singleton pregnancy of ethnic	Fetal abnormalities, non-viable pregnancies, lack of outcome	40. 20			
Leung ³²⁶	2005	НК	2952	Test described Cohort Prospective Consecutive	Chinese women only	information, outside test gestation Multiple gestations, cervical	18 - 22	Single	5mm length	34
Iams ³¹⁹	1996	USA	2915	Blinded Test described Cohort	Singleton pregnancies	cerclage, placenta previa, fetal anomaly	at 28	Twice	3mm length	35
				Prospective Consecutive Blinded	Singleton pregnancies with previous history of spontaneous preterm birth between 16 - 30	Medical or obstetrics complication. History of incompetent cervix that required cerclage. Presented for				
Andrews ³²²	2000	USA	69	Test described Cohort Prospective Consecutive	weeks' gestation	antenatal care after 28 weeks	25 - 29	Twice	any	35
To ³³¹	2001	UK	6334	Test described Cohort	Singleton pregnancies	Previous history of preterm delivery, uterine or fetal abnormalities, miscarriage, fetal death, alteration in amniotic fluid, placenta previa, previous uterine or cervical surgery, surgical procedures during gestation	22 - 24	Single	5mm width	33
Pires ³²⁹	2005	Brazil	338	Prospective Test described	Singleton uncomplicated pregnancy	and conditions requiring iatrogenic preterm delivery Congenital or chromosomal abnormalities, history of uterine or	21 - 24	Single	any	35
Mara ³²⁷	2002	Czech	247	Case-control Prospective	Singleton viable pregnancy, delivery at investigating institutions	cervix surgery, greater than 3 previous vaginal deliveries	18 - 20	Single	any	34
Symptomatic				Cohort						
				Prospective Consecutive Blinded	Singleton pregnancies whose	Camical dilatation > 2 am ml				
Crane ³³³	1997	USA	136	Test described	contraction has been arrested by tocolysis	Cervical dilatation > 3cm, placenta previa, PPROM	24 - 34	Single	V-shaped	37

				Cohort Prospective Consecutive Blinded						
Gomez ³³⁷	1994	USA	59	Test described Cohort	Singleton pregnancies	PPROM, cervix dilatation >3 cm	21 - 35	Single	6mm width	36
				Prospective Consecutive	Consecutive singleton pregnant women between 22 - 32 weeks' gestation who presented with	Preterm pre-labour rupture of membrane, impending preterm				
Kurkinen ²²³	2001	Finland	76	Test described	threatened preterm labour.	delivery	22 - 32	Single	5mm width	37
				Cohort Prospective						
Okitsu ³²⁰	1992	Japan	130	Test described	Singleton pregnancies	Placenta previa	25 - 36	Single	5mm width	36
				Cohort	Singletons pregnancies, intact membrane, cervical dilatation					
Rizzo ³⁴⁰	1996	Italy	108	Prospective Test described	<3cm, absence of maternal or fetal complication	x	24 - 36	Single	5mm width	37

^{*}Unless otherwise stated

Table 57 Individual accuracy results of cervical length measurement in predicting spontaneous preterm birth among asymptomatic antenatal women stratified according to outcome (weeks' gestation) and testing gestation (weeks')

		Outcome																
A 41	Thresholds	(weeks'	TP	ED	ENI	TN	CENC	CENC I D	CENC LID	GDE GG	CDEC ID	CDEC IID	T.D.	ID. ID	ID. ID	7 D	1 D 1 D	ID ID
Authors	(mm)	gestation)	IP	FP	FN	IN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LK+_LB	LR+_UB	LR-	LRLB	LRUB
<20 weeks' gesta	tion																	
Andrews* 322	25	35	5	0	10	38	0.33	0.12	0.62	1.00	0.91	1.00	26.81	1.57	457.07	0.66	0.47	0.95
Andrews* 322	22	35	4	0	11	38	0.27	0.08	0.55	1.00	0.91	1.00	21.94	1.25	384.29	0.73	0.53	0.99
Leung ³²⁶	25	34	5	48	15	2884	0.25	0.09	0.49	0.98	0.98	0.99	15.27	6.80	34.30	0.76	0.59	0.98
Leung ³²⁶	15	34	2	0	18	2932	0.10	0.01	0.32	1.00	1.00	1.00	698.33	34.56	14109.00	0.88	0.75	1.03
Leung ³²⁶	30	34	7	288	13	2644	0.35	0.15	0.59	0.90	0.89	0.91	3.56	1.94	6.54	0.72	0.52	0.99
Leung ³²⁶	35	34	12	1021	8	1911	0.60	0.36	0.81	0.65	0.63	0.67	1.72	1.20	2.47	0.61	0.36	1.05
Leung ³²⁶	27	34	7	111	13	2821	0.35	0.15	0.59	0.96	0.95	0.97	9.25	4.95	17.26	0.68	0.49	0.93
Leung ³²⁶	20	34	2	4	18	2928	0.10	0.01	0.32	1.00	1.00	1.00	73.30	14.23	377.66	0.90	0.78	1.04
Owen ³²⁸	20	35	5	1	42	135	0.11	0.04	0.23	0.99	0.96	1.00	14.47	1.73	120.69	0.90	0.81	0.99
Owen ³²⁸	25	35	9	3	39	132	0.19	0.09	0.33	0.98	0.94	1.00	8.44	2.38	29.88	0.83	0.72	0.95
Owen ³²⁸	30	35	12	24	29	118	0.29	0.16	0.46	0.83	0.76	0.89	1.73	0.95	3.15	0.85	0.69	1.05
Owen ³²⁸	15	35	5	0	43	135	0.10	0.03	0.23	1.00	0.97	1.00	30.53	1.72	542.02	0.89	0.81	0.98
Hibbard ³²⁵	27	35	15	25	36	684	0.29	0.17	0.44	0.96	0.95	0.98	8.34	4.70	14.80	0.73	0.61	0.87
Hibbard ³²⁵	22	35	11	16	40	693	0.22	0.11	0.35	0.98	0.96	0.99	9.56	4.68	19.50	0.80	0.69	0.93
Hibbard ³²⁵	30	35	21	66	30	643	0.41	0.28	0.56	0.91	0.88	0.93	4.42	2.96	6.60	0.65	0.51	0.82
Mara ³²⁷	20	34	3	0	6	238	0.33	0.07	0.70	1.00	0.98	1.00	167.30	9.25	3024.97	0.65	0.41	1.03
20 – 24 week' ges	station																	
Iams ^{* 322}	20	35	29	84	97	2705	0.23	0.16	0.31	0.97	0.96	0.98	7.64	5.21	11.20	0.79	0.72	0.87
Andrews* 322	22	35	4	3	9	41	0.31	0.09	0.61	0.93	0.81	0.99	4.51	1.15	17.64	0.74	0.51	1.08
Iams* 322	25	35	47	218	79	2571	0.37	0.29	0.46	0.92	0.91	0.93	4.77	3.68	6.19	0.68	0.59	0.78
Andrews* 322	25	35	5	5	8	39	0.38	0.14	0.68	0.89	0.75	0.96	3.38	1.16	9.91	0.69	0.45	1.08
Iams* 322	30	35	68	661	58	2128	0.54	0.45	0.63	0.76	0.75	0.78	2.28	1.91	2.71	0.60	0.50	0.73
To^{331}	15	33	21	80	38	6195	0.36	0.24	0.49	0.99	0.98	0.99	27.92	18.59	41.92	0.65	0.54	0.79
deCarvalho ⁵⁹	10	34	3	3	38	1734	0.07	0.02	0.20	1.00	0.99	1.00	42.37	8.81	203.65	0.93	0.85	1.01
deCarvalho ⁵⁹	10	34	5	5	61	1887	0.08	0.03	0.17	1.00	0.99	1.00	28.67	8.51	96.62	0.93	0.86	0.99
deCarvalho ⁵⁹	10	34	2	2	23	153	0.08	0.01	0.26	0.99	0.95	1.00	6.20	0.91	42.03	0.93	0.83	1.05
deCarvalho ⁵⁹	15	34	23	16	43	1876	0.35	0.24	0.48	0.99	0.99	1.00	41.21	22.87	74.26	0.66	0.55	0.78

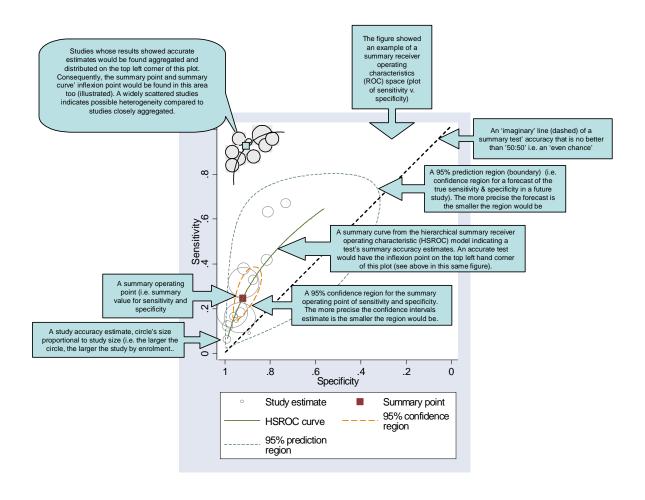
deCarvalho ⁵⁹	15	34	11	6	14	149	0.44	0.24	0.65	0.96	0.92	0.99	11.37	4.62	27.97	0.58	0.41	0.83
deCarvalho ⁵⁹	15	34	12	10	29	1727	0.44	0.24	0.65	0.90	0.92	1.00	50.84	23.31	110.90	0.38	0.41	0.83
Pires ³²⁹	20	37	4	10	17	307	0.19	0.10	0.40	0.99	0.94	0.98	6.04	2.07	17.64	0.71	0.58	1.03
deCarvalho ⁵⁹	20	34	34	47	32	1845	0.19	0.39	0.42	0.97	0.94	0.98	20.74	14.37	29.92	0.50	0.39	0.64
deCarvalho ⁵⁹	20	34	18	17	32 7	138	0.32	0.59	0.88	0.98	0.97	0.98	6.56	3.94	10.94	0.30	0.39	0.64
deCarvalho ⁵⁹	20	34		30	25	1707		0.31	0.88	0.89	0.83	0.93	22.60	13.41	38.07	0.62	0.17	0.39
Pires ³²⁹	20	35	16 3	30 7	8	320	0.39	0.24	0.55	0.98	0.98		12.74	3.79		0.62	0.49	1.07
deCarvalho ⁵⁹				•			0.27					0.99			42.80			
	25	34	38	171	28	1721	0.58	0.45	0.70	0.91	0.90	0.92	6.37	4.95	8.19	0.47	0.35	0.62
deCarvalho ⁵⁹	25	34	19	38	6	117	0.76	0.55	0.91	0.75	0.68	0.82	3.10	2.18	4.41	0.32	0.16	0.64
deCarvalho ⁵⁹	25	34	19	134	22	1603	0.46	0.31	0.63	0.92	0.91	0.93	6.01	4.16	8.67	0.58	0.44	0.77
deCarvalho ⁵⁹	30	34	42	442	24	1450	0.64	0.51	0.75	0.77	0.75	0.79	2.72	2.23	3.33	0.47	0.34	0.65
deCarvalho ⁵⁹	30	34	22	372	19	1365	0.54	0.37	0.69	0.79	0.77	0.80	2.51	1.86	3.38	0.59	0.42	0.82
deCarvalho ⁵⁹	30	34	20	71	5	84	0.80	0.59	0.93	0.54	0.46	0.62	1.75	1.35	2.27	0.37	0.17	0.82
<20 weeks' gestation																		
Hibbard ³²⁵	22	37	11	10	74	665	0.13	0.07	0.22	0.99	0.97	0.99	8.74	3.82	19.96	0.88	0.81	0.96
Taipale ³³⁰	25	37	5	8	83	3598	0.06	0.02	0.13	1.00	1.00	1.00	25.61	8.55	76.72	0.95	0.90	1.00
Hibbard ³²⁵	27	37	17	23	68	652	0.20	0.12	0.30	0.97	0.95	0.98	5.87	3.27	10.53	0.83	0.74	0.92
Taipale ³³⁰	29	37	14	96	74	3510	0.16	0.09	0.25	0.97	0.97	0.98	5.98	3.56	10.04	0.86	0.79	0.95
Hibbard ³²⁵	30	37	28	59	57	616	0.33	0.23	0.44	0.91	0.89	0.93	3.77	2.55	5.56	0.73	0.63	0.85
Taipale ³³⁰	35	37	31	962	57	2644	0.35	0.25	0.46	0.73	0.72	0.75	1.32	0.99	1.76	0.88	0.76	1.03
Andersen ³²¹	39	37	13	39	4	56	0.76	0.50	0.93	0.59	0.48	0.69	1.86	1.30	2.66	0.40	0.17	0.96
Taipale ³³⁰	40	37	53	1875	35	1731	0.60	0.49	0.71	0.48	0.46	0.50	1.16	0.97	1.38	0.83	0.64	1.07
Taipale ³³⁰	45	37	78	2731	10	875	0.89	0.80	0.94	0.24	0.23	0.26	1.17	1.08	1.26	0.47	0.26	0.84
Taipale ³³⁰	50	37	87	3261	1	345	0.99	0.94	1.00	0.10	0.09	0.11	1.09	1.07	1.12	0.12	0.02	0.84
20 – 24 week' gestatio	n																	
Yazici ³³²	32.5	36	16	61	6	274	0.73	0.50	0.89	0.82	0.77	0.86	3.99	2.84	5.62	0.33	0.17	0.66
Dilek ³²⁴	33.15	37	14	29	4	203	0.78	0.52	0.94	0.88	0.83	0.91	6.22	4.09	9.48	0.25	0.11	0.60

^{*}Women were scanned twice, a few weeks apart within the testing gestation

Table 58 Individual accuracy results of cervical length measurement in predicting spontaneous preterm birth among women symptomatic with threatened preterm labour stratified according to outcome (within days of testing and according to weeks' gestation)

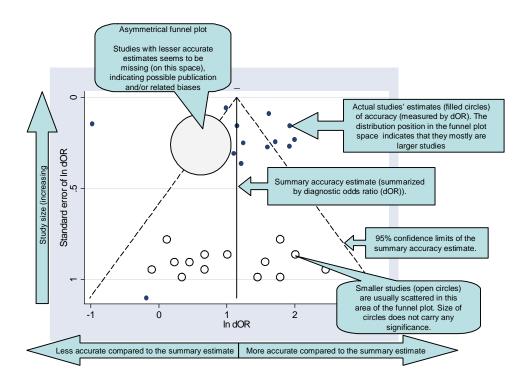
	Thresholds					~	a====				a== :						
Authors	(mm)	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
<48 hours of tes	ting																
Tsoi ³⁴⁶	5	9	11	12	478	0.43	0.22	0.66	0.98	0.96	0.99	19.05	8.87	40.94	0.58	0.40	0.85
Tsoi ³⁴⁶	10	17	31	4	458	0.81	0.58	0.95	0.94	0.91	0.96	12.77	8.57	19.03	0.20	0.08	0.49
Tsoi ³⁴⁶	15	21	74	0	415	1.00	0.84	1.00	0.85	0.81	0.88	6.43	5.17	8.00	0.03	0.00	0.42
Tsoi ³⁴⁶	20	21	150	0	339	1.00	0.84	1.00	0.69	0.65	0.73	3.18	2.75	3.69	0.03	0.00	0.51
Gomez ¹⁰⁶	15	11	19	6	179	0.65	0.38	0.86	0.90	0.85	0.94	6.74	3.88	11.72	0.39	0.20	0.74
Gomez ¹⁰⁶	30	15	93	2	105	0.88	0.64	0.99	0.53	0.46	0.60	1.88	1.50	2.36	0.22	0.06	0.82
<7 days of testir	ıg																
Tsoi ³⁴⁶	5	16	4	27	463	0.37	0.23	0.53	0.99	0.98	1.00	43.44	15.20	124.17	0.63	0.50	0.80
Tsoi ³⁴⁶	10	28	20	15	447	0.65	0.49	0.79	0.96	0.93	0.97	15.20	9.40	24.61	0.36	0.24	0.55
Tsoi ³⁴⁶	15	42	53	1	414	0.98	0.88	1.00	0.89	0.85	0.91	8.61	6.65	11.14	0.03	0.00	0.18
Tsoi ³⁴⁶	20	42	129	1	338	0.98	0.88	1.00	0.72	0.68	0.76	3.54	3.03	4.12	0.03	0.00	0.22
Schmitz ³⁴²	15	12	45	11	291	0.52	0.31	0.73	0.87	0.82	0.90	3.90	2.42	6.27	0.55	0.36	0.85
Schmitz ³⁴²	25	20	131	3	205	0.87	0.66	0.97	0.61	0.56	0.66	2.23	1.81	2.74	0.21	0.07	0.62
Schmitz ³⁴²	30	23	193	0	143	1.00	0.85	1.00	0.43	0.37	0.48	1.71	1.53	1.90	0.05	0.00	0.76
Fuchs ³³⁵	15	17	19	4	213	0.81	0.58	0.95	0.92	0.88	0.95	9.88	6.13	15.95	0.21	0.09	0.50
Tsoi ³⁴⁵	15	16	27	1	172	0.94	0.71	1.00	0.86	0.81	0.91	6.94	4.79	10.05	0.07	0.01	0.46
Tsoi ³⁴⁵	15	20	10	0	33	1.00	0.83	1.00	0.77	0.61	0.88	4.09	2.40	6.96	0.03	0.00	0.49
Gomez ¹⁰⁶	15	17	13	11	174	0.61	0.41	0.78	0.93	0.88	0.96	8.73	4.78	15.96	0.42	0.27	0.67
Gomez ¹⁰⁶	30	25	83	3	104	0.89	0.72	0.98	0.56	0.48	0.63	2.01	1.64	2.47	0.19	0.07	0.57
Botsis ⁵⁷	15	10	9	1	84	0.91	0.59	1.00	0.90	0.82	0.95	9.39	4.91	17.97	0.10	0.02	0.65
Gomez ¹⁰⁶	15	17	13	17	168	0.50	0.32	0.68	0.93	0.88	0.96	6.96	3.74	12.97	0.54	0.38	0.76
Gomez ¹⁰⁶	30	29	79	5	102	0.85	0.69	0.95	0.56	0.49	0.64	1.95	1.57	2.43	0.26	0.11	0.59
<34 weeks' gest	ation																
Gomez ¹⁰⁶	15	7	5	2	87	0.78	0.40	0.97	0.95	0.88	0.98	14.31	5.70	35.95	0.23	0.07	0.80
Gomez ¹⁰⁶	30	9	40	0	52	1.00	0.66	1.00	0.57	0.46	0.67	2.18	1.66	2.86	0.09	0.01	1.33
Crane ³³³	30	30	35	7	64	0.81	0.65	0.92	0.65	0.54	0.74	2.29	1.68	3.12	0.29	0.15	0.58
Daskalakis ³³⁴	20	21	3	18	60	0.54	0.37	0.70	0.95	0.87	0.99	11.31	3.61	35.42	0.48	0.34	0.68

Daskalakis ³³⁴	25	28	13	11	50	0.72	0.55	0.85	0.79	0.67	0.89	3.48	2.06	5.87	0.36	0.21	0.60
Daskalakis ³³⁴	30	39	21	0	42	1.00	0.91	1.00	0.67	0.54	0.78	2.94	2.08	4.16	0.02	0.00	0.30
Daskalakis ³³⁴	35	39	47	0	16	1.00	0.91	1.00	0.25	0.15	0.38	1.33	1.15	1.54	0.05	0.00	0.79
Daskalakis ³³⁴	20	15	1	10	44	0.60	0.39	0.79	0.98	0.88	1.00	27.00	3.79	192.51	0.41	0.25	0.66
Daskalakis ³³⁴	25	16	9	9	36	0.64	0.43	0.82	0.80	0.65	0.90	3.20	1.66	6.16	0.45	0.26	0.77
Daskalakis ³³⁴	30	25	15	0	30	1.00	0.86	1.00	0.67	0.51	0.80	2.91	1.93	4.38	0.03	0.00	0.45
Daskalakis ³³⁴	35	25	33	0	12	1.00	0.86	1.00	0.27	0.15	0.42	1.35	1.12	1.62	0.07	0.00	1.15
Rageth ³³⁹	30	4	25	0	32	1.00	0.40	1.00	0.56	0.42	0.69	2.05	1.36	3.09	0.18	0.01	2.50
Tsoi ³⁴⁶	5	17	3	59	431	0.22	0.14	0.33	0.99	0.98	1.00	32.36	9.72	107.75	0.78	0.69	0.88
Tsoi ³⁴⁶	10	33	15	43	419	0.43	0.32	0.55	0.97	0.94	0.98	12.56	7.18	21.98	0.59	0.48	0.71
Tsoi ³⁴⁶	15	54	41	22	393	0.71	0.60	0.81	0.91	0.87	0.93	7.52	5.44	10.41	0.32	0.22	0.46
Tsoi ³⁴⁶	20	59	112	17	322	0.78	0.67	0.86	0.74	0.70	0.78	3.01	2.46	3.67	0.30	0.20	0.46
Schmitz ³⁴²	15	22	35	26	276	0.46	0.31	0.61	0.89	0.85	0.92	4.07	2.63	6.31	0.61	0.47	0.79
Schmitz ³⁴²	25	36	115	12	196	0.75	0.60	0.86	0.63	0.57	0.68	2.03	1.63	2.52	0.40	0.24	0.65
Schmitz ³⁴²	30	43	173	5	138	0.90	0.77	0.97	0.44	0.39	0.50	1.61	1.40	1.85	0.23	0.10	0.54
Gomez ¹⁰⁶	15	19	11	15	170	0.56	0.38	0.73	0.94	0.89	0.97	9.20	4.82	17.54	0.47	0.32	0.69
Gomez ¹⁰⁶	30	30	78	4	103	0.88	0.73	0.97	0.57	0.49	0.64	2.05	1.66	2.52	0.21	0.08	0.52
<37 weeks' gestation																	
Crane ³³³	30	30	35	7	64	0.81	0.65	0.92	0.65	0.54	0.74	2.29	1.68	3.12	0.29	0.15	0.58
Gomez ¹⁰⁶	18	16	8	6	29	0.73	0.50	0.89	0.78	0.62	0.90	3.36	1.73	6.54	0.35	0.17	0.70
Onderoglu ⁷⁵	28	25	10	7	48	0.78	0.60	0.91	0.83	0.71	0.91	4.53	2.50	8.20	0.26	0.14	0.51
Tekesin ³⁴³	25	17	22	6	40	0.74	0.52	0.90	0.65	0.51	0.76	2.08	1.38	3.15	0.40	0.20	0.82
Rozenberg ¹²⁸	26	14	6	2	6	0.88	0.62	0.98	0.50	0.21	0.79	1.75	0.96	3.17	0.25	0.06	1.03
Venditelli ³⁴⁷	30	55	53	12	54	0.82	0.71	0.90	0.50	0.41	0.60	1.66	1.33	2.07	0.35	0.21	0.61
Rizzo ³⁴⁰	20	32	13	15	48	0.68	0.53	0.81	0.79	0.66	0.88	3.19	1.90	5.38	0.41	0.26	0.63
Goffinet ³³⁶	26	19	28	5	56	0.79	0.58	0.93	0.67	0.56	0.77	2.38	1.65	3.42	0.31	0.14	0.69
Murakawa ³³⁸	25	7	3	4	18	0.64	0.31	0.89	0.86	0.64	0.97	4.45	1.43	13.91	0.42	0.19	0.95
Murakawa ³³⁸	30	11	6	0	15	1.00	0.72	1.00	0.71	0.48	0.89	3.24	1.68	6.25	0.06	0.00	0.90
Murakawa ³³⁸	35	11	14	0	7	1.00	0.72	1.00	0.33	0.15	0.57	1.45	1.05	2.01	0.12	0.01	1.96

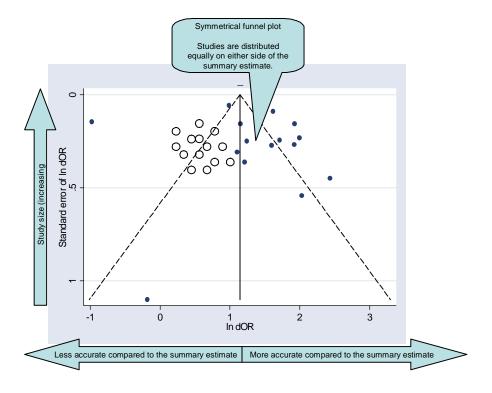

Table 59 Individual accuracy results of cervical funnelling assessment in predicting spontaneous preterm birth among women symptomatic with threatened preterm labour stratified according to outcome (weeks' gestation)

Authors Thresholds gestation TP FP FN TN SENS SENS_LB SENS_LB SPEC_LB SPEC_LB LR+ LR+ LR+_LB LR+_UB			Outcome (weeks'																
Leung*326 any 34 6 175 14 2757 0.30 0.12 0.54 0.94 0.93 0.95 5.03 2.53 9.97 0.74 Andrews************************************	Thresh	esholds	gestation)	TP	FP	FN	TN	SENS	SENS_LB	SENS_UB	SPECS	SPEC_LB	SPEC_UB	LR+	LR+_LB	LR+_UB	LR-	LRLB	LRUB
Leung*326 any 34 6 175 14 2757 0.30 0.12 0.54 0.94 0.93 0.95 5.03 2.53 9.97 0.74 Andrews************************************																			
Andrews****322 any 35 4 5 9 39 0.31 0.09 0.61 0.89 0.75 0.96 2.71 0.85 8.64 0.78 Andrews************************************	any		34	6	175	14	2757	0.30	0.12	0.54	0.94	0.93	0.95	5.03	2.53	9.97	0.74	0.56	0.99
Andrews*** 322 any 35 7 8 2 24 0.78 0.40 0.97 0.75 0.57 0.89 3.11 1.55 6.23 0.30 To**331 5mm width 33 16 215 43 6103 0.27 0.16 0.40 0.97 0.96 0.97 7.97 5.14 12.35 0.75 Pires**329 any 37 3 11 18 324 0.14 0.03 0.36 0.97 0.94 0.98 4.35 1.31 14.42 0.89 Pires**329 any 35 3 11 8 316 0.27 0.06 0.61 0.97 0.94 0.98 8.11 2.63 25.01 0.75 Mara**27 any 37 22 18 11 196 0.67 0.48 0.82 0.92 0.87 0.95 7.93 4.79 13.12 0.36 Symptomatic Crane**333 V-shaped 37 7 9 25 95 0.22 0.09 0.40 0.91 0.84 0.96 2.53 1.02 6.25 0.86 Crane**333 V-shaped 34 4 12 5 115 0.44 0.14 0.79 0.91 0.84 0.95 4.70 1.90 11.66 0.61 Gomez**377 any 36 17 17 5 20 0.77 0.55 0.92 0.54 0.37 0.71 1.68 1.11 2.55 0.42 Gomez**378 6mm width 36 14 8 7 25 0.67 0.43 0.85 0.76 0.58 0.89 2.75 1.40 5.40 0.44 Gomez**337 9mm length 36 15 3 6 30 0.71 0.48 0.89 0.91 0.76 0.98 7.86 2.58 23.90 0.31	any		35	4	5	9	39	0.31	0.09	0.61	0.89	0.75	0.96	2.71	0.85	8.64	0.78	0.54	1.14
To****331	any		35	5	0	10	38	0.33	0.12	0.62	1.00	0.91	1.00	26.81	1.57	457.07	0.66	0.47	0.95
Pires** 29 any 37 3 11 18 324 0.14 0.03 0.36 0.97 0.94 0.98 4.35 1.31 14.42 0.89 Pires** 329 any 35 3 11 8 316 0.27 0.06 0.61 0.97 0.94 0.98 8.11 2.63 25.01 0.75 Mara** 297 any 34 7 33 2 205 0.78 0.40 0.97 0.86 0.81 0.90 5.61 3.50 8.99 0.26 Mara** 297 any 37 22 18 11 196 0.67 0.48 0.82 0.92 0.87 0.95 7.93 4.79 13.12 0.36 Symptomatic Crane** V-shaped 37 7 9 25 95 0.22 0.09 0.40 0.91 0.84 0.96 2.53 1.02 6.25 0.86 Crane** Crane** Argument of the control of the contro	any		35	7	8	2	24	0.78	0.40	0.97	0.75	0.57	0.89	3.11	1.55	6.23	0.30	0.09	1.02
Pires*\$\frac{329}{299} any 35 3 11 8 316 0.27 0.06 0.61 0.97 0.94 0.98 8.11 2.63 25.01 0.75 Mara*\$\frac{327}{327} any 34 7 33 2 205 0.78 0.40 0.97 0.86 0.81 0.90 5.61 3.50 8.99 0.26 Mara*\$\frac{328}{327} any 37 22 18 11 196 0.67 0.48 0.82 0.92 0.87 0.95 7.93 4.79 13.12 0.36 Symptomatic Crane*\$\frac{333}{33}\$ V-shaped 37 7 9 25 95 0.22 0.09 0.40 0.91 0.84 0.96 2.53 1.02 6.25 0.86 Crane*\$\frac{333}{33}\$ V-shaped 34 4 12 5 115 0.44 0.14 0.79 0.91 0.84 0.95 4.70 1.90 11.66 0.61 Gomez*\$\frac{337}{337}\$ any 36 17 17 5 20 0.77 0.55 0.92 0.54 0.37 0.71 1.68 1.11 2.55 0.42 Gomez*\$\frac{337}{337}\$ 6mm width 36 14 8 7 25 0.67 0.43 0.85 0.76 0.58 0.89 2.75 1.40 5.40 0.44 Gomez*\$\frac{337}{337}\$ 9mm length 36 15 3 6 30 0.71 0.48 0.89 0.91 0.76 0.98 7.86 2.58 23.90 0.31	5mm wi	width	33	16	215	43	6103	0.27	0.16	0.40	0.97	0.96	0.97	7.97	5.14	12.35	0.75	0.65	0.88
Mara* ³²⁷ any 34 7 33 2 205 0.78 0.40 0.97 0.86 0.81 0.90 5.61 3.50 8.99 0.26 Mara* ³²⁷ any 37 22 18 11 196 0.67 0.48 0.82 0.92 0.87 0.95 7.93 4.79 13.12 0.36 Symptomatic Crane ³³³ V-shaped 37 7 9 25 95 0.22 0.09 0.40 0.91 0.84 0.96 2.53 1.02 6.25 0.86 Crane ³³³ V-shaped 34 4 12 5 115 0.44 0.14 0.79 0.91 0.84 0.95 4.70 1.90 11.66 0.61 Gomez ³³⁷ any 36 17 17 5 20 0.77 0.55 0.92 0.54 0.37 0.71 1.68 1.11 2.55 0.42 Gomez ³³⁷ 6mm width 36 14 8 7 25 0.67 0.43 0.85 0.76 0.58 0.89 2.75 1.40 5.40 0.44 Gomez ³³⁷ 9mm length 36 15 3 6 30 0.71 0.48 0.89 0.91 0.76 0.98 7.86 2.58 23.90 0.31	any		37	3	11	18	324	0.14	0.03	0.36	0.97	0.94	0.98	4.35	1.31	14.42	0.89	0.74	1.06
Mara* ³²⁷ any 37 22 18 11 196 0.67 0.48 0.82 0.92 0.87 0.95 7.93 4.79 13.12 0.36 Symptomatic Crane ³³³ V-shaped 37 7 9 25 95 0.22 0.09 0.40 0.91 0.84 0.96 2.53 1.02 6.25 0.86 Crane ³³³ V-shaped 34 4 12 5 115 0.44 0.14 0.79 0.91 0.84 0.95 4.70 1.90 11.66 0.61 Gomez ³³⁷ any 36 17 17 5 20 0.77 0.55 0.92 0.54 0.37 0.71 1.68 1.11 2.55 0.42 Gomez ³³⁷ 6mm width 36 14 8 7 25 0.67 0.43 0.85 0.76 0.58 0.89 2.75 1.40 5.40 0.44 Gomez ³³⁷ 9mm length 36 15 3 6 30 0.71 0.48 0.89 0.91 0.76 0.98 7.86 2.58 23.90 0.31	any		35	3	11	8	316	0.27	0.06	0.61	0.97	0.94	0.98	8.11	2.63	25.01	0.75	0.52	1.08
Symptomatic Crane ³³³ V-shaped 37 7 9 25 95 0.22 0.09 0.40 0.91 0.84 0.96 2.53 1.02 6.25 0.86 Crane ³³³ V-shaped 34 4 12 5 115 0.44 0.14 0.79 0.91 0.84 0.95 4.70 1.90 11.66 0.61 Gomez ³³⁷ any 36 17 17 5 20 0.77 0.55 0.92 0.54 0.37 0.71 1.68 1.11 2.55 0.42 Gomez ³³⁷ 6mm width 36 14 8 7 25 0.67 0.43 0.85 0.76 0.58 0.89 2.75 1.40 5.40 0.44 Gomez ³³⁷ 9mm length 36 15 3 6 30 0.71 0.48 0.89 0.91 0.76 0.98 7.86 2.58 23.90 0.31	any		34	7	33	2	205	0.78	0.40	0.97	0.86	0.81	0.90	5.61	3.50	8.99	0.26	0.08	0.88
Crane ³³³ V-shaped 37 7 9 25 95 0.22 0.09 0.40 0.91 0.84 0.96 2.53 1.02 6.25 0.86 Crane ³³³ V-shaped 34 4 12 5 115 0.44 0.14 0.79 0.91 0.84 0.95 4.70 1.90 11.66 0.61 Gomez ³³⁷ any 36 17 17 5 20 0.77 0.55 0.92 0.54 0.37 0.71 1.68 1.11 2.55 0.42 Gomez ³³⁷ 6mm width 36 14 8 7 25 0.67 0.43 0.85 0.76 0.58 0.89 2.75 1.40 5.40 0.44 Gomez ³³⁷ 9mm length 36 15 3 6 30 0.71 0.48 0.89 0.91 0.76 0.98 7.86 2.58 23.90 0.31	any		37	22	18	11	196	0.67	0.48	0.82	0.92	0.87	0.95	7.93	4.79	13.12	0.36	0.22	0.59
Crane ³³³ V-shaped 34 4 12 5 115 0.44 0.14 0.79 0.91 0.84 0.95 4.70 1.90 11.66 0.61 Gomez ³³⁷ any 36 17 17 5 20 0.77 0.55 0.92 0.54 0.37 0.71 1.68 1.11 2.55 0.42 Gomez ³³⁷ 6mm width 36 14 8 7 25 0.67 0.43 0.85 0.76 0.58 0.89 2.75 1.40 5.40 0.44 Gomez ³³⁷ 9mm length 36 15 3 6 30 0.71 0.48 0.89 0.91 0.76 0.98 7.86 2.58 23.90 0.31																			
Gomez ³³⁷ any 36 17 17 5 20 0.77 0.55 0.92 0.54 0.37 0.71 1.68 1.11 2.55 0.42 Gomez ³³⁷ 6mm width 36 14 8 7 25 0.67 0.43 0.85 0.76 0.58 0.89 2.75 1.40 5.40 0.44 Gomez ³³⁷ 9mm length 36 15 3 6 30 0.71 0.48 0.89 0.91 0.76 0.98 7.86 2.58 23.90 0.31	V-shape	aped	37	7	9	25	95	0.22	0.09	0.40	0.91	0.84	0.96	2.53	1.02	6.25	0.86	0.71	1.04
Gomez ³³⁷ 6mm width 36 14 8 7 25 0.67 0.43 0.85 0.76 0.58 0.89 2.75 1.40 5.40 0.44 Gomez ³³⁷ 9mm length 36 15 3 6 30 0.71 0.48 0.89 0.91 0.76 0.98 7.86 2.58 23.90 0.31	V-shape	aped	34	4	12	5	115	0.44	0.14	0.79	0.91	0.84	0.95	4.70	1.90	11.66	0.61	0.34	1.10
$ Gomez^{337} \qquad 9mm \ length \qquad 36 15 \qquad 3 \qquad 6 30 0.71 \qquad 0.48 \qquad 0.89 \qquad 0.91 \qquad 0.76 \qquad 0.98 7.86 \qquad 2.58 \qquad 23.90 0.31 $	any		36	17	17	5	20	0.77	0.55	0.92	0.54	0.37	0.71	1.68	1.11	2.55	0.42	0.18	0.96
	6mm wi	width	36	14	8	7	25	0.67	0.43	0.85	0.76	0.58	0.89	2.75	1.40	5.40	0.44	0.23	0.83
Rizzo ³⁴⁰ 5mm width 37 34 20 13 41 0.72 0.57 0.84 0.67 0.54 0.79 2.21 1.48 3.29 0.41	9mm ler	length	36	15	3	6	30	0.71	0.48	0.89	0.91	0.76	0.98	7.86	2.58	23.90	0.31	0.16	0.62
	5mm wi	width	37	34	20	13	41	0.72	0.57	0.84	0.67	0.54	0.79	2.21	1.48	3.29	0.41	0.25	0.67
Okitsu 320 5mm width 36 9 18 4 46 0.69 0.39 0.91 0.72 0.59 0.82 2.46 1.44 4.20 0.43	5mm wi	width	36	9	18	4	46	0.69	0.39	0.91	0.72	0.59	0.82	2.46	1.44	4.20	0.43	0.19	0.98

^{*}Testing <20 weeks' gestation **Testing between 20 – 24 weeks' gestation + Tested twice within a two weeks apart


Appendix V – Guide to summary ROC & funnel plots interpretations

A graphical method for assessment of heterogeneity is to plot sensitivity and specificity of the various studies in a summary receiver operating characteristics (ROC) space. A summary ROC space plot will show, as a minimum, distribution of studies along with the summary point the accuracy estimate and summary curve for estimates of the test's accuracy from the various studies but it is usually accompanied by the 95% confidence region. A representation is shown below with key explanations.



Another method for assessing heterogeneity (esp. publication and related biases) is to perform a simple, but commonly used method, funnel plot. To make a meaningful analysis and interpretation of a funnel plot requires inclusion of numerous studies (≥10 studies), preferably larger studies. The result is interpreted as either an asymmetrical (indicative of a possible presence of publication and related biases) or a symmetrical funnel plot (indicative of a possible absence of publication and related biases). Their representations are shown below with key explanations.

An asymmetrical funnel plot analysis

A symmetrical funnel plot analysis

Neither summary ROC nor funnel plot individually or jointly provides a conclusive evidence of heterogeneity or the presence of publication and related biases. Instead both are complementary and should be used as adjunct to studies' methods and quality assessments, and forest plots to draw an inference regarding presence of heterogeneity, publication and related biases.

Publications directly contributing to and from the work of thesis

Honest H, Forbes CA, Durée KH, Norman G, Duffy SB, Tsourapas A, et al. Screening to prevent spontaneous preterm birth: systematic reviews of accuracy and effectiveness literature with economic modelling. Health Technol Assess 2009;13(43).

Honest H, Bachmann LM, Ngai C, Gupta JK, Kleijnen J, Khan KS. The accuracy of maternal anthropometry measurements as predictor for spontaneous preterm birth--a systematic review. Eur J Obstet Gynecol Reprod Biol 2005;119:11-20.

Honest H, Bachmann LM, Knox EM, Gupta JK, Kleijnen J, Khan KS. The accuracy of various tests for bacterial vaginosis in predicting preterm birth: a systematic review. BJOG 2004;111:409-22.

Honest H, Bachmann LM, Coomarasamy A, Gupta JK, Kleijnen J, Khan KS. Accuracy of cervical transvaginal sonography in predicting preterm birth: a systematic review. Ultrasound Obstet Gynecol 2003;22:305-22.

Honest H, Bachmann LM, Khan K. Electronic searching of the literature for systematic reviews of screening and diagnostic tests for preterm birth. Eur J Obstet Gynecol Reprod Biol 2003;107:19-23.

Honest H, Bachmann LM, Sundaram R, Gupta JK, Kleijnen J, Khan KS. The accuracy of risk scores in predicting preterm birth--a systematic review. J Obstet Gynaecol 2004;24:343-59.

Khan KS, Honest H, Bachmann LM. A generic framework for making clinical decisions integrating diagnostic and therapeutic research evidence in preterm birth. Fetal Matern Med Rev 2003;14:239-49.

Honest H, Bachmann LM, Gupta JK, Kleijnen J, Khan KS. Accuracy of cervicovaginal fetal fibronectin test in predicting risk of spontaneous preterm birth: systematic review. BMJ 2002;325:301.

References

- 1. Villar J, Abalos E, Carroli G, Giordano D, Wojdyla D, Piaggio G et al. Heterogeneity of perinatal outcomes in the preterm delivery syndrome. Obstet Gynecol 2004;104:78-87.
- 2. Lumley J. Defining the problem: the epidemiology of preterm birth. BJOG 2003;110 Suppl 20:3-7.
- 3. Mathews, T. J., Menacker, F., and MacDorman, M. F. Infant mortality statistics from the 2002 period linked birth/infant death data set. Hyattsville, Maryland., National Center for Health Statistics. Natl Vital Stat Rep 2004;53(10):1-30.
- 4. Mikkola K, Ritari N, Tommiska V, Salokorpi T, Lehtonen L, Tammela O et al. Neurodevelopmental outcome at 5 years of age of a national cohort of extremely low birth weight infants who were born in 1996-1997. Pediatrics 2005;116:1391-400.
- 5. Kramer MS, Demissie K, Yang H, Platt RW, Sauve R, Liston R. The contribution of mild and moderate preterm birth to infant mortality. Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System. JAMA 2000;284:843-9.
- 6. Halvorsen T, Skadberg BT, Eide GE, Roksund OD, Carlsen KH, Bakke P. Pulmonary outcome in adolescents of extreme preterm birth: a regional cohort study. Acta Paediatr 2004;93:1294-300.
- 7. Halvorsen T, Skadberg BT, Eide GE, Roksund O, Aksnes L, Oymar K. Characteristics of asthma and airway hyper-responsiveness after premature birth. Pediatr Allergy Immunol 2005;16:487-94.
- 8. Kollee LA. [Twenty-five week limit for viability of the foetus is ethically correct]. Ned Tijdschr Geneeskd 2005;149:1938.
- 9. Escobar GJ, Clark RH, Greene JD. Short-term outcomes of infants born at 35 and 36 weeks gestation: we need to ask more questions. Semin Perinatol 2006;30:28-33.
- 10. Gladstone IM, Katz VL. The morbidity of the 34- to 35-week gestation: should we reexamine the paradigm? Am J Perinatol 2004;21:9-13.
- 11. Kollee LA. Rehospitalization of very preterm infants. Acta Paediatr 2004;93:1270-1.
- 12. Schmitt SK, Sneed L, Phibbs CS. Costs of newborn care in California: a population-based study. Pediatrics 2006;117:154-60.
- 13. Seubert DE, Stetzer BP, Wolfe HM, Treadwell MC. Delivery of the marginally preterm infant: what are the minor morbidities? Am J Obstet Gynecol 1999;181:1087-91.
- 14. Byrne B, Morrison JJ. Preterm birth. Clin Evid 2004;1903-22.

- 15. Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Munson ML. Births: final data for 2003. Natl Vital Stat Rep 2005;54:1-116.
- 16. Morrison JJ, Rennie JM. Clinical, scientific and ethical aspects of fetal and neonatal care at extremely preterm periods of gestation. Br J Obstet Gynaecol 1997;104:1341-50.
- 17. McPheeters ML, Miller WC, Hartmann KE, Savitz DA, Kaufman JS, Garrett JM et al. The epidemiology of threatened preterm labor: a prospective cohort study. Am J Obstet Gynecol 2005;192:1325-9.
- 18. Office for National Statistics (ONS). Live Births in 2004, selected background data (final), England and Wales. http://www.statistics.gov.uk/statbase/Product.asp?vlnk=14010. Last accessed 24-8-2005.
- 19. Escobar GJ, McCormick MC, Zupancic JA, Coleman-Phox K, Armstrong MA, Greene JD et al. Unstudied Infants: Outcomes of moderately premature infants in the NICU. Arch Dis Child Fetal Neonatal Ed 2006;91:F238-244.
- 20. Marbella AM, Chetty VK, Layde PM. Neonatal hospital lengths of stay, readmissions, and charges. Pediatrics 1998;101:32-6.
- 21. Honest H, Bachmann LM, Coomarasamy A, Gupta JK, Kleijnen J, Khan KS. Accuracy of cervical transvaginal sonography in predicting preterm birth: a systematic review. Ultrasound Obstet Gynecol 2003;22:305-22.
- 22. Bachmann LM, Coomarasamy A, Honest H, Khan KS. Elective cervical cerclage for prevention of preterm birth: a systematic review. Acta Obstet Gynecol Scand 2003;82:398-404.
- 23. Honest H, Bachmann LM, Gupta JK, Kleijnen J, Khan KS. Accuracy of cervicovaginal fetal fibronectin test in predicting risk of spontaneous preterm birth: systematic review. BMJ 2002;325:301.
- 24. Crowley P. Prophylactic corticosteroids for preterm birth. Cochrane Database Syst Rev 2000;CD000065.
- 25. Willard D, Gandhour R, Ebtinger B, Messer J. [Etiology and prevention of severe mental handicaps]. Arch Fr Pediatr 1982;39:471-5.
- 26. Lee SK, McMillan DD, Ohlsson A, Boulton J, Lee DS, Ting S et al. The benefit of preterm birth at tertiary care centers is related to gestational age. Am J Obstet Gynecol 2003;188:617-22.
- 27. Coomarasamy A, Knox EM, Gee H, Khan KS. Oxytocin antagonists for tocolysis in preterm labour -- a systematic review. Med Sci Monit 2002;8:RA268-RA273.
- 28. Egger M, Smith GD. Meta-Analysis. Potentials and promise. BMJ 1997;315:1371-4.
- 29. Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making 1991;11:88-94.

- 30. Guyatt GH, Tugwell PX, Feeny DH, Haynes RB, Drummond M. A framework for clinical evaluation of diagnostic technologies. CMAJ. 1986;134:587-94.
- 31. Sackett DL, Haynes RB. The evidence base of clinical diagnosis. London: BMJ Books, 2002.
- 32. Honest H, Khan KS. Systematic reviews of test accuracy studies in reporductive health. WHO Reproductive Health Library (No.5), Geneva, WHO/RHR 2002.
- 33. Khan KS, Dinnes J, Kleijnen J. Systematic reviews to evaluate diagnostic tests. Eur J Obstet Gynecol Reprod Biol 2001;95:6-11.
- 34. Khan KS, Kunz R, Kleijnen J, Antes G. Systematic reviews to support evidence-based medicine: How to review and apply findings of systematic reviews. London: Royal Society of Medicine, 2003.
- 35. Undertaking Systematic Reviews of Research on Effectiveness CRD's Guidance for those Carrying Out or Commissioning Reviews. CRD Report Number 4 (2nd Edition) 2001.
- 36. Cochrane Methods Group on Systematic Review of Screening and Diagnostic Tests. Available at http://www.cochrane.org/sadt/index.htm. 2005.
- 37. Honest H, Bachmann LM, Khan K. Electronic searching of the literature for systematic reviews of screening and diagnostic tests for preterm birth. Eur J Obstet Gynecol Reprod Biol 2003;107:19-23.
- 38. Irwig L, Macaskill P, Glasziou P, Fahey M. Meta-analytic methods for diagnostic test accuracy. J Clin Epidemiol 1995;48:119-30.
- 39. Khan KS, Bakour SH, Bossuyt PM. Evidence-based obstetric and gynaecologic diagnosis: the STARD checklist for authors, peer-reviewers and readers of test accuracy studies. BJOG 2004;111:638-40.
- 40. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med 2003;138:W1-12.
- 41. Whiting P, Rutjes AW, Dinnes J, Reitsma J, Bossuyt PM, Kleijnen J. Development and validation of methods for assessing the quality of diagnostic accuracy studies. Health Technol Assess 2004;8:iii, 1-iii234.
- 42. Whiting P, Rutjes AW, Reitsma JB, Glas AS, Bossuyt PM, Kleijnen J. Sources of variation and bias in studies of diagnostic accuracy: a systematic review. Ann Intern Med 2004;140:189-202.
- 43. Honest H, Bachmann LM, Sundaram R, Gupta JK, Kleijnen J, Khan KS. The accuracy of risk scores in predicting preterm birth--a systematic review. J Obstet Gynaecol 2004;24:343-59.

- 44. Honest H, Bachmann LM, Knox EM, Gupta JK, Kleijnen J, Khan KS. The accuracy of various tests for bacterial vaginosis in predicting preterm birth: a systematic review. BJOG. 2004;111:409-22.
- 45. Honest H, Bachmann LM, Ngai C, Gupta JK, Kleijnen J, Khan KS. The accuracy of maternal anthropometry measurements as predictor for spontaneous preterm birth--a systematic review. Eur J Obstet Gynecol Reprod Biol 2005;119:11-20.
- 46. Jaeschke R, Guyatt GH, Sackett DL. Users' guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA 1994;271:703-7.
- 47. Grimes DA,.Schulz KF. Refining clinical diagnosis with likelihood ratios. Lancet 2005;365:1500-5.
- 48. Fagan TJ. Letter: Nomogram for Bayes theorem. N Engl J Med 1975;293:257.
- 49. Dinnes J, Deeks J, Kirby J, Roderick P. A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health Technol Assess 2005;9:1-113, iii.
- 50. Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JA. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics. 2007;8:239-51.
- 51. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005;58:982-90.
- 52. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 2001;20:2865-84.
- 53. Honest H, Khan KS. Reporting of measures of accuracy in systematic reviews of diagnostic literature. BMC.Health Serv Res 2002;2:4.
- 54. Khan KS, Honest H, Bachmann LM. A generic framework for making clinical decisions integrating diagnostic and therapeutic research evidence in preterm birth. Fetal Matern Med Rev 2003;14:239-49.
- 55. Ancel PY, Saurel-Cubizolles MJ, Di Renzo GC, Papiernik E, Breart G. Very and moderate preterm births: are the risk factors different? Br J Obstet Gynaecol 1999;106:1162-70.
- 56. Berkowitz GS, Blackmore-Prince C, Lapinski RH, Savitz DA. Risk factors for preterm birth subtypes. Epidemiol 1998;9:279-85.
- 57. Botsis D, Papagianni V, Vitoratos N, Makrakis E, Aravantinos L, Creatsas G. Prediction of preterm delivery by sonographic estimation of cervical length. Biol Neonate 2005;88:42-5.
- 58. Carr-Hill RA, Hall MH. The repetition of spontaneous preterm labour. Br J Obstet Gynaecol 1985;92:921-8.

- 59. de Carvalho MH, Bittar RE, Brizot ML, Bicudo C, Zugaib M. Prediction of preterm delivery in the second trimester. Obstet Gynecol 2005;105:532-6.
- 60. de H, I, Harlow BL, Cramer DW, Frigoletto FD, Jr. Spontaneous preterm birth: a case-control study. Am J Obstet Gynecol 1991;165:1290-6.
- 61. Goldenberg RL, Iams JD, Mercer BM, Meis PJ, Moawad AH, Copper RL et al. The preterm prediction study: the value of new vs standard risk factors in predicting early and all spontaneous preterm births. NICHD MFMU Network. Am J Public Health 1998;88:233-8.
- 62. Iams JD, Goldenberg RL, Mercer BM, Moawad A, Thom E, Meis PJ et al. The Preterm Prediction Study: recurrence risk of spontaneous preterm birth. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 1998;178:1035-40.
- 63. Kristensen J, Langhoff-Roos J, Kristensen FB. Implications of idiopathic preterm delivery for previous and subsequent pregnancies. Obstet Gynecol 1995;86:800-4.
- 64. Weidinger H, Wiest W. A comparative study of the epidemiological data of pregnancies with and without tendencies to premature delivery. J Perinat.Med 1974;2:276-87.
- 65. Mercer BM, Goldenberg RL, Moawad AH, Meis PJ, Iams JD, Das AF et al. The preterm prediction study: effect of gestational age and cause of preterm birth on subsequent obstetric outcome. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 1999;181:1216-21.
- 66. Blondel B, Le C, X, Kaminski M, Chavigny C, Breart G, Sureau C. Prediction of preterm delivery: Is it substantially improved by routine vaginal examinations? Am J Obstet Gynecol 1990; 162:1042-8.
- 67. Chambers S, Pons JC, Richard A, Chiesa M, Bouyer J, Papiernik E. Vaginal infections, cervical ripening and preterm delivery. Eur J Obstet Gynecol Reprod Biol 1991;38:103-8.
- 68. Chhabra S, Varma P. Cervical status as a predictor of preterm labour. J.Indian Med Assoc 1992;90:261-2.
- 69. Iams JD, Newman RB, Thom EA, Goldenberg RL, Mueller-Heubach E, Moawad A et al. Frequency of uterine contractions and the risk of spontaneous preterm delivery. N Engl J Med 2002;346:250-5.
- 70. Leveno KJ, Cox K, Roark ML. Cervical dilatation and prematurity revisited. Obstet Gynecol 1986; 68:434-5.
- 71. Newman, R. B. The preterm prediction study: comparison of the cervical score and bishop score for the prediction of spontaneous preterm birth (SPTB). J Soc Gynecol Invest 1997;4(1 (Supplement)):152A.

- 72. Parikh MN,.Mehta AC. Internal cervical os during the second half of pregnancy. J Obstet Gynaecol Br Emp 1961;68:818-21.
- 73. Schaffner F,.Schanzer SN. Cervical dilatation in the early third trimester. Obstet Gynecol 1966;27:130-3.
- 74. Stubbs TM, Van Dorsten JP, Miller MC. The preterm cervix and preterm labor: relative risks, predictive values, and change over time. Am J Obstet Gynecol 1986;155:829-34.
- 75. Onderoglu LS. Digital examination and transperineal ultrasonographic measurement of cervical length to assess risk of preterm delivery. Int J Gynaecol Obstet 1997;59:223-8.
- 76. Goldenberg RL, Klebanoff M, Carey JC, MacPherson C, Leveno KJ, Moawad AH et al. Vaginal fetal fibronectin measurements from 8 to 22 weeks' gestation and subsequent spontaneous preterm birth. Am J Obstet Gynecol 2000; 183:469-75.
- 77. Zamora Scorza FC, Fernandez G, de Lamanna MP, Perez MC, Maris CA. Valor de la fibronectina fetal en secreciones cervicales en la prediccion del parto pretermino en pacientes con membranas integras. Rev Obstet Ginecol Venez. 2000;60(1):15-22.
- 78. Grandi C, Perego M, Briozzo G, Cassini A. Fibronectina fetal (fFN) en secrecion cervical como predictor del parto prematuro. Rev Hosp Mat Inf Ramon Sarda 2006;15(3):127-136.
- 79. Peaceman AM, Andrews WW, Thorp JM, Cliver SP, Lukes A, Iams JD et al. Fetal fibronectin as a predictor of preterm birth in patients with symptoms: A multicenter trial. Am J Obstet Gynecol 1997;177:13-8.
- 80. Faron G, Boulvain M, Lescrainier JP, Vokaer A. A single cervical fetal fibronectin screening test in a population at low risk for preterm delivery: An improvement on clinical indicators? Br J Obstet Gynaecol 1997; 104:697-701.
- 81. Heath VC, Daskalakis G, Zagaliki A, Carvalho M, Nicolaides KH. Cervicovaginal fibronectin and cervical length at 23 weeks of gestation: relative risk of early preterm delivery. BJOG. 2000;107:1276-81.
- 82. Hellemans P, Gerris J, Verdonk P. Fetal fibronectin detection for prediction of preterm birth in low risk women. Br J Obstet Gynaecol 1995;102:207-12.
- 83. LaShay N, Gilson G, Joffe G, Qualls C, Curet L. Will cervicovaginal interleukin-6 combined with fetal fibronectin testing improve the prediction of preterm delivery? J Matern Fetal Med 2000;9:336-41.
- 84. Morrison JC, Allbert JR, McLaughlin BN, Whitworth NS, Roberts WE, Martin RW. Oncofetal fibronectin in patients with false labor as a predictor of preterm delivery. Am J Obstet Gynecol 1993;168:538-42.
- 85. Senden IP, Owen P. Comparison of cervical assessment, fetal fibronectin and fetal breathing in the diagnosis of preterm labour. Clin Exp Obstet Gynecol 1996;23:5-9.

- 86. Tekesin I, Marek S, Hellmeyer L, Reitz D, Schmidt S. Assessment of rapid fetal fibronectin in predicting preterm delivery. Obstet Gynecol 2005;105:280-4.
- 87. Arinami Y, Hasegawa I, Takakuwa K, Tanaka K. Prediction of preterm delivery by combined use of simple clinical tests. J Matern Fetal Med 1999;8:70-3.
- 88. Chang TC, Chew TS, Pang M, Tan AC, Yeo GS. Cervicovaginal foetal fibronectin in the prediction of preterm labour in a low-risk population. Ann Acad Med Singapore 1997;26:776-80.
- 89. Goldenberg RL, Mercer BM, Meis PJ, Copper RL, Das A, McNellis D. The preterm prediction study: Fetal fibronectin testing and spontaneous preterm birth. Obstet Gynecol 1996;87:643-8.
- 90. Goldenberg RL, Mercer BM, Iams JD, Moawad AH, Meis PJ, Das A et al. The preterm prediction study: Patterns of cervicovaginal fetal fibronectin as predictors of spontaneous preterm delivery. Am J Obstet Gynecol 1997;177:8-12.
- 91. Hux CH, Trolice MP, Kadar N. The value of a single fetal fibronectin assay as a screen for preterm labor and delivery. J Matern Fetal Med 1995;4:100-4.
- 92. Crane JM, Armson BA, Dodds L, Feinberg RF, Kennedy W, Kirkland SA. Risk scoring, fetal fibronectin, and bacterial vaginosis to predict preterm delivery. Obstet Gynecol 1999;93:517-22.
- 93. Di Stefano L, Carta G, Di Paolantonio L, Palerno P, Moscarini M. Preterm delivery: Predictive value of cervico-vaginal fetal fibronectin. Clin Exp Obstet Gynecol 1999;26:187-9.
- 94. Garcia AA, Ayala-Mendez JA, Izquierdo-Puente JC, Jimenez SG, Sanchez MM. [Presence of fetal fibronectin in cervico-vaginal secretion as predictor of premature labor] Presencia de fibronectina fetal en secrecion cervico-vaginal como predictor de parto pretermino. Ginecol Obstet Mex 1999;67:23-8.
- 95. Greenhagen JB, Van Wagoner J, Dudley D, Hunter C, Mitchell M, Logsdon V et al. Value of fetal fibronectin as a predictor of preterm delivery for a low-risk population. Am J Obstet Gynecol 1996;175:1054-6.
- 96. Inglis SR, Jeremias J, Kuno K, Lescale K, Peeper Q, Chervenak FA et al. Detection of tumor necrosis factor-alpha, interleukin-6, and fetal fibronectin in the lower genital tract during pregnancy: relation to outcome. Am J Obstet Gynecol 1994;171:5-10.
- 97. Lockwood CJ, Senyei AE, Dische MR, Casal D, Shah KD, Thung SN et al. Fetal fibronectin in cervical and vaginal secretions as a predictor of preterm delivery. New Engl J Med 1991;325:669-74.
- 98. Ruiz RJ, Fullerton J, Brown CE, Schoolfield J. Relationships of cortisol, perceived stress, genitourinary infections, and fetal fibronectin to gestational age at birth. Biol Res Nursing 2001;3:39-48.

- 99. Vercoustre L, Sotter S, Bouige D, Walch R. Place de la fibronectine foetale dans la prediction du travail. Resultats et commentatires a propos de 206 prelevements.[Fibronectin as a predictor of labor, results and discussion about 206 samples]. References Gynecol Obstet 1996;4:23-32.
- 100. Plaut MM, Smith W, Kennedy K. Fetal fibronectin: the impact of a rapid test on the treatment of women with preterm labor symptoms. Am J Obstet Gynecol 2003;188:1588-93.
- 101. Bartnicki J, Casal D, Kreaden US, Saling E, Vetter K. Fetal fibronectin in vaginal specimens predicts preterm delivery and very-low-birth-weight infants. Am J Obstet Gynecol 1996;174:971-4.
- 102. Benattar C, Taieb J, Fernandez H, Lindendaum A, Frydman R, Ville Y. Rapid fetal fibronectin swab-test in preterm labor patients treated by betamimetics. Eur J Obstet Gynecol Reprod Biol 1997;72:131-5.
- 103. Closset E, Dufour P, Coeugnet P, Subtil D, Valat AS, Puech F. Fetal fibronectin as a predictor of preterm delivery. [French]. Gynecol Obstet Fertil 2001;29:808-13.
- 104. Foxman EF, Jarolim P. Use of the fetal fibronectin test in decisions to admit to hospital for preterm labor. Clin Chem 2004;50:663-5.
- 105. Giles W, Bisits A, Knox M, Madsen G, Smith R. The effect of fetal fibronectin testing on admissions to a tertiary maternal-fetal medicine unit and cost savings. Am J Obstet Gynecol 2000;182:439-42.
- 106. Gomez R, Romero R, Medina L, Nien JK, Chaiworapongsa T, Carstens M et al. Cervicovaginal fibronectin improves the prediction of preterm delivery based on sonographic cervical length in patients with preterm uterine contractions and intact membranes. Am J Obstet Gynecol 2005;192:350-9.
- 107. Iams JD, Casal D, McGregor JA, Goodwin TM, Kreaden US, Lowensohn R et al. Fetal fibronectin improves the accuracy of diagnosis of preterm labor. Am J Obstet Gynecol 1995;173:141-5.
- Lopez RL, Francis JA, Garite TJ, Dubyak JM. Fetal fibronectin detection as a predictor of preterm birth in actual clinical practice. Am J Obstet Gynecol 2000;182:1103-6.
- 109. Lowe MP, Zimmerman B, Hansen W. Prospective randomized controlled trial of fetal fibronectin on preterm labor management in a tertiary care center. Am J Obstet Gynecol 2004;190:358-62.
- 110. Luzzi V, Hankins K, Gronowski AM. Accuracy of the rapid fetal fibronectin TLi system in predicting preterm delivery. Clin Chem 2003;49:501-2.
- 111. Malak TM, Sizmur F, Bell SC, Taylor DJ. Fetal fibronectin in cervicovaginal secretions as a predictor of preterm birth. Br J Obstet Gynaecol 1996;103:648-53.
- 112. McKenna DS, Chung K, Iams JD. Effect of digital cervical examination on the expression of fetal fibronectin. J.Reprod Med Obstet Gynecol 1999;44:796-800.

- 113. Sakai M, Sasaki Y, Yamagishi N, Tanebe K, Yoneda S, Saito S. The preterm labor index and fetal fibronectin for prediction of preterm delivery with intact membranes.[see comment]. Obstet Gynecol 2003;101:123-8.
- 114. Burrus DR, Ernest JM, Veille JC. Fetal fibronectin, interleukin-6, and C-reactive protein are useful in establishing prognostic subcategories of idiopathic preterm labor. Am J Obstet Gynecol 1995;173:1258-62.
- 115. Cox, S, Little, B, Dax, J, and Leveno, K. Fetal fibronectin and preterm delivery. Am J Obstet Gynecol. 174, 306. 1996.
- 116. Goffeng AR, Holst E, Milsom I, Lindstedt G, Lundberg PA, Andersch B. Fetal fibronectin and microorganisms in vaginal fluid of women with complicated pregnancies. Acta Obstet Gynecol Scand 1997;76:521-7.
- 117. Musaad SMA, Melson CL, Boswell DR. Assessment of the impact of introducing fetal fibronectin assay in the management of preterm labour at Middlemore Hospital. New Zealand Pathology 2005;37:226-30.
- 118. Ni CF, Bell R, Brennecke S. Cervicovaginal fetal fibronectin testing in threatened preterm labour Translating research findings into clinical practice. Aust New Zealand J Obstet Gynaecol 1998;38:399-402.
- 119. Parker J, Bell R, Brennecke S. Fetal fibronectin in the cervicovaginal fluid of women with threatened preterm labour as a predictor of delivery before 34 weeks' gestation. Aust New Zealand J Obstet Gynaecol 1995; 35:257-61.
- 120. Calda P, Cibula D, Doudova D, Binder T, Peterka T, Zizka Z et al. [Fetal fibronectin in cervico-vaginal secretions--an indicator of incipient premature labor using a membrane immunoassay] Fetalni fibronektin v cerviko-vaginalnim sekretu-indikator pocinajiciho predcasneho porodu metodou membranove imunoeseje. Ceska Gynekol 1995;60:293-5.
- 121. Gomez-Bravo Topete E, Castillo-Lechuga C, Villegas-Su A, Briones-Garduno JC. Valor predictivo de la fibronectina fetal en amenaza de parto pretermino. Cir Ciruj 2004;72:491-4.
- 122. Hincz P, Wilczynski J, Kozarzewski M, Szaflik K. Two-step test: the combined use of fetal fibronectin and sonographic examination of the uterine cervix for prediction of preterm delivery in symptomatic patients. Acta Obstet Gynecol Scand 2002;81:58-63.
- 123. Irion O, Matute J, Bischof P. Prediction of prematurity with oncofoetal fibronectin: A prospective cohort study. J Gynecol Obstet Biol Reprod 1995;24:624-9.
- 124. Langer B, Boudier E, Schlaeder G. Cervico-vaginal fetal fibronectin: Predictive value during false labor. Acta Obstet Gynecol Scand 1997;76:218-21.
- 125. Mansouri A, Tadjerouni A, El Rabiey G, Baube S, Garnier G, Tribalat S. Fibronectin: A predictor of preterm delivery? Contracep-Fertil-Sex 1997;25:380-4.

- 126. Pieta-Dolinska A, Jaczewski B, Wozniak P, Oszukowski P. [Evaluation of fetal fibronectin concentration in identifying patients at risk for preterm delivery]. [Polish]. Ginekol Pols 2005;76:431-5.
- 127. Rizzo G, Capponi A, Vlachopoulou A, Angelini E, Grassi C, Romanini C. The diagnostic value of interleukin-8 and fetal fibronectin concentrations in cervical secretions in patients with preterm labor and intact membranes. J Perinat Med 1997;25:461-8.
- 128. Rozenberg P, Goffinet F, Malagrida L, Giudicelli Y, Perdu M, Houssin I et al. Evaluating the risk of preterm delivery: a comparison of fetal fibronectin and transvaginal ultrasonographic measurement of cervical length. Am J Obstet Gynecol 1997;176:196-9.
- 129. Stevens AO, Chauhan SP, Magann EF, Martin RW, Bofill JA, Cushman JL et al. Fetal fibronectin and bacterial vaginosis are associated with preterm birth in women who are symptomatic for preterm labor. Am J Obstet Gynecol 2004;190:1582-7.
- 130. Vetr M, Kudela M, Prasilova J. Fetal fibronectin in patients at increased risk for premature birth. Acta Univ Palacki Olomuc Fac Med 1996;140:55-7.
- 131. O'Brien JM, Peeler GH, Pitts DW, Salama MM, Sibai BM, Mercer BM. Cervicovaginal prolactin: a marker for spontaneous preterm delivery. Am J Obstet Gynecol 1994;171:1107-11.
- 132. Koca ZD, Oztekin MK, Karadadas N, Ozsener S, Asena U. Value of cervicovaginal prolactin in the prediction of spontaneous preterm delivery. Prenat Neonat Med 1999;4:120-5.
- 133. Guvenal T, Kantas E, Erselcan T, Culhaoglu Y, Cetin A. Beta-human chorionic gonadotropin and prolactin assays in cervicovaginal secretions as a predictor of preterm delivery. Int J Gynaecol Obstet 2001;75:229-34.
- 134. Jotterand AD, Caubel P, Guillaumin D, Augereau F, Chitrit Y, Boulanger MC. [Predictive value of cervical-vaginal prolactin in the evaluation of premature labor risk]. J Gynecol Obstet Biol Reprod (Paris) 1997;26:95-9.
- Leylek OA, Songur S, Erselcan T, Cetin A, Izgic E. Cervicovaginal washing prolactin assay in prediction of preterm delivery. Int J Gynaecol Obstet 1997;59:7-12.
- 136. Shine BK, Kim SJ, Park WI, Kim JO, Kim DW, Hong SY et al. Insulin-like Growth Factor-Binding Protein-1 in Cervical Secretion as a Predictor of Preterm Delivery. Korean J Obstet Gynecol 2001;44:2250-6.
- 137. Turnell R, Liu K, Blakney G, Chari R. A direct comparison of fetal fibronectin [FFN] and PIGFBP-1 [Actim Partus] in the diagnosis of preterm labor [PTL]. J Obstet Gynaecol Can 27(5), Section O-OBS-014. 2005.
- 138. Bittar RE, Borges da Fonseca E, Burlacchini MH, Martinelli S, Zugaib M. Cervical Insulin Like Growth Factor Binding Protein-1 (ph IGFBP-1) in Patients at Increased

- Risk for Preterm Delivery: Preliminary Results. 5th World Congress of Perinatal Medicine, Barcelona, Spain. 537-539. 23-9-2001.
- 139. Kwek K, Khi C, Ting HS, Yeo GS. Evaluation of a bedside test for phosphorylated insulin-like growth factor binding protein-1 in preterm labour. Ann Acad Med Singapore 2004;33:780-3.
- 140. Lembet A, Eroglu D, Ergin T, Kuscu E, Zeyneloglu H, Batioglu S et al. New rapid bed-side test to predict preterm delivery: phosphorylated insulin-like growth factor binding protein-1 in cervical secretions. Acta Obstet Gynecol Scand 2002;81:706-12.
- 141. Akercan F, Kazandi M, Sendag F, Cirpan T, Mgoyi L, Terek MC et al. Value of cervical phosphorylated insulinlike growth factor binding protein-1 in the prediction of preterm labor. J Reprod Med 2004;49:368-72.
- 142. Choi JS, Yang JH, Ryu HM, Kim MY, Han JY, Ahn HK et al. Evaluation of Insulinlike Growth Factor-binding Protein-1 in Cervical Secretaion as a Predictor of Preterm Delivery. Korean J Obstet Gynecol 2003;46:1398-403.
- 143. Park OR, Kim JK, Chang BS, Kim HJ, Kim TS, Park IS. Usefulness of Phosphorylated Insulin-like Growth Factor Binding Protein-1 for Prediction of Preterm Delivery. Korean J Obstet Gynecol 2003;46:1378-84.
- 144. Elizur SE, Yinon Y, Epstein GS, Seidman DS, Schiff E, Sivan E. Insulin-like growth factor binding protein-1 detection in preterm labor: evaluation of a bedside test. Am J Perinatol 2005;22:305-9.
- 145. Paternoster DM, Muresan D, Vitulo A, Battagliarin G, Dell'avanzo M, Nicolini U. Cervical phIGFBP-1 in the evaluation of the risk of preterm delivery. J Soc Gynecol Investigation 10-11-2005.
- 146. Halle H, Hartung J, Heling K, Albrecht C. Einschatzung des Fruhgeburtsrisikos durch phophoryliertes IGFBP-1 als Schnelltest im Vergleich zum fetalen Fibronektin [Assessment of risk of premature birth using phosphorylated IGFBP-1 as rapid test, in comparison with fibronectin determination]. 7th Congress of the Deutsche Gesellschaft für Pränatal und Gebutsmedizin 2005.
- 147. Akinbiyi AA. Unexplained elevated maternal serum alpha-fetoprotein in singleton pregnancies as a predictor of fetal risk. Int J Gynaecol Obstet 1996;53:17-21.
- 148. Brazerol WF, Grover S, Donnenfeld AE. Unexplained elevated maternal serum alpha-fetoprotein levels and perinatal outcome in an urban clinic population. Am J Obstet Gynecol 1994;171:1030-5.
- 149. Cho S, Durfee KK, Keel BA, Parks LH. Perinatal outcomes in a prospective matched pair study of pregnancy and unexplained elevated or low AFP screening. J Perinat Med 1997;25:476-83.
- 150. Davis RO, Goldenberg RL, Boots L, Hoffman HJ, Copper R, Cutter GR et al. Elevated levels of midtrimester maternal serum alpha-fetoprotein are associated with

- preterm delivery but not with fetal growth retardation. Am J Obstet Gynecol 1992;167:596-601.
- 151. Dugoff L, Hobbins JC, Malone FD, Vidaver J, Sullivan L, Canick JA et al. Quad screen as a predictor of adverse pregnancy outcome. Obstet Gynecol 2005;106:260-7.
- 152. Duric K, Skrablin S, Lesin J, Kalafatic D, Kuvacic I, Suchanek E. Second trimester total human chorionic gonadotropin, alpha-fetoprotein and unconjugated estriol in predicting pregnancy complications other than fetal aneuploidy. Eur J Obstet Gynecol Reprod Biol 2003;110:12-5.
- 153. Goldenberg RL, Iams JD, Mercer BM, Meis PJ, Moawad A, Das A et al. The Preterm Prediction Study: toward a multiple-marker test for spontaneous preterm birth. Am J Obstet Gynecol 2001;185:643-51.
- 154. Hamilton MP, Abdalla HI, Whitfield CR. Significance of raised maternal serum alpha-fetoprotein in singleton pregnancies with normally formed fetuses. Obstet Gynecol 1985;65:465-70.
- 155. Hsieh TT, Hung TH, Hsu JJ, Shau WY, Su CW, Hsieh FJ. Prediction of adverse perinatal outcome by maternal serum screening for Down syndrome in an Asian population. Obstet Gynecol 1997;89:937-40.
- 156. Morssink LP, Kornman LH, Beekhuis JR, De Wolf BT, Mantingh A. Abnormal levels of maternal serum human chorionic gonadotropin and alpha-fetoprotein in the second trimester: relation to fetal weight and preterm delivery. Prenat Diagn 1995;15:1041-6.
- 157. Sharara HA, Haseeb FI. á-Fetoprotein elevation and prediction of pregnancy outcome. J Obstet Gynaecol 1995;15:285-7.
- 158. Simpson JL, Palomaki GE, Mercer B, Haddow JE, Andersen R, Sibai B et al. Associations between adverse perinatal outcome and serially obtained second- and third-trimester maternal serum alpha-fetoprotein measurements. Am J Obstet Gynecol 1995;173:1742-8.
- 159. Spencer K. Second-trimester prenatal screening for Down syndrome and the relationship of maternal serum biochemical markers to pregnancy complications with adverse outcome. Prenat Diagn 2000;20:652-6.
- 160. Tanaka M, Natori M, Ishimoto H, Gohda N, Kiyokawa K, Yamauchi J et al. [Screening for adverse perinatal outcome by biomarkers in maternal serum; a comparison of elevated maternal serum alpha-fetoprotein versus human chorionic gonadotropin]. Nippon Sanka Fujinka Gakkai Zasshi 1994;46:1229-33.
- 161. Wald N, Cuckle H, Stirrat GM, Bennett MJ, Turnbull AC. Maternal serum-alpha-fetoprotein and low birth-weight. Lancet 1977;2:268-70.
- 162. Waller DK, Lustig LS, Cunningham GC, Feuchtbaum LB, Hook EB. The association between maternal serum alpha-fetoprotein and preterm birth, small for

- gestational age infants, preeclampsia, and placental complications. Obstet Gynecol 1996;88:816-22.
- Wenstrom KD, Owen J, Davis RO, Brumfield CG. Prognostic significance of unexplained elevated amniotic fluid alpha- fetoprotein. Obstet Gynecol 1996;87:213-6.
- 164. Williams MA, Hickok DE, Zingheim RW, Luthy DA, Kimelman J, Nyberg DA et al. Elevated maternal serum alpha-fetoprotein levels and midtrimester placental abnormalities in relation to subsequent adverse pregnancy outcomes. Am J Obstet Gynecol 1992;167:1032-7.
- 165. Yaron Y, Cherry M, Kramer RL, O'Brien JE, Hallak M, Johnson MP et al. Second-trimester maternal serum marker screening: maternal serum alpha-fetoprotein, beta-human chorionic gonadotropin, estriol, and their various combinations as predictors of pregnancy outcome. Am J Obstet Gynecol 1999;181:968-74.
- 166. Weiss G, Goldsmith LT, Sachdev R, Von Hagen S, Lederer K. Elevated first-trimester serum relaxin concentrations in pregnant women following ovarian stimulation predict prematurity risk and preterm delivery. Obstet Gynecol 1993;82:821-8.
- 167. Vogel I, Thorsen P, Hundborg HH, Uldbjerg N. Prediction of preterm delivery using changes in serum relaxin in low risk pregnancies. Eur J Obstet Gynecol Reprod Biol 2005;128:113-8.
- 168. Vogel I, Goepfert AR, Moller HJ, Cliver S, Thorsen P, Andrews WW. Early midtrimester serum relaxin, soluble CD163, and cervical length in women at high risk for preterm delivery. Am J Obstet Gynecol 2006;195:208-14.
- 169. Vogel I, Glavind-Kristensen M, Thorsen P, Armbruster FP, Uldbjerg N. S-relaxin as a predictor of preterm delivery in women with symptoms of preterm labour. BJOG 2002;109:977-82.
- 170. Berkowitz GS, Lapinski RH, Lockwood CJ, Florio P, Blackmore-Prince C, Petraglia F. Corticotropin-releasing factor and its binding protein: maternal serum levels in term and preterm deliveries. Am J Obstet Gynecol 1996;174:1477-83.
- 171. Holzman C, Jetton J, Siler-Khodr T, Fisher R, Rip T. Second trimester corticotropin-releasing hormone levels in relation to preterm delivery and ethnicity. Obstet Gynecol 2001;97:657-63.
- 172. Inder WJ, Prickett TC, Ellis MJ, Hull L, Reid R, Benny PS et al. The utility of plasma CRH as a predictor of preterm delivery. J Clin Endocrinol Metab 2001;86:5706-10.
- 173. Leung TN, Chung TK, Madsen G, McLean M, Chang AM, Smith R. Elevated midtrimester maternal corticotrophin-releasing hormone levels in pregnancies that delivered before 34 weeks. Br J Obstet Gynaecol 1999;106:1041-6.
- 174. Coleman MA, France JT, Schellenberg JC, Ananiev V, Townend K, Keelan JA et al. Corticotropin-releasing hormone, corticotropin-releasing hormone-binding protein,

- and activin A in maternal serum: prediction of preterm delivery and response to glucocorticoids in women with symptoms of preterm labor. Am J Obstet Gynecol 2000;183:643-8.
- 175. McLean M, Bisits A, Davies J, Walters W, Hackshaw A, De Voss K et al. Predicting risk of preterm delivery by second-trimester measurement of maternal plasma corticotropin-releasing hormone and alpha-fetoprotein concentrations. Am J Obstet Gynecol 1999;181:207-15.
- 176. Benn PA, Horne D, Briganti S, Rodis JF, Clive JM. Elevated second-trimester maternal serum hCG alone or in combination with elevated alpha-fetoprotein. Obstet Gynecol 1996;87:217-22.
- 177. Brajenovic-Milic B, Tislaric D, Zuvic-Butorac M, Bacic J, Petrovic O, Ristic S et al. Elevated second-trimester free beta-hCG as an isolated finding and pregnancy outcomes. Fetal Diagn Ther 2004;19:483-7.
- 178. Chandra S, Scott H, Dodds L, Watts C, Blight C, Van Den Hof M. Unexplained elevated maternal serum alpha-fetoprotein and/or human chorionic gonadotropin and the risk of adverse outcomes. Am J Obstet Gynecol 2003;189:775-81.
- 179. Dugoff L, Hobbins JC, Malone FD, Porter TF, Luthy D, Comstock CH et al. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: a population-based screening study (the FASTER Trial). Am J Obstet Gynecol 2004;191:1446-51.
- 180. Gonen R, Perez R, David M, Dar H, Merksamer R, Sharf M. The association between unexplained second-trimester maternal serum hCG elevation and pregnancy complications. Obstet Gynecol 1992;80:83-6.
- 181. Lepage N, Chitayat D, Kingdom J, Huang T. Association between second-trimester isolated high maternal serum maternal serum human chorionic gonadotropin levels and obstetric complications in singleton and twin pregnancies. Am J Obstet Gynecol 2003;188:1354-9.
- 182. Lieppman RE, Williams MA, Cheng EY, Resta R, Zingheim R, Hickok DE et al. An association between elevated levels of human chorionic gonadotropin in the midtrimester and adverse pregnancy outcome. Am J Obstet Gynecol 1993;168:1852-6.
- 183. Liu DF, Dickerman LH, Redline RW. Pathologic findings in pregnancies with unexplained increases in midtrimester maternal serum human chorionic gonadotropin levels. Am J Clin Pathol 1999;111:209-15.
- 184. Onderoglu LS, Kabukcu A. Elevated second trimester human chorionic gonadotropin level associated with adverse pregnancy outcome. Int J Gynaecol Obstet 1997;56:245-9.
- 185. Ong CY, Liao AW, Spencer K, Munim S, Nicolaides KH. First trimester maternal serum free beta human chorionic gonadotrophin and pregnancy associated plasma protein A as predictors of pregnancy complications. BJOG 2000;107:1265-70.

- 186. Wenstrom KD, Owen J, Boots LR, DuBard MB. Elevated second-trimester human chorionic gonadotropin levels in association with poor pregnancy outcome. Am J Obstet Gynecol 1994;171:1038-41.
- 187. Yaron Y, Ochshorn Y, Heifetz S, Lehavi O, Sapir Y, Orr-Urtreger A. First trimester maternal serum free human chorionic gonadotropin as a predictor of adverse pregnancy outcome. Fetal Diagn Ther 2002;17:352-6.
- 188. Haddad B, Abirached F, Louis-Sylvestre C, Le Blond J, Paniel BJ, Zorn JR. Predictive value of early human chorionic gonadotrophin serum profiles for fetal growth retardation. Hum Reprod 1999;14:2872-5.
- 189. Gurbuz A, Karateke A, Ozturkmen M, Kabaca C. Human chorionic gonadotropin assay in cervical secretions for accurate diagnosis of preterm labor. Int J Gynaecol Obstet 2004;85:132-8.
- 190. Sanchez-Ramos L, Mentel C, Bertholf R, Kaunitz AM, Delke I, Loge C. Human chorionic gonadotropin in cervicovaginal secretions as a predictor of preterm delivery. Int J Gynaecol Obstet 2003;83:151-7.
- 191. McGregor JA, Jackson GM, Lachelin GCL, Goodwin TM, Artal R, Hastings C et al. Salivary estriol as risk assessment for preterm labor: A prospective trial. Am J Obstet Gynecol 1995;173:1337-42.
- 192. Heine RP, McGregor JA, Goodwin TM, Artal R, Hayashi RH, Robertson PA et al. Serial salivary estriol to detect an increased risk of preterm birth. Obstet Gynecol 2000;96:490-7.
- 193. Kim SY, Kim SK, Lee JS, Kim IK, Lee K. The prediction of adverse pregnancy outcome using low unconjugated estriol in the second trimester of pregnancy without risk of Down's syndrome. Yonsei Med.J 2000;41:226-9.
- 194. Kowalczyk TD, Cabaniss ML, Cusmano L. Association of low unconjugated estriol in the second trimester and adverse pregnancy outcome. Obstet Gynecol 1998;91:396-400.
- 195. Potkul RK, Moawad AH, Ponto KL. The association of subclinical infection with preterm labor: the role of C-reactive protein. Am J Obstet Gynecol 1985;153:642-5.
- 196. Cammu H, Goossens A, Derde MP, Temmerman M, Foulon W, Amy JJ. C-reactive protein in preterm labour: association with outcome of tocolysis and placental histology. Br J Obstet Gynaecol 1989;96:314-9.
- 197. Cylwik B, Szmitkowski M, Bielecki M, Zdanowicz A, Poludniewski G, Arciszewski K. C-reactive protein concentration in the sera of pregnant women with imminent premature parturition and preterm amniorrhea. Rocz Akad Med.Bialymst 1997;42:35-40.
- 198. Dodds WG, Iams JD. Maternal C-reactive protein and preterm labor. J Reprod Med 1987;32:527-30.

- 199. Foulon W, Van Liedekerke D, Demanet C, Decatte L, Dewaele M, Naessens A. Markers of infection and their relationship to preterm delivery. Am J Perinatol 1995;12:208-11.
- 200. Ghezzi F, Franchi M, Raio L, Di Naro E, Bossi G, D'Eril GV et al. Elevated amniotic fluid C-reactive protein at the time of genetic amniocentesis is a marker for preterm delivery. Am J Obstet Gynecol 2002;186:268-73.
- 201. Handwerker SM, Tejani NA, Verma UL, Archbald F. Correlation of maternal serum C-reactive protein with outcome of tocolysis. Obstet Gynecol 1984;63:220-4.
- 202. Hvilsom GB, Thorsen P, Jeune B, Bakketeig LS. C-reactive protein: a serological marker for preterm delivery? Acta Obstet Gynecol Scand 2002;81:424-9.
- 203. Karinen L, Pouta A, Bloigu A, Koskela P, Paldanius M, Leinonen M et al. Serum Creactive protein and Chlamydia trachomatis antibodies in preterm delivery. Obstet Gynecol 2005;106:73-80.
- 204. Mazor M, Kassis A, Horowitz S, Wiznitzer A, Kuperman O, Meril C et al. Relationship between C-reactive protein levels and intraamniotic infection in women with preterm labor. J Reprod Med. 1993;38:799-803.
- 205. Ozer KT, Kavak ZN, Gokaslan H, Elter K, Pekin T. Predictive power of maternal serum and amniotic fluid CRP and PAPP-A concentrations at the time of genetic amniocentesis for the preterm delivery. Eur J Obstet Gynecol Reprod Biol 2005;122:187-90.
- 206. Ruckhaberle KE, Baumann L. Infections and labor. Arch Gynecol Obstet 1991;250:690-5.
- 207. Winkler M, Ruckhaberle KE, Baumann L, Schroder R, Schiller E. [Clinical value of determining C-reactive protein in the maternal serum in pregnancies with threatened premature labor]. Zentralbl Gynakol 1987;109:854-61.
- 208. Romero R, Yoon BH, Kenney JS, Gomez R, Allison AC, Sehgal PB. Amniotic fluid interleukin-6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol 1993;30:167-83.
- 209. Coleman MA, Keelan JA, McCowan LM, Townend KM, Mitchell MD. Predicting preterm delivery: comparison of cervicovaginal interleukin (IL)-1beta, IL-6 and IL-8 with fetal fibronectin and cervical dilatation. Eur J Obstet Gynecol Reprod Biol 2001;95:154-8.
- 210. Wenstrom KD, Andrews WW, Hauth JC, Goldenberg RL, DuBard MB, Cliver SP. Elevated second-trimester amniotic fluid interleukin-6 levels predict preterm delivery. Am J Obstet Gynecol 1998;178:546-50.
- 211. Lockwood CJ, Ghidini A, Wein R, Lapinski R, Casal D, Berkowitz RL. Increased interleukin-6 concentrations in cervical secretions are associated with preterm delivery. Am J Obstet Gynecol 1994;171:1097-102.

- 212. Ghidini A, Jenkins CB, Spong CY, Pezzullo JC, Salafia CM, Eglinton GS. Elevated amniotic fluid interleukin-6 levels during the early second trimester are associated with greater risk of subsequent preterm delivery. Am J Reprod Immunol 1997;37:227-31.
- 213. Allbert JR, Naef RW, III, Perry KG, Jr., Magann EF, Whitworth NS, Morrison JC. Amniotic fluid interleukin-6 and interleukin-8 levels predict the success of tocolysis in patients with preterm labor. J Soc Gynecol Investig 1994;1:264-8.
- 214. Coultrip LL, Lien JM, Gomez R, Kapernick P, Khoury A, Grossman JH. The value of amniotic fluid interleukin-6 determination in patients with preterm labor and intact membranes in the detection of microbial invasion of the amniotic cavity. Am J Obstet Gynecol 1994;171:901-11.
- 215. Greci LS, Gilson GJ, Nevils B, Izquierdo LA, Qualls CR, Curet LB. Is amniotic fluid analysis the key to preterm labor? A model using interleukin-6 for predicting rapid delivery. Am J Obstet Gynecol 1998;179:172-8.
- 216. Hillier SL, Witkin SS, Krohn MA, Watts DH, Kiviat NB, Eschenbach DA. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol 1993;81:941-8.
- 217. Rizzo G, Capponi A, Rinaldo D, Tedeschi D, Arduini D, Romanini C. Interleukin-6 concentrations in cervical secretions identify microbial invasion of the amniotic cavity in patients with preterm labor and intact membranes. Am J Obstet Gynecol 1996;175:812-7.
- 218. Romero R, Avila C, Santhanam U, Sehgal PB. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest 1990;85:1392-400.
- 219. Silver RM, Schwinzer B, McGregor JA. Interleukin-6 levels in amniotic fluid in normal and abnormal pregnancies: preeclampsia, small-for-gestational-age fetus, and premature labor. Am J Obstet Gynecol 1993;169:1101-5.
- 220. Romero R, Yoon BH, Mazor M, Gomez R, Diamond MP, Kenney JS et al. The diagnostic and prognostic value of amniotic fluid white blood cell count, glucose, interleukin-6, and gram stain in patients with preterm labor and intact membranes. Am J Obstet Gynecol 1993;169:805-16.
- 221. Goepfert AR, Goldenberg RL, Andrews WW, Hauth JC, Mercer B, Iams J et al. The Preterm Prediction Study: association between cervical interleukin 6 concentration and spontaneous preterm birth. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 2001;184:483-8.
- 222. Holst RM, Mattsby-Baltzer I, Wennerholm UB, Hagberg H, Jacobsson B. Interleukin-6 and interleukin-8 in cervical fluid in a population of Swedish women in preterm labor: relationship to microbial invasion of the amniotic fluid, intraamniotic inflammation, and preterm delivery. Acta Obstet Gynecol Scand 2005;84:551-7.

- 223. Kurkinen-Raty M, Ruokonen A, Vuopala S, Koskela M, Rutanen EM, Karkkainen T et al. Combination of cervical interleukin-6 and -8, phosphorylated insulin-like growth factor-binding protein-1 and transvaginal cervical ultrasonography in assessment of the risk of preterm birth. BJOG. 2001;108:875-81.
- 224. Lange M, Chen FK, Wessel J, Buscher U, Dudenhausen JW. Elevation of interleukin-6 levels in cervical secretions as a predictor of preterm delivery. Acta Obstet Gynecol Scand 2003;82:326-9.
- 225. Sozmen S, Mungan T, Micozkadioglu SD, Tapisiz OL. Predictive value of maternal serum and vaginal interleukin-6 levels in preterm labor. J Soc Gynecol Invest 2005;12:1-6.
- 226. Trebeden H, Goffinet F, Kayem G, Maillard F, Lemoine E, Cabrol D et al. Strip test for bedside detection of interleukin-6 in cervical secretions is predictive for impending preterm delivery. Eur Cytokine Netw 2001;12:359-60.
- 227. Dudley DJ, Hunter C, Mitchell MD, Varner MW. Clinical value of amniotic fluid interleukin-6 determinations in the management of preterm labour. Br J Obstet Gynaecol 1994;101:592-7.
- 228. Alvarez-de-la-Rosa M, Rebollo FJ, Codoceo R, Gonzalez GA. Maternal serum interleukin 1, 2, 6, 8 and interleukin-2 receptor levels in preterm labor and delivery. Eur J Obstet Gynecol Reprod Biol 2000;88:57-60.
- 229. Greig PC, Murtha AP, Jimmerson CJ, Herbert WN, Roitman-Johnson B, Allen J. Maternal serum interleukin-6 during pregnancy and during term and preterm labor. Obstet Gynecol 1997;90:465-9.
- 230. Turhan NO, Karabulut A, Adam B. Maternal serum interleukin 6 levels in preterm labor: prediction of admission-to-delivery interval. J Perinat Med 2000;28:133-9.
- 231. von Minckwitz G, Grischke EM, Schwab S, Hettinger S, Loibl S, Aulmann M et al. Predictive value of serum interleukin-6 and -8 levels in preterm labor or rupture of the membranes. Acta Obstet Gynecol Scand 2000;79:667-72.
- 232. Holst E, Goffeng AR, Andersch B. Bacterial vaginosis and vaginal microorganisms in idiopathic premature labor and association with pregnancy outcome. J Clin Microbiol 1994;32:176-86.
- 233. Gonzalez BE, Ferrer I, Valls C, Borras M, Lailla JM. The value of interleukin-8, interleukin-6 and interleukin-1beta in vaginal wash as predictors of preterm delivery. Gynecol Obstet Invest 2005;59:175-8.
- 234. Sakai M, Ishiyama A, Tabata M, Sasaki Y, Yoneda S, Shiozaki A et al. Relationship between cervical mucus interleukin-8 concentrations and vaginal bacteria in pregnancy. Am J Reprod Immunol 2004;52:106-12.
- 235. Sakai M, Sasaki Y, Yoneda S, Kasahara T, Arai T, Okada M et al. Elevated interleukin-8 in cervical mucus as an indicator for treatment to prevent premature birth and preterm, pre-labor rupture of membranes: a prospective study. Am J Reprod Immunol 2004;51:220-5.

- 236. Agrez M, Gu X, Giles W. Matrix metalloproteinase 9 activity in urine of patients at risk for premature delivery. Am.J Obstet Gynecol 1999;181:387-8.
- 237. Makrakis E, Grigoriou O, Kouskouni E, Vitoratos N, Salamalekis E, Chatzoudi E et al. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in plasma/serum and urine of women during term and threatened preterm labor: a clinical approach. J Matern Fetal Neonatal Med 2003;14:170-6.
- 238. Offenbacher S, Lieff S, Boggess KA, Murtha AP, Madianos PN, Champagne CM et al. Maternal periodontitis and prematurity. Part I: Obstetric outcome of prematurity and growth restriction. Ann Periodontol 2001;6:164-74.
- 239. Dasanayake AP, Boyd D, Madianos PN, Offenbacher S, Hills E. The association between Porphyromonas gingivalis-specific maternal serum IgG and low birth weight. J Periodontol 2001;72:1491-7.
- 240. Dortbudak O, Eberhardt R, Ulm M, Persson GR. Periodontitis, a marker of risk in pregnancy for preterm birth. J Clin Periodontol 2005;32:45-52.
- 241. Goepfert AR, Jeffcoat MK, Andrews WW, Faye-Petersen O, Cliver SP, Goldenberg RL et al. Periodontal disease and upper genital tract inflammation in early spontaneous preterm birth. Obstet Gynecol 2004;104:777-83.
- 242. Holbrook WP, Oskarsdottir A, Fridjonsson T, Einarsson H, Hauksson A, Geirsson RT. No link between low-grade periodontal disease and preterm birth: a pilot study in a healthy Caucasian population. Acta Odontol Scand 2004;62:177-9.
- 243. Jarjoura K, Devine PC, Perez-Delboy A, Herrera-Abreu M, D'Alton M, Papapanou PN. Markers of periodontal infection and preterm birth. Am J Obstet Gynecol 2005;192:513-9.
- 244. Jeffcoat MK, Geurs NC, Reddy MS, Cliver SP, Goldenberg RL, Hauth JC. Periodontal infection and preterm birth: results of a prospective study. J Am Dent Assoc 2001;132:875-80.
- 245. Konopka T, Rutkowska M, Hirnle L, Kopec W, Karolewska E. The secretion of prostaglandin E2 and interleukin 1-beta in women with periodontal diseases and preterm low-birth-weight. Bull Group Int Rech Sci Stomatol Odontol 2003;45:18-28.
- 246. Moore S, Ide M, Coward PY, Randhawa M, Borkowska E, Baylis R et al. A prospective study to investigate the relationship between periodontal disease and adverse pregnancy outcome. Br Dent J 2004;197:251-8.
- 247. Moore S, Randhawa M, Ide M. A case-control study to investigate an association between adverse pregnancy outcome and periodontal disease. J Clin Periodontol 2005;32:1-5.
- 248. Offenbacher S, Katz V, Fertik G, Collins J, Boyd D, Maynor G et al. Periodontal infection as a possible risk factor for preterm low birth weight. J Periodontol 1996;67:1103-13.

- 249. Radnai M, Gorzo I, Nagy E, Urban E, Novak T, Pal A. A possible association between preterm birth and early periodontitis. A pilot study. J Clin Periodontol 2004;31:736-41.
- 250. Rajapakse PS, Nagarathne M, Chandrasekra KB, Dasanayake AP. Periodontal disease and prematurity among non-smoking Sri Lankan women. J Dent Res 2005;84:274-7.
- 251. MacLean AB. Urinary tract infection in pregnancy. Int J Antimicrob Agents 2001;17:273-6.
- 252. Romero R, Oyarzun E, Mazor M, Sirtori M, Hobbins JC, Bracken M. Meta-analysis of the relationship between asymptomatic bacteriuria and preterm delivery/low birth weight. Obstet Gynecol 1989;73:576-82.
- 253. Abduljabbar H, Moumena RA, Mosli HA, Khan AS, Warda A. Urinary tract infection in pregnancy. Ann Saudi Med 1991;11(3):322-324.
- 254. Bryant RE, Windom RE, Vineyard JP, Jr., Sanford JP. Asymptomatic bacteriuria in pregnancy and its association with prematurity. J Lab Clin Med 1964;63:224-31.
- 255. Forkman A. Bacteriuria in pregnancy: Its frequency and relation to overt urinary infection. Acta Obstet Gynecol Scand 1964;43:35-48.
- 256. Gold EM, Traub FB, Daichman I, Terris M. Asymptomatic bacteriuria during pregnancy. Obstet Gynecol 1966;27:206-9.
- 257. Henderson M, Reinke WA. The relationship between bacteriuria and prematurity. Kass EH. Epidemiology of urinary tract infection, p27-32. 1965. Philadelphia. FA Davis. Progress in pyelonephritis.
- 258. Hoja WA, Hefner JD, Smirth MR. Asymptomatic bacteriuria in pregnancy. Obstet Gynecol 1964;24:458-62.
- 259. Kass EH. Pyelonephritis and bacteriuria. A major problem in preventive medicine. Ann Intern Med 1962;56:46-53.
- 260. Kincaid-Smirth P, Bullen M, Fussell U, Milss J, Huston N. The reliability of screening tests for bacteriuria in pregnancy. Lancet 1964;39:61-2.
- 261. Kubicki J. [Serological diagnosis of urinary tract infections in cases of premature labor]. Ginekol Pol 1976;47:1269-74.
- 262. Layton R. Infection of the urinary tract in pregnancy: An investigation of a new routine in antenatal care. J Obstet Gynaecol Br Commonw 1964;71:927-33.
- 263. Leblanc AL, McGanity WJ. The impact of bacteriuria in pregnancy; A survey of 1300 pregnanct patients. Tex Rep Biol Med 1964;22:336-47.
- 264. Low JA, Johnston EE, McBride RL, Tuffnell PG. The significance of asymptomatic bacteriuria in the normal obstetric patient. Am J Obstet Gynecol 1964;90:897-906.

- 265. McDonald H, Vigneswaran R, O'Loughlin JA. Group B streptococcal colonization and preterm labour. Aust N Z J Obstet Gynaecol 1989;29:291-3.
- 266. Moller M, Thomsen AC, Borch K, Dinesen K, Zdravkovic M. Rupture of fetal membranes and premature delivery associated with group B streptococci in urine of pregnant women. Lancet 1984;2:69-70.
- 267. Norden CW, Kilpatrick WH. Bacteriuria in pregnancy. Kass EH. p64-72. 1965. Philadelphia. FA Davis. Progress in pyelonephritis. Kass EH.
- 268. Patrick MJ. Influence of maternal renal infection on the foetus and infant. Arch Dis Child 1967;42:208-13.
- 269. Robertson JG, Livingstone JR, Isdale MH. The managment and complications of asymptomatic bacteriuria in pregnancy. Report of a study on 8,275 patients. J Obstet Gynaecol Br Commonw 1968;75:59-65.
- 270. Schmadan WE. Bacteriuria during pregnancy. Am J Obstet Gynecol 1964;89:10-5.
- 271. Schieve LA, Handler A, Hershow R, Persky V, Davis F. Urinary tract infection during pregnancy: its association with maternal morbidity and perinatal outcome. Am J Public Health 1994;84:405-10.
- 272. Sleigh JD, Robertson JG, Isdale MH. Asymptomatic bacteriuria in pregnancy. J Obstet Gynaecol Br Commonw 1964;71:74-81.
- 273. Stuart KL, Cummins GT, Chin WA. Bacteriuria, prematurity, and the hypertensive disorders of pregnancy. Br Med J 1965;5434:554-6.
- 274. Uncu Y, Uncu G, Esmer A, Bilgel N. Should asymptomatic bacteriuria be screened in pregnancy? Clin Exp Obstet Gynecol 2002;29:281-5.
- 275. Versi E, Chia P, Griffiths DJ, Harlow BL. Bacteriuria in pregnancy: a comparison of Bangladeshi and Caucasian women. Int Urogynecol J Pelvic Floor. Dysfunct 1997;8:8-12.
- 276. Whalley PJ, Martin FG, Peters PC. Significance of asymptomatic bacteriuria detected during pregnancy. JAMA 1965;193:879-81.
- 277. White CP, Wilkins EG, Roberts C, Davidson DC. Premature delivery and group B streptococcal bacteriuria. Lancet 1984;2:586.
- 278. Wren BG. Subclinical renal infection and prematurity. Med J Aust 1969;2:596-600.
- 279. Amsel R, Totten PA, Spiegel CA, Chen KC, Eschenbach D, Holmes KK. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med 1983;74:14-22.
- 280. Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol 1991;29:297-301.

- 281. Spiegel CA, Amsel R, Eschenbach D, Schoenknecht F, Holmes KK. Anaerobic bacteria in nonspecific vaginitis. N Engl J Med 1980;303:601-7.
- 282. Mascagni JR,.Miller LH. A descriptive correlational study of bacterial vaginosis in pregnancy and its association with preterm birth: implications for advanced practice nurses. J Am Acad Nurse Pract 2004;16:555-60.
- 283. Cauci S, Thorsen P, Schendel DE, Bremmelgaard A, Quadrifoglio F, Guaschino S. Determination of immunoglobulin A against Gardnerella vaginalis hemolysin, sialidase, and prolidase activities in vaginal fluid: implications for adverse pregnancy outcomes. J Clin Microbiol 2003;41:435-8.
- 284. Klebanoff MA, Hillier SL, Nugent RP, MacPherson CA, Hauth JC, Carey JC et al. Is bacterial vaginosis a stronger risk factor for preterm birth when it is diagnosed earlier in gestation? Am J Obstet Gynecol 2005;192:470-7.
- 285. Oakeshott P, Kerry S, Hay S, Hay P. Bacterial vaginosis and preterm birth: a prospective community-based cohort study.[see comment][erratum appears in Br J Gen Pract. 2004 Apr;54(501):305]. Br J Gen Pract 2004;54:119-22.
- 286. De Seta F, Sartore A, Piccoli M, Maso G, Zicari S, Panerari F et al. Bacterial vaginosis and preterm delivery: An open question. J Reprod Med Obstet Gynecol 2005;50:313-8.
- 287. Balu RB, Savitz DA, Ananth CV, Hartmann KE, Miller WC, Thorp JM et al. Bacterial vaginosis, vaginal fluid neutrophil defensins, and preterm birth. Obstet Gynecol 2003;101:862-8.
- 288. Meis PJ, Goldenberg RL, Mercer B, Moawad A, Das A, McNellis D et al. The preterm prediction study: significance of vaginal infections. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J ObstetGynecol 1995;173:1231-5.
- 289. Riduan JM, Hillier SL, Utomo B, Wiknjosastro G, Linnan M, Kandun N. Bacterial vaginosis and prematurity in Indonesia: association in early and late pregnancy. Am J Obstet Gynecol 1993;169:175-8.
- 290. Thorsen, P., Molsted, K., Jensen, I. P., Arpi, M., Bremmelgaard, A., Jeune, B., and Moller, B. R. Bacterial vaginosis (BV) in a population of 3600 pregnant women and relations to preterm birth evaluated from their first antenatal visit. Am J Obstet Gynecol 1996;174(1 Part 2):331.
- 291. Gratacos E, Figueras F, Barranco M, Vila J, Cararach V, Alonso PL et al. Spontaneous recovery of bacterial vaginosis during pregnancy is not associated with an improved perinatal outcome. Acta Obstet Gynecol Scand 1998;77:37-40.
- 292. Helou J, Keness Y, Shalev E. [Association of bacterial vaginosis in pregnancy with preterm delivery]. Harefuah 1996;131:83-5, 144, 143.
- 293. Govender L, Hoosen AA, Moodley J, Moodley P, Sturm AW. Bacterial vaginosis and associated infections in pregnancy. Int J Gynaecol Obstet 1996;55:23-8.

- 294. Hillier SL, Nugent RP, Eschenbach DA, Krohn MA, Gibbs RS, Martin DH et al. Association between bacterial vaginosis and preterm delivery of a low- birth-weight infant. The Vaginal Infections and Prematurity Study Group. N Engl J Med 1995;333:1737-42.
- 295. Purwar M, Ughade S, Bhagat B, Agarwal V, Kulkarni H. Bacterial vaginosis in early pregnancy and adverse pregnancy outcome. J Obstet Gynaecol Res. 2001;27:175-81.
- 296. Kurki T, Sivonen A, Renkonen OV, Savia E, Ylikorkala O. Bacterial vaginosis in early pregnancy and pregnancy outcome. Obstet Gynecol 1992;80:173-7.
- 297. Hay PE, Lamont RF, Taylor-Robinson D, Morgan DJ, Ison C, Pearson J. Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. BMJ 1994;308:295-8.
- 298. McGregor JA, French JI, Richter R, Franco-Buff A, Johnson A, Hillier S et al. Antenatal microbiologic and maternal risk factors associated with prematurity. Am J Obstet Gynecol 1990;163:1465-73.
- 299. Carlini L, Somigliana E, Rossi G, Veglia F, Busacca M, Vignali M. Risk factors for spontaneous preterm birth: a Northern Italian multicenter case-control study. Gynecol Obstet Invest 2002;53:174-80.
- 300. Goffinet F, Maillard F, Mihoubi N, Kayem G, Papiernik E, Cabrol D et al. Bacterial vaginosis: prevalence and predictive value for premature delivery and neonatal infection in women with preterm labour and intact membranes. Eur J Obstet Gynecol Reprod Biol 2003;108:146-51.
- 301. Elliott B, Brunham RC, Laga M, Piot P, Ndinya-Achola JO, Maitha G et al. Maternal gonococcal infection as a preventable risk factor for low birth weight. J Infect Dis 1990;161:531-6.
- 302. Krohn MA, Hillier SL, Lee ML, Rabe LK, Eschenbach DA. Vaginal Bacteroides species are associated with an increased rate of preterm delivery among women in preterm labor. J Infect Dis. 1991;164:88-93.
- 303. Subtil D, Denoit V, Le Goueff F, Husson MO, Trivier D, Puech F. The role of bacterial vaginosis in preterm labor and preterm birth: a case-control study. Eur J Obstet Gynecol Reprod Biol 2002;101:41-6.
- 304. Eschenbach DA, Gravett MG, Chen KC, Hoyme UB, Holmes KK. Bacterial vaginosis during pregnancy. An association with prematurity and postpartum complications. Scand J Urol Nephrol Suppl 1984;86:213-22.
- 305. Martius J, Krohn MA, Hillier SL, Stamm WE, Holmes KK, Eschenbach DA. Relationships of vaginal Lactobacillus species, cervical Chlamydia trachomatis, and bacterial vaginosis to preterm birth. Obstet Gynecol 1988;71:89-95.
- 306. Eden RD, Sokol RJ, Sorokin Y, Cook HJ, Sheeran G, Chik L. The mammary stimulation test--a predictor of preterm delivery? Am J Obstet Gynecol 1991;164:1409-17.

- 307. Guinn DA, Wigton TR, James JA, Dunlop DD, Socol M, Frederiksen MC. Mammary stimulation test predicts preterm birth in nulliparous women. Am J Obstet Gynecol 1994;170:1809-12.
- 308. Bell R. The prediction of preterm labour by recording spontaneous antenatal uterine activity. Br J Obstet Gynaecol 1983;90:884-7.
- 309. Iams JD, Johnson FF, O'Shaughnessy RW. A prospective random trial of home uterine activity monitoring in pregnancies at increased risk of preterm labor. Part II. Am J Obstet Gynecol 1988;159:595-603.
- 310. Maner WL, Garfield RE, Maul H, Olson G, Saade G. Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet Gynecol 2003;101:1254-60.
- 311. Arabin B, Naschold M, Ruttgers H, Kubli F. [Significance of rheobase determination in detection of threatened premature labor]. Z Geburtshilfe Perinatol 1985;189:210-6.
- 312. Castle BM, Turnbull AC. The presence or absence of fetal breathing movements predicts the outcome of preterm labour. Lancet 1983;2:471-3.
- 313. Agustsson P, Patel NB. The predictive value of fetal breathing movements in the diagnosis of preterm labour. Br J Obstet Gynaecol 1987;94:860-3.
- 314. Besinger RE, Compton AA, Hayashi RH. The presence or absence of fetal breathing movements as a predictor of outcome in preterm labor. Am J Obstet Gynecol 1987;157:753-7.
- 315. Devoe LD, Youssef AE, Croom CS, Watson J. Can fetal biophysical observations anticipate outcome in preterm labor or preterm rupture of membranes? Obstet Gynecol 1994;84:432-8.
- 316. Kanaan CM, O'Grady JP, Veille JC. Effect of maternal carbon dioxide inhalation on human fetal breathing movements in term and preterm labor. Obstet Gynecol 1991;78:9-13.
- 317. Markwitz W, Ropacka M, Breborowicz GH. [Evaluation of fetal breathing movements in prognosis of preterm labor]. Ginekol Pol 2001;72:55-60.
- 318. Schreyer P, Caspi E, Natan NB, Tal E, Weinraub Z. The predictive value of fetal breathing movement and Bishop score in the diagnosis of "true" preterm labor. Am J Obstet Gynecol 1989;161:886-9.
- 319. Iams JD, Goldenberg RL, Meis PJ, Mercer BM, Moawad A, Das A et al. The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Engl J Med 1996;334:567-72.
- 320. Okitsu O, Mimura T, Nakayama T, Aono T. Early prediction of preterm delivery by transvaginal ultrasonography. Ultrasound Obstet Gynecol 1992;2:402-9.

- 321. Andersen HF, Nugent CE, Wanty SD, Hayashi RH. Prediction of risk for preterm delivery by ultrasonographic measurement of cervical length. Am J Obstet Gynecol 1990;163:859-67.
- 322. Andrews WW, Copper R, Hauth JC, Goldenberg RL, Neely C, Dubard M. Second-trimester cervical ultrasound: associations with increased risk for recurrent early spontaneous delivery. Obstet Gynecol 2000;95:222-6.
- 323. Berghella V, Tolosa JE, Kuhlman K, Weiner S, Bolognese RJ, Wapner RJ. Cervical ultrasonography compared with manual examination as a predictor of preterm delivery. Am J Obstet Gynecol 1997;177:723-30.
- 324. Dilek TU, Gurbuz A, Yazici G, Arslan M, Gulhan S, Pata O et al. Comparison of cervical volume and cervical length to predict preterm delivery by transvaginal ultrasound. Am J Perinatol 2006;23:167-72.
- 325. Hibbard JU, Tart M, Moawad AH. Cervical length at 16-22 weeks' gestation and risk for preterm delivery. Obstet Gynecol 2000;96:972-8.
- 326. Leung TN, Pang MW, Leung TY, Poon CF, Wong SM, Lau TK. Cervical length at 18-22 weeks of gestation for prediction of spontaneous preterm delivery in Hong Kong Chinese women. Ultrasound Obstet Gynecol 2005;26:713-7.
- 327. Mara M, Calda P, Haakova L, Zizka Z, Dohnalova A, Zivny J. Significance of ultrasound vaginal cervicometry in predicting preterm delivery. Med Sci Monit 2002;8:72-77.
- 328. Owen J, Yost N, Berghella V, Thom E, Swain M, Dildy GA, III et al. Mid-trimester endovaginal sonography in women at high risk for spontaneous preterm birth. JAMA 2001;286:1340-8.
- 329. Pires CR, Moron AF, Mattar R, Diniz ALD, Andrade SGA, Bussamra LCS. Cervical gland area as an ultrasonographic marker for preterm delivery. Int J Gynaecol Obstet . 2006;93:214-9.
- 330. Taipale P,.Hiilesmaa V. Sonographic measurement of uterine cervix at 18-22 weeks' gestation and the risk of preterm delivery. Obstet Gynecol 1998;92:902-7.
- 331. To MS, Skentou C, Liao AW, Cacho A, Nicolaides KH. Cervical length and funnelling at 23 weeks of gestation in the prediction of spontaneous early preterm delivery. Ultrasound Obstet Gynecol 2001;18:200-3.
- 332. Yazici G, Yildiz A, Tiras MB, Arslan M, Kanik A, Oz U. Comparison of transperineal and transvaginal sonography in predicting preterm delivery. J Clin Ultrasound 2004;32:225-30.
- 333. Crane JM, Van den HM, Armson BA, Liston R. Transvaginal ultrasound in the prediction of preterm delivery: singleton and twin gestations. Obstet Gynecol 1997;90:357-63.

- 334. Daskalakis G, Thomakos N, Hatziioannou L, Mesogitis S, Papantoniou N, Antsaklis A. Cervical assessment in women with threatened preterm labor. J Matern Fetal Neonatal Med 2005;17:309-12.
- 335. Fuchs IB, Henrich W, Osthues K, Dudenhausen JW. Sonographic cervical length in singleton pregnancies with intact membranes presenting with threatened preterm labor. Ultrasound Obstet Gynecol 2004;24:554-7.
- 336. Goffinet F, Rozenberg P, Kayem G, Perdu M, Philippe HJ, Nisand I. [The value of intravaginal ultrasonography of the cervix uteri for evaluation of the risk of premature labor]. J Gynecol Obstet Biol Reprod (Paris) 1997;26:623-9.
- 337. Gomez R, Galasso M, Romero R, Mazor M, Sorokin Y, Goncalves L et al. Ultrasonographic examination of the uterine cervix is better than cervical digital examination as a predictor of the likelihood of premature delivery in patients with preterm labor and intact membranes. Am J Obstet Gynecol 1994;171:956-64.
- 338. Murakawa H, Utumi T, Hasegawa I, Tanaka K, Fuzimori R. Evaluation of threatened preterm delivery by transvaginal ultrasonographic measurement of cervical length. Obstet Gynecol 1993;82:829-32.
- 339. Rageth JC, Kernen B, Saurenmann E, Unger C. Premature contractions: possible influence of sonographic measurement of cervical length on clinical management. Ultrasound Obstet Gynecol 1997;9:183-7.
- 340. Rizzo G, Capponi A, Arduini D, Lorido C, Romanini C. The value of fetal fibronectin in cervical and vaginal secretions and of ultrasonographic examination of the uterine cervix in predicting premature delivery for patients with preterm labor and intact membranes. Am J Obstet Gynecol 1996;175:1146-51.
- 341. Rozenberg P, Rafii A, Senat MV, Dujardin A, Rapon J, Ville Y. Predictive value of two-dimensional and three-dimensional multiplanar ultrasound evaluation of the cervix in preterm labor. J Matern Fetal Neonatal Med 2003;13:237-41.
- 342. Schmitz T, Maillard F, Bessard-Bacquaert S, Kayem G, Fulla Y, Cabrol D et al. Selective use of fetal fibronectin detection after cervical length measurement to predict spontaneous preterm delivery in women with preterm labor. Am J Obstet Gynecol 2006;194:138-43.
- 343. Tekesin I, Eberhart LH, Schaefer V, Wallwiener D, Schmidt S. Evaluation and validation of a new risk score (CLEOPATRA score) to predict the probability of premature delivery for patients with threatened preterm labor. Ultrasound Obstet Gynecol 2005;26:699-706.
- 344. Tsoi E, Akmal S, Rane S, Otigbah C, Nicolaides KH. Ultrasound assessment of cervical length in threatened preterm labor. Ultrasound Obstet Gynecol 2003;21:552-5.
- 345. Tsoi E, Geerts L, Jeffery B, Odendaal HJ, Nicolaides KH. Sonographic cervical length in threatened preterm labor in a South African population. Ultrasound Obstet Gynecol 2004;24:644-6.

- 346. Tsoi E, Fuchs IB, Rane S, Geerts L, Nicolaides KH. Sonographic measurement of cervical length in threatened preterm labor in singleton pregnancies with intact membranes. Ultrasound Obstet Gynecol 2005;25:353-6.
- 347. Vendittelli F, Mamelle N, Munoz F, Janky E. Transvaginal ultrasonography of the uterine cervix in hospitalized women with preterm labor. Int J Gynaecol Obstet 2001;72:117-25.
- 348. Lijmer JG, Mol BW, Heisterkamp S, Bonsel GJ, Prins MH, van der Meulen JH et al. Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 1999;282:1061-6.
- 349. Julious SA, Mullee MA. Confounding and Simpson's paradox. BMJ 1994;309:1480-1.
- 350. Usher RH, Allen AC, McLean FH. Risk of respiratory distress syndrome related to gestational age, route of delivery, and maternal diabetes. Am J Obstet Gynecol 1971;111:826-32.
- 351. Sinclair JC. Meta-analysis of randomized controlled trials of antenatal corticosteroid for the prevention of respiratory distress syndrome: discussion. Am J Obstet Gynecol 1995;173:335-44.
- 352. Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;3:CD004454.