Reconfigurable and multi-functional antennas

Mansour, Ghaith Elsanosi M. (2013). Reconfigurable and multi-functional antennas. University of Birmingham. Ph.D.

PDF - Redacted Version

Download (33MB)


This thesis describes a research into multi-frequency and filtering antennas. Several novel antennas are presented, each of which addresses a specific issue for future communication systems, in terms of multi-frequency operation, and filtering capability. These antennas seem to be good candidates for implementation in future multiband radios, cognitive radio (CR), and software defined radio (SDR). The filtering antenna provides an additional filtering action which greatly improves the noise performance and reduces the need for filtering circuitry in the RF front end.

Two types of frequency reconfigurable antennas are presented. One is tunable left-handed loop over ground plane and the second is slot-fed reconfigurable patch. The operating frequency of the left handed loop is reconfigured by loading varactor diodes whilst the frequency agility in the patch is achieved by inserting switches in the coupling slot. The length of the slot is altered by activating the switches.

Compact microstrip antennas with filtering capabilities are presented in this thesis. Two filtering antennas are presented. Whilst the first one consists of three edge-coupled patches, the second filtering antenna consists of rectangular patch coupled to two hairpin resonators. The proposed antennas combine radiating and filtering functions by providing good out of band gain suppression.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Electronic, Electrical and Systems Engineering
Funders: None/not applicable
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year