Ti-V-Mn based metal hydrides for hydrogen storage and compression applications

Pickering, Lydia (2014). Ti-V-Mn based metal hydrides for hydrogen storage and compression applications. University of Birmingham. Ph.D.

PDF - Redacted Version

Download (14MB)


The overall aim of this work was to investigate the synthesis of Laves phase-related BCC solid solution Ti V Mn based alloys for use in hydrogen storage and hydrogen compression applications. In particular, for Ti0.5V0.5Mn-based alloys, the effect of composition, microstructure, and crystallography on the hydrogen sorption properties, were investigated.
After investigating seven novel compositions based on Ti-V-Mn, (i.e. Ti\(_{0.5}\)V\(_{0.4}\)TM\(_{0.1}\)Mn, where TM = Nb, Cr, Mo, Ta and Ti\(_{0.5}\)V\(_{0.5-x}\)Nb\(_x\)Mn, where x = 0.05, 0.2 and 0.5) it was found that small amounts (0.05 - 0.1 at%) of Nb substituted for V resulted in smaller hysteresis between absorption and desorption as well as higher hydrogen dissociation pressures. This finding led to the successful development of a two-stage metal hydride compressor utilising one of the novel composition (Nb = 0.05), which is capable of pressurising a cylinder up to 650 bar from an input pressure of less than 10 bar at 0.5 g H\(_2\)/min
In summary, these findings confirm that it is possible to tailor the plateau pressure and enthalpy of a metal hydride system formed by alloying Ti-V-Mn with other transition metals.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Metallurgy and Materials
Funders: Engineering and Physical Sciences Research Council
Subjects: Q Science > Q Science (General)
URI: http://etheses.bham.ac.uk/id/eprint/4992


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year