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Abstract

Options are important and frequently traded products in the modern financial market.
How to price them fairly and reasonably is always an interesting issue for academia and
industry. This research is performed under the classical multi-asset Black-Scholes-Merton
(BSM) model and can be extended to other exotic models.

We show how to reformulate the multi-asset Black-Scholes-Merton partial differential
equation/inequality (BSM PDE/PDI) and provide theorems to justify the unique solution
of reformulations. In terms of discretization, we adopt the finite element method (FEM) in
space and finite difference method (FDM) in time. Moreover, we develop the closed-form
formulas for the elemental matrices used in the finite element assembly process in a general
high-dimensional framework.

The discrete systems of option pricing problems are presented in the form of linear
system of equations (LSE) and linear complementary problems (LCP) for European and
American/perpetual options respectively. Up to six different algorithms for the LCP are
introduced and compared on the basis of computational efficiency and errors.

The option values of European, American and perpetual types are calibrated when
given various payoffs and up to three assets. Particularly, their numerical free boundaries
are identified and presented in the form of (d − 1)−dimensional manifold in a d−asset
framework. In the last chapter, we conclude our research with our contributions and
potential extension.
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Chapter 1

Introduction

1.1 Financial derivatives

Dating back to 1848, the Chicago Board of Trade (CBOT) was established to provide
farmers and merchants a platform to trade agricultural products. A few years later, it
started to offer standardized contracts for both buyers and sellers. Investors and speculators
soon realized that trading such contracts was much more profitable than their underlying
products. A financial derivative is a lawful contract underlaid with a valuable asset and
endowing their owners with specific trading rights in the future. Since the Securities
Exchange Act (SEA) was codified in the US in 1934, the trading volume of financial
derivatives started to be boosted in the American market. Nowadays, trading of financial
derivatives is thriving in global financial markets. The use of financial derivatives has a
double-edged power. Sellers and buyers can buy options to lock their future transactional
prices. Fund managers can buy corporate and national bonds to lock the return rates in
specific periods. In this fashion, financial derivatives facilitate market participants to hedge
the future uncertainty and enhance the market efficiency. On the other hand, they can be
regarded as bets on the future for speculators. Due to the fact that financial derivatives
are generally manipulated at high financial leverage/gear ratios, they may bring about the
downfall of business giants overnight. The first and most recent examples are bankruptcies
of Orange County (1994) and Lehman Brothers (2008). Pricing derivatives is a vital and
practical issue because their use for hedging is highly demanded in the City. However, an
enormous financial loss may be caused by their mispricing. Driven by these, both industry
and academia are keen to discover the fair prices of financial derivatives by combining
financial models with mathematical theories.
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1.2 Terminology

Among all financial derivatives, options are the financial contracts giving their owners the
one-time-use right, but not obligation, to buy or to sell a portfolio of shares for a pre-agreed
price at a future time. The pre-agreed price is called exercise/strike price. The last valid
time to exercise such a right is called expiry/maturity time.

1.2.1 Notation

We denote time by t and let t = 0 and t = T > 0 be the current and expiry times
respectively. At time t, a share price, a portfolio price and an option’s value are de-
noted by St, S

p
t , vt individually. When the time can be omitted in the context, they

are simply denoted by S, Sp, v. When a portfolio is composed of d ∈ N shares, St :=(
S

(1)
t , S

(2)
t , ..., S

(d)
t

)′
:= S :=

(
S(1), S(2), ..., S(d)

)′
are used to denote their values. The exer-

cise price is denoted by E.

1.2.2 Exercise Restriction

The time to exercise the right is called exercise/strike time. If an option can be exercised
only on expiry date, it is said to be a European option. If it can be exercised prior to
or on expiry date, it is an American option. Such a flexibility to exercise at any time is
called early-exercise property. In particular an option is called a perpetual option if it can
be exercised at any time without expiry restriction. Naturally, perpetual options are the
most expensive followed by their American and European counterparts.

1.2.3 Portfolio

Given a portfolio associated with d assets, we say a financial product is

• a basket option if Sp := Spt :=
∑d

i=1wiS
(i)
t where wi are non-negative weights,

• a maximum option if Sp := Spt := max
i=1∼d

{S(i)
t },

• a minimum option if Sp := Spt := min
i=1∼d

{S(i)
t }.

1.2.4 Payoff

Payoff refers to the monetary value gained from exercising an option which depends on
its exercise price and the share/portfolio price at exercise time. Provided an exercise price
E, a payoff linked to a portfolio composed of d assets is denoted by g(Spt ) := g(S). An
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option is called a call, a put or a straddle if they give the right for buying, selling or both,
individually. We hence define

• [x]+ := max{x, 0},

• 1{con} as an indicator function which has the value one if condition con is satisfied
and zero otherwise.

• payoff of a call by g(·) := [Sp − E]+ ≡ (Sp − E) · 1{Sp≥E},

• payoff of a put by g(·) := [E − Sp]+ ≡ (E − Sp) · 1{E≥Sp},

• payoff of a straddle by

g(·) := [E − Sp]+ + [Sp − E]+

≡ (Sp − E) · 1{Sp≥E} + (E − Sp) · 1{E≥Sp}.

One-asset European call and put are also called vanilla options due to their simplicity. It
is worth to mention that call, put and straddle options have continuous payoffs while those
of the following two are generally discontinuous.

• Cash-or-nothing: g(·) := c · 1{S∈A} for some c > 0 and A ⊂ Rd,

• Asset-or-nothing: g(·) := Sp · 1{S∈A} for some A ⊂ Rd.

Most payoff functions are assumed to be non-negative convex functions (over a convex
domain) depending on underlying asset prices. However, continuity is not one of the
assumptions which implies Lipschitz continuity and may not be satisfied by some exotic
payoffs.

1.3 How to Discover the Fair Price

1.3.1 Self-financing and No-arbitrage

We say a generalized portfolio, including shares, cash and options, is self-financing if it
keeps adding new assets by selling existing ones. In other words, a self-financing portfolio
keeps being adjusted without extra cash influx. A portfolio is called a replication if it can
provide identical monetary value as another one in the future. We say there is no arbitrage
if any portfolio has an equivalent monetary value as all its replications in a market.
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1.3.2 Parities

There exist some parities showing the relations between different options against no arbi-
trage, cf. [50, p.208] and [54]. A trader without advanced mathematical techniques can
easily establish a fair price by using different parities. Theoretically, an option disobey-
ing the existing parties provides a risk-free arbitrage opportunity and its price will then
be pushed toward an equilibrium by market power until no arbitrage is available in the
market. Below are two famous ones in one-asset and two-asset cases.

Put-call parity: C(t, S)− P (t, S) = Se−qτ − Ee−rτ

Min-max parity: Cmin(t, S(1), S(2)) + Cmax(t, S
(1), S(2)) = C(t, S(1)) + C(t, S(2))

Pmin(t, S(1), S(2)) + Pmax(t, S
(1), S(2)) = P (t, S(1)) + P (t, S(2))

where r is the interest rate, q is the dividend rate, C and P are the values of one-asset
European vanilla call and put and those with subscripts are their two-asset minimum and
maximum counterparts.

1.3.3 Model

We will look at the assumptions of different models in the next chapter. Once a rigorous
model is provided, the fair price of an option is then discovered by creating a self-financing
portfolio and using no-arbitrage argument. From the aspect of stochastic analysis, the fair
price discovered by self financing and no arbitrage can be equivalently expressed as the
expected option value against a risk-neutral (probability) measure, cf. [50, ch.5].

1.4 Research Objectives

There are a variety of models under different assumptions to formulate an option pricing
problem. We would work under the classical Black-Scholes-Merton (BSM) model intro-
duced in the next chapter, considered different exercise restrictions and included more
than one asset in our problems.

We had two objectives to achieve in this research. The first goal was to find a common
variational framework for different pricing problems including the European, American and
perpetual options and extendable to multiple assets. Such different exercise restrictions
and multi-dimensional consideration would request the common framework to be more
generalized and consequently be more challenging for us. We wanted to reformulate the
various problems from functional point of view and would achieve this in our selected
Sobolev spaces. We further investigated the solvability of the reformulated problems under
specific assumptions with the help of three powerful theorems introduced in chapter four.
In terms of discretization of variational problems, we adopt finite difference method (FDM)
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in time and finite element method (FEM) in space. The closed-form formulas of elemental
matrices for the implementation of FEM were devised to speed up its assembly process
and to avoid the error arising from numerical integration.

The second was to find applicable algorithms to solve the discrete problems and to com-
pare them from different aspects. The discrete form of European pricing problem would be
expressed in the form of a system of equalities, which can be solved numerically by a variety
of well-known methods. However, the early-exercise property of American and perpetual
options would turn the pricing problems to finite dimensional variational inequalities in
discrete sense. We showed how these problems could be converted to equivalent linear
complementarity problem (LCP) which were much more demanding for numerical solution
than European cases. We investigated up to six algorithms for solving the LCPs and com-
pared their performance in terms of numerical error, iteration number and computational
time. By solving the problems numerically, we would calibrate their values on a compu-
tational domain and could visualize the evolution of the free boundary, the intersection of
early-exercise and non-early-exercise regions over the domain, up to three dimensions.

1.5 Thesis Organization

Outlined below are the contents of the following chapters.

Chapter 2: Literature Survey. We begin with the classical Black-Scholes-Merton (BSM)
model and show how to derive the celebrated BSM partial differential equation/inequality
(BSM PDE/PDI). We then look at other variant models with relaxing assumptions.
A variety of approaches for solving the problems are described in the latter part.

Chapter 3: Auxiliary Conditions. We look at boundary conditions, terminal condi-
tions and complementarity conditions requested for different portfolios, expiry re-
strictions and dimensions. Such conditions will be used in following reformulation
and numerical computation.

Chapter 4: Reformulation. We reformulate the pricing problems in variational ap-
proach. Relevant theories and analysis from a functional point of view are provided.
The unique solution of reformulations are justified by proving sufficient conditions,
in particular the Garding’s inequality, are met in our framework.

Chapter 5: Discrete Systems and Solvability. The infinite-dimensional problems can
be approximated by finite-dimensional counterparts and form discrete systems. The
sequential system of equalities, the sequential system of linear complementarity prob-
lem and the steady system of linear complementarity problem will be summarized
for European, American and perpetual options separately.
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Chapter 6: Finite Element Matrices. We investigate how to compute the different
elemental matrices arising from finite element approximation and their assembly to
global matrices. Instead of using quadrature methods, we devised different closed-
form formulas for our elemental matrices. The formulas can be applied to arbitrary
dimensions/number of assets and produce exact integrals of the elemental entries,
speed up the assembly process and avoid the numerical error of numerical integration.

Chapter 7: Algorithms. We describe various algorithms to solve the discrete problems,
especially those for LCPs. The solvability and convergence of each algorithm for
LCP depends on the class of coefficient matrix in the problem. However, there is no
efficient way to identify the class of a matrix to the present.

Chapter 8: Numerical Experiments. We examine the robutness of LCP solvers for
solving American and perpetual options in one, two and three assets. The European,
American and perpetual options are then calibrated when given different payoffs and
different number of assets. For European and American options, their free boundaries
are calibrated in the form of a manifold. Truncation errors and discretization errors
are investigated numerically in various circumstances.

Chapter 9: Conclusion. We summarize the points of this research and list our contri-
butions, followed by possible extensions in the future, and make the final remark.
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Chapter 2

Literature Survey

2.1 Models in Mathematical Finance

In mathematical finance, the pricing problems of financial derivatives generally start from
modelling the dynamics of an underlying asset in terms of a discrete or continuous stochas-
tic process. A comprehensive content of the stochastic theories can be found in [85] and [86].
A financial derivative can hence be investigated in a stochastic framework. It is possible
to derive a necessary condition, generally in the form of an (integro-)differential equation,
for no-arbitrage pricing and even to find the analytical solution to the no-arbitrage price.
We recommend [50] and [98] for a general introduction to mathematical finance.

2.1.1 Black-Scholes-Merton Model

Of all models, the Black-Scholes-Merton (BSM) model, cf. [8] and [69], is the first and
most well-known. Black and Scholes invented their model but its use was proposed and
extended to include continuous dividend rate by Merton. Two years after Black’s departing,
the 1997 Nobel Prize in Economics was awarded to Scholes and Merton along with Black’s
contribution honored. Its resultant BSM formulas introduced later are applied for pricing
one-asset European call and put. However, the account that the BSM model earned its
name was not because of its formulas but its originality of modelling a financial market
in a stochastic fashion, which motivated more stochastic models to be created to model
financial markets and national economies.

The BSM model assumes transaction in a market is efficient and free of transactional
cost and tax. Its key assumption is that the dynamics a share price S(i) is the continuous
stochastic process characterized by the following stochastic differential equation (SDE).1{

dS(i) = (r − qi)S(i)dt+ σiS
(i)dwi,

dwi ∼ N(0, dt),

1The SDE is the form obtained after change of measure to risk-neutral (probability) measure.
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where r > 0 is the interest/riskfree rate, qi ∈ [0, r] is the dividend rate of S(i) and wi is a
Brownian Motion, or Wiener Process, such that dwi ∼ N(0, dt). When more than one asset
is considered, i.e. i = 1, 2, . . ., it also assumes that E(dwidwj) = ρijdt and σij := ρijσiσj.

2.1.2 Other models

The BSM model assumes the volatility σi :=
√
σii to be a constant. In contrast, the

local volatility model assumes the volatility is an unknown deterministic function while
the Heston model assumes it is also stochastic. For example, one can assume the square
of volatility follows the dynamics, cf. [47],{

dσii = µ̃i(σ̃ii − σii)dt+ σ̃iσidw̃i,
dw̃i ∼ N(0, dt),

where the mean-reverting rate µ̃i, the long-term variance σ̃ii, the volatility of (the square
of) volatility σ̃i are all constants and E(dwidw̃i) = ρ̃ijdt.

Another popular stochastic process for financial models is the Levy process which adds
jumps in the SDE and allows a share price to be discontinuous in time, cf. [53, 7, 58]. One
example of a Levy process is

dS = (r − q)Sdt+ σSdw + S
nt∑
i=1

Yi,

where {Yi}i=1,...,n follows specific normal distributions.
Merton proposed another Levy process of the form, c.f. [64],

dS = (r − q)Sdt+ σSdw + S(η − 1)dp,

dp =

{
0 with the probability 1− λdt

1 with the probability λdt

where λ is the frequency of Poisson distribution, dp follows a Poisson process and η − 1 is
the impulse function giving a jump from S to ηS.

The books by Tankov and Lewis [89, 63] investigate the role of jump process and
stochastic volatility in option pricing respectively. Besides, there are more variants which
change one or more assumptions, cf. [98].

2.2 Black-Scholes-Merton Partial Differential Equa-

tion and Inequality

We now briefly explain how to derive the celebrated Black-Scholes-Merton partial differ-
ential equation (BSM PDE) and inequality (BSM PDI). Suppose there exists an option v
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linked to a portfolio Sp composed of d shares. An individual in the market can create a
self-financing portfolio by longing a smaller portfolio π and selling/shorting cash worth π
when a trading account is opened. The small portfolio π can be created by buying/longing
one unit of the option and shorting ∆i lots of S(i) for i = 1, . . . , d. Hence the value of π at
any future time prior to the expiry date is π = v −

∑d
i=1 ∆iS

(i). Applying Ito’s lemma2,
cf. [98, p.80], the dynamics of the portfolio becomes

dπ =

(
∂v

∂t
+

1

2

d∑
i=1

d∑
j=1

σijS
(i)S(j) ∂2v

∂S(i)∂S(j)
−

d∑
i=1

∆iqiS
(i)

)
dt+

d∑
i=1

(
∂v

∂S(i)
−∆i

)
dS(i).

Let ∆i = ∂v
∂S(i) to hedge against the uncertain dS(i). The no-arbitrage argument claims

rπdt = dπ in the case of European options. We then reach the deterministic BSM PDE

v̇ + Lv :=
∂v

∂t
+

1

2

d∑
i=1

d∑
j=1

σijS
(i)S(j) ∂2v

∂S(i)∂S(j)
+

d∑
i=1

(r − qi)S(i) ∂v

∂S(i)
− rv = 0. (2.1)

When an early exercise property is provided in American and perpetual options, the no-
arbitrage argument simply implies that the return of a portfolio is no more than a riskfree
investment, i.e. rπdt ≥ dπ. Hence, the BSM PDE turns to a BSM PDI

v̇ + Lv ≤ 0. (2.2)

Since a perpetual option has no expiry restriction, its value is insensitive to time, i.e.
v̇ = ∂v

∂t
= 0. As a result, the BSM PDI is

Lv =
1

2

d∑
i=1

d∑
j=1

σijS
(i)S(j) ∂2v

∂S(i)∂S(j)
+

d∑
i=1

(r − qi)S(i) ∂v

∂S(i)
− rv ≤ 0, (2.3)

in the perpetual case.

2Ito’s lemma is a result of stochastic calculus based on geometric Brownian motion.
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2.3 Transformation from the BSM Model to a Diffu-

sion Model

With the change of variables

x := ln(S/E), σ := max
i=1∼n

{σi}, τ := (T − t)σ
2

2
,

r̃ :=
r

σ/2
, q̃ :=

q

σ/2
, σ̃ij :=

σij
σ/2

, Σ̃ := [σ̃ij]d×d,

ũ(x, τ) =
v(S, t)

E
, u(x, τ) = e−α

Tx−βτ ũ(x, τ),

α =
−1

2
· Σ̃−1 · 1(r̃−q̃i−σ̃ii), β :=

−1

4
· 1T(r̃−q̃i−σ̃ii) · Σ̃

−1 · 1(r̃−q̃i−σ̃ii) − r̃,

1(r̃−q̃i−σ̃ii) := [(r̃ − q̃1 − σ̃11), . . . , (r̃ − q̃d − σ̃dd)]′,

the BSM PDE/PDI can be transformed into a simple diffusion PDE/PDI as below, cf. [34,
p.66].

uτ =
n∑
i=1

n∑
j=1

σ̃ijuxixj for European options,

uτ ≥
n∑
i=1

n∑
j=1

σ̃ijuxixj for American options,

0 ≥
n∑
i=1

n∑
j=1

σ̃ijuxixj + βu for perpetual options.

where u, xi, τ, σ̃ij are the transformed counterparts of v, S(i), t, σij and β is a constant
created in transformation. Instead of studying the original BSM PDE/PDI, some references
consider the transformed problems.

2.4 Results from Other Models

While the BSM PDE/PDI arise from the typical BSM model, different partial differential
equations/inequalities and partial integro-differential equations/inequalities (PIDEs/PIDIs)
result from different stochastic models.

Under the assumption of a stochastic volatility, Heston (1993) [47] obtained another
PDE for one-asset European options without dividend

∂v

∂t
+
σ11S

2

2

∂2v

∂S2
+ ρ̃σ̃Sσ11

∂2v

∂S∂σ11

+
σ̃2σ11

2

∂2v

∂σ11
2

+ rS
∂v

∂S
+
(
µ̃(σ̃2 − σ11)− Λ

) ∂v
∂σ11

− rv = 0
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where Λ is called the price of volatility risk and can be a function of t, S, σ11.
Below is the PIDE for one-asset European options without dividend obtained in the

framework of a Levy process associated with a Poisson process, [64],

∂v

∂t
+
σ2S2

2

∂2v

∂S2
+ rS

∂v

∂S
− rv + λ

(∫ ∞
0

v(ηS)Γ̃δ(η)dη − v
)

= 0

where

Γ̃δ(η) =
exp(−1

2
( log η

δ
)2)

√
2πδη

is the probability density function (p.d.f.) of η.
Bahlali [3], Liming [33] and Yong and Otmani [79] have further discussed the PIDEs in

the frame work of a Levy process.
One should bear in mind that not all models produce a deterministic equation/inequality

as a necessary condition for option pricing. In those cases, stochastic analysis and simula-
tion is the only way to investigate the pricing problems.

2.5 Sampling-based Approach for Option Pricing Prob-

lems

As mentioned previously, most models start from a stochastic process. If one can sam-
ple sufficiently many stochastic paths which are generated to some extent of accuracy,
theoretically one can approximate an option’s value up to a given tolerance. [43, 2] pro-
vide comprehensive discussion of simulation algorithms and error analysis. There are two
branches to generate paths, tree-based methods and Monte-Carlo methods. At each time
step, the former produce specific share prices fitted in a tree graph while the latter allow
all possible values over Rd+.

2.5.1 Solutions In Terms of Expectation

For European options, the aim is to find the expected payoff on expiry time and discount
the value back to the current time, i.e.,

v(t,St) = E
(
e−r(T−t) · g(ST )

∣∣St), (2.4)

where E(·) is the operator of expected value dependent on the conditional probability
distribution at exercise time, and e−r(T−t) is the continuous discounting factor with at the
rate r from time T to t.
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For American options, the aim is adjusted to find the maximum value of all possible
values at time τ ∈ [t, T ] and can be expressed as

v(t,St) = sup
τ∈Θt,T

E
(
e−r(τ−t) · g(Sτ )

∣∣St), (2.5)

where Θt,T denotes the set of stopping times. The pricing problem turns to an optimal
stopping time problem in stochastic analysis, c.f. [14].

2.5.2 Tree Simulation

The tree-based methods generate a branched-tree3 structure for finitely many paths, so
one can compute all possible optimal option values along all paths, discount their values
from exercising date and obtain the expected (optimal) value at the current time t. The
book by Shreve describes the theories on martingale measure in discrete tree models, cf.
[85, ch.1,4].

2.5.3 Monte Carlo Simulation

When implementing Monte Carlo methods, paths are generated separately and not re-
stricted to a tree framework. [101, 85, 20] describe most algorithms of Monte Carlo sim-
ulation applied in mathematical finance. Broadie, Glasserman and Ha et al. proposed
the use of stochastic meshes combined with Monte Carlo methods to price American op-
tions, cf. [13, 12]. The so-called Least Square Monte Carlo (LSMC) methods project both
v(tk,Stk) and E

(
v(tk+1,Stk+1

)|Stk
)

onto the same functional space spanned by a set of basis
functions and then employ regression to obtain the time-dependent projection coefficients.
Using the approximated coefficients and basis functions, one can thus estimate the value
of an American option. Firth (2005) [34] gave details of these methods. Barraquand and
Martineau (1995) [6] adopted regression-like methods to perform numerical experiments
up to 400 assets. Giles (2007, 2008) [38, 39] employed the multi-level Monte Carlo simula-
tion along with Milstein scheme to reduce the computational complexity. [40, 42, 22, 103]
then extended such scheme to a multi-dimensional framework, a random coefficient situa-
tion, non-globally Lipschitz payoff and a jump-diffusion process individually. Caramellino
and Zanette (2011) [17] performed the numerical comparison among some recent Monte
Carlo algorithms for pricing and hedging American options in the high-dimensional Black-
Scholes-Merton framework.

2.5.4 Comment

Recall that not every stochastic model can produce a PDE/PDI as a necessary condition of
no arbitrage. On these circumstances, simulation-based methods are widely used to price

3There are two and three branches at each node in a binomial and trinomial tree methods respectively.
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a financial derivative. However, simulation-based methods need extremely many paths to
obtain one convergent option value, which cause expensive computational cost for path-
dependent and multi-dimensional models. Moreover, the simulation results are dependent
on an initial state St, so one needs to simulate each time when St varies, which is not
convenient in practice.

2.6 Equation-based Approach for Option Pricing Prob-

lems

When a PDE, PDI, PIDE or PIDI can be obtained from a model, the option pricing
problems turn to tackling these (integro-)differential equations. Mostly numerical methods
are required to solve the problems due to their complicated (integro-)differential structures
and restrictions.

2.6.1 Discretization

In terms of discretization, there are three main numerical methods - finite difference method
(FDM), finite element method (FEM) and finite volume method (FVM). Roughly speaking,
FDM is mainly based on Taylor’s expansion of the object function, FEM is founded on
the properties of selected functional spaces and FVM exploits the conservation of physical
volume on the computational domain. Two classical references for FDM and FEM in
mathematical finance are [31] and [90] which introduce basic theorems and implementation
of algorithms. [95, 109, 1] provide a critique of discretization of option pricing problems
with FVM.

2.6.2 Log Transformation

In terms of a PDE, the European option problems can be solved similarly as most physical
problems. Nevertheless they become challenging high-dimensional problems as the number
of shares increases. To make them easier to solve, they are generally transformed into
simpler ones by a change of variables if possible. However, such change of variables usually
involves a log transformation, c.f. [34, 78], so the numerical error in the transformed
domain may be expanded exponentially in the original problem. Besides, the degeneration
condition on S(i) = 0 in the BSM model, which corresponds to xi := log(S(i)) = ∞ in
the transformed diffusion model, must be replaced by some artificial condition on xi =
−xmax << 0. Angermann and Wang (2007) commented on the error and convergence due
to the truncation. More inaccuracy may occur in a high-dimensional case because of such
transformation.
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2.6.3 Early Exercise Issue

Due to the fact that American and perpetual option have the early-exercise property, their
values should not be lower than their payoffs at any time; otherwise, one may buy such an
option whose value is lower than its payoff and exercise it immediately to gain the risk-free
arbitrage. Such an option either follows BSM PDE or has the value equal to its payoff. The
domain hence can be separated into early-exercise and non-early-exercise regions where the
values are equal to and greater than payoffs respectively. They are also named stopping and
continuation regions when viewed as an optimal stopping time problem. The intersection
between the two regions is called free boundary, early-exercise boundary or optimal-exercise
boundary which is a (d−1)−dimensional manifold, c.f. [36, 10], in a d−dimensional domain
and may evolve as time changes.

2.6.4 Strategy for Early Exercise

There are four essential approaches to solving the early-exercise issue:

1. Front-tracking approach,

2. Penalty approach,

3. Early-exercise premium approach,

4. Complementarity approach.

The front fixing is a front-tracking method. The idea is to fix the location of free
boundary on some transformed domain by a change of variables. To do so, some properties
on the free boundaries are needed to be known. Wu and Kwok (1997) and Houstis and
Kortesis (1998) gave the details of its implementation. In that manner, one needs to
solve a nonlinear PDE on the transformed domain and transform the solution back to the
original domain. Muthuraman (2008) proposed a guess-and-correct method to track the
free boundary in the one-asset case. The front-tracking methods can be applied successfully
to the one-asset American call and put. However, there may exist more than one free
boundaries for options with exotic payoffs such as straddle and supershare options having
the payoff function g(S) = S · 1{S∈[L,H]}. The properties of the free boundary (or even
free boundaries) are not well-known for exotic or multi-asset options. This restricts the
applicability of these methods.

Zvana, Forsytha and Vetzalb (1998) firstly introduced the penalty method for pricing
American options, which adds an extra term to turn a PDI into a PDE and to avoid
the free boundary technically, cf. [111]. New penalty functions were proposed by Wang,
Yang and Teo (2006) and Fenga, Kovalovb, Linetskyc and Marcozzid (2007), cf. [96,
59]. Nielsen (2001) used both front-tracking and penalty methods and compared their
performances, cf. [71]. Difficulties in choosing proper penalty functions come to light again
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in the circumstances of exotic payoffs and multi-asset cases. Moreover such an approach
actually perturbs originally PDI and cause extra penalty errors.

The value of an American option can be viewed as the sum of its European counterpart
and an early-exercise premium, i.e.

vA(S, t) = vE(S, t) + p(S, t),

where superscripts A and E distinguish American and European options and p(·) is an
unknown early-exercise premium function. There are several methods to formulate the
early-exercise premium function. For example, Kim (1990) formulated the premium in the
case of one-asset call economically and mathematically as

p(S, t) =

∫ T−t

0

qSe−q(T−t−t̃)N(d+(t̃))− rEe−r(T−t−t̃)N(d−(t̃))dt̃,

d+ :=
ln S

Sf (t̃)
+ (r − q + σ2

2
)(T − t− t̃)

σ
√
T − t− t̃

,

d− :=
ln S

Sf (t̃)
+ (r − q − σ2

2
)(T − t− t̃)

σ
√
T − t− t̃

≡ d+ − σ(T − t− t̃),

where Sf (t̃) is the free boundary at time t̃. Jacka (1991), Carr et al.(1992), Gao et al.
(2000) and Karatzas and Wang (2000) discussed other formulations of the early-exercise
premium. Poitras and Veld (2009) exploited the put-call parity to estimate the early
exercise premium for American currency options. Generally this approach makes extra
economic assumptions to formulate the early-exercise premium.

The early-exercise issue can be viewed as the complementarity condition (CC) in the
following form in the BSM framework.{

v ≥ g,
(v̇ + Lv)(v − g) = 0 or (Lv)(v − g) = 0.

Wilmott, Dewynne and Howison (1993) described how to numerically solve the one-asset
problem in a classical sense using the projected successive over-relaxation (PSOR) method.
Jaillet, Lamberton and Lapeyre (1990) adopted a variational approach to analyze the com-
plementarity problem. Their approach is based on the weighted Sobolev space Vµ := {w :
e−µ|x|Dmw(x) ∈ L2(Rd);m = 0, 1} where µ ∈ (0,∞), x = logS and Dm is the weak deriva-
tive of order m. Their work also showed the existence of unique solution on the transformed
d-dimensional semi-infinite/unbounded domain by linking the formulation to the proper-
ties from optimal stopping time analysis. Mautner (2006) estimated the error arising from
computational domain truncation in the framework of one-dimensional weighted Sobolev
space. Huang and Pang (1998) discussed the approach under different one-asset models.
Fenga (2007) considered the variational formulation with asset price following a Markov
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jump-diffusion process. Zhang (2007) investigated the variational complementarity prob-
lems after log transformation and showed numerical convergence results up to 2 assets.

A recent survey on one-asset American options is carried out by Se Ryoong Ahn, etc.
(2011). Mathematically the complementarity approach is the most genuine way to for-
mulate the early-exercise problem. Based on this nature, we adopted this approach but
focused on a bounded computational domain in the next chapter.

2.7 Analytical Approach for Option Pricing Problems

The pricing problems can also be investigated analytically from different aspects. We
first look at the fundamental solutions for European options. Their fundamental solutions
can be obtained by finding expected value with proper probability measure or using the
fundamental solution of the transformed diffusion equation.

2.7.1 One-asset Non-path-dependent European Options

Recall the value of a European option can be expressed as (2.4). For a one-asset non-path-
dependent European option with a non-negative convex payoff function g(S), its value can
be further expressed in the integral form, cf. [86, p.218],

v(t, S) = e−rτ
∫ ∞
−∞

1√
2π

e−
η2

2 g(Se(r−q−σ
2

2
)τ+σ

√
τ η) dη.

where τ = T − t ≥ 0 is called the time to maturity.

2.7.2 Multi-asset Non-path-dependent European Options

The multi-dimensional BSM PDE can be transformed to a multi-dimensional simple diffu-
sion equation which has a fundamental solution in terms of cumulative density function of
multi-dimensional standard normal distribution. After converting the solution back to the
original BSM model, the fundamental solution to a d−asset non-path-dependent European
option is of the integral form, cf. [99, p.187],

v(t,S) = e−rτ
(
2πτ

)−d/2(
det Σ

)−1/2( d∏
i=1

σi
)−1
∫ ∞

0

· · ·
∫ ∞

0

g(S̃)∏d
i=1 S̃i

exp
(−ζTΣ−1ζ

2

)
dS̃1 · · · dS̃d,

where

S̃ :=
[ ˜S(1) · · · S̃d

]T
, ζ :=

[
ζ1 · · · ζd

]T
, Σ :=

[
σij
]
d×d,

ζi :=
1√
σ2
i τ

(
ln (

S(i)

S̃(i)
) + (r − qi −

σ2
i

2
)τ
)
.
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The solution exists when 1∏d
i=1 S̃i

exp
(−ζTΣ−1ζ

2

)
goes to zero faster than g(S̃) goes to infinity

as S̃ approaches infinity, which is never violated by all known options. Note that the τ next
to 2π in the equation will disappear after a change of variable in the one-dimensional case.
In practice, the fundamental integral solutions can be obtained by approximation. [106]
proposes the use of hyper-triangles to approximate a multi-variate integral. [37] employs
hyper-cubes along with sparse grids and provides examples of integration up 32 and 256
dimensions.

2.7.3 American Options In Terms of Stopping Time

A stopping time is a random time for a stochastic process to stop under some conditions,
cf. [86, p.341, 361, 364]. In mathematical finance, it can be interpreted as the time when an
American option owner faces the early-exercise values which are higher than the expected
values of keeping the option afterwards. In this manner, the value of American option is
the highest of all the values at stopping times. Bensoussan (1984) and Karatzas (1988)
formulated the value of American options using no-arbitrage argument and stopping time
from stochastic aspect as (2.5).

2.7.4 American Options In Terms of Free Boundary

The free boundaries of American options refer to the intersected boundaries or hypersur-
faces between early-exercise and non-early-exercise regions. Simple options such as call
and put have only one free boundary but there may exist more than one in exotic and
high dimensional cases. Generally, free boundaries are time-dependent in most cases of
American options but time-independent in those of perpetual ones.

The regularity of of the free boundaries in variational inequalities was first analyzed
by Caffarelli and Rivire (1976) and Kinderlehrer (1978), cf. [15, 55]. Shahgholian (2008)
analyzed the behavior of free boundary arising in one-asset American option, cf. [84].
Laurence and Salsa (2009) proved the C∞ regularity for the free boundaries in the multi-
asset case, cf. [61]. In recent years, there are particular interest in the study of the α-stable4

Levy process, which generally leads to a bilinear form involving a fractional Laplacian.
Particularly, [87, 16] investigated the regularity of its solution and free boundary in the
framework of its variational inequality.

2.7.5 Asymptotic Analysis for Option Pricing Problems

Instead of tackling original problems, an alternative is to explore the limit behavior of so-
lution provided an extremely large or small number for one of the parameters in a model.

4A linear combination of two independent copies of its variable has the same distribution as the variable
with scaling and shifting.
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For example, one can investigate the solution to an option pricing problem when given an
extreme E (strike price), r (riskfree rate), q (dividend rate), T (expiry date) and σ (volatil-
ity) in the BSM model. [97, 45, 76] performed different asymptotic analysis in a framework
of small/high drift, volatility or transaction cost. Kuske and Keller (1998) investigated the
solutions when time approaches maturity date, cf. [60]. Firth (2005) approximated the so-
lutions provided σ2

|r−q| << 1, cf. [34, p.111]. Another popular application is to approximate

the free boundary asymptotically, cf. [60, 19, 104].

2.8 Closed-form Formulas

The analytical solutions may be further expressed in closed-form formulas in some cases.
The book by E. G. Haug [46] summarizes most well-known formulas. We introduce some
of them below.

2.8.1 Black-Scholes-Merton Formulas

Below are the celebrated BSM formulas derived from a standard BSM model.

C(t, S) = Se−qτN(d1)− Ee−rτN(d2),

P (t, S) = Ee−rτN(−d2)− Se−qτN(−d1),

where

d1 :=
ln S

E
+ (r − q + σ2

2
)τ

√
σ2τ

,

d2 ,
ln S

E
+ (r − q − σ2

2
)τ

√
σ2τ

.

The C(t, S) and P (t, S) stand for the values of one-asset European call and put and N(·)
is the cumulative density function (CDF) of standard univariate normal distribution.

2.8.2 Multi-asset minimum and maximum options

Exact closed-form formulas are hardly obtained in a multi-asset model except for European
maximum and minimum options. Stulz (1982) first derived the formulas of two-asset
European call and put on minimum and maximum, cf. [88]. The formulas are then
generalized to the higher dimensional cases by Johnson (1987) and Rich and Chance (1993)
, [54, 80]. We summarize the formulas of two-asset call on minimum, call on maximum,
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put on minimum and put on maximum as follows.

Cmin(t, S(1), S(2)) = S(1)e−q1τN2(d1,S(1) ;−d̃1;−ρ̃1) + S(2)e−q2τN2(d1,S(2) ; d̃2;−ρ̃2)

− Ee−rτN2(d2,S(1) ; d2,S(2) ; ρ),

Cmax(t, S
(1), S(2)) = S(1)e−q1τN2(d1,S(1) ; d̃1; ρ̃1) + S(2)e−q2τN2(d1,S(2) ;−d̃2; ρ̃2)

− Ee−rτ
(
1−N2(−d2,S(1) ;−d2,S(2) ; ρ)

)
,

Pmin(t, S(1), S(2)) = Ee−rτ − C̃min(t, S(1), S(2)) + Cmin(t, S(1), S(2)),

Pmax(t, S
(1), S(2)) = Ee−rτ − C̃max(t, S(1), S(2)) + Cmax(t, S

(1), S(2)),

where

ρ : correlation coefficient between log returns,

N2(x; y; ρ) : cdf of standard bivariate normal distribution with

correlation coefficient ρ (integral over [∞, x]× [∞, y]),

σw =
√
σ2

1 + σ2
2 − 2ρσ1σ2, ρ1 =

σ1 − ρσ2

σw
, ρ2 =

σ2 − ρσ1

σw
,

d1,S(i) :=
ln S(i)

E
+ (r − qi +

σ2
i

2
)τ√

σ2
i τ

, d2,S(i) :=
ln S(i)

E
+ (r − qi − σ2

i

2
)τ√

σ2
i τ

= d1,S(i) − σi
√
τ ,

d̃1 :=
ln S(1)

S(2) + (−q1 + q2 + σ2
w

2
)τ√

σ2
wτ

, d̃2 := d̃1 − σw
√
τ ,

C̃min(t, S(1), S(2)) := S(1)e−q1τ
(
1−N(d̃1)

)
+ S(2)e−q2τN(d̃2),

C̃max(t, S
(1), S(2)) := S(2)e−q2τ

(
1−N(d̃2)

)
+ S(1)e−q1τN(d̃1).

2.8.3 One-asset Perpetual Call and Put

As perpetual options are not restrained by expiry date, their one-dimensional BSM PDE
decays to an Euler-Cauchy equation without time term involved in the non-early-exercise
regions, i.e. [0, Sf ] and [Sf ,∞] for call and put respectively. We consider the pricing models

as follows. Recall L := ∂2

∂S2 + (r − q)S ∂
∂S
− r.

Model 2.1 – One-asset Perpetual Put

• Early-exercise region:
LP < 0, P (S) = g(S) = E − S > 0,∀S ∈ [0, Sf ],

• non-early-exercise region
LP = 0, P (S) > g(S) ≥ 0,∀S ∈ [Sf ,∞],

xxv



• At the optimal/early exercise boundary

P (Sf ) = E − Sf (continuity) and ∂P
∂S

∣∣∣
S=Sf

= ∂g
∂S

∣∣∣
S=Sf

= −1 (smooth-pasting),

• At the right boundary:
P (S →∞) = 0.

The value of a perpetual put can be expressed in the form of, cf. [98, p.153],

P (S) =

{
g(S) = E − S if S ≤ Sf
BSm2 if S ≥ Sf

where

m2 =
−(r − q − σ2

2
)−

√
(r − q − σ2

2
)2 + 2rσ2

σ2
,

Sf =
E

1− 1
m2

, B =
E − Sf
Sm2
f

.

Particularly, for q = 0 : m2 = −2r
σ2 and Sf = E

1+σ2

2r

.

A perpetual call can be handled analogously.

Model 2.2 – One-asset Perpetual Call

• Early-exercise region:
LC < 0, C(S) = g(S) = S − E > 0,∀S ∈ [Sf ,∞],

• non-early-exercise region
LC = 0, C(S) > g(S) ≥ 0,∀S ∈ [0, Sf ],

• At the optimal/early exercise boundary

C(Sf ) = Sf − E (continuity) and ∂C
∂S

∣∣∣
S=Sf

= ∂g
∂S

∣∣∣
S=Sf

= 1 (smooth-pasting),

• At the left boundary:
C(S = 0) = 0.

The value of perpetual put can be expressed in the form of, cf. [98, p.155],

C(S) =

{
g(S) = S − E if S ≥ Sf
ASm1 if S ≤ Sf

where

m1 =
−(r − q − σ2

2
) +

√
(r − q − σ2

2
)2 + 2rσ2

σ2
,

Sf =
E

1− 1
m1

, A =
Sf − E
Sm1
f

.
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Particularly, for q = 0 : m1 = 1 and Sf →∞. As well, A = 1 and C(S) = S in the special
case. This implies never to exercise a one-asset perpetual call on a non-dividend-paying
asset is the optimal decision since holding the option amounts to holding the underlying
asset for an owner.

2.8.4 Other formulas

Rubinstein and Reiner (1991) derived the values of one-asset European barrier options,
cf. [81]. In the two-asset framework, Margrabe (1978) provided the pricing formulas of
European exchange options and Wu and Zhang (1999) solved the the problems on the
minimum or maximum of geometric averages, cf. [66, 102].

2.9 Dividend Issue In One-asset Case

For an American put, if S < Sf (t) < E, then the option value is its payoff value, i.e.
v = (E − S) and thus we have

∂v

∂t
+

1

2
S2 ∂

2v

∂S2
+ (r − q)S ∂v

∂S
− rv

= 0 + 0 + (r − q)S(−1)− r(E − S) = qS − rE.

Without dividend, −rE makes the strict inequality. In the dividend-paying case, the early-
exercise boundary should be low enough such that qS−rE ≤ 0↔ S ≤ Sf (t) ≤ min{ rE

q
, E}

holds. In general r ≥ q ↔ r
q
≥ 1, so Sf (t) ≤ min{ rE

q
, E} is satisfied provided Sf (t) ≤ E

for a put.
On the other hand, an American call with the payoff S − E satisfies

∂v

∂t
+

1

2
S2 ∂

2v

∂S2
+ (r − q)S ∂v

∂S
− rv

= 0 + 0 + (r − q)S(+1)− r(S − E) = −qS + rE ≤ 0

⇔ S ≥ Sf (t) ≥ max{rE
q
,E}. (2.6)

It implies Sf (t) > E strictly when a dividend rate is considered and r ≥ q. Since Sf (t)→∞
as q → 0, it implies never to exercise an American call is the optimal decision for its owner
when no dividend is paid to the underlying asset. Due to the non-early-exercise property
given q = 0, the value of a one-asset American call simply follows the BSM PDE all the
time and it shares the same value as its European counterpart. The same conclusion can
be reached based on stochastic analysis, cf. [86, p.363].

We should also bear in mind that for both American call and put the free boundaries
lim
t→T

Sf (t) may not be consistent with the exercise price E at maturity time T .
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2.10 Summary

Option pricing problems can be investigated from different aspects such as stochastic anal-
ysis, partial differential problems and their variational variants. There are very different
approaches to tackle such problems. These problems become dramatically challenging in a
multi-asset framework and more challenging if an equality is replaced by an inequality in
the early-exercise cases. In this research, we look for a variational approach to deal with
both situations. Before reformulating problems in variational form, in the next chapter we
will describe the necessary conditions for solving the problems.
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Chapter 3

Auxiliary Conditions

When option pricing problems are considered from the aspect of differential equations, the
proper terminal/final condition (TC/FC) and boundary conditions (BCs) are requested
for solving them. In the early-exercise cases, no-arbitrage argument must also be consid-
ered. The setup of these conditions must make both financial and mathematical sense.
For some exotic options such as barrier options, the conditions also depend on their pay-
offs and contract restrictions, c.f. [112, 93]. These conditions may vary from model to
model, cf. [32, 23]. In our work, we focus on the d-asset European/American/perpetual
minimum/maximum/basket call/put/straddle options in the BSM model.

3.1 Conditions for Early-exercise Property

3.1.1 Complementarity Condition

Recall that the value of an option with the early-exercise property either follows the BSM
PDE in the non-early-exercise region or must be equal to its payoff in the early-exercise
region. This can be expressed as the complementarity condition (CC) in the forms below.

American options:

{
v(S, t) ≥ g(S),
(v̇ + Lv)(v − g) = 0.

Perpetual options:

{
v(S) ≥ g(S),
(Lv)(v − g) = 0.

3.1.2 Conditions on Early-exercise Boundary

Recall in the previous chapter we use continuity condition and smooth-pasting condition
on the free boundary to analytically solve the pricing problems for one-asset perpetual
call and put. In general, the free boundary Sf (t) is a (d − 1)−dimensional evolutionary
manifold in a d−asset case. The continuity condition v = g will be satisfied automatically if
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only continuous functions are considered for our solutions. The smooth-pasting condition
∂v
∂S(i) = ∂v

∂S(i) is not necessary if the pricing problem is formulated as a complementarity
problem. Moreover, it may fail in a general scenario, cf. [67] and [108, Remark 3.20].
Based on these, we will not pose the smooth-pasting condition in our later formulation.

3.2 Terminal Condition

Different from most physical problems, in the BSM model without transformation we have
the terminal/final condition (TC/FC) at expiry time t = T . On the expiry date, an option’s
value v simply equals its payoff value g, i.e.

v(S, t = T ) = g(S).

3.3 Boundary Conditions

In this research, we will work on the spatial domain of bounded d−dimensional rectan-
gle/cube . In this manner, we need conditions on S(i) = 0 and S(i) = Smax where Smax is a
relatively large value.

3.3.1 Choice of Smax

A rule of thumb is to take Smax at least three time lager than E, cf. [74, 21]. Intuitively,
as the volatility or the time to maturity increases, the probability that a share/portfolio
price reach an extreme value is higher. This implies the Smax should be set bigger in these
cases. Moreover, the idea of ”far enough” should depend on an option’s payoff and contract
restrictions as well. For example, a vanilla put’s Smax can be set smaller than that of its call
counterpart. Kangort and Nicolaides (2000) derived the point-wise bounds arising from
the setup of Smax; in particular, they suggested

Smax = Ee
√

2σ2T ln 100,

for a one-asset European call which coincides with the intuitive guess.

In what follows, there are three types of boundary conditions to be defined − degener-
ation and deterministic and almost-sure boundary conditions.

3.3.2 Degeneration Condition

A boundary condition is said to be a degeneration condition if the value of a d−asset option
simply degenerates to that of its (d− 1)−asset counterpart on the boundary. In this case,
the boundary condition is of Dirichlet type.
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3.3.3 Deterministic Condition

If the option value on a boundary can be expressed by its payoff with a constant portfolio
price Sp, we call such Dirichlet conditions deterministic condition.

3.3.4 Almost-sure Condition

If the option value on a boundary can be expressed by its payoff with a variable portfolio
price Sp or share prices S, we call such Dirichlet conditions almost-sure condition. This
name is coined because as a share value tends to zero or becomes extremely large, the
probability measure to exercise (or not to) is almost equal to 1 or 0. Another approach is
to define the almost-sure condition of Neumann type which claims the sensitivity of the
option w.r.t. S(i) is equal to that of its payoff for i = 1, . . . , d.

We now give details of how to set our boundary conditions from financial and math-
ematical aspects. We will take the discount factor into account for European options as
they can be exercised only on expiry date.

3.3.5 Near-field Condition on S(i) = 0

Once S(i) reaches 0, it remains at 0 afterwards and a d−dimensional BSM PDE degenerates
to a (d − 1)−dimensional counterpart. Due to this, basket and maximum options have
degeneration conditions while minimum options have the deterministic condition with Sp =
0. That is,

• Basket and maximum options: v(. . . , S(i−1), S(i), S(i+1), . . .) = v(. . . , S(i−1), S(i+1), . . .).

• Minimum options:

v =

{
e−r(T−t)g(Sp = 0) for European options,

g(Sp = 0) for American and perpetual options.

3.3.6 Far-field Condition on S(i) = Smax

We now assume Smax is large enough such that provided S
(i)
t = Smax →∞,

• the probability that a basket option is to be exercised (prior to or on expiry date) is
close to either 1 or 0.

• the probability that S(i)(t+) becomes the minimum of all share prices (prior to or on
expiry date) is close to 0 for t+ ∈ (t, T ].

• the probability that S(i)(t+) becomes the maximum of all share prices (prior to or on
expiry date) is close to 1 for t+ ∈ (t, T ].
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Hence on S(i) = Smax a basket option has an almost-sure condition, a minimum option
possesses a degeneration condition and a maximum options is given deterministic condi-
tions.

• Basket options:

v =

{
e−r(T−t)g(S) for European options,

g(S) for American and perpetual options,

or in the following Neumann form for European, American and perpetual types.

∇v = ∇g.

• Minimum options: v(. . . , S(i−1), S(i), S(i+1), . . .) = v(. . . , S(i−1), S(i+1), . . .).

• Maximum option:

v =

{
e−r(T−t)g(Sp = Smax) for European options,

g(Sp = Smax) for American and perpetual options.

An alternative is to have the Neumann form as Basket cases.

∇v = ∇g.

3.4 Two-asset Examples

3.4.1 BCs of Basket Options

Consider positive weights wi > 0 of underlying asset S(i) to form a portfolio. Start with
the payoff of a basket call, for i, j = 1, 2

(
(wiS

(i) + wjS
(j))− E

)+
=

{
(wjS

(j) − E)+ = wj(S
(j) − E

wj
)+ on S(i) = 0,

(wiS
(i) − E) + wjS

(j) = (wiSmax − E) + wjS
(j) >> 0 on S(i) = Smax.

Analogously, a basket put has

(
E − (wiS

(i) + wjS
(j))
)+

=

{
(E − wjS(j))+ = wj(

E
wj
− S(j))+ on S(i) = 0,

0 on S(i) = Smax.

A straddle is simply a call plus a put, thus its payoff is(
(wiS

(i) + wjS
(j))− E

)+
+
(
E − (wiS

(i) + wjS
(j))
)+

=

{
wj
(
(S(j) − E

wj
)+ + ( E

wj
− S(j))+

)
on S(i) = 0,

(wiSmax − E) + wjS
(j) >> 0 on S(i) = Smax.
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Along S(i) = 0 the payoff of one unit of basket option with exercise price E turns to
that of wj lots of one-asset counterpart on remaining S(j) with the different exercise price
E
wj

. No-arbitrage argument implies the two-asset option’s value is equal to wj units of

one-asset counterpart with the exercise price E
wj

, so we have the degeneration condition on

S(i) = 0 in this case.
Along S(i) = Smax we hence have the almost-sure condition of Dirichlet type depending

on (S(i) = Smax, S
(j)) where S(j) ∈ [0, Smax]. As suggested by the literal meaning of almost-

sure condition, on S(i) = Smax →∞ the payoff values above are equal to those of American
options while European options share the same payoffs but multiplied by a discount factor.
Another choice is to adopt Neumann condition as the almost-sure condition. The basket
call and straddle are to be exercised almost surely as S(i) = Smax →∞, so their Neumann
condition reads

∇v = (w1, w2)T .

However, a basket put is not to be exercised almost surely, so its Neumann condition is
simply

∇v = 0.

3.4.2 BCs of Minimum Options

Minimum options can be interpreted analogously by observing the payoff values below.

Minimum Call (
min{S(i), S(j)} − E

)+
=

{
(0− E)+ = 0 on S(i) = 0,
(S(j) − E)+ on S(i) = Smax.

Minimum Put (
E −min{S(i), S(j)}

)+
=

{
(E − 0)+ = E on S(i) = 0,
(E − S(j))+ on S(i) = Smax.

Minimum Straddle (
min{S(i), S(j)} − E

)+
+
(
E −min{S(i), S(j)}

)+

=

{
0 + E = E on S(i) = 0,
(S(j) − E)+ + (E − S(j))+ on S(i) = Smax.

As a result, we can exploit the deterministic conditions on S(i) = 0 and the degeneration
conditions on S(i) = Smax for i = 1, 2.
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3.4.3 BCs of Maximum Options

Similarly we observe the payoffs below first.

Maximum Call(
Max{S(i), S(j)} − E

)+
=

{
(S(j) − E)+ on S(i) = 0,
Smax − E >> 0 on S(i) = Smax.

Maximum Put(
E −Max{S(i), S(j)}

)+
=

{
(E − S(j))+ on S(i) = 0,
(E − Smax)

+ = 0 on S(i) = Smax.

Maximum Straddle (
Max{S(i), S(j)} − E

)+
+
(
E −Max{S(i), S(j)}

)+

=

{
(S(j) − E)+ + (E − S(j))+ on S(i) = 0,
(Smax − E) + 0 = Smax − E on S(i) = Smax.

Different from Basket options on the boundary of S(i) = 0, the value of two-asset
Maximum options degenerates to that of one unit of one-asset counterpart linked to the
remaining share S(j) with identical exercise price.

An alternative on S(i) = Smax is the Neumann type of almost-sure condition in the
following form.( ∂v

∂S(i)
,

∂v

∂S(j)

)
=

{
(1, 0) for Maximum call/straddle,
(0, 0) for Maximum put.

3.5 Other Choices

In the above, the Smax−E and wiSmax−E may be replaced by Smax and wiSmax respectively
as Smax >> E and wiSmax >> E respectively. When taking the discount factor into
account, some literatures use the dividend and interest rates to discount the share and
strike prices separately in the financial point of view. That is, e−r(T−t)g(S;E) may be

replaced by g(S̃; Ẽ) where S̃ =
(
e−q1(T−t)S(1), . . . , e−qd(T−t)Sd

)T
and Ẽ = e−r(T−t)E. Such

idea can also be justified theoretically to some extent by the one-asset BSM formulas.
Some references propose the so-called linearity boundary condition at the far field S(i) =

Smax, cf. [100, 26]. Such approach assumes

∂2v

∂S(i)2

∣∣∣∣∣
S(i)=Smax

= 0,
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which can be viewed as the relaxation of the Neumann BCs mentioned earlier. In one-asset
case, this implies using

v(t) = c0(t) + c1(t)S,

on S(i) = Smax which coincides with the form of BSM formulas. In higher dimensional
scenarios, it implies to find the value satisfying v̇ + L̃v = 0 on S(i) = Smax where

L̃v :=
1

2

d∑
j=1

d∑
k=1

k 6=j=i

σjkS
(j)S(k) ∂2v

∂S(j)∂S(k)
+

d∑
j=1

(r − qj)S(j) ∂v

∂S(j)
− rv,

in the European cases.

3.6 Summary

We have seen how to set the auxiliary conditions in financial and mathematical senses. The
boundary conditions are more complicated than others since we need to consider payoffs
and other contract restrictions (if any). By using replication and no-arbitrage argument,
the fair values on boundary are hence presented. Particularly, the degeneration conditions
are of the form of their counterparts of one asset less. In the next chapter, we will consider
either ”all Dirichlet BCs on S(i) = 0 and S(i) = Smax” or ”(half) Dirichlet on S(i) = 0 and
(half) Neumann BCs S(i) = Smax” and incorporate them in variational formulations.
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Chapter 4

Reformulation

4.1 Classical Formulation

From now on we pose our problems in the bounded domain [0, T ]×Ω where Ω ⊂ Rd+. We
first recall the Black-Scholes-Merton (BSM) operator of the form

Lv :=
1

2

d∑
i=1

d∑
j=1

σijS
(i)S(j) ∂2v

∂S(i)∂S(j)
+

d∑
i=1

(r − qi)S(i) ∂v

∂S(i)
− rv.

The option pricing problems of our interest are formulated in a standard BSM model as
follows.

European Options
A partial differential equation (PDE):

v̇ + Lv = 0,

along with a terminal condition (TC) and proper boundary conditions (BCs).

American Options
A partial differential inequality (PDI):

v̇ + Lv ≤ 0,

along with the complementarity condition (CC){
v − g ≥ 0,
(v̇ + Lv)(v − g) = 0,

and a TC and proper BCs.
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Perpetual Options
A partial differential inequality (PDI):

Lv ≤ 0,

along with the CC {
v − g ≥ 0,
(Lv)(v − g) = 0,

and proper BCs.

Note that g is a payoff function. The forms above are referred to as the classical or strong
formulations of option pricing problems.

4.2 BSM Operator in Divergence Form

Matrix Notations

In order to tackle high-dimensional problems in terms of matrices, we would like to express
the BSM operator in the divergence form as shown later. For convenience, the row i,
column j and (i, j) minor matrix of an arbitrary matrix m are denoted by R(i)

m , C(j)
m and

M(i,j)
m in what follows. A d× d symmetric tensor matrix T is defined as a matrix with the

(i, j) component

Tij =
σijS

(i)S(j)

2
.
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We further define the following vectors.

D :=
(

(r − q1)S(1), . . . , (r − qd)S(d)
)T
,

D̃ := D−
d∑
j=1

∂C(j)
T

∂Sj
=

(r − qi − σii −∑
j=1
j 6=i

σij
2

)
S(i)


d×1

=



r − q1 − σ11 −
∑
j=1
j 6=1

σ1j
2

...
r − qi − σii −

∑
j=1
j 6=i

σij
2

...
r − qd − σdd −

∑
j=1
j 6=d

σdj
2


�


S(1)

...
S(i)

...
S(d)

 =


D̄(1)

...
D̄(i)

...
D̄(d)

�


S(1)

...
S(i)

...
S(d)



=: D̄� S

where � is the entry-by-entry product, also called the Hadamard product. We also denote
the maximum of D̄(i) by

D̄max := max
1≤i≤d

{∣∣D̄(i)
∣∣} .

Divergence Form

The BSM operator can hence be written in the divergence form below.

L(v) = ∇ · (T∇v) + D̃ · ∇v − rv.

4.3 Variational Formulation

Instead of seeking a solution in the classical sense, the pricing problems can be reformulated
in integral form and the weak solutions can then be found in certain functional spaces,
generally Hilbert spaces. We will look in detail at European, American and perpetual
cases individually.

4.3.1 Notation

Recall our problems of interest are over the bounded domain [0, T ] × Ω where Ω :=
[0, Smax]

d ⊂ Rd+ along with the auxiliary conditions introduced in the previous chapter.
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We denote the set of Dirichlet boundaries and that of Neumann boundaries by ΓD and ΓN
respectively. And their union Γ = ΓD ∪ ΓN refers to the whole boundary. Recall that we
use either all-Dirichlet BCs or Dirichlet-Neumann BCsin this work. In the former case,

the ΓN is an empty set and Γ = ΓD. If ΓN is not empty, we then have ∇v
∣∣∣
ΓN

= ∇g
∣∣∣
ΓN

over ΓN .

4.3.2 European Options

We multiply v̇ + Lv by a test function w such that w
∣∣
ΓD

= 0 and integrate their product
over Ω, i.e. ∫

Ω

w(v̇ + Lv)dΩ = 0.

One-asset case

With chain rule and integration by parts, we then reach the variational form below.∫
Ω

w

(
v̇ +

( ∂

∂S

(σ2S2

2

∂v

∂S

)
+ (r − q − σ2)S

∂v

∂S
− rv

))
dS = 0.

⇔
∫
Ω

wv̇dS +

∫
Ω

w
∂

∂S

(σ2S2

2

∂v

∂S

)
dS +

∫
Ω

w(r − q − σ2)S
∂v

∂S
dS −

∫
Ω

wrvdS = 0

⇔ −(w, v̇) + b(w, v) = `(w).

where

(w, v) :=

∫
Ω

wvdS,

b(w, v) := r · (w, v) + (w′, v′)T − (w, D̃v′),

w′ :=
∂w

∂S
,

(w′, v′)T :=

∫
Ω

w′Tv′dS,

`(w) :=

[
w
σ2S2

2
v′
]Smax

0

=

{
0 if Smax ∈ ΓD,[
w σ2S2

2
g′
]Smax

0
= σ2Smax

2·w(Smax)·g′(Smax)
2

if Smax ∈ ΓN .
(4.1)
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Multi-asset case

For simplicity, we denote
∫
Ω

· dS by
∫
dΩ in what follows. With the divergence form,

integration by parts and Divergence theorem, we then reach the variational form below.∫
w(v̇ +∇ · (T∇v) + D̃ · ∇v − rv)dΩ = 0.

⇔
∫
wv̇dΩ +

∫
n ·
(
w(T∇v)

)
dΓN −

∫ (
∇w · (T∇v)

)
dΩ +

∫
wD̃ · ∇vdΩ−

∫
wrvdΩ = 0

⇔ −(w, v̇) + b(w, v) = `(w).

where

(w, v) :=

∫
wvdΩ, (4.2)

b(w, v) := r · (w, v) + (∇w,∇v)T − (w, D̃ · ∇v), (4.3)

(∇w,∇v)T :=

∫
∇wT∇vdΩ, (4.4)

`(w) :=

∫
wn ·T∇vdΓN =

{
0 if ΓN = φ,
< w,n ·T∇g >:=

∫
wn ·T∇gdΓN o.w.

(4.5)

Also note that

b(w, v) ≡ (w,−Lv) + `(w). (4.6)

4.3.3 American Options

We consider a test function w such that w
∣∣
ΓD

= 0 and w ≥ g over Ω. Since v̇ + Lv ≤ 0
and w − g ≥ 0, we have

(v̇ + Lv)(w − g) ≤ 0. (4.7)

Recall the complementarity condition

(v̇ + Lv)(v − g) = 0. (4.8)

(4.8)-(4.7) leads to

(v̇ + Lv)(v − w) ≥ 0⇔ (w − v)(v̇ + Lv) ≤ 0.

As this product is non-positive over Ω, we have∫
(w − v)(v̇ + Lv)dΩ ≤ 0.

The LHS can be manipulated in the same manner as European cases and we hence obtain

(w − v, v̇)− b(w − v, v) ≤ −`(w − v)⇔ −(w − v, v̇) + b(w − v, v) ≥ `(w − v).
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4.3.4 Perpetual Options

The time term is not involved in perpetual models. With the same argument as the
above American option case but without v̇, perpetual problems can be reformulated as the
following variational form.

b(w − v, v) ≥ `(w − v).

4.3.5 Summary

We briefly recapitulate the reformulations of our option pricing problems as follows.

Problem 4.1 Dynamic Variational Equality (DVE)
(

European Options
)

Find v(t) ∈ V such that for all t ∈ [0, T ], v(t) is a solution to

−(w, v̇) + b(w, v) = `(w), ∀w ∈ V, (4.9)

along with a TC and proper BCs are satisfied.

Problem 4.2 Dynamic Variational Inequality (DVI)
(

American Options
)

Find v(t) ∈ K ⊂ V, where K is a closed and convex subset, such that for all t ∈ [0, T ], v(t)
is a solution to

−(w − v, v̇) + b(w − v, v) ≥ `(w − v), ∀w ∈ K, (4.10)

along with a TC and proper BCs and CCs are satisfied.

It is worth to mention that if K = V, then the DVI reduces to the DVE, cf. [44, Remark
2.2].

Problem 4.3 Steady Variational Inequality (SVI)
(

Perpetual Options
)

Find v ∈ K ⊂ V, where K is a closed and convex subset, such that v is a solution to

b(w − v, v) ≥ `(w − v), ∀w ∈ K, (4.11)

along with proper BCs and CCs are satisfied.

Mathematically, the perpetual problem can be viewed as the steady state of its American
counterpart.

Note that if one replaces t by the time to maturity τ := T − t, the time term −(w−v, v̇)
can be replaced by (w − v, ∂v

∂τ
). Recall that the linear form `(·) comes from the Neumann

BCs (if used) and `(·) = 0 can be used if all BCs are of Dirichlet type. V and K above
are certain solution space/set for our problems. Naturally one may ask: what are the
space/set? does a solution exist in that space/set? if it exists, is it unique? Generally,
once a space/set is selected, the latter two questions depend on the properties of bilinear
form b(·, ·) and linear form `(·) in the problems. In the next section, we will answer these
with three powerful theorems.
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4.4 Unique Solution to Variational Problems

Definition 4.4 [Gelfand Triple, cf. [68, Def. 3.12] ]
We say B ⊆ H = H∗ ⊆ B∗ forms a Gelfand triple if B is a real separable and reflexive
Banach space, H is a real separable Hilbert space and B is dense in H with continuous
embedding B ⊆ H, i.e. ∀v ∈ B,∃c <∞ such that

||v||H ≤ c||v||B.

We denote such relation by B ↪→ H ↪→ B∗.

Note that B = H1(Ω) and H = L2(Ω) forms a Gelfand triple, i.e.

H1(Ω) ↪→ L2(Ω) ↪→ H−1(Ω) := H1(Ω)
∗
.

. Notice that the Gelfand triple is one of the assumptions to ensure the unique solution of
variational time-dependent problems, cf. [107, Ch.23,55] and [68, Thm.3.3 and 3.7, Remark
3.14].

4.4.1 Theorems on Unique Solution

Provided H1(Ω) ↪→ L2(Ω) ↪→ H−1(Ω) with the induced norms || · ||H = || · ||H1(Ω) and
|| · ||L = || · ||L2(Ω) and a subspace V such that H1

0 (Ω) ⊆ V ⊂ H1(Ω) where H1
0 (Ω) is the

subspace with homogeneous/zero Dirichlet boundary conditions, the following theorems
will be used to justify the unique solutions to the DVE, DVI and SVI problems mentioned
earlier.

Theorem 4.5 (Unique Solution to the DVE with Homogeneous Dirichlet BC)
There exists a unique solution v ∈ L2(0, T ;V) ∩ C0([0, T ]; Ω) to the DVE if for all w ∈ V,
∃c1, c2, cH > 0 and ∃cL ≥ 0 such that

• |`(w)| ≤ c1||w||H (boundedness/continuity),

• |b(w, v)| ≤ c2||w||H ||v||H (boundedness/continuity),

• b(w,w) ≥ cH ||w||H2 − cL||w||L2 (weak coercivity or Garding’s Inequality).

This conclusion is stated in various references, such as [107, 68], [18], [75, Sec.11.1.1] and
[11, Thm.5.6.8]. Actually, it a generalization of the Lax-Milgram theorem with the strong
coercivity (cL = 0 in coercivity) and no time term involved. Note that |`(w)| ≤ c1||w||H
implies |`(w)| ≤ c3||w||L for some c3 > 0.

Theorem 4.6 (Unique Solution to the DVI with Homogeneous Dirichlet BC)
There exists a unique solution v ∈ L2(0, T ;K) ∩ C0([0, T ]; Ω) , where K ⊂ V is a closed
and convex nonempty subset, to the DVE if for all w ∈ K, the three conditions above
are satisfied.
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This result is stated in [107, 68, 56, 5] and [44, Ch.3] along with the references of its proof
herein.

Theorem 4.7 (Unique Solution to the SVI with Homogeneous Dirichlet BC)
There exists a unique solution v ∈ L2(K)∩C0(Ω) , where K ⊂ V is a closed and convex
nonempty subset, to the DVE if r > 0 and for all w ∈ K, the three conditions above are
satisfied.

This result and its proof is adapted from [27].1 We leave the lengthy proof in the appendix.
In general one of the sufficient conditions to unique solution to the SVI is the strong
coercivity, cf. [44, Ch.1]. When the loose condition (Garding’s Inequality) is applied, we
need the extra condition r > 0 to compensate. The compensation condition r > 0 (positive
interest rate) is automatically satisfied in practice.

4.4.2 Assumption for Nonhomogeneous Dirichlet BCs

Proposition 4.8 In general the pricing problems do not possess homogeneous Dirichlet
BCs. In this case we assume there exists another continuous function u which coincides
with v on all Dirichlet BCs, i.e. v(t)

∣∣
ΓD

= u(t)
∣∣
ΓD

, in the solution space V or K. It can be
proved that there exists a unique solution v to the pricing problems if such u exists.

Proof.
Existence: ṽ := v − u has zero Dirichlet BCs and has a solution which implies v = ṽ + u
is a solution to the original nonhomogeneous problem.2

Uniqueness: Assume v1 and v2 are two solutions to the nonhomogeneous problem. By
taking identical u, we know ṽ1 := v1 − u and ṽ2 := v2 − u are solutions to a correspond-
ing homogeneous problems and hence they are identical because of uniqueness. We hence
conclude v1 = v2.

4.4.3 Boundedness and Coercivity of Linear and Bilinear Forms

Solution Spaces

For convenience of derivation, [94] considers a weighted Sobolev space and an inner product
which are equivalent to the ordinary Sobolev spaces and its inner product on a bounded

1I would like to express my deep appreciation to the author of [27], P. Feehan, for his kindly help via
email communication.

2In the inequality cases we also need to replace thefunction g by g̃ = g − u.
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domain Ω. We extend their definition in d−dimesional sense as below.

(w, v)Hw := (w, v) + (S�∇w,S�∇v),

H1,ω(Ω) :=
{
w : ||w||2H := (w,w)Hw <∞

}
,

H1,ω
0 (Ω) :=

{
w : w ∈ H1,ω(Ω), w

∣∣
Γ

= 0
}
,

H1,ω
D (Ω) :=

{
w : w ∈ H1,ω(Ω), w

∣∣
ΓD

= 0
}
.

Given homogeneous Dirichlet BCs, we consider the bilinear form b(w, v) : H1,ω(Ω) ×
H1,ω(Ω)→ R and the linear form l(w) : H1,ω(Ω)→ R and seek solutions in a subspace

V :=
{
w : w ∈ H1,ω

D (Ω),∇w
∣∣
ΓN

= ∇g
∣∣
ΓN

}
such that H1,ω

0 (Ω) ⊂ V ⊂ H1,ω(Ω),

or a closed and convex nonempty subset

K := {w : w ∈ V, w(S) ≥ g(S) over Ω} ⊂ V.

One-asset case

[1] Boundedness of Linear Form:
With the definition (4.1), we have

|`(w)| =

{
0 if Smax ∈ ΓD,

|σ
2Smax

2·w(Smax)·g′(Smax)
2

| < |σ
2Smax

2·g′(Smax)
2

| · sup
Ω
|w| if Smax ∈ ΓN .

≤ c1||w||Hω for some c1 > 0.

[2] Boundedness of Bilinear Form:
With the definition (4.3) in one-asset case, we have

|b(w, v)| = |r · (w, v) +
σ2

2
· (sw′, sv′)− (r − q − σ2) · (w, sv′)|

≤ 2 ·max{r, σ
2

2
, |r − q − σ2|} · ||w||Hω · ||v||Hω

=: c2 · ||w||Hω · ||v||Hω .

[3] Weak Coercivity of Bilinear Form:
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Substituting v = w into (4.3) gives

b(w,w) = r · (w,w) +
σ2

2
· (sw′, sw′)− (r − q − σ2) · (w, sw′)

= (r +
r

2
) · (w,w)− q + σ2

2
· (w,w) +

σ2

2
· (sw′, sw′)

−r · Smax

2
· w(Smax)

2 + (q + σ2) · Smax

2
· w(Smax)

2

= min{3r

2
,
σ2

2
} · ||w||2Hω −

(
q + σ2

2
+
rSmax

2

)
· ||w||2L (for some c > 0)

=: cH · ||w||2Hω − cL · ||w||2L (with cH ≥ 0 and cL ≥ 0).

Multi-asset case

Recall that Σ is symmetric with positive entries. We denote its eigenvalues by λi such that
0 < λ1 ≤ λ2 ≤ . . . ≤ λd <∞.
[1] Boundedness of Linear Form:
With the definition (4.5) and

∫
w2 dΓN <∞ guaranteed by Trace Theorem, we have

|`(w)| = | < w,n ·T∇g > |
≤ λd · | < w, (S� n) · (S�∇g) > |
= λd · ||(S� n) · (S�∇g)||L2(ΓN ) · ||w||L2(ΓN )

≤ c1||w||H .

[2] Boundedness of Bilinear Form:
With the definition (4.3), we have

b(w, v) ≤ max{r, λd} ·
(

(w, v) + (S�∇w,S�∇v)
)

+ max
i
{
∣∣D̄(i)

∣∣} · d∑
i=1

∫
w · S(i) · ∂v

∂S(i)
dΩ

≤ max{r, λd, d · D̄max} · (||w||Hω · ||v||Hω + ||w||Hω · ||v||Hω)

= 2 ·max{r, λd, d · D̄max} · ||w||Hω · ||v||Hω

=: c2||w||Hω · ||v||Hω

[3] Weak Coercivity of Bilinear Form:
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Substituting v = w into (4.3) gives

b(v, v) ≥ r · (v, v) + λ1 · (S�∇w,S�∇v)

−

D̄max · Smax

2
· < v, v > −1

2
·

d∑
i=1

r − qi − σii −∑
j=1
j 6=i

σij
2

 · (v, v)



= (r +
dr

2
) · (v, v)− 1

2
·

d∑
i=1

qi + σii +
∑
j=1
j 6=i

σij
2

 · (v, v) + λ1 · (S�∇v,S�∇v)

−D̄
max · Smax

2
· < v, v > .

We define the following operators.

A+ := max{A, 0} =

{
A > 0 if A > 0
0 o.w.

A− := max{−A, 0} =

{
−A = |A| > 0 if A < 0
0 o.w.

Note A ≡ A+ − A−. We further define

Q :=
d∑
i=1

qi + σii +
∑
j=1
j 6=i

σij
2

 ≡ Q+ −Q−. (4.12)

With the new notation and Trace Theorem, we can rewrite

b(w, v) ≥ (r +
dr

2
) · (v, v)− 1

2
· (Q+ −Q−) · (v, v) + λ1 · (S�∇v,S�∇v)− D̄max · Smax

2
· < v, v >

≥ min{r +
dr

2
+
Q−

2
, λ1} · ||v||2Hω −

(Q+

2
+
D̄max · Smax

2
· c2
)
· ||v||2L (for some c > 0)

=: cH ||v||2Hω − cL||v||2L

Note that cL in one-asset and multi-asset could be very large due to the large Smax.

4.5 Summary

In this chapter we reformulate the pricing problems from the classical Black-Scholes-Merton
equation to its variational form. Following that, we show the boundedness and weak
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coercivity of our linear and bilinear forms. With the practical assumption r > 0, unique
solutions to European, American and perpetual option pricing problems can be justified
by the use of theorems 4.5, 4.6 and 4.7. In the next chapter, we shall see how to obtain
the the discrete systems deriving from the variational formulations introduced previously
and understand their solvability.
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Chapter 5

Discrete Weak Formulation and
Solvability

In the previous chapter, we have discussed the conditions for unique solutions for the
infinite-dimensional variational formulations of option pricing problems. In order to find
their values numerically, we shall introduce how to approximate the problems in discrete
forms in this chapter.

5.1 Finite-dimensional Formulations

Recall that in terms of infinite-dimensional problems, we have H1(Ω) ↪→ L2(Ω) ↪→ H−1(Ω),
a solution space V such that H1

0 (Ω) ⊆ V ⊂ H1(Ω) and a closed and convex nonempty
solution subset K ⊂ V. We now assume the infinite-dimensional space/set V and K
can be approximated by the finite-dimensional families (Vh)h and (Kh)h as h → 0 where
Kh ⊂ Vh. We also assume vh(t,S) ∈ Vh in the European case and vh(t,S) ∈ Kh in the
American and perpetual cases. In terms of terminal and boundary conditions, we assume
vh(t = T,S)→ v(t = T,S) and vh(t,S)

∣∣
Γ
→ v(t,S)

∣∣
Γ

strongly in V.
Similar to the infinite-dimensional variational formulations of our option pricing problems,
we now build their finite-dimensional counterparts as follows.

Problem 5.1 (European Options)
Find vh(t,S) ∈ Vh such that for all t ∈ [0, T ], vh is a solution to

−(wh, v̇h) + b(wh, vh) = `(wh), ∀wh ∈ Vh,

provided a terminal condition (TC) and proper boundary conditions (BCs) are satisfied.

Problem 5.2 (American Options)
Find vh(t,S) ∈ Kh ⊂ Vh, where Kh is a closed and convex subset whose member functions
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are at least equal to a payoff function g(S), such that for all t ∈ [0, T ], vh is a solution to

−(wh − vh, v̇h) + b(wh − vh, vh) ≥ `(wh − vh), ∀wh ∈ Kh,

provided a TC and proper BCs and complementarity conditions (CCs) are satisfied.

Problem 5.3 (Perpetual Options)
Find vh(S) ∈ Kh ⊂ Vh, where Kh is a closed and convex subset whose member functions
are at least equal to a payoff function g(S), such that vh is a solution to

b(wh − vh, vh) ≥ `(wh − vh), ∀wh ∈ Kh,

provided proper BCs and CCs are satisfied.

5.2 Domain Partition and Nodes Numbering

We assume the spatial domain is partitioned by non-overlapping (interior) elements, say
Ω(1), . . . ,Ω(nE), which are geometric simplexes such that Ω = ∪nEe=1Ω(e). Similarly we can
divide the Neumann and Dirichlet boundaries respectively by non-overlapping boundary el-
ements, say Γ

(1)
N , . . . ,Γ

(nN )
N and Γ

(1)
D , . . . ,Γ

(nD)
D , such that ΓN = ∪nNe=1Γ

(e)
N and ΓD = ∪nDe=1Γ

(e)
D .

Every mesh point/node of an element in our spatial domain [0, Smax]
d is given a unique

global index i ∈ {1, . . . , n3} and denoted by S(i). We number all mesh points on the
interior domain, Neumann boundary and Dirichlet boundary in the order of i = 1, . . . , n1,
i = n1 + 1, . . . , n2 and i = n2 + 1, . . . , n3 individually.

We partition the time domain [0, T ] with the uniform segment length ht > 0 and the
points ti := i · ht for i = 0, . . . , Nt with Nt ∈ N.

5.3 Semi-discretization

In what follows, we rewrite the problems in a discrete sense and express the equations in
matrix form by finite element approximation.

5.3.1 Finite Element Approximation

A shape function is a function defined over an element which can be linear, quadratic or
higher-order w.r.t. each dimension/axis. A node/basis function, denoted by N (i)(·) for
i = 1, . . . , n3, is subsequently defined as a small union of a few shape functions sharing a
joint node over some connected elements and has support only over those elements. Namely
a basis function will be centered at that joint node and so we can number it simply with
the number of the central node.
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Generally a basis function has the unit value at its central node and zeros at others. We
will show the explicit forms and relevant properties of these functions in the next chapter
chapter. At this stage, we simply need to bear in mind that these shape functions will be
used to construct finite-dimensional approximation of our functional space.

A finite-dimensional (closed) subspace Vh ⊂ V and a (closed and convex) subsetKh ⊂ K
can be spanned by these node/basis functions. We aim to approximate our problems from
infinite-dimensional space V and set K into their finite-dimensional subspace Vh and subset
Kh. Such technique of approximation is referred to as the finite element method (FEM).
An approximation wh in Vh or Kh can be expressed/spanned by wh =

∑n3

i=1w
(i)N (i) where

w(i) ∈ R.

5.3.2 Approximation

We now approximate all functions into the finite-dimensional spaces using

wh(t,S) :=

n3∑
i=1

w(i)(t)N (i)(S),

vh(t,S) :=

n3∑
j=1

v(j)(t)N (j)(S),

(wh − vh)(t,S) :=

n3∑
i=1

(
w(i)(t)− v(i)(t)

)
N (i)(S),

to rewrite the following operators in matrix form.

L2 Inner Product

(wh, v̇h) :=
∑
i

∑
j

w(i)v̇ (j)(N (i), N (j)) =: WTMV̇

where M’s (i, j) entry is defined as Mij := (N (i), N (j) ).

Bilinear Form

b(wh, vh) =
∑
i

∑
j

w(i)v(j)b(N (i), N (j)) =: WTBV

where B’s (i, j) entry is defined as Bij := b(N (i), N (j) ).
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Linear Form

`(wh) =
∑
j

w(j)`(N (j)) =: WTL

where L’s jth. entry is defined as Lj := `(N (j)).

We will discuss the detailed computation of M,B,L in the next chapter.

5.3.3 Weak Formulation in Discrete Form

We now express the discrete form of the variational equations for option pricing problems
as below.

European options: −(WTMV̇) + WTBV = WTL.

American options: −(W −V)TMV̇ + (W −V)TBV ≥ (W −V)TL.

Perpetual options: (W −V)TBV ≥ (W −V)TL.

5.4 Reduced System

We define the collections of (global) indices for the interior, Neumann and Dirichlet nodes
by I,N and D respectively. We use IN and D as the subscripts of matrices to denote their
minor matrices decided by the selected collections. Following our previous numbering, we
have IN := {1, . . . , n1, n1 + 1, . . . , n2} and D := {n2 + 1, . . . , n3}. Since the Dirichlet data
VD are known, we could reduce the systems with only the unknown VIN remained to be
solved as follows.
European options:

− WIN
T
(
MIN,INV̇IN + MIN,DV̇D

)
+ WIN

T (BIN,INVIN + BIN,DVD) = WIN
TLIN . (5.1)

American options:

− (WIN −VIN)T
(
MIN,INV̇IN + MIN,DV̇D

)
+ (WIN −VIN)T (BIN,INVIN + BIN,DVD) ≥ (WIN −VIN)T LIN . (5.2)

Perpetual options:

(WIN −VIN)T (BIN,INVIN + BIN,DVD) ≥ (WIN −VIN)T LIN . (5.3)
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5.5 Full-discretization

5.5.1 Finite Difference Method

We would like to discretize the reduced systems in time by finite difference method (FDM),
which is mainly based on the Taylor’s expansion. As well as the equalities of European
cases, the FDM is also employable to the inequalities of American and perpetual counter-
parts, cf. [44].

Three popular types are the θ-method, the Rannacher Method and the Runge-Kutta
methods. The Runge-Kutta (RK) method adopts multi-step approximation for higher
accuracy while the θ−method uses one-step approximation. When θ = 0, 1/2 and 1 in
the θ−method of our formulation, it corresponds to explicit Euler, Crank-Nicolson (semi-
implicit) and implicit Euler method individually. The semi-implicit and implicit Euler
method are proved unconditionally stable for both equality and inequality cases, cf. [75]
and [44, Ch.3, Sec.4]. In generally, a s−step RK method has the accuracy of order s and
2s for explicit and implicit methods respectively with s ≤ 4. If s > 4, then most s−step
explicit RK methods have the order less than s.

Generally, Crank-Nicolson method with θ = 1/2 is widely used in numerical computa-
tion due to its unconditional stability and second-order accuracy. However, it may cause
numerical oscillation to the solutions of v, vs and vss. The Rannacher method uses implicit
Euler (θ = 1) in the first few steps and probably with a smaller time step length and turns
to Crank-Nicolson method afterwards. It retains the same unconditional stability and
asymptotically second-order accuracy as the Crank-Nicolson method but avoids numerical
oscillation, cf. [41]. For simplicity and generality, the problems are to be discretized by
the θ−method with a general choice of θ ∈ [0, 1]. In what follows, the superscript k is used
to represent the information at time step tk.

5.5.2 Coefficient Matrix and Right-Hand-Side Vector

To simplify the expression of equations, we define the following notations.

C :=
1

ht
MIN,IN + θBIN,IN ,

Rk :=

(
1

ht
MIN,IN − (1− θ)BIN,IN

)
Vk+1
IN +

(
1

ht
MIN,D − (1− θ)BIN,D

)
Vk+1
D

+

(
−1

ht
MIN,D − θBIN,D

)
Vk
D + LIN ,

C̃ := BIN,IN ,

R̃ := BIN,DVD − LIN .

We notice that:
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• C and C̃ are constant banded matrices with 3d bands if globally numbering the nodes
in lexicographical order.

• Computationally Rk must be re-computed at every time step with the known infor-
mation from previous time step and the data on the Dirichlet boundary.

In order to get rid of the subscripts and to express the problems in the canonical form
of linear complementarity problems, we further define the following linear transformation.

zk := Vk
IN −GIN ,

qk := CGIN −Rk,

z := VIN −GIN ,

q := C̃GIN − R̃.

With these notations, we are ready to discretize the systems in time. Note that the fully-
discretized systems can be solved backward numerically at each time step, from k = nt− 1
to k = 0.

5.5.3 European Options

As (5.1) holds for all WIN ∈ Rn2×1, discretizing it with one-step θ−method and time step
length ht > 0 gives us

Czk + qk = 0

5.5.4 American Options

Tackling inequality case needs some extra effort. First discretizing (5.2) leads to the(
Wk

IN −Vk
IN

)T (
CVk

IN −Rk
)
≥ 0. (5.4)

We now employ the following lemma to convert the system to a (dynamic/sequential)
linear complementarity problem (LCP).

Lemma 5.4
Provided wh ∈ Kh whose member functions are at least equal to a payoff function g(S), the
(dynamic/sequential) finite-dimensional variational inequality problem (5.4) is equivalent
to the (dynamic/sequential) linear complementarity problem (LCP) below

zk = 0,

ωk = Czk + qk = 0

(zk)Tω = 0.

where = is an entry-wise inequality, 0 is an n2 × 1 zero vector.
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Proof.
Suppose zk = Vk

IN is the solution to the LCP, then it is trivial to satisfy the variational
inequality (5.4). Now we suppose the variational inequality (5.4) is satisfied. The first
inequality (5.5) is implied by (5.4). The second inequality (5.5) comes from wh ∈ Kh. The
last equality (5.5) is obtained by multiplying (5.5) by (5.5) and substituting Wk

IN = GIN

into the variational inequality (5.4).

5.5.5 Perpetual Options

Recall V̇ is taken off from the formulation of perpetual options, we do not need to discretize
in time in this case. Instead, we simply rearrange the formulation in the following finite-
dimensional variational from.

(WIN −VIN)T
(
C̃VIN − R̃

)
≥ 0. (5.5)

.
Similarly we utilize the lemma below to convert the system to a (static) linear comple-

mentarity problem (LCP).

Lemma 5.5
Provided wh ∈ Kh whose member functions are at least equal to a payoff function g(S), the
(static) finite-dimensional variational inequality problem (5.5) is equivalent to the (static)
linear complementarity problem (LCP) below

z = 0,

ω = C̃z + q = 0,

(z)Tω = 0.

where = is an entry-wise inequality, 0 is an n2 × 1 zero vector.

Proof. This can be adapted straight from the proof of lemma 5.4.
Mathematically the solution to this static LCP can be viewed as the steady state of

the dynamic LCP in lemma 5.4.

5.5.6 Summary of Discrete Systems

Provided the terminal conditions zk = 0 and the proper boundary conditions for the
computation of qk and q, we can summarize the discrete problems as below. Notice that
the boldface qk and q do not refer to the dividend rates in the LCP systems.

• European options: find the sequential solutions Vk
IN to the system of equalities

below

Czk + qk = 0, (5.6)
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at each time step tk for k = nt − 1, . . . , 1.

• American options: find the sequential solutions Vk
IN to the system of linear com-

plementarity problem (LCP) below

zk = 0, (5.7)

ωk = Czk + qk = 0 (5.8)

(zk)Tω = 0. (5.9)

at each time step tk for k = nt − 1, . . . , 1.

• Perpetual options: find the solution VIN to the system of linear complementarity
problem below

z = 0, (5.10)

ω = C̃z + q = 0, (5.11)

(z)Tω = 0. (5.12)

5.6 Coefficient Matrix and Solvability

It is well-know that a system of equalities is uniquely solvable if its coefficient matrix is
non-singular. A positive-definite C will suffice for this in the European case.

A LCP system is uniquely solvable if its coefficient matrix is a P -matrix, cf. [24]. A
matrix is said to be a P -matrix if all its principal minors are positive. It is known that a
positive-definite matrix is a P -matrix, cf. [24, Thm.3.1.6,p.141] and [49, p.18]. In terms
of American and perpetual options, this can be achieved by assuming C and C̃ := BIN,IN

are positive definite or asymptotically being so as ht → 0. We will review the definitions
of some matrix classes and their relation to a LCP system in detail in the later chapter 7.

5.6.1 Matrix M

As the mass matrix derives from L2−norm (L2−inner product), it follows that M is strictly
positive-definite and hence it is a P -matrix.

5.6.2 Matrix B

We recall that b(w,w) = r · (w,w) + (∇w,∇w)T − (w, D̃ · ∇w)gives B ≡ rM + K−A.
Provided the covariance matrix Σ is a symmetric positive definite matrix, the part

r · (w,w) + (S � ∇w,S � ∇w)Σ forms an induced norm over Ω. It then follows that the
matrix (rM + K) is consequently strongly positive definite.
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Since the part of (rM + K) is strongly positive definite, there are various assumptions
to make the whole B = rM+K−A positive definite. Below we explore three possibilities.

1. We assume the convection term is not dominant in the BSM operator. In terms of the
discrete system, it implies the minimum of the (positive) eigenvalues of (rM + K)is
strictly greater than the maximum of those of A. It then follows that B is positive
definite.

2. A stronger assumption is to assume the convection term in variational produces non-
positive values, i.e. (w, D̃ · ∇v) < 0. In terms of the discrete system, it implies
the asymmetric A is semi-negative definite. We then have −A being semi-positive
definite and B being strongly positive definite.

3. Actually the above assumption can be guaranteed if we pose a more strict assumption
on the coefficients from the trace theorem. With the trace theorem, we can assume
∃ci > 0 such that ∫

w2dΓ
(i)
N ≤ ci

∫
w2dΩ.

Moreover, by assuming Smaxci < 1 for all i = 1, · · · , d as Smax → ∞, we can obtain
the semi-negative definite A as shown below.

WTAW =
d∑
i=1

D̄
(i) · 1

2
·
(
Smax ·

∫
w2
hdΓ

(i)
N −

∫
1 · w2

hdΩ

)

≤
d∑
i=1

∣∣∣D̄(i)
∣∣∣︸ ︷︷ ︸

(+)

·1
2
· (Smaxci − 1)︸ ︷︷ ︸

(−)

·
∫
w2
hdΩ︸ ︷︷ ︸

(+)

< 0

Note that the any one of three assumptions guarantees a positive definite B.

5.6.3 Matrix C

If BIN,IN is positive definite (and thus P -matrix), it follows C := 1
ht

MIN,IN + θBIN,IN is
positive definite (and thus P -matrix). If the definiteness of BIN,IN is unknown, at least
C is asymptotically dominated by MIN,IN (as ht → 0) and thus asymptotically being
positive-definite and a P -matrix.

5.7 Summary

We have seen how to discretize the infinite-dimensional problems into their finite-dimensional
counterparts with finite element method in space and finite difference method in time. The
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discrete systems can be uniquely solved if their coefficient matrices are positive-definite and
accordingly a P -matrix, which can be satisfied at least asymptotically. In the next chapter,
we shall see the detailed computation of the matrices arising from finite element approxi-
mation.
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Chapter 6

Finite Element Matrices

In the previous chapter, we have seen how to discretize the variational formulation of our
pricing problems. However, the finite element matrices used in discretized systems have
not been explained in detail. This chapter is devoted to the computation of these matrices
with conventional quadrature method and newly-derived formulas.

6.1 Numbering System

To implement the finite element method (FEM), we first need to partition the compu-
tational domain into finitely many subdomains, namely computational elements. Such
elements are generally simplexes. Since our computational domain Ω = [0, Smax]

d is regu-
lar, we can choose d−dimensional hypercubes1 as our elements. Following this, we obtain
a boundary subdivision of Γ := ΓN ∪ ΓD. We denote the interior elements, Neumann
boundary elements and Dirichlet boundary elements by Ω(e),Γ

(e)
N ,Γ

(e)
D individually. We

note that

Ω =

nE⋃
e=1

Ω(e), ΓN =

nN⋃
e=1

Γ
(e)
N , ΓD =

nD⋃
e=1

Γ
(e)
D .

Particularly a d−dimensional reference element is denoted and defined by

Ω∗ := [0, 1]d.

If we apply Neumann boundary conditions, a face, say ΓN(B) , of the whole computational
domain is defined in the following way. For each B ∈ {1, . . . , d},

ΓN(B) :=
{
S ∈ ΓN : S = (S(1), . . . , S(d)) and S(B) = Smax

}
.

1They are segments, squares and cubes in 1, 2, 3 dimensions, respectively.
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Each face ΓN(B) has freedom in (d − 1) dimensions and is divided by its non-overlapping

boundary elements Γ
(b)

N(B) for b = 1, . . . ,mB such that

ΓN =

nN⋃
e=1

Γ
(e)
N

≡
d⋃

B=1

ΓN(B) =
d⋃

B=1

(
mB⋃
b=1

Γ
(b)

N(B)

)
.

Note that nN =
∑d

B=1mB.
We denote a node by S(g) and number all the nodes with a global index, say g =

1, . . . , n1, g = n1 + 1, . . . , n2 and g = n2 + 1, . . . , n3 for the nodes on the interior domain,
Neumann boundary and Dirichlet boundary individually. We remind the reader that in
this chapter the global numbering system will use g as the notation of index while ` will
be used to denote that of the local numbering system introduced later.

In addition to the global indices of the nodes over the whole computational domain,
it is convenient to number the nodes locally over a common element. A node Se :=
[S

(1)
e , . . . , S

(d)
e ] ∈ Ω(e) is said to be a local origin of an element Ω(e) if for any S :=

[S(1), . . . , S(d)] ∈ Ω(e),

S(i) ∈ [S(i)
e , S

(i)
e + hi].

where hi refers to the elemental edge length along S(i). If a uniform mesh is employed,
we have h1 = . . . = hd =: hs > 0 where the subscript s stands for space (or share/stock)
to distinguish from the time step ht > 0. Obviously 0 ∈ Rd is also a local origin of the
reference element Ω∗.

We know that a d−dimensional hypercube element has n` := 2d vertices. Such n`
vertices can be numbered later with ` = 1, 2, . . . , n` from its local origin in lexicographical
order. Furthermore, we associate each local index ` with a d−tuple (δ1, . . . , δd) with δi ∈
{0, 1} in the following lexicographical order.

` ↔ (δ1, δ2, . . . , δd−1, δd)
1 ↔ (0, 0, . . . , 0, 0)
2 ↔ (1, 0, . . . , 0, 0)
3 ↔ (0, 1, . . . , 0, 0)
4 ↔ (1, 1, . . . , 0, 0)
... ↔ ...

... . . . ,
...

...
n` := 2d ↔ (1, 1, . . . , 1, 1)

Suppose a node S(g) is also a vertex of a d−dimensional hypercube element. The we can
number it locally with a local index ` and the corresponding tuple (δ1, . . . , δd) as follows.

S(g)
∣∣
Ω(e) ≡ S

(e)
` := Se(δ1,...,δd) := (S(1)

e + δ1h1, . . . , S
(d)
e + δihd)

T ,
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and similarly

S(g)
∣∣
Ω∗
≡ S∗` := S∗(δ1,...,δd) := (δ1, . . . , δi)

T ,

where ` ∈ {1, . . . , n` := 2d}, δi ∈ {0, 1} and i ∈ {1, . . . , d}. For convenience, these no-
tations will be used interchangeably in the rest of this chapter. We will also omit the
subscript/superscript e and ∗ if there is no confusion.

6.2 Shape Functions

We first recall that a shape function is a function defined over an element and a node/basis
function is subsequently defined as a small union of a few shape functions sharing a joint
node over some connected elements and has support only over those elements. We now
define the following shape and node functions which will be used in the later derivation.

6.2.1 One-dimensional hat function

We define two hat functions along S(i) direction over Ω(e) as follows.

He
δ (S

(i)) :=


S(i)−S(i)

e

hi
for δ = 1,

1− S(i)−S(i)
e

hi
for δ = 0.

Those over Ω∗ can be defined in the same manner.

H∗δ (S(i)) :=

{
S(i) for δ = 1,

1− S(i) for δ = 0.

We remind the reader that the superscript e and ∗ (associated with an element) will
be omitted if there is no confusion. The one-dimensional hat functions will be used to
construct a shape function in one- and higher-dimensional cases.

6.2.2 d−linear shape function

A d−linear shape function over Ω(e), denoted by N
(`)
e , reaching one at the node S

(e)
` ∈ Ω(e)

and zero at others vertices is defined as2

N (`)
e (S) := N e

δ1,...,δd
(S) :=

d∏
i=1

He
δi

(S(i)).

2In a similar way, we can define d−quadratic or d−cubic shape functions once a one-dimensional
quadratic or cubic function is defined.
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Analogously, a shape function over Ω∗ has the form

N (`)
∗ (S) := N∗δ1,...,δd(S) :=

d∏
i=1

H∗δi(S
(i)).

and reaches one at S∗` and zero at the other vertices.
Figures 6.1, 6.2 and 6.3 are the visualization of shape functions in one, two and three

dimensions individually.
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Figure 6.1: Two linear shape functions over a common 1D reference element domain.
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Figure 6.3: Eight trilinear shape functions over a common 3D reference element domain.
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6.3 Problem Summary

We recall the infinite-dimensional variational equations of our pricing problems.

European options: −(w, v̇) + b(w, v) = `(w),

American options: −(w − v, v̇) + b(w − v, v) ≥ `(w − v),

Perpetual options: b(w − v, v) ≥ `(w − v),

where

• b(w, v) := r · (w, v) + (∇w,∇v)T − (w, D̃
T∇v).

• T is a d× d symmetric tensor matrix with the (i, j) component

Tij =
σijS

(i)S(j)

2
,

and T ≡ 1
2
· Σ� (S ST )

•

D̃ =



r − q1 − σ11 −
∑
j=1
j 6=1

σ1j
2

...
r − qi − σii −

∑
j=1
j 6=i

σij
2

...
r − qd − σdd −

∑
j=1
j 6=d

σdj
2


�


S(1)

...
S(i)

...
S(d)

 =: D̄� S.

• `(w) ≡ 0 if all boundary conditions are of Dirichlet type. If the the Neumann
boundary conditions are applied , then

`(w) :=

∫
ΓN

wn ·T∇gdΓN .

After spatial discretization with finite element method, we obtain the following systems.

European options: −(WTMV̇) + WTBV = WTL,

American options: −(W −V)TMV̇ + (W −V)TBV ≥ (W −V)TL,
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Perpetual options: (W −V)TBV ≥ (W −V)TL,

where

• W := (w(1), · · · , w(n3))T ,

• V := (v(1), · · · , v(n3))T ,

• Mij := (N (i), N (j) ),

• Bij := b(N (i), N (j) ),

• Lj := `(N (j)).

Furthermore, B ≡ rM + K−A because

b(N (i), N (j)) := r · (N (i), N (j)) + (∇N (i),∇N (j))T − (N (i), D̃∇N (j)) =: rMij + Kij −Aij.

Global and Elemental Matrices

We call L the global load vector. The symmetric matrices M and K are referred to as global
mass matrix and global stiffness matrix, and we note that A is a nonsymmetric global
matrix. We would like to find their entry values, so we can proceed with the solution of
the fully-discretized reduced systems as shown in the previous chapter.

Conventionally, the global matrices and load vector are computed element by element.
Namely,

Mij :=

∫
Ω

N (i)N (j)dΩ =

nE∑
e=1

∫
Ω(e)

N (i)N (j)dΩ(e) =:

nE∑
e=1

M
(e)
ij .

and similarly Kij =
nE∑
e=1

K
(e)
ij , Aij =

nE∑
e=1

A
(e)
ij and Lj =

nN∑
e=1

L
(e)
j .

Since there are only n` := 2d node functions with support over a common d−dimensional
element, zeros fill into most entries of the global matrices associated with the element
numbered by (e). Accordingly we focus on the nonzero entries, reduce the matrix (and
vector) size from n3 × n3 (and n3 × 1) to 2d × 2d (and 2d−1 × 1) and call the reduced
counterparts elemental matrices (and elemental load vector).

Instead of the straight computation of global matrices and load vector, we focus on
that of their elemental counterparts. Following the computation of elemental matrices and
load vector, we then sum up their results to obtain the full-sized global counterparts. To
map the computed values from elemental matrices to global counterparts, we can build a
connectivity table linking local and global numbering systems for the use of assembly.
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6.4 Elemental Computation by Closed-form Formula

Most people adopt numerical computation to approximate the elemental matrices up to
satisfactory accuracy when using the finite element method. We describe how this can be
performed and comment on this approach in our appendix.

Since our problem is specifically on the Black-Scholes-Merton equation, we alternatively
describe how to obtain their exact component values by using the closed-form formulas
derived below. These formulas can save substantial pre-processing time from numerical
integration especially in high-dimensional cases and provide exact results of integration for
our elemental matrices.

A key advantage of choosing d−linear shape functions is that the integrals over a
d−dimensional hypercube element can be split into the sums or products of integrals
along each dimension. Equipped with a well-defined local numbering system, closed-form
formulas are consequently available for all elemental matrices .

6.4.1 Preliminaries

After some efforts of manual computation, we obtain the following results. For δ, δj, δk ∈
{0, 1}, ∫ S

(i)
e +hi

S
(i)
e

Hδ(S
(i)) dS(i) =

hi
2
,∫ S

(i)
e +hi

S
(i)
e

Hδj(S
(i))Hδk(S

(i)) dS(i) =
hi
6
· (1 + 1{δj=δk}),∫ S

(i)
e +hi

S
(i)
e

S(i)Hδ(S
(i)) dS(i) =

hiS
(i)
e

2
+
hi

2(1 + 1{δ=1})

6
.

6.4.2 Integrals over interior elements in the two-dimensional case

We first recall the following two-dimensional node functions.

N (`1)
e (S) := Nδ1δ2(S) := Hδ1(S

(1)) ·Hδ2(S
(2)),

N (`2)
e (S) := Nδ3δ4(S) := Hδ3(S

(1)) ·Hδ4(S
(2)).

Component of Elemental Mass Matrix M(e)

M
(e)
`1,`2

:=

∫
Ω(e)

N (`1)
e N (`2)

e dΩ(e) =
h1h2

(
1 + 1{δ1=δ3}

)
·
(

1 + 1{δ2=δ4}

)
36

.
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It is worth mentioning that the local mass matrix is ”element-independent”; that is, all
elements share a common 4× 4 local mass matrix of the form below.

M(e) =
h1h2

36


4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

 .

Component of Elemental Stiffness Matrix K(e)

K
(e)
`1,`2

:=

∫
Ω(e)

(∇N (`1)
e )T T(∇N (`2)

e ) dΩ(e)

=
σ11H

′
δ1

(S(1))H ′δ3(S
(1))

2
·
∫ S

(1)
e +h1

S
(1)
e

S(1)2
dS(1) ·

∫ S
(2)
e +h2

S
(2)
e

Hδ2(S
(2))Hδ4(S

(2)) dS(2) +

σ12H
′
δ1

(S(1))H ′δ4(S
(2))

2
·
∫ S

(1)
e +h1

S
(1)
e

S(1)Hδ3(S
(1)) dS(1) ·

∫ S
(2)
e +h2

S
(2)
e

S(2)Hδ2(S
(2)) dS(2) +

σ21H
′
δ2

(S(2))H ′δ3(S
(1))

2
·
∫ S

(1)
e +h1

S
(1)
e

S(1)Hδ1(S
(1)) dS(1) ·

∫ S
(2)
e +h2

S
(2)
e

S(2)Hδ4(S
(2)) dS(2) +

σ22H
′
δ2

(S(2))H ′δ4(S
(2))

2
·
∫ S

(1)
e +h1

S
(1)
e

Hδ1(S
(1))Hδ3(S

(1)) dS(1) ·
∫ S

(2)
e +h2

S
(2)
e

S(2)2
dS(2)

=
σ11

72
· h2

h1

·
(

1− 2 · 1{δ1 6=δ3}
)
·
(

6S(1)
e

2
+ 6S(1)

e h1 + 2h2
1

)
·
(

1 + 1{δ2=δ4}

)
+

σ12

72
·
(

1− 2 · 1{δ1 6=δ4}
)
·
(

3S(1)
e + h1(1 + 1{δ3=1})

)
·
(

3S(2)
e + h2(1 + 1{δ2=1})

)
+

σ21

72
·
(

1− 2 · 1{δ2 6=δ3}
)
·
(

3S(1)
e + h1(1 + 1{δ1=1})

)
·
(

3S(2)
e + h2(1 + 1{δ4=1})

)
+

σ22

72
· h1

h2

·
(

1− 2 · 1{δ2 6=δ4}
)
·
(

1 + 1{δ1=δ3}

)
·
(

6S(2)
e

2
+ 6S(2)

e h2 + 2h2
2

)
.

It is obvious that stiffness matrix is ”element-dependent”.
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Component of Elemental Matrix A(e)

A
(e)
`1,`2

:=

∫
Ω(e)

N ( )
e dΩ(e)`1D̃

T
(∇N (`2)

e )dΩ(e)

= (r − q1 − σ11 −
σ12

2
)H ′δ3(S

(1)) ·
∫ S

(1)
e +h1

S
(1)
e

S(1)Hδ1(S
(1)) dS(1) ·

∫ S
(2)
e +h2

S
(2)
e

Hδ2(S
(2))Hδ4(S

(2)) dS(2) +

(r − q2 −
σ21

2
− σ22)H ′δ4(S

(2)) ·
∫ S

(1)
e +h1

S
(1)
e

Hδ1(S
(1))Hδ3(S

(1)) dS(1) ·
∫ S

(2)
e +h2

S
(2)
e

S(2)Hδ2(S
(2)) dS(2)

=
(r − q1 − σ11 − σ12

2
)

36

(
1− 2 · 1{δ3=0}

)(
3S(1)

e + h1(1 + 1{δ1=1})
)(
h2(1 + 1{δ2=δ4})

)
+

(r − q2 − σ21
2
− σ22)

36

(
1− 2 · 1{δ4=0}

)(
h1(1 + 1{δ1=δ3})

)(
3S(2)

e + h2(1 + 1{δ2=1})
)
.

It follows by observation that components of A(e) are ”element-dependent”.

6.4.3 Integrals over Interior Elements in d−dimensional Case
with d ≥ 3

Similarly we first define the d-dimensional node functions.

N (`1)
e (S) := Nδ1...δd (S) := Hδ1(S

(1)) . . . Hδd(S
(d)),

N (`2)
e (S) := Nδd+1...δ2d (S) := Hδd+1

(S(1)) . . . Hδd+d(S
(d)).

Recall the elemental matrices are of size n` × n` for a general d−dimensional element
Ω(e) and consequently `1, `2 ∈ {1, 2, 3, 4, . . . , n`} and δ1, δ2, δ3, δ4, . . . , δd+d ∈ {0, 1}. With
the same logic, general formulas in high-dimensional cases can be derived. As we will see
soon, components of matrices M(e) are element-independent while those of K(e) and A(e)

are element-dependent.

Component values of mass matrix M(e) :

M
(e)
`1,`2

:=

∫
Ω(e)

N (`1)
e N (`2)

e dΩ(e)

=
(∫ S

(1)
e +h1

S
(1)
e

Hδ1(S
(1))Hδd+1

(S(1)) dS(1)
)
· · ·
(∫ S

(d)
e +hd

S
(d)
e

Hδd(S
(d))Hδd+d(S

(d)) dS(d)
)

=
d∏
i=1

hi
6
· (1 + 1{δi=δd+i}).
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In particular the three-dimensional counterpart is in the specific form below.

M(e) =
h1h2h3

216



8 4 4 2 4 2 2 1
4 8 2 4 2 4 1 2
4 2 8 4 2 1 4 2
2 4 4 8 1 2 2 4
4 2 2 1 8 4 4 2
2 4 1 2 4 8 2 4
2 1 4 2 4 2 8 4
1 2 2 4 2 4 4 8
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Component of Elemental Stiffness Matrix K(e) :

K
(e)
`1,`2

:=

∫
Ω(e)

(∇N (`1)
e )T T(∇N (`2)

e ) dΩ(e)

=
d−1∑
i=1

d∑
j=i+1

σijH
′
δi
H ′δd+j

2
·
( d∏

k=1
k 6=i,j

∫ S
(k)
e +hk

S
(k)
e

Hδk(S
(k))Hδd+k(S

(k)) dS(k)
)

·
(∫ S

(i)
e +hi

S
(i)
e

S(i)Hδd+i(S
(i)) dS(i)

)(∫ S
(j)
e +hj

S
(j)
e

S(j)Hδj(S
(j)) dS(j)

)
+

d∑
i=1

σiiH
′
δi
H ′δd+i

2
·
( d∏
k=1
k 6=i

∫ S
(k)
e +hk

S
(k)
e

Hδk(S
(k))Hδd+k(S

(k)) dS(k)
)
·
(∫ S

(i)
e +hi

S
(i)
e

S(i)2
dS(i)

)
+

d∑
i=2

i−1∑
j=1

σijH
′
δi
H ′δd+j

2
·
( d∏

k=1
k 6=i,j

∫ S
(k)
e +hk

S
(k)
e

Hδk(S
(k))Hδd+k(S

(k)) dS(k)
)

·
(∫ S

(j)
e +hj

S
(j)
e

S(j)Hδj(S
(j)) dS(j)

)(∫ S
(i)
e +hi

S
(i)
e

S(i)Hδd+i(S
(i)) dS(i)

)
=

d−1∑
i=1

d∑
j=i+1

σij
2

1− 2 · 1{{δi 6=δd+j}}
hihj

·
( d∏

k=1
k 6=i,j

hk
6
· (1 + 1{δk=δd+k})

)

·
(hiS(i)

e

2
+
hi

2(1 + 1{δd+i=1})

6

)(hjS(j)
e

2
+
hj

2(1 + 1{δj=1})

6

)
+

d∑
i=1

σii
2

1− 2 · 1{{δi 6=δd+i}}
hihi

·
( d∏
k=1
k 6=i

hk
6
· (1 + 1{δk=δd+k})

)
·
(hi(3S(i)

e

2
+ 3S

(i)
e hi + hi

2)

3

)
+

d∑
i=2

i−1∑
j=1

σji
2

1− 2 · 1{{δi 6=δd+j}}
hjhi

·
( d∏

k=1
k 6=i,j

hk
6
· (1 + 1{δk=δd+k})

)
+

·
(hjS(j)

e

2
+
hj

2(1 + 1{δj=1})

6

)(hiS(i)
e

2
+
hi

2(1 + 1{δd+i=1})

6

)
.

Notice that there are no
d∏

k=1
k 6=i,j

∫ S(k)
e +hk

S
(k)
e

Hδk(S
(k))Hδd+k(S

(k)) dS(k) terms for both i < j and

i > j in two-dimensional cases.
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Component of Elemental Matrix A(e)

A
(e)
`1,`2

:=

∫
N (`1)
e D̃

T
(∇N (`2)

e )dΩ(e)

=
d∑
i=1

(r − qi −
σii
2
−

d∑
j=1

σij
2

)H ′δd+i(S
(i))

·

(
d∏

k=1
k 6=i

∫ S
(k)
e +hk

S
(k)
e

Hδk(S
(k))Hδd+k(S

(k)) dS(k)

)
·

(∫ S
(i)
e +hi

S
(i)
e

S(i)Hδi(S
(i)) dS(i)

)

=
d∑
i=1

(r − qi −
σii
2
−

d∑
j=1

σij
2

) ·
1− 2 · 1{δd+i=0}

hi
·

·

(
d∏

k=1
k 6=i

hk
6
· (1 + 1{δk=δd+k})

)
·

(
hiS

(i)
e

2
+
hi

2(1 + 1{δi=1})

6

)
.

Component of Elemental Unweighted Stiffness Matrix S(e) :
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6.4.4 Integrals over boundary elements in d−dimensional case

General Case of d ≥ 2

We recall the notations of Neumann edges, its partition and the boundary conditions on
them.

ΓN(B) :=
{
S ∈ ΓN : S = (S(1), . . . , S(d)) and S(B) = Smax

}
for B = 1, . . . , d,

ΓN =

nN⋃
e=1

Γ
(e)
N

≡
d⋃

B=1

ΓN(B) =
d⋃

B=1

(
mB⋃
b=1

Γ
(b)

N(B)

)
,

∇v
∣∣∣
Γ
N(B)

= ∇g
∣∣∣
Γ
N(B)

,

where nN =
∑d

B=1mB and ΓN(B) is a (d− 1)−dimensional manifold.

Given B ∈ {1, . . . , d}, we define the adjusted dimension for i ∈ {1, . . . , d := d− 1} as
below to link the free dimensions to the original ones,

iB := i+ 1{i≥B}

S(iB) :=

{
S(i) if i < B,
S(i+1) if i ≥ B.

A boundary element Γ
(b)

N(B) is one dimension less than those on an interior element. We
define its local origin by

S1
B,b :=

(
S

(1B)
B,b , · · · , S

(dB)
B,b

)
.

We further define other vertices with local indices and their associated d−tuple in lexico-
graphical order as below.

` ∈ {1, . . . , n` := 2d},

S(i)
∣∣∣
Γ
(b)

N(B)

:= S`B,b := S δ
(1B)
···δ

(dB)

:=
(
S(1B), · · · , S(dB)

)T
:=

(
S

(1B)
B,b + δ(1B) · h(1B), · · · , S

(dB)
B,b + δ(dB) · h(dB)

)T
.

≡ S1
B,b +

(
δ(1B) · h(1B), · · · , δ(dB) · h(dB)

)T
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where δ(iB) ∈ {0, 1} and h(iB) is the step length along S(iB) for a given B ∈ {1, . . . , d} and
i ∈ {1, . . . , d}. Notice that S1

B,b has δ(iB) = 0 for all i = 1, . . . , d.
As well, the shape functions over the boundary element can be expressed in the form with
one dimension less.
Namely,

N (i)
∣∣∣
Γ
(b)

N(B)

:= N `
B,b

(
S(1B), · · · , S(dB)

)
:= Nδ

(1B)
...δ

(dB)

(
S(1B), · · · , S(dB)

)
:= Hδ

(1B)
(S(1B)) · · · Hδ(d

B)(S
(dB))

With these notations, we can derive the closed forms of (Neumann boundary) load vector
like those of elemental matrices.

Component of Elemental Load vector L(B,b) :

L
(B,b)
` :=

∫
n ·T(∇g)N `

B,b dΓ
(b)

N(B)

=
σBBS

(B)S(B)

2
· (∂(B)

B g) ·
d∏
j=1

∫ S(jB)+h
(jB)

S(jB)

Hδ
(jB)

(S(jB)) dS(jB)

+

d∑
i=1

σB(iB)S
(B)

2
· (∂(iB)

B g) ·

(∫ S(iB)+h
(iB)

S(iB)

S(iB)Hδ
(iB)

(S(iB)) dS(iB)

×
d∏
j=1
j 6=i

∫ S(jB)+h
(jB)

S(jB)

Hδ
(jB)

(S(jB)) dS(jB)


=

σBBS
2
max

2
· (∂(B)

B g) ·
d∏
j=1

h(jB)

2

+

d∑
i=1

σB(iB)Smax

2
· (∂(iB)

B g) ·


(
hiBS

(iB)
e

2
+
hiB

2(1 + 1{δBi =1})

6

)
×

d∏
j=1
j 6=i

h(jB)

2


where ∇g

∣∣
Γ
N(B)

:=
(

(∂
(1)
B g) · · · (∂(B)

B g) · · · (∂(d)
B g)

)T
is a constant vector for B ∈ {1, . . . , d}.
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An Alternative to Load Vector

Instead of finding the exact load vector as above, we can approximate the Neumann bound-
ary function in finite-dimensional sense as before.

`(wh) =
d∑

B=1

mB∑
b=1

∫
whf

B
h dΓ

(b)

N(B)

=
d∑

B=1

mB∑
b=1

W MB,bf
B

=:
d∑

B=1

mB∑
b=1

W L(B,b),

where MB,b is the boundary elemental mass function of size n3×n3, fB :=
(
fBh (S1), · · · , fBh (Sn3)

)T
and L(B,b) := MB,b fB is the approximated load vector of size n3 × n3.

We recall that most components of the MB,b are zeros and only the node functions hav-

ing support over the boundary element Γ
(b)

N(B) will provide non-zero entries when integrating
over it. Based on this, the size of the boundary element matrix MB,b can be reduced to
n` × n` with all the non-zeros. We now focus on the reduced MB,b of size n` × n`.

Analogously we define the following d-dimensional node functions having support over
the boundary element MB,b.

N (i)
∣∣
Γ
(b)

N(B)

:= N `1
B,b(S) := Nδ

(1B)
...δ

(dB)
(S) := Hδ

(1B)
(S(1B)) · · ·Hδ

(dB)
(S(dB)),

N (j)
∣∣
Γ
(b)

N(B)

:= N `2
B,b(S) := Nδ

(d+1B)
...δ

(d+dB)
(S) := Hδ

(d+1B)
(S(1B)) · · ·Hδ

(d+dB)
(S(dB)).

With these notations, we now derive its non-zero value as those of interior elements.

M
(B,b)
`1,`2

:=

∫
N `1
B,bN

`2
B,b dΓ

(b)

N(B)

=
(∫ S

(1B)
e +h

1B

S
(1B)
e

Hδ
(1B)

(S(1B))Hδ
(d+1B)

(S(1B)) dS(1B)
)
· · ·

(∫ S
(dB)
e +hBd

S
(dB)
e

Hδ
(dB)

(S(dB))Hδ
(d+dB)

(S(dB)) dS(dB)
)

=

d∏
i=1

h(iB)

6
· (1 + 1{δ

(iB)
=δ

(d+iB)
}).
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6.5 Summary

A conventional way to obtain the elemental matrices and load vector is to do a change
of variable and to carry out numerical integration over a reference element of the same
dimension. In the case of the elemental mass matrix, all values are element-independent
and such approach can compute values efficiently. However, component values are element-
dependent in other elemental matrices. From this point of view, the conventional method
can not actually benefit the computation. Furthermore, its error in high dimensional
quadrature may influence the accuracy of final option values. The closed-form formulas we
propose here are new in mathematical finance. These formulas give us the exact values and
avoid the numerical error of coefficient matrices. Technically they are the most straight
and efficient way to obtain the values. The technique we use here can be directly extended
to combinations of other different elements and shape functions such as hyper-triangles
and d-quadratical shape functions.
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Chapter 7

Algorithms for Linear
Complementarity Problem

We have described in chapter five how to reformulate the multi-asset option pricing prob-
lems under the Black-Scholes-Merton model as discrete algebra systems: (sequential) linear
system of equations (LSE) for European options and (sequential) linear complementarity
problem (LCP) for American and perpetual options. In particular, these discrete systems
share identical global matrices and load vectors. However, they may possess different
Dirichlet data, generally the option or (discounted) payoff values of one-dimension-less
counterparts.

There are two main approaches to numerically solve the discrete algebra systems —
direct methods and iterative methods. The direct methods find the exact solutions by piv-
oting1 or factorizing2 the discrete systems. Instead, iterative methods provide approximate
solutions which converge to the exact solution based on matrix analysis, convex analysis
and optimization theories.

Linear System of Equations

Most numerical methods for linear equation systems are well doucmented. For example,
Gauss-Jordan elimination and Cholesky, LU, LDLT decomposition count for the direct
method. As well, the widely-used iterative methods include generalized minimum residual
(GMERS), conjugate gradient (CG), quasi-minimal residual (QMR), algebraic multigrid
(AMG) methods and their variants. We refer the reader to [52, 92, 83] for their details and
omit further discussion in our work.

1Interchange the rows or columns of a linear systems based on certain rules.
2Rewrite the coefficient matrix of a linear system as a product of two or more matrices, such as triangular

and diagonal matrices, based on certain rules.
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Linear Complementarity Problem

Compared with the numerical methods for linear system of equations (LSE), those for linear
complementarity problems are not well introduced, particularly in the field of quantitative
finance. Due to these, we decide to select several methods for such problems and introduce
their implementing procedure in this chapter. In the next chapter, we will further compare
these methods in terms of numerical error and computational time.

7.1 Preliminaries

7.1.1 Canonical Form of LCP

For convenience of discussion, we consider a linear complementarity problem in the stan-
dard form below.

Problem 7.1 Find z,w ∈ Rn such that

z = 0,

w = Cz + q = 0,

wTz = 0.

For brevity of notation, we denote this problem by LCP(C,q). For each i = 1, . . . , n, the
pair of components zi and wi are said to be complements of each other. We also define its
feasible set and solution set as follows.

FEA(C,q) := {z
∣∣z = 0 and Cz + q = 0},

SOL(C,q) := {z ∈ FEA(C,q)
∣∣(Cz + q)Tz = 0}.

7.1.2 Matrix Classes

Existence and uniqueness of the solution to LCP(C,q) strongly depends on the matrix C
and vector q, cf. [24]. The relations between different matrix classes are complicated and
yet fully understood. Below we introduce a few relevant matrix classes.

Definition 7.2 (Classes of matrices)

• Submatrix and minor:

– We define [n] := {1, . . . , n} and consider a square matrix C ∈ Rn×n.

– For α⊂[n], Cαα is a principal submatrix extracted from the intersection of rows
and columns indexed by α.
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– The principal submatrices Cαα where α = [k] for k = 1, 2, . . . , n are called
leading principal matrices.

– The determinant of a (leading) principal submatrix of C is called a (leading)
principal minor of C and denoted by det (Cαα).

• Comparison matrix:
Matrix C is said to be the comparison matrix of C if its (i, j) component are defined
by

Cij :=

{
|Cij| ∀i = j,
−|Cij| ∀i 6= j.

• Q-matrix:

– C is a Q-matrix, denoted by [Q], if SOL(C,q) 6= ∅, ∀q.

– C is a Q0-matrix, denoted by [Q0], if ∀q,FEA(C,q) 6= ∅ ⇒ SOL(C,q) 6= ∅.
Note that [Q] ⊂ [Q0].

• Co-positive matrix:

– C is said to be co-positive, denoted by [c-p.], if ∀x = 0⇒ xTCx ≥ 0.

– C is said to be strictly co-positive, denoted by [s.c-p.], if ‘for 0 6= x = 0 ⇒
xTCx ≥ 0’.

– C is said to be co-positive plus, denoted by [c-p.p.], if it satisfies the following
two conditions:

1. C is co-positive.

2. x = 0 and xTCx = 0⇒ (C + CT )x = 0.

• P -matrix:
C is a P -matrix, denoted by [P], if all its principal minors, including leading and
non-leading ones, are positive.

• H-matrix:

– C is called a H-matrix, denoted by [H], if C ∈ [P].

• Z-matrix:

– C is a Z-matrix, denoted by [Z], if all its off-diagonal entries are non-positive.

• M -matrix:

– The intersection set of [Z] and [P] is called M -matrix set or K-matrix set,
denoted by [M] or [K].
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– If all the entries of the inverse of a matrix are all non-negative, say C−1 = 0,
then C ∈ [M].

• R-matrix:

– Given a non-negative vector d ∈ Rn+ but d 6= 0., we say C is d-regular if for all
τ ≥ 0, SOL(C, τd) = {0}.

– C is called regular, denoted by [R], if C is d-regular for some d > 0 (component-
wise).

– C is called pseudo-regular, denoted by [R0], if SOL(C,0) = {0}.

• Interval matrix:

– The set

[I] := {C ∈ Rn×n : Cl 5 C 5 Cu for some Cl,Cu ∈ Rn×n}

is called an interval matrix where the inequalities are component-wise.

– We define

Cp :=
Cu + Cl

2
, Cm :=

Cu −Cl

2
.

Obviously,

[I] = [Cp −Cm,Cp + Cm].

– [I] is called regular if all C ∈ [I] are regular; moreover, [I] is called strongly
regular if the interval matrix

(
C−1
P [I]

)
is regular.

– Consider a regular [I] and any element y in the set Y := {y ∈ Rn : |yi| = 1 ,∀i =
1, . . . , n}. We then define a class of matrix

My([I]) := (Cp −DyCm)−1(Cp +DyCm),

where Dy is the diagonal matrix with main diagonal y.

7.2 Algorithms for Linear Complementarity Problem

As mentioned previously, numerical methods for LCP can be divided into two categories
– direct and iterative methods. Direct methods solve the LCP exactly by pivoting or
factorizing matrices while iterative methods approximate the solution repeatedly. In what
follows, we assume there exists a solution to the problem LCP(C,q), i.e. C ∈ [Q], and
introduce algorithms of both types to find it.
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7.2.1 PSOR Method

Let Cij, qi and zki be the (i, j) component of C and i component of q and zk respectively.
Given arbitrary z0 ∈ Rn, the algorithm of projected successive over-relaxation (PSOR)
reads

zk+1
i = max{0, zki − wC−1

ii (
∑
j<i

Cijz
k+1
j +

∑
j≥i

Cijz
k
j + qi)} for k = 1, 2, . . . .

Note that this formula is expressed in terms of components and can not be converted
into an explicit matrix form between k and k + 1. Readers are referred to [65], which
explains the relations between PSOR method and the classical SOR method.

The PSOR is an iterative method. Its convergence depends on the type of C.

• If C is symmetric and positive definite, such as those coefficient matrices of the d-
dimensional diffusion equations simplified from their BSM PDE counterparts, the
convergence of PSOR is guaranteed with w ∈ (0, 2), cf [25].

• If C ∈ [H], the the PSOR is convergent with w ∈ (0, w̃), cf. [49, p.19], where

1 < w̃ := 2 min
i

Ciidi∑
j |Cij|dj

≤ 2, and d ∈ {x ∈ Rn|Cx > 0} which is not empty.

It is shown that the convergence is at its fastest speed when taking

w = w∗ :=
2

1 +
√

1− ρ2
G

where ρG is the spectral radius of the matrix G := D−1(C − D)and D is the diagonal
matrix formed by the diagonal entries of C; moreover, ρG can be approximated by, cf. [51,
p.114],

ρG ≈ max
i

1

Cii

∑
j 6=i

|Cij|.

7.2.2 Modulus method

Provided w ∈ (0,+∞) and (wI + C) is nonsingular, the (extrapolated) Cayley transform
of a matrix C is defined as

Cw (C) := (wI + C)−1(wI −C).

With the Cayley transform, solving the LCP(C,q) is equivalent to solving the following
fixed point problem (FPP), cf. [70, Thm.9.1] and [28, Thm3.1],

x = f(x) := Cw (C)|x| − (wI + C)−1q
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If x∗ is a solution of the FPP, then

w∗ := w (|x∗| − x∗) and z∗ := |x∗|+ x∗

is a solution to the LCP.
With the equivalence, the modulus method approximates the solution x∗ using

xk+1 := f(xk) for all x0 ∈ Rn.

The convergence is guaranteed if one of the following conditions is satisfied, cf. [70, 82,
28].

• w = 1 and C ∈ [H+]

• w = 1 and C ∈My([I])

• w ∈ (0,+∞) and C is symmetric positive-definite

Furthermore, [28, Prop 3.1] proves that the optimal choice in the symmetric positive-
definite case is

w∗ :=
√
λminλmax,

where λmin and λmax are the minimum and maximum eigenvalues of C. The optimal choice
minimizes the contraction factor of the spectral radius of Cw (C) and makes the convergence
faster.

[4, 110] consider the variants of the modulus methods by splitting C = M−N.

7.2.3 Lemke’s method

Problem 7.3 Almost complementarity problem
An almost complementarity problem is formed by augmenting a LCP(C,q) with an artificial
variable z0 ∈ R+ and a covering vector e ∈ Rn+. An almost complementarity problem,
denoted by ACP(C,q; e), states:
Given e ∈ Rn+, find the (w, z, z0) ∈ Rn+ × Rn+ × R+ such that

w = z0e + Cz + q

wTz = 0

We notice that the solution to ACP(C,q; e) coincides with the that of LCP(C,q) when z0 =
0. The ACP(C,q; e) can be expressed in the following canonical tableau with independent
(or nonbasic) variables on the top and dependent (or basic) variables on the left.

z0 z1 . . . zn 1
w1 e1 C11 . . . C1n q1
...

...
...

. . .
...

...
wn en Cmn . . . Cmn qn
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The above idea is used in the Lemke’s method, which was first introduced in [62].
There are some variants designed after its introduction. Below is a simplified version,
called (streamlined) Lemke method, cf.[24, p.271] and [105].

Step 0

Trivial case:
If q = 0, then (z∗,w∗) = (0,q) is a solution to the LCP(C,q).

Non-trivial case:
If q0 := q � 0, then consider the canonical tableau of ACP(C,q; D) and do the
following.

1. Driving items:

(a) Define the driving index d0 = 0.

(b) Denote the driving variable at the initial step by v0 and let it equal to
the artificial variable, i.e. v0 := zd0 = z0.

(c) Denote the driving column which is the column beneath the driving
variable by D0.3

2. Blocking items:

(a) We choose some row number b0 as the blocking index such that4

−qb0
D0
b0
≡ max

j

{
−qj
D0
j

: qj < 0

}
= −min

j

{
qj
D0
j

: qj < 0

}
.

(b) Denote by c0 the blocking variable at the initial step. Let c0 = wb0 be
the blocking variable.

3. Pivoting items:
Pivot driving and blocking variables, rewrite the canonical tableau with new
coefficients and denote by q1 the column beneath independent variable 1.

4. Go to the next step.

Step k (for k = 1, 2, . . .)

Continuation:

1. Driving items:

(a) Define the driving index dk = bk−1.

(b) Set vk = zdk as the new driving variable if its complement variable is the
previous blocking variable; otherwise, set vk = wdk as the new driving
variable.

3The driving column at the initial step is provided by users and also referred to ”covering vector”.
4This is the minimum ratio test at the initial step. And it amounts to choosing the row with the most

negative qj provided D0
j = 1.
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(c) Denote the new driving column by Dk which is the column beneath the
new driving variable vk.

2. Blocking items:

(a) We choose some row number bk as the blocking index such that5

−qk
bk

Dk
bk

≡ −max
j

{
qkj
Dk
j

: Dk
j < 0

}
= min

j

{
−qkj
Dk
j

: Dk
j < 0

}
.

This is the so-called minimum ratio test at the step k.6

(b) Let the blocking variable be the variable in row bk among all dependent
variables, which is either wbk or zbk and denote it by ck.

3. Pivoting items:
We pivot the driving and blocking variables at step k and then rewrite
the canonical tableau with new coefficients and let the column beneath the
independent variable 1 be qk+1.

Solution found or next step:

1. If the new independent variable is z0, then the solution z∗ is found where

z∗i :=

{
qk+1
i if zi is one of the dependent variables.

0 o.w.

2. If the new independent variable is not z0, then go to next step k + 1.

Theorem 7.4 (Convergence of Lemke method, cf. [105, Thm.2.1])
If ACP(C,q; e) has non-degenerate solution, i.e. all the solutions of dependent/basis vari-
ables are strictly positive and C is co-positive plus, then Lemke method is stopped after
finitely many steps with either no solution or exact solution.

According to the theorem, Lemke’s method is a direct algorithm for LCP problems,
which can actually produce an exact solution (if any) when given a proper covering vector.

7.2.4 Lagrange Multiplier Method

The Lagrange Multiplier Method is a Newton-type iterative algorithm. Provided an initial
guess, say z0, this algorithm provides an approximation at each iteration step by using
a direction vector and a proper step length, denoted by dk and tk respectively, cf. [91].
Namely,

zk+1 = zk + tkdk.

5This is the minimum ratio test at the step k.

6This amounts to choosing the row with the least negative
qkj
Dk

j

.
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The direction vector and step length at step can be computed with the assistance of
the following vector-valued and single-valued functions.

• ŵ = ŵ (z) := Cz + q,

• λ̂ = λ̂ (z) := 1{z<ŵ(z)},

• The Lagrangian of the LCP(C,q) is defined by

L̂ = L̂ (z, λ) := λ� z + (1− λ)� ŵ (z),

• Ĥ = Ĥ (z) := min {z, ŵ (z)} ,

• Φ̂ = Φ̂ (z, λ) := Ĥ (z)− L̂ (z, λ),

• M̂ = M̂ (z, λ) := (λ̂ (z)− λ)� 1{z 6=ŵ(z)},

• The merit function of the Newton-type algorithm is defined by

θ̂ = θ̂ (z, λ) :=
1

2

(
||L̂ (z, λ)||2 + ||Φ̂ (z, λ)||2

)
,

• λ̃ = λ̃ (z) :=
((

Ĥ (z)− 2ŵ (z)
)
� 2
(
z− ŵ (z)

))
� 1{z6=ŵ(z)},

•

λ̄ = λ̄ (z, λ) := min
{

1, λ̃ (z) + |λ̃ (z)− λ|
}
� 1{z<ŵ(z)}

+ max
{

0, λ̃ (z)− |λ̃ (z)− λ|
}
� 1{z>ŵ(z)}

+ λ� 1{z=ŵ(z)},

•

τ̂ = τ̂ (z, λ) = λ+
(
Φ̂ (z, λ)� M̂ (z, λ)� L̂ (z, λ)

)
� 1{L̂(z,λ)6=0},

where the 1{·}, min and � and � are componentwise indicator function, minimum function,
multiplication and division individually.

Provided (z0,λ0) ∈ R × [0, 1]n, constant parameters σ ∈ (0, 2/3), ρ ∈ (σ, 1 − 0.5σ)
and the information from iteration k, the Lagrangian Multiplier method proceeds with the
following computation until certain criteria is met during iterations.

1. Modification of λk+1 = λ̄
(
zk, λk

)
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2. Direction vector dk+1:

(a) τ̂ k = τ̂
(
zk, λk+1

)
(b) Dτ̂k := diag(τ̂ k1, · · · , τ̂

k
n) is a diagonal matrix with τ̂ k as its main diagonal

(c) dk+1 is the solution to following system

(Dτ̂k + (I −Dτ̂k)C) dk+1 = −Ĥ
(
zk
)
,

which can be solved exactly or numerically (even with a pre-conditioner).

3. Step length is chosen by tk := ρpk where

pk := min
p

{
p ∈ N ∪ {0} : θ̂

(
zk + ρpdk, λk+1

)
≤ (1− σρp) · θ̂

(
zk, λk+1

)}
4. Update the approximate solution by zk+1 = zk + tkdk.

It is proved that if C ∈ [P], then this algorithm converges linearly. In addition, if the
solution is degenerate (not non-degenerate), then it converges in finitely many steps.

7.2.5 Active Set of Linear Complementarity Problem

Suppose z∗ is the solution to the problem LCP(C,q). It is notable that the LCP(C,q)
can be equivalently expressed as

min {z∗, w∗ := Cz∗ + q} = 0.

As a result, there exists an active set/indices α ⊂ [n] and an inactive set/indices ᾱ = [n]/α
such that

0 := z∗α,

0 := w∗ᾱ.

7.2.6 Howard’s Method

Howard’s method, also known as policy iteration, is an active-set-based iterative algorithm,
which is equivalent to the Primal-dual active set algorithm developed in [48], cf. [9, Thm
4.7]. It finds an approximate solution zk+1 in the following two steps at each iteration
when provided an initial guess and information of zk, cf, [9, 35, 77].

1. We define ŵk := ŵ
(
zk
)

:= Czk + q and the proxy active sets below.

α := {i : zki < ŵk
i }

ᾱ := {j : ŵk
j ≤ zkj}
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2. Substitute zk+1
α = 0 and solve the following reduced proxy system

Cᾱᾱz
k+1
ᾱ + qᾱ = 0

Notice that this system can be solved directly or iteratively and, probably, with a
pre-conditioner.

If ∃!C−1 = 0 (componentwise)7, it is guaranteed to be globally super-linearly convergent
by [9, Thm3.4], namely

lim
k→∞
||zk+1 − z∗||p = 0 and lim

k→∞

||zk+1 − z∗||
||zk − z∗||

= 0.

Moreover, it converges to the exact solution z∗ in at most n + 1 iterations if z ∈ Rn for
arbitrary initial guess z0, cf. [9, Thm4.3].

7.2.7 Hybrid Method with Active Set

A hybrid method is an active-set-assisted iterative method, which speeds up a selected
iterative method (the main algorithm) by fine-tuning its values with the assistance of
active set. It replaces zk+1 by z̃k+1 := zk+1 + ∆ once every one/several iterations after
initial warm-up iterations, where ∆ is an adjuster based on active set.

Given a small nonnegative ε, a proxy active set α and its complement ᾱ are defined as
follows.

α := {i : |zk+1
i | ≤ ε},

ᾱ := {j : |zk+1
j | > ε}.

Generally such a method is efficient only if

1. the zk+1 obtained from main iterative algorithm can provide good approximations of
active sets;

2. the cost to find ∆ is cheap.

The convergence of the hybrid method depends on both the selected LCP algorithm and
the class of matrix C.

[57] defines the adjustor ∆ as below

• ∆α = 0

7In this case, it belongs to [M]

lxxxvi



• ∆ᾱ is the solution to the following system.

Cᾱᾱ

(
∆k+1

)
ᾱ

+ r(qᾱ + Cᾱ·z
k+1) = 0 (7.1)

where · := [n] and r ≤ 1 is the largest real such that z̃k+1 = 0

[57] chooses the PSOR as its iterative algorithm and numerically solves the reduced lin-
ear system of equalities (7.1) with pre-conditioned conjugate gradient method. If Cαα is
symmetric and positive definite, then its convergence is guaranteed by [57, Thm.2.1].

7.3 Summary

The author of classical reference ”The Linear Complementarity Problem” [24] once stated:
..., the convergence of a PSOR method for solving the LCP with an asymmetric positive
definite matrix C is not very well understood; at best, the convergence requires highly
restrictive conditions. Indeed, it is not common in the LCP community to apply this
method for solving such a LCP; instead, alternative methods such as Lemke’s method or
other recent algorithms can be used, cf. [49, p.19]. This statement motivates us to seek
more methods to benchmark against the PSOR, which is the most popular LCP solver
when pricing the options with early-exercise property. As we saw already, the solvability of
LCP(C,q) highly depends on the classes of matrix C. However, at present there is still no
efficient way to judge the class of a matrix, even for the broad classes such as Q-matrices
and P -matrices, cf. [24, p.146, 149].

Since the class of its coefficient matrix is vital to the solvability of a LCP, the approx-
imate coefficient matrix computed by numerical integration (when discretized by finite
element techniques) may disturb the solvability of LCP systems if the class of matrix is
sensitive to some certain entry values. However, if we use the exact closed-form formulas
derived from previous chapter for the computation of elemental matrices, such problems
can certainly be avoided.

We have surveyed several algorithms for solving the LCPs arising from the option pricing
problems with early-exercise property. In the next chapter, the numerical experiments will
be performed in one, two and three-asset frameworks. We are interested to see whether the
solutions are convergent against different options and parameters, how large the errors will
be and the computational efficiency of different LCP solvers. We would also benchmark
the different LCP algorithms against the PSOR in terms of computational cost and speed.
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Chapter 8

Numerical Experiments

In our research, we have built a variety of Matlab programs based on the reformulation,
discretization and algorithms introduced previously to price options linked with up to three
assets. We are able to price an option of any type of the following combinations.

• Number of assets: one-asset, two-asset or three-asset;

• Exercise restriction: European, American or perpetual;

• Portfolio price: basket, minimum or maximum;

• Payoff type: call, put or straddle.

Notice that in the one-asset case, the basket, minimum and maximum options are actually
of the same type. For simplicity, we employ Dirichlet boundary conditions through this
chapter.

We recall that the expiry date is denoted by T . For convenience of comparison, we
will present the computational results in terms of the time to maturity, i.e. τ := T − t.
The option value at τ = 0 is actually its payoff. Notice that the expiry restriction T > 0
only applies to European and American options and so their τ ∈ [0, T ]. As to perpetual
options, they possess T =∞, or equivalently τ =∞.

All the experiments presented in this chapter were performed on a Sun X4600 server
with 8 dual-core processors (AMD Opteron 8220) running at 2.8GHz (16 cores in total)
and 64GB memory.

8.1 Visualization

In this section, we present our computational results visually. For simplicity, we select
minimum put, maximum call and basket straddle options for demonstration.
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8.1.1 One-asset Examples

We use the following parameters for our one-dimensional options.

• Exercise price: E = 300;

• Interest rate: r = 0.05;

• (Continuous) dividend rate: q = 0.02;

• Expiry date: T = 1 (year);

• (Annualized) variance: σ2 = 0.22 = 0.04.

We partition the spatial and time axes uniformly with the numerical parameters set below.

• The far-field bound: Smax = 2000;

• Number of partition points in S-axis: N1 + 1 = 201;

• Number of partition points in t-axis: Nt + 1 = 21.

Figures [8.1, 8.2], [8.3, 8.4] and [8.5, 8.6] are the visualization of one-asset put, call
and straddle options at τ = 0, 0.5, 1 (w.r.t European and American ones) and ∞ (w.r.t.
perpetual ones). We can observe that parts of European option values fall below their
payoffs while the values of all American options are greater than or equal to payoffs.

8.1.2 Two-asset Examples

We use the following parameters for our two-dimensional options.

• Exercise price: E = 300;

• Interest rate: r = 0.05;

• (Continuous) dividend rates: q =
(

0.02 0.03
)T

;

• Expiry date: T = 1 (year);

• (Annualized) volatilities: σ1 = 0.2, σ2 = 0.4 with correlation coefficient ρ = 0.5;
namely the (annualized) covariance is

Σ =

(
0.04 0.04
0.04 0.16

)
;

• Weights for basket option:
(

0.4 0.6
)
.
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Figure 8.1: One-asset European Put.
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Figure 8.2: One-asset American and Perpetual Puts.
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Figure 8.3: One-asset European Call.

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

Share price S

O
pt

io
n 

va
lu

e 
V(

τ)

 

 
Option value at τ=0
Option value at τ=0.5
Option value at τ=1
Option value at τ=∞
Free boundary at τ=0.5
Free boundary at τ=1
Free boundary at τ=∞

Figure 8.4: One-asset American and Perpetual Calls.
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Figure 8.5: One-asset European Straddle.
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Figure 8.6: One-asset American and Perpetual Straddles.
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We partition the spatial and time axes uniformly with the numerical parameters set below.

• The far-field bound: Smax = 2000;

• Number of partition points in S(i)-axis: Ni + 1 = 101 for i = 1, 2;

• Number of partition points in t-axis: Nt + 1 = 21.

Figures 8.7, 8.8 and 8.9 visualize the option values of two-asset minimum put, maximum
call and basket straddle individually. Recall that the values for τ = 0 and τ = ∞ stand
for those of payoff and perpetual option respectively. For the options with early-exercise
property, we identify their free boundaries and the nodes in the early-exercise region with
red and black points respectively.

We provide the cross sections at S1 = 300 to locally compare the European, American
and perpetual values in figures 8.10, 8.11 and 8.12. Notice that in terms of payoff values, the
kink points are (S1 = 200, v = 100), (S1 = 300, v = 0) and (S1 = 600, v = 0) for minimum
put, maximum call and basket straddle individually. Similar to one-asset options, we can
find the cross-section values of European options may fall below their payoffs while their
American counterparts stay at least equal to payoffs.

8.1.3 Three-asset Examples

We use the following parameters for our three-dimensional options.

• Exercise price: E = 300;

• Interest rate: r = 0.05;

• (Continuous) dividend rates: q =
(

0.01 0.02 0.03
)T

;

• Expiry date: T = 1 (year);

• (Annualized) volatilities: σ2
1 = 0.3, σ2

2 = 0.4, σ2
3 = 0.5 with correlation coefficient

ρ12 = 0.25, ρ13 = 0.5, ρ23 = 0.75; namely the (annualized) covariance is

Σ =

 0.3000 0.0866 0.1936
0.0866 0.4000 0.3354
0.1936 0.3354 0.5000

 ;

• Weights for basket option:
(

0.2 0.3 0.5
)
.

We partition the spatial and time axes uniformly with the numerical parameters set below.

• The far-field bound: Smax = 2000;
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Figure 8.7: Two-asset Minimum Put.
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Figure 8.8: Two-asset Maximum Call.
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Figure 8.9: Two-asset Basket Straddle.
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Figure 8.10: Cross Section of Two-asset Minimum Put at S2 = 100.
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Figure 8.11: Cross Section of Two-asset Max Call at S2 = 100.
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Figure 8.12: Cross Section of Two-asset Basket Straddle at S2 = 100.

• Number of partition points in S(i)-axis: Ni + 1 = 26 for i = 1, 2, 3;

• Number of partition points in t-axis: Nt + 1 = 21.

The option values are visualized in terms of different colorful points for three-asset
minimum put, maximum call and basket straddle in figures 8.13, 8.15 and 8.17 separately.
Following each figure is the free boundaries identified at τ = 0.25, 0.5, 1 for the American
type and at ∞ for the perpetual one as shown in figures 8.14, 8.16 and 8.18.

Figures 8.19, 8.20 and 8.21 present the cross sections at S1 = 400 and S2 = 320 for the
comparison of local values among European, American and perpetual types. Notice that
the kink points of the payoffs in the cross sections are (S3 = 300, v = 0), (S3 = 400, v = 100)
and (S3 = 248, v = 0) for minimum put, maximum call and basket straddle individually.

8.1.4 Free Boundary as Manifold

It is interesting to observe the evolution of the free boundaries of American and perpetual
options in the above three cases. We notice that in one-dimensional problems, the put
and call have their free boundary points located behind and beyond their exercise price
(kink-point) respectively. The straddle counterpart has the exercise rights of both call
and put and accordingly its free boundary points lie on both sides of its kink point. As
the time to maturity (τ) tends to ∞, those free boundary points numerically approach to
their perpetual counterparts, namely the numerical steady state of free boundaries. Such
phenomenon can also be observed in high-dimensional cross sections.
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Figure 8.13: Three-asset Minimum Put.
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Figure 8.14: Free Boundary of Three-asset Minimum Put.
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Figure 8.15: Three-asset Maximum Call.
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Figure 8.16: Free Boundary of Three-asset Maximum Call.
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Figure 8.17: Three-asset Basket Straddle.
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Figure 8.18: Free Boundary of Three-asset Basket Straddle.
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Figure 8.19: Cross Section of Three-asset Minimum Put at S1 = 400 and S2 = 320.
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Figure 8.20: Cross Section of Three-asset Maximum Call at S1 = 400 and S2 = 320.
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Figure 8.21: Cross Section of Three-asset Basket Straddle at S1 = 400 and S2 = 320.

Generally, the free-boundary of a d−asset option is a (d − 1)−dimensional manifold.
As we have seen, they are the points, curves or surfaces separating the early-exercise
region and non-early-exercise region. Economically the payoffs in the early-exercise region
must be high enough to incentivize an option owner to exercise his right early. In the
(minimum) put part, the early-exercise region is the part closer to the d−dimensional
origin while that of a (maximum) call is the part closer to the d−dimensional infinite
point, i.e. (Smax, . . . , Smax) numerically or (∞, . . . ,∞) analytically. It follows that a basket
option has its early-exercise regions in both parts. As time goes backward (or equivalently
τ increases), we find different parts of a free boundary move at different rates, which may
result from the interaction of the different parameters associated with different assets such
as qi, σii and ρij for i = 1, · · · , d.

In terms of shapes, the free boundary of the two-dimensional minimum put seems L-
shaped, with corner stretching from the origin, while that of the maximum call appears to
be fish-shaped with the fish mouth towards the infinite point. However, the free boundaries
of a basket straddle are different. They consist of two curves, of which the call part seems
to change its convexity in the (numerical) steady state. The shapes of free boundaries
remain in any 2D cross-section of higher dimensional counterparts.
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8.2 Numerical Setup

We introduce the following notations and terminologies for further discussion of LCP al-
gorithms and numerical errors.

Time Discretization

We have introduced explicit, semi-implicit, implicit and the Rannacher Method for time dis-
cretization in chapter 5. To avoid numerical oscillations, we adopt the Rannacher method
which finds the solution of the first backward step by dividing the step into 5 substeps
and using implicit Euler in these substeps then switches to semi-implicit method from
the second backward step onward. [41] suggests this scheme is unconditionally stable and
asymptotically second-order accurate.

Number of Unknowns

In the following experiments, we partition each spatial axis uniformly into Ns segments,
namely (Ns)

d hypercube elements in our d−dimensional computational domain, and Nt

segments in the time axis. Notice that we do not need time discretization in perpetual
cases. In this manner, we will have a total of Nu := (Ns − 1)d unknown nodal values in
Ω := (0, Smax)

d when provided all Dirichlet boundary conditions (at each time step). For
convenience of comparison cross dimensions, we simply show the value of Ns instead of
(Ns − 1)d in the comparison of LCP algorithms. However, one should bear in mind that
when provided the same Ns, a higher-dimensional problem is far larger than its lower-
dimensional counterparts.

Algorithms

We shall focus on the LCP algorithms introduced in the previous chapter. For the hybrid
method with active set, we choose the PSOR method to distinguish the active and inactive
nodes at each iteration. Once they are separated, the subsequent system of equation (of
smaller size) is solved in three different ways. The first choice is to use the backslash
operator in Matlab, which has been automatically optimized for sparse matrices. The
second and third one will be solved by the BICGSTAB solver in Matlab, which is based on
the biconjugate gradients stabilized method, with and without preconditioning respectively.
The preconditioners of the third choice are obtained by the ILU program in Matlab, which
attains the sparse incomplete LU factorization, and then fed into the BICGSTAB solver.

In the following, we compare the previous methods, abbreviated as PSOR-BS, PSOR-
BICGSTAB and PSOR-BICGSTAB-Pre, the PSOR method, Modulus method, (Lagrangian)
Multiplier method, Lemke’s method and Howard’s method in the problems of different sizes
in a d−asset framework for d = 1, 2, 3.
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Initial Guess for LCPs

Recall we performed a linear transformation to obtain the canonical LCP forms (5.7-5.9)
and (5.10-5.12) for American and perpetual option pricing problems. We have tried three
types of initial guess for solving for the vector z of a canonical LCP at each time step k: 0,
Vk+1
A −G and max{0,Vk+1

E −G} where G is the vector of payoff values, Vk+1
A and Vk+1

E

are the American and European Option values at time step k + 1. Our results suggest
that generally Vk+1

A − G is a better choice1 for American options when the size of time
step is small. For simplicity of presentation, we will only show the results by using the
initial guesses Vk+1

A −G and 0 for the American and perpetual option pricing problems
respectively in the following experiments.

Stopping Criteria

We define tol as the maximum tolerance for all the relative changes after every iteration
or pivoting, which are measured in absolute value at each entry, i.e., we impose

|(z`)i − (z`+1)i|
max{1, (z`+1)i}

≤ tol for all i

where z is the non-negative vector considered in a canonical LCP, ` is the iteration number2

in an algorithm and i refers to the ith. entry of the vector. Notice that in our option pricing
problems, the above criterion is stricter than

||z` − z`+1||∞
||z`+1||∞

≤ tol

which is also widely used in the literature. We also remind the reader that max{1, (z`+1)i}
instead of (z`+1)i is adopted as the denominator to avoid the singularity caused by (z`+1)i =
0. This also affects those values less than 1, but in pratical cases their number is a very
tiny proportion compared to the total number Nu, when given an exercise price E � 1.

A stopping criterion to find a numerical/exact solution is set to be tol = 0.01% (in
the sense of each entry) when comparing different LCP algorithms in the next section.
Following that, we set up a stricter criterion as tol = 10−6 for higher accuracy to measure
the discretization and truncation errors. In addition to the tol, we also set 105 as the
maximum iteration number for iterative solvers.3 An iterative algorithm will stop when
either all the relative entry errors are smaller than tol or when it reaches the maximum
iteration number.

1When the time to maturity is small, the non-negative European option values can be a good guess.
But when the time is far away from maturity date, such choice is not sensible since many of its component
values may be smaller than payoffs.

2In time-dependent cases, we have zk,`+1 instead, where k refers to the time step tk.
3As we shall see later, an iterative algorithm may reach the limit in a large-scale problem involved with

multiple assets.
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Benchmark Solution

To compare solutions in various scenarios, we define different benchmark solutions, denoted
by v∗ = v∗(t,S) when given time t and share prices S, in accordance with the purposes
of the following sections. If exact solutions are available, their linear interpolants on a
fixed finite element mesh are taken as the benchmark solutions; otherwise, we consider the
numerical solution computed by a specified method, on the finest mesh or with the largest
far-field bound in each case and take their linear interpolants on a fixed, and generally
coarser, finite element mesh as the benchmark solutions. The definition of the benchmark
solutions will be further specified in the following sections.

Errors

One can calculate different errors when given a benchmark solution v∗ = v∗(t,S) and a
numerical solution obtained by a different method or on a different mesh, denoted by
vh = vh(t,S). Conventionally, in the field of mathematical finance the numerical errors are
considered in a discrete sense such as the mean square error (MSE) and maximum relative
error (MRE) defined below

MSE :=
1

Nu

∑
S∈Nh
S6∈Γh

(vh(0,S)− v∗(0,S))2 ,

MRE := max
S∈Nh
S6∈Γh

{
|vh(0,S)− v∗(0,S)|

max{1, v∗(0,S)}

}
(provided E >> 1).

whereNh is the collection of the nodes in a d−dimensional uniform grid of mesh size h, Γh is
the boundary of computational domain and time t = 0 can be omitted in time-independent
cases.

In addition to these two discrete errors, since the finite element methods are imple-
mented in our research, we shall calculate the errors in a functional sense. We define an
error function

eh(t,S) := vh(t,S)− v∗(t,S),

and its canonical H0-(or L2-) and H1-norm errors

||eh||20 := (eh, eh) :=

∫
Ω

e2
h dΩ,

||eh||21 := (eh, eh) + (∇eh,∇eh) := ||eh||20 + |eh|21

:=

∫
Ω

e2
h dΩ +

d∑
i=1

∫
Ω

(
∂eh
∂S(i)

)2

dΩ.
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Additionally, we also define the following weighted H1,w-norm error

||eh||21,w := (eh, eh) + (∇eh,∇eh)T := ||eh||20 + |eh|21,w

:=

∫
Ω

e2
h dΩ +

d∑
i=1

d∑
j=1

∫
Ω

σijS
(i)S(j)

2

∂eh
∂S(i)

∂eh
∂S(j)

dΩ.

The five errors will be investigated in the following experiments for comprehensive
comparison.

Computational Cost

The computational cost of our numerical schemes is measured from the following aspects.

• (Average) runtime:
The runtime is defined as the solution time on a scale of seconds, excluding prepro-
cessing time, to achieve a numerical solution satisfying the above stopping criteria. If
an American option is considered, then the runtime is defined as the average values
of all time steps.

• (Average) iteration number:
The iteration number is defined as the average number of iteration needed to achieve
a numerical solution satisfying the above stopping criteria. If a solver has two-layer
iterations, the number refers to that of outer iteration. And the average value of all
time steps is taken when considering time-dependent American models.

• (Average) runtime per iteration (RPI):
The (average) runtime per iteration refers to the ratio of (average) runtime to (aver-
age) iteration number. It is used to measure how expensive for each iteration of an
algorithm.

8.3 Robustness of LCP Solvers

As mentioned in the previous chapter, the solvability of a LCP solver heavily depends on
the class of coefficient matrix C (and the values of vector q and qk in Chapter 5). Also
mentioned earlier is that up to date there is no efficient numerical test to check the class
of the coefficient matrix for the convergence of LCP algorithms. A natural question then
follows: whether the numerical algorithms introduced earlier are robust to solve the LCPs
arising from the Black-Scholes-Merton partial differential inequalities when dealing with
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American and perpetual option pricing problems? Are the numerical solutions convergent
and accurate to satisfactory extent?4

Since the closed-form formulas are known in the cases of one-asset American call without
dividend paying and one-asset perpetual call/put with general setup of dividends, the exact
values can be used as benchmark solutions to examine the robustness of different LCP
algorithms. In what follows, we present the numerical results obtained by exact formulas,
the PSOR method, the Modulus method, the Lemke method, the Lagrangian Multiplier
method, the Howard method and the hybrid PSOR-BS method. The following analytical
and numerical parameters are used in our tests.

• Exercise price: E = 300;

• Interest rate: r = 0.05;

• Expiry date: T = 1 (in time-dependent cases);

• (Annualized) variance: σ2 = 0.22 = 0.04.

• The far-field bound: Smax = 2000;

• Number of partition points in S-axis: N1 + 1 = 51;

• Number of partition points in t-axis: Nt + 1 = 21 (in time-dependent cases).

To focus on the robustness of LCP solvers and to avoid the truncation errors, we will use
the exact solutions as the far-field boundary conditions in the following tests. In the trials,
the stopping criterion is set by tol = 0.01% and the benchmark solutions are set as

v∗ = Ihv

where Ih : V→ Vh is a d−dimensional piecewise interpolation operator on a mesh of mesh
size h such that given a fixed tk,

Ihv(tk, Sj) = v(tk, Sj) for Sj ∈ {0, 40, 80, . . . , 2000}.

We recall that tk = 0 in the American case while the tk can be omitted in the perpetual
cases.

4Recall that the values of lower-dimensional options may serve as the boundary conditions of its high-
dimensional counterparts. In this case, a LCP solver influences the accuracy of option values on both the
boundary and the interior domain.
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Methods
Errors PSOR Modulus Lemke Multiplier Howard Hybrid
MSE 3.5645 · 10−4 1.8514 · 102 6.5103 · 10−4 6.5103 · 10−4 6.5103 · 10−4 3.5645 · 10−4

MRE 0.5698% 99.8641% 0.1932% 0.1932% 0.1932% 0.5698
H0 8.3984 · 10−1 4.8348 · 102 9.1505 · 10−1 9.1505 · 10−1 9.1505 · 10−1 8.2896 · 10−1

H1 8.3987 · 10−1 4.8349 · 102 9.1509 · 10−1 9.1509 · 10−1 9.1509 · 10−1 8.2899 · 10−1

H1,w 9.0662 · 10−1 5.0516 · 102 9.6866 · 10−1 9.6866 · 10−1 9.6866 · 10−1 8.9644 · 10−1

Table 8.1: The errors for one-asset perpetual put with nonzero dividend.

8.3.1 Time-independent Case

We have introduced the closed-form formulas of one-asset perpetual call and put in Chapter
1. Here we take the nonzero dividend q = 0.02 for our tests. Figures 8.22 and 8.23 show
that for all the selected LCP solvers except for the Modulus method, the absolute error
|vh(tk, Sj) − Ihv(tk, Sj)| is well below 1 (given E = 300 >> 1) at an arbitrary node, or
equivalently its MRE < 0.1%, in both time-independent cases. The Modulus method
produces significant differences from others in terms of the MSE, MRE, H0-norm, H1-
norm and H1,w-norm errors. Actually the errors of numerical solution of Modulus method
remain almost unchanged even if we increase the partition number N1 from 50 to 1000,
which suggests the numerical solution of Modulus method may be inaccurate in a general
case.

8.3.2 Time-dependent Case

Since numerical errors accumulate when time integration is performed in a numerical
scheme, we would like to investigate the robustness of LCP algorithms in time-dependent
cases. It is well-known that an American call is equivalent to a European call if there is
no dividend payment. In this case, we set q = 0 for our American option and compare its
numerical values with the exact values of its European counterpart. As figure 8.24 shows,
the relative errors of all the selected LCP solvers are well below 0.05%, or equivalently the
absolute errors are less than 1 given E = 300, at τ = 1. Such accuracy provided by only
51 partition points in S-axis is sufficient for practical use. Surprisingly in this particular
time-dependent case, the Modulus method provides smaller errors than others from the
aspects of MSE, MRE, H0-norm, H1-norm and H1,w-norm.

8.3.3 Comment

We have seen that when there is no dividend paying to a share, the Modulus method and
all others seems to provide a decent numerical solution. However, in a more generalized
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Figure 8.22: Exact and numerical perpetual put values with dividend.
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Figure 8.23: Exact and numerical perpetual call values with dividend.
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Figure 8.24: Exact and numerical American call values without dividend.

Methods
Errors PSOR Modulus Lemke Multiplier Howard Hybrid
MSE 1.8364 · 10−2 3.1719 · 103 6.2050 · 10−3 6.2050 · 10−3 6.2050 · 10−3 1.8110 · 10−2

MRE 4.2886% 100% 4.1958% 4.1958% 4.1958% 4.2872%
H0 5.1783 · 100 2.0068 · 103 3.0666 · 100 3.0666 · 100 3.0666 · 100 5.1435 · 100

H1 5.1785 · 100 2.0068 · 103 3.0669 · 100 3.0669 · 100 3.0669 · 100 5.1437 · 100

H1,w 5.3245 · 100 2.0484 · 103 3.2177 · 100 3.2177 · 100 3.2177 · 100 5.2895 · 100

Table 8.2: The errors for one-asset perpetual call with nonzero dividend.

Methods
Errors PSOR Modulus Lemke Multiplier Howard Hybrid
MSE 2.0521 · 10−2 1.2376 · 10−5 2.0536 · 10−2 2.0531 · 10−2 2.0536 · 10−2 2.0529 · 10−2

MRE 1.5743% 0.0614% 1.5744% 1.5732% 1.5744% 1.5744%
H0 7.0417 0.1270 7.0447 7.0443 7.0447 7.0433
H1 7.0419 0.1271 7.0449 7.0445 7.0449 7.0434
H1,w 9.4342 0.1797 9.4377 9.4373 9.4377 9.4361

Table 8.3: The finite element errors for one-asset American call without dividend.
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circumstance with dividend payment, the Modulus method may produce bias in its nu-
merical solution even though its numerical solution is convergent. Such bias is significant
around the exercise price (kink point), which is the so-called hotspot area in practice.
Since the values of one-asset options serve as boundary conditions in higher-dimensional
cases, its bias may propagate into the interior domain of multi-dimensional circumstances.
Actually, in our other experiments and as we shall see later, the Modulus method usually
generates a notably different numerical solution from other methods, which can not be re-
duced by using smaller mesh sizes (hs and ht) and larger far-field bound value (Smax). Our
results suggest that the Modulus method may not be a suitable algorithm when solving
a generalized Black-Scholes-Merton partial differential inequality along with finite element
techniques.
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8.4 Performance of LCP Algorithms

From the comparison with the exact solutions of previous section, we have learnt that
our LCP algorithms are robust for solving option pricing problems except that the Modu-
lus method may produce incorrect solutions. However, exact solutions for American and
perpetual option problems are generally unknown when given more complicated payoffs,
nonzero dividends or in multi-asset cases. Since the size of LCP problems grow exponen-
tially as Ns and d increase linearly, we are interested to see how different and how expensive
the numerical solutions would be when fixing Ns, Nt and d and provided identical stopping
criteria. For simplicity, we fix Nt = 20 and set tol ≤ 0.01% in this section. We shall
observe their costs for solving a LCP with Nu = (Ns − 1)d unknowns (at each time step
if time-dependent) and compare the differences of their numerical solutions in terms of
MSE, MRE, H0-norm, H1−norm and H1,w−norm errors by taking the numerical solution
obtained by Howard’s method as the benchmark solution given the same Ns in a d-asset
framework for d = 1, 2, 3. As (basket) straddles have more complicated payoffs than calls
and puts, we consider American/perpetual (basket) straddle options in what follows. We
reminder readers the aim of this section is to compare the LCP solvers when provided
identical problems, numerical parameters and stopping criteria instead of investigating the
convergence of numerical errors, which will be discussed following this section.

8.4.1 Option Parameters

For convenience, we shall use the following parameter values for all numerical experiments
from this section on. Note that the weights ω are only for (multi-asset) basket options and
the expiry date T is applicable only to European and American options. Also recall that
a covariance is defined as σij = ρijσiσj where ρii = 1.

One-asset Case

E = 300, r = 0.05, q = 0.02, T = 1 and σ2 = 0.22 = 0.04.

Two-asset Case

ω = (0.4, 0.6)T , E = 300, r = 0.05, q = (0.02, 0.03)T , T = 1 and σ2
1 = 0.22, σ2

2 = 0.42 and
the correlation coefficient ρ12 = 0.5.

Three-asset Case

ω = (0.2, 0.3, 0.5)T , E = 300, r = 0.05, q = (0.01, 0.02, 0.03)T , T = 1 and σ2
1 = 0.3, σ2

2 =
0.4, σ2

3 = 0.5 and the correlation coefficients ρ12 = 0.25, ρ13 = 0.5, ρ23 = 0.75.
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8.4.2 Observation

Tables [8.4], [8.6] and [8.8] manifest the comparison results of time-dependent American
cases while tables [8.5], [8.7] and [8.9] reveal those of time-independent perpetual cases.

Computational Cost

It is obvious that the runtimes, iterations and RPI increase as Ns doubles (and corre-
spondingly Nu grows almost 2d larger each time). However their increase rates are dif-
ferent and dependent on the choice of algorithms, and option types. We recall that the
one-dimensional problems are relatively smaller and with less complexity5 than those of
higher-dimensional ones. As a result, the runtime increases significantly as the number of
assets d increases with respect to each algorithm.We remind readers that the coefficient
matrices have 3, 9, 27 bands for one-, two- and three-asset cases.

Overall, Howard’s method has the most satisfactory runtimes, followed by the Multiplier
and Lemke’s methods. However, the Multiplier method prevails over Howard’s method at
Ns = 640 in two-asset (both American and perpetual) cases. This suggests the Multiplier
method may outperform Howard’s method when problems become extremely large and
more complicated (with 9 bands). This may even be true in three-dimensional cases (with
27 bands), but we will need further experiments to verify it.

In general, the runtimes of perpetual cases are much longer than their American coun-
terparts (the total of all time steps). This may result from the fact that the initial guesses
(the previous solutions) provide more information when the time step is small in the case
of American options while the payoffs provide less information when serving as the initial
guess of the perpetual counterparts.

As for the PSOR method and its variants, they generally consume much more com-
putational time. The PSOR-BS method, the PSOR-BICGSTAB method and the PSOR-
BICGSTAB-Pre methods do not seem benefit from the separation of active/inactive nodes
in one-dimensional small-scaled problems due to the fact that they are implemented in
two phases and need extra operations. However, when the problems become more compli-
cated and larger in multi-asset cases, their extra effort is rewarded with slight reduction
of runtimes. Overall, the PSOR-BS method and the PSOR-BICGSTAB method have al-
most equal performance in each case; and the PSOR-BICGSTAB-Pre method provides
subtle improvement in one-dimensional problems (or tri-diagonal systems) but have un-
certain improvement in higher-dimensional ones (or multi-band systems). However, the
PSOR-BICGSTAB-Pre method needs less iterations than the PSOR-BS method and the
PSOR-BICGSTAB method. This suggests that if one can simplify the procedures of the
PSOR-BICGSTAB-Pre method from programming or mathematical point of view, it may
overwhelm the PSOR method, the PSOR-BS method and the PSOR-BICGSTAB method.

5We have tri-diagonal systems in one-dimensional problems and a 3d-band system in a generalized
d−dimesional cases for d ≥ 1.
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In terms of iteration and RPI, Howard’s method, Multiplier method and Lemke’s
method are still the most favourite in all cases. It is noticeable that the needed num-
ber of iterations of Lemke’s method increase at about the rate of 2d as Ns doubles in
d-dimensional experiments. In contrast, those of Howard’s method and Multiplier method
increase slowly, around 1.8 ∼ 2 times for one-asset perpetual, two-asset American and
perpetual cases and around 1.5 times for three-asset American and perpetual cases. As to
one-asset American option, due to good initial guess and its small size, the increase of its
iteration number is not not significant for Howard’s method and Multiplier method.

Errors among Algorithms

Beware that even given an identical stopping criterion and an identical numerical mesh,
there still exist slight differences among the numerical solutions obtained by different algo-
rithms. If we take the solution of Howard’s method as the benchmark solution, we can not
find significant differences/errors from those by other methods when provided the same
partition numbers, except for that by the Modulus method.

Particularly, most of the MREs of Multiplier and Lemke’s methods are less than 0.1%
in our experiments and thus negligible in practice. However, in two-asset perpetual cases,
Lemke’s method stops at the maximum iteration limit (105) and thus fails to satisfy the
criterion tol = 10−4 as shown in table 8.10. This suggests Lemke’s method needs a higher
maximum iteration limit in large-scale problems and will consume more time to achieve
satisfactory accuracy.

In contrast, the Modulus method produces convergent but incorrect numerical solutions,
measured by all five types of errors, in all cases. Its MRE even reaches 91.5411% when given
Ns = 80 in two-asset American case. Such differences/errors result from the algorithm of
Modulus method itself and can not be remedied with smaller tol, mesh size and lager
far-field bound. We summarize the errors with its largest Ns in each case in table 8.11.

Comment

Interestingly, even though Howard’s method and the Multiplier method are designed based
on different theories, they have quite similar performances from all the aspects of runtimes,
iterations, RPI and errors in all our experiments. Based on our results, Howard’s, Multiplier
and Lemke’s method deserve further investigation in the future especially in large-scale
multi-band problems. In contrast, the Modulus method may not be suitable for option
pricing with BSM partial differential inequality due to its incorrect numerical solutions
while the PSOR and its variants produce quite disappointing performance even though
they are widely introduced for option pricing problems.
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Methods

Ns PSOR Modulus Multiplier
PSOR- PSOR- PSOR-

Lemke Howard
BS BICGSTAB BICGSTAB-Pre

Runtime

10 2.0177 · 10−3 1.1107 · 10−1 1.6554 · 10−2 6.2676 · 10−3 3.1819 · 10−2 2.2307 · 10−2 1.2176 · 10−2 7.2475 · 10−3

20 2.8595 · 10−3 8.2706 · 10−2 1.5520 · 10−2 1.5495 · 10−2 2.2344 · 10−2 2.2321 · 10−2 1.7934 · 10−3 2.1385 · 10−3

40 4.9657 · 10−3 1.4877 · 10−1 3.7831 · 10−2 2.1075 · 10−2 2.2494 · 10−2 9.4094 · 10−3 2.0675 · 10−3 2.4217 · 10−3

80 9.3820 · 10−3 8.3854 · 10−2 3.1528 · 10−2 1.3038 · 10−2 2.2584 · 10−2 1.4381 · 10−2 3.8034 · 10−3 2.4130 · 10−3

160 4.2646 · 10−2 8.2647 · 10−2 3.4440 · 10−2 5.4713 · 10−2 7.5306 · 10−2 5.3188 · 10−2 8.4146 · 10−3 2.5588 · 10−3

320 3.0568 · 10−1 1.2075 · 10−1 1.7170 · 10−2 3.5127 · 10−1 3.6104 · 10−1 2.9261 · 10−1 2.0604 · 10−2 8.2994 · 10−3

640 1.8563 · 100 2.5922 · 10−1 2.2869 · 10−2 1.9478 · 100 2.0506 · 100 1.8033 · 100 1.0163 · 10−1 4.4102 · 10−3

1280 1.1220 · 101 6.3973 · 10−1 3.8651 · 10−2 1.2389 · 101 1.2903 · 101 1.1505 · 101 2.2312 · 10−1 8.5119 · 10−3

Iteration

10 4.40 14.90 3.75 3.00 3.00 3.00 3.00 3.75
20 5.75 14.50 4.10 3.00 3.00 3.00 2.29 4.10
40 5.95 10.05 4.45 3.00 3.00 3.00 3.65 4.45
80 5.90 7.75 3.60 3.00 3.00 3.00 10.75 3.60

160 12.20 8.40 3.60 4.65 4.65 3.05 23.15 3.70
320 30.25 10.80 4.00 8.15 8.15 3.00 45.75 4.05
640 75.85 14.10 4.45 17.20 17.20 3.00 91.25 4.45

1280 166.15 18.25 5.65 35.15 35.15 3.00 182.45 5.65

RPI

10 4.5856 · 10−4 7.4545 · 10−3 4.4143 · 10−3 2.0892 · 10−3 1.0606 · 10−2 7.4357 · 10−3 4.0587 · 10−3 1.9327 · 10−3

20 4.9730 · 10−4 5.7038 · 10−3 3.7853 · 10−3 5.1649 · 10−3 7.4479 · 10−3 7.4402 · 10−3 7.8463 · 10−4 5.2159 · 10−4

40 8.3458 · 10−4 1.4803 · 10−2 8.5013 · 10−3 7.0250 · 10−3 7.4980 · 10−3 3.1365 · 10−3 5.6644 · 10−4 5.4421 · 10−4

80 1.5902 · 10−3 1.0820 · 10−2 8.7578 · 10−3 4.3459 · 10−3 7.5280 · 10−3 4.7936 · 10−3 3.5381 · 10−4 6.7026 · 10−4

160 3.4956 · 10−3 9.8389 · 10−3 9.5666 · 10−3 1.1766 · 10−2 1.6195 · 10−2 1.7439 · 10−2 3.6348 · 10−4 6.9158 · 10−4

320 1.0105 · 10−2 1.1181 · 10−2 4.2926 · 10−3 4.3100 · 10−2 4.4299 · 10−2 9.7537 · 10−2 4.5037 · 10−4 2.0492 · 10−3

640 2.4473 · 10−2 1.8384 · 10−2 5.1392 · 10−3 1.1325 · 10−1 1.1922 · 10−1 6.0110 · 10−1 1.1137 · 10−3 9.9106 · 10−4

1280 6.7527 · 10−2 3.5054 · 10−2 6.8408 · 10−3 3.5246 · 10−1 3.6708 · 10−1 3.8349 · 100 1.2229 · 10−3 1.5065 · 10−3

Table 8.4: Comparison of LCP solvers for One-asset American Straddle.

Methods

Ns PSOR Modulus Multiplier
PSOR- PSOR- PSOR-

Lemke Howard
BS BICGSTAB BICGSTAB-Pre

Runtime

10 2.1865 · 10−2 9.7696 · 10−1 2.1973 · 10−1 5.6053 · 10−2 2.5699 · 10−1 1.0595 · 10−1 5.3716 · 10−2 3.2912 · 10−1

20 3.9820 · 10−2 1.3519 · 10−1 6.6018 · 10−2 1.2916 · 10−1 1.6486 · 10−1 5.5961 · 10−2 6.4370 · 10−3 3.4260 · 10−3

40 2.7515 · 10−1 7.5744 · 10−2 7.5488 · 10−2 4.5986 · 10−1 7.5408 · 10−1 2.8917 · 10−1 1.1012 · 10−2 4.9250 · 10−3

80 2.0967 · 100 7.3248 · 10−2 1.4632 · 10−1 1.8601 · 100 3.1200 · 100 1.9401 · 100 2.3855 · 10−2 8.4450 · 10−3

160 6.7614 · 100 1.1064 · 10−1 3.2731 · 10−1 8.0451 · 100 1.3119 · 101 6.1879 · 100 5.2293 · 10−2 1.6649 · 10−2

320 4.0183 · 101 4.5060 · 10−1 7.8261 · 10−1 4.1015 · 101 1.0903 · 102 3.7767 · 101 1.4731 · 10−1 4.1804 · 10−2

640 2.6982 · 102 1.8552 · 100 1.5044 · 100 5.4090 · 102 5.1661 · 102 2.7038 · 102 4.8282 · 10−1 1.2665 · 10−1

1280 1.7633 · 103 6.1811 · 100 2.9770 · 100 2.1468 · 103 2.8262 · 103 1.7353 · 103 1.7482 · 100 4.8822 · 10−1

Iteration

10 14 12 4 5 5 3 5 4
20 35 21 5 9 9 3 8 5
40 122 39 8 26 26 3 16 8
80 440 70 15 90 90 3 33 15

160 1376 123 29 277 277 4 64 28
320 4243 189 58 851 851 7 130 56
640 11780 270 111 2358 2358 14 259 109

1280 25796 413 217 5161 5161 28 517 214

RPI

10 1.5618 · 10−3 8.1413 · 10−2 5.4933 · 10−2 1.1211 · 10−2 5.1399 · 10−2 3.5316 · 10−2 1.0743 · 10−2 8.2280 · 10−2

20 1.1377 · 10−3 6.4377 · 10−3 1.3204 · 10−2 1.4351 · 10−2 1.8318 · 10−2 1.8654 · 10−2 8.0463 · 10−4 6.8520 · 10−4

40 2.2553 · 10−3 1.9422 · 10−3 9.4360 · 10−3 1.7687 · 10−2 2.9003 · 10−2 9.6389 · 10−2 6.8825 · 10−4 6.1562 · 10−4

80 4.7652 · 10−3 1.0464 · 10−3 9.7549 · 10−3 2.0668 · 10−2 3.4666 · 10−2 6.4669 · 10−1 7.2288 · 10−4 5.6300 · 10−4

160 4.9138 · 10−3 8.9955 · 10−4 1.1287 · 10−2 2.9044 · 10−2 4.7362 · 10−2 1.5470 · 100 8.1708 · 10−4 5.9461 · 10−4

320 9.4704 · 10−3 2.3841 · 10−3 1.3493 · 10−2 4.8196 · 10−2 1.2812 · 10−1 5.3952 · 100 1.1332 · 10−3 7.4650 · 10−4

640 2.2905 · 10−2 6.8711 · 10−3 1.3553 · 10−2 2.2939 · 10−1 2.1909 · 10−1 1.9313 · 101 1.8642 · 10−3 1.1619 · 10−3

1280 6.8356 · 10−2 1.4966 · 10−2 1.3719 · 10−2 4.1596 · 10−1 5.4762 · 10−1 6.1975 · 101 3.3815 · 10−3 2.2814 · 10−3

Table 8.5: Comparison of LCP solvers for One-asset Perpetual Straddle.
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Methods

Ns PSOR Modulus Multiplier
PSOR- PSOR- PSOR-

Lemke Howard
BS BICGSTAB BICGSTAB-Pre

Runtime

10 1.7518 · 10−2 5.2598 · 10−2 1.6923 · 10−2 1.5408 · 10−2 2.9959 · 10−2 2.1863 · 10−2 2.2819 · 10−3 3.5211 · 10−3

20 9.9036 · 10−2 7.0295 · 10−1 1.8312 · 10−2 9.7140 · 10−2 1.1061 · 10−1 1.1778 · 10−1 4.4398 · 10−3 4.1280 · 10−3

40 1.3873 · 100 5.4902 · 100 5.5385 · 10−2 1.1643 · 100 1.1527 · 100 1.6286 · 100 3.3882 · 10−2 2.8300 · 10−2

80 4.6628 · 101 1.5269 · 102 4.5533 · 10−1 2.3037 · 101 2.0993 · 101 5.0168 · 101 1.3296 · 100 1.4281 · 10−1

160 — — 2.7300 · 100 — — — 3.6502 · 101 9.6595 · 10−1

320 — — 2.0708 · 101 — — — 5.4959 · 102 1.4190 · 101

640 — — 1.5017 · 102 — — — 7.4306 · 103 1.5938 · 102

Iteration

10 6.75 15.95 4.00 3.00 3.00 3.00 2.57 3.90
20 7.65 11.40 3.95 3.00 3.00 3.00 4.26 4.10
40 8.65 8.00 4.00 3.00 3.00 3.00 13.00 4.00
80 17.40 8.40 4.15 3.55 3.55 3.00 50.65 4.15

160 — — 6.60 — — — 206.80 6.60
320 — — 11.10 — — — 841.90 11.10
640 — — 20.00 — — — 3397.40 20.00

RPI

10 2.5953 · 10−3 3.2977 · 10−3 4.2308 · 10−3 5.1361 · 10−3 9.9862 · 10−3 7.2877 · 10−3 8.8739 · 10−4 9.0285 · 10−4

20 1.2946 · 10−2 6.1662 · 10−2 4.6358 · 10−3 3.2380 · 10−2 3.6872 · 10−2 3.9262 · 10−2 1.0406 · 10−3 1.0068 · 10−3

40 1.6038 · 10−1 6.8628 · 10−1 1.3846 · 10−2 3.8810 · 10−1 3.8423 · 10−1 5.4286 · 10−1 2.6063 · 10−3 7.0749 · 10−3

80 2.6798 · 100 1.8177 · 101 1.0972 · 10−1 6.4892 · 100 5.9135 · 100 1.6723 · 101 2.6251 · 10−2 3.4412 · 10−2

160 — — 4.1364 · 10−1 — — — 1.7651 · 10−1 1.4636 · 10−1

320 — — 1.8656 · 100 — — — 6.5280 · 10−1 1.2784 · 100

640 — — 7.5083 · 100 — — — 2.1871 · 100 7.9691 · 100

Table 8.6: Comparison of LCP solvers for Two-asset American Basket Straddle.

Methods

Ns PSOR Modulus Multiplier
PSOR- PSOR- PSOR-

Lemke Howard
BS BICGSTAB BICGSTAB-Pre

Runtime

10 8.3401 · 10−2 3.4235 · 10−1 1.0703 · 10−1 1.2334 · 10−1 2.2829 · 10−1 1.1828 · 10−1 2.1652 · 10−2 6.7278 · 10−2

20 2.4616 · 100 7.3832 · 10−1 9.2621 · 10−2 2.7551 · 100 3.4185 · 100 2.2954 · 100 1.4685 · 10−1 2.2101 · 10−1

40 1.0408 · 102 5.5434 · 100 1.0228 · 100 1.1887 · 102 1.0104 · 102 1.0163 · 102 1.4413 · 101 4.4164 · 100

80 4.8280 · 103 2.0041 · 102 1.2486 · 101 4.9043 · 103 4.8997 · 103 4.6279 · 103 2.2409 · 102 1.3036 · 101

160 — — 8.8312 · 101 — — — 5.3384 · 103 6.4107 · 101

320 — — 6.3204 · 102 — — — 7.3340 · 104 8.0182 · 102

640 — — 6.6321 · 103 — — — 8.0399 · 105 4.0091 · 104

Iteration

10 37 25 9 9 9 3 35 8
20 155 38 15 33 33 3 166 15
40 567 67 28 103 103 3 729 26
80 1797 112 52 361 361 4 3018 49

160 — — 104 — — — 12370 96
320 — — 207 — — — 49964 189
640 — — 387 — — — 100000 375

RPI

10 2.2541 · 10−3 1.3694 · 10−2 1.1892 · 10−2 1.3704 · 10−2 2.5365 · 10−2 3.9427 · 10−2 6.1863 · 10−4 8.4098 · 10−3

20 1.5881 · 10−2 1.9430 · 10−2 6.1747 · 10−3 8.3489 · 10−2 1.0359 · 10−1 7.6513 · 10−1 8.8463 · 10−4 1.4734 · 10−2

40 1.8355 · 10−1 8.2737 · 10−2 3.6529 · 10−2 1.1541 · 100 9.8093 · 10−1 3.3876 · 101 1.9771 · 10−2 1.6986 · 10−1

80 2.6867 · 100 1.7894 · 100 2.4011 · 10−1 1.3585 · 101 1.3572 · 101 1.1570 · 103 7.4253 · 10−2 2.6605 · 10−1

160 — — 8.4916 · 10−1 — — — 4.3156 · 10−1 6.6778 · 10−1

320 — — 3.0533 · 100 — — — 1.4678 · 100 4.2424 · 100

640 — — 1.7137 · 101 — — — 8.0399 · 100 1.0691 · 102

Table 8.7: Comparison of LCP solvers for Two-asset Perpetual Basket Straddle.
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Methods

Ns PSOR Modulus Multiplier
PSOR- PSOR- PSOR-

Lemke Howard
BS BICGSTAB BICGSTAB-Pre

Runtime

10 6.7343 · 10−1 7.9973 · 100 5.1347 · 10−2 5.4540 · 10−1 5.3120 · 10−1 7.3544 · 10−1 1.2305 · 10−1 3.1608 · 10−2

20 2.8760 · 102 2.2979 · 103 2.3688 · 100 1.5165 · 102 1.5041 · 102 3.1000 · 102 4.3469 · 101 6.7820 · 10−1

40 — — 7.3888 · 101 — — — 1.1608 · 104 5.1400 · 101

80 — — 8.5453 · 103 — — — — 5.5469 · 103

Iteration

10 8.80 17.95 4.25 3.00 3.00 3.00 17.80 4.00
20 15.65 23.80 5.45 3.60 3.60 3.00 155.55 5.00
40 — — 6.65 — — — 1366.60 6.35
80 — — 9.80 — — — — 9.75

RPI

10 7.6526 · 10−2 4.4553 · 10−1 1.2082 · 10−2 1.8180 · 10−1 1.7707 · 10−1 2.4515 · 10−1 6.9129 · 10−3 7.9020 · 10−3

20 1.8377 · 101 9.6551 · 101 4.3464 · 10−1 4.2124 · 101 4.1781 · 101 1.0333 · 102 2.7945 · 10−1 1.3564 · 10−1

40 — — 1.1111 · 101 — — — 8.4942 · 100 8.0944 · 100

80 — — 8.7197 · 102 — — — — 5.6892 · 102

Table 8.8: Comparison of LCP solvers for Three-asset American Basket Straddle.

Methods

Ns PSOR Modulus Multiplier
PSOR- PSOR- PSOR-

Lemke Howard
BS BICGSTAB BICGSTAB-Pre

Runtime

10 5.1667 · 100 9.8826 · 100 1.5129 · 100 1.7822 · 100 2.7351 · 100 3.3486 · 100 1.4584 · 101 4.3977 · 10−1

20 3.5753 · 103 2.5667 · 103 3.5458 · 101 4.8393 · 102 4.8373 · 102 3.4419 · 103 7.4429 · 103 1.1543 · 101

40 — — 2.1605 · 103 — — — — 8.1799 · 102

80 — — 7.0672 · 105 — — — — 1.9330 · 105

Iteration

10 42 59 12 4 4 3 734 10
20 179 109 23 7 7 3 6908 18
40 — — 42 — — — — 33
80 — — 473 — — — — 63

RPI

10 1.2302 · 10−1 1.6750 · 10−1 1.2608 · 10−1 4.4556 · 10−1 6.8377 · 10−1 1.1162 · 100 1.9870 · 10−2 4.3977 · 10−2

20 1.9974 · 101 2.3547 · 101 1.5417 · 100 6.9134 · 101 6.9104 · 101 1.1473 · 103 1.0774 · 100 6.4125 · 10−1

40 — — 5.1440 · 101 — — — — 2.4788 · 101

80 — — 9.6811 · 103 — — — — 3.0682 · 103

Table 8.9: Comparison of LCP solvers for Three-asset Perpetual Basket Straddle.

Errors of Lemke’s Method in Two-asset Perpetual Straddle
Ns MSE MRE H0 H1 H1,w

320 5.0155 · 10−25 0.0000% 1.7066 · 10−9 1.7151 · 10−9 1.7161 · 10−8

640 6.0808 · 102 47.3560% 6.2984 · 104 6.3001 · 104 6.7291 · 104

Table 8.10: Lemke’s method reaches maximum iteration at Ns = 640.
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Errors of Modulus Method
Type Ns MSE MRE H0 H1 H1,w

One-asset American 1280 1.2948 · 10−1 5.7870% 1.8184 · 101 1.8207 · 101 3.6889 · 101

One-asset Perpetual 1280 1.5438 · 103 71.5119% 1.9872 · 103 1.9873 · 103 2.0520 · 103

Two-asset American 80 4.9458 · 101 91.5411% 1.7435 · 104 1.7437 · 104 2.3336 · 104

Two-asset Perpetual 80 1.9312 · 103 90.9663% 1.1005 · 105 1.1005 · 105 1.1790 · 105

Three-asset American 20 1.8045 · 102 84.3624% 1.4897 · 106 1.4898 · 106 2.0755 · 106

Three-asset Perpetual 20 7.7012 · 103 85.9248% 9.7790 · 106 9.7792 · 106 1.3563 · 107

Table 8.11: Errors of Modulus Method.

8.5 Discretization Error

Overall, Howard’s method is the speediest of all the unbiased algorithms compared in the
previous section. On the merits of its computational speed, we adopt Howard’s method
as the default algorithm from this section on to investigate numerical errors. In order to
obtain sharp results of numerical errors, we also raise the stopping criteria to tol = 10−6

hereafter.
In this section, we shall investigate the discretization errors when given different num-

bers of partitions (or mesh sizes) in spatial and time axes. Once again, we will consider the
(basket) straddle case of European, American and perpetual options in our experiments
and summarize their results in the tables [8.12], [8.13], [8.14], [8.15], [8.16], [8.17], [8.18],
[8.19] and [8.20]. In each table/case, we define the benchmark solution as the following
interpolant

v∗ := Ihvh∗

where Ih is a linear interpolant operator on a uniform coarse mesh with edge size h and
vh∗ is the numerical solution on the finest mesh with edge size h∗ in each table/case. We
then take this linear interpolant v∗(0,S) as the benchmark solution against the numerical
solution vh(0,S) computed with the same coarse mesh h for all S ∈ Nh. The nodal errors
of the coarse mesh are computed and utilized to compute the discretization errors in terms
of the five types introduced earlier.

When considering time-dependent cases in tables [8.12], [8.13], [8.15], [8.16], [8.18] and
[8.19], we first observe that given a fixed Nt (in each column of each table), the errors
decrease and then increase as Ns doubles. This illustrates that when time term is involved,
discretization errors can not be reduced by simply using finer spatial mesh. Once the
mesh size is reduced to some extent, it starts to bring more time integration errors and
raise the overall discretization errors. If the errors are compared column by column (i.e.
with increasingly large Nt), it is found that the minimum errors (in red) of each column
is actually becoming smaller as Nt and Ns both increase. Particularly, when the time
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mesh is fine enough such as the last column with the largest Nt in each table, then the
discretization errors are apparently reduced as Ns doubles. Similarly, given the largest Ns

(with the finest spatial mesh) on the last row of each case, we observe the discretization
errors decrease as Nt increase. As to the perpetual examples shown in tables [8.14], [8.17]
and [8.20], it simply shows the monotone descendant trend as Ns ascends because there
is no errors caused by time integration in these cases. These observations verify that the
discretization errors go to zero as the mesh sizes in space and time becomes smaller and
smaller in all cases.

It is also interesting to find the patterns of smallest errors are similar (or even identical)
when measured in different types in each case. Take the two-asset American basket straddle
option in table [8.16] as an example, we notice the H0 and H1 errors both reach their
smallest values at Ns = 160 when Nt = 10, 20, 40 and Ns = 320 when Nt = 80, 160 while
H1,w, MSE and MRE errors have similar but slightly different patterns. We also notice
that, for all the five errors in the time-dependent cases, the smallest error in a column with
smaller Nt (and even smaller Ns) is reduced more than half compared with that in the
previous column. However, the convergence rate with doubling Ns is not apparent in our
experiments of perpetual options.

8.6 Truncation Error

In the previous section, we fixed the far-field bound Smax = 2560 which may introduce
truncation errors in each case. To investigate how truncation errors vary, we define the
following far-field bounds and corresponding computational domains. For i = 1, . . . , 9,

S(i)
max := 320 + i · 320

Ωi := [0, S(i)
max]

d

In order to measure the truncation error sharply, we take the finest mesh (in space and
time) of each case as below.

• One-asset case: ht = 1/320 = 0.003125 and hs = 2560/5120 = 0.5;

• Two-asset case: ht = 1/320 = 0.003125 and hs = 2560/640 = 4;

• Three-asset case: ht = 1/40 = 0.025 and hs = 2560/80 = 32.

Again the time terms t and ht are dropped in perpetual cases. With identical option
parameters, we can compute option values over each Ωi and denote a nodal solution at
time t by vi(t,S) where S is a spatial node of the mesh over Ωi. To measure the truncation
errors properly, we adopt Nielsen’s approach in [72] and define

TE :=
||vi(0,S)− v∗(0,S)||H(Ωi)

||v∗(0,S)||H(Ωi)
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Nt

Error Type (Ns, Nu) 10 20 40 80 160 320

MSE

(10, 9) 3.7992 · 100 3.9897 · 100 4.1192 · 100 4.1929 · 100 4.2320 · 100 4.2522 · 100

(20, 19) 4.5512 · 100 4.6346 · 100 4.7063 · 100 4.7500 · 100 4.7739 · 100 4.7863 · 100

(40, 39) 3.6816 · 10−1 3.3294 · 10−1 3.4505 · 10−1 3.5890 · 10−1 3.6783 · 10−1 3.7280 · 10−1

(80, 79) 1.3832 · 10−1 4.8955 · 10−2 3.2782 · 10−2 3.2188 · 10−2 3.3812 · 10−2 3.5110 · 10−2

(160, 159) 1.3896 · 10−1 3.2223 · 10−2 7.0097 · 10−3 1.8016 · 10−3 1.0942 · 10−3 1.2206 · 10−3

(320, 319) 1.4309 · 10−1 3.3852 · 10−2 7.2470 · 10−3 1.3055 · 10−3 2.2189 · 10−4 1.5783 · 10−4

(640, 639) 1.4565 · 10−1 3.5082 · 10−2 7.7582 · 10−3 1.4437 · 10−3 1.7010 · 10−4 1.0133 · 10−5

(1280, 1279) 1.4550 · 10−1 3.5038 · 10−2 7.7406 · 10−3 1.4325 · 10−3 1.6027 · 10−4 5.7397 · 10−7

(2560, 2559) 1.4543 · 10−1 3.5022 · 10−2 7.7365 · 10−3 1.4312 · 10−3 1.5962 · 10−4 2.2987 · 10−8

(5120, 5119) 1.4540 · 10−1 3.5014 · 10−2 7.7348 · 10−3 1.4309 · 10−3 1.5956 · 10−4 0

MRE

(10, 9) 2.6404% 2.6687% 2.6831% 2.6904% 2.6940% 2.6958%
(20, 19) 7.7890% 7.9210% 7.9881% 8.0220% 8.0390% 8.0476%
(40, 39) 4.5210% 5.0718% 5.3484% 5.4870% 5.5564% 5.5910%
(80, 79) 0.7674% 1.3006% 1.5706% 1.7183% 1.7939% 1.8317%
(160, 159) 0.9324% 0.2655% 0.0983% 0.2384% 0.3227% 0.3648%
(320, 319) 1.1602% 0.4897% 0.1525% 0.0240% 0.1022% 0.1446%
(640, 639) 1.3400% 0.6599% 0.3179% 0.1465% 0.0616% 0.0294%
(1280, 1279) 1.3260% 0.6462% 0.3043% 0.1329% 0.0472% 0.0070%
(2560, 2559) 1.3225% 0.6428% 0.3009% 0.1296% 0.0438% 0.0014%
(5120, 5119) 1.3216% 0.6419% 0.3001% 0.1287% 0.0429% 0%

H0

(10, 9) 8.1146 · 101 8.3427 · 101 8.4970 · 101 8.5841 · 101 8.6302 · 101 8.6538 · 101

(20, 19) 9.5727 · 101 9.6380 · 101 9.7067 · 101 9.7502 · 101 9.7743 · 101 9.7869 · 101

(40, 39) 2.8973 · 101 2.7009 · 101 2.7332 · 101 2.7837 · 101 2.8173 · 101 2.8361 · 101

(80, 79) 1.8667 · 101 1.1007 · 101 8.8915 · 100 8.7639 · 100 8.9721 · 100 9.1414 · 100

(160, 159) 1.8790 · 101 9.0510 · 100 4.2210 · 100 2.1317 · 100 1.6479 · 100 1.7374 · 100

(320, 319) 1.9104 · 101 9.2928 · 100 4.2999 · 100 1.8251 · 100 7.5192 · 10−1 6.3314 · 10−1

(640, 639) 1.9293 · 101 9.4687 · 100 4.4527 · 100 1.9208 · 100 6.5933 · 10−1 1.6089 · 10−1

(1280, 1279) 1.9291 · 101 9.4670 · 100 4.4496 · 100 1.9142 · 100 6.4028 · 10−1 3.8314 · 10−2

(2560, 2559) 1.9291 · 101 9.4668 · 100 4.4494 · 100 1.9137 · 100 6.3912 · 10−1 7.6677 · 10−3

(5120, 5119) 1.9291 · 101 9.4668 · 100 4.4494 · 100 1.9137 · 100 6.3906 · 10−1 0

H1

(10, 9) 8.1147 · 101 8.3428 · 101 8.4971 · 101 8.5842 · 101 8.6303 · 101 8.6539 · 101

(20, 19) 9.5731 · 101 9.6384 · 101 9.7070 · 101 9.7506 · 101 9.7747 · 101 9.7873 · 101

(40, 39) 2.8975 · 101 2.7012 · 101 2.7335 · 101 2.7840 · 101 2.8176 · 101 2.8364 · 101

(80, 79) 1.8667 · 101 1.1008 · 101 8.8928 · 100 8.7654 · 100 8.9737 · 100 9.1430 · 100

(160, 159) 1.8791 · 101 9.0511 · 100 4.2210 · 100 2.1319 · 100 1.6484 · 100 1.7380 · 100

(320, 319) 1.9105 · 101 9.2930 · 100 4.2999 · 100 1.8251 · 100 7.5197 · 10−1 6.3328 · 10−1

(640, 639) 1.9293 · 101 9.4689 · 100 4.4528 · 100 1.9209 · 100 6.5935 · 10−1 1.6091 · 10−1

(1280, 1279) 1.9292 · 101 9.4672 · 100 4.4498 · 100 1.9142 · 100 6.4030 · 10−1 3.8318 · 10−2

(2560, 2559) 1.9292 · 101 9.4671 · 100 4.4495 · 100 1.9138 · 100 6.3914 · 10−1 7.6800 · 10−3

(5120, 5119) 1.9292 · 101 9.4671 · 100 4.4495 · 100 1.9138 · 100 6.3908 · 10−1 0

H1,w

(10, 9) 8.8208 · 101 9.1307 · 101 9.3488 · 101 9.4732 · 101 9.5392 · 101 9.5732 · 101

(20, 19) 1.0627 · 102 1.0678 · 102 1.0761 · 102 1.0817 · 102 1.0848 · 102 1.0865 · 102

(40, 39) 3.5396 · 101 3.2038 · 101 3.2228 · 101 3.2828 · 101 3.3251 · 101 3.3492 · 101

(80, 79) 2.4572 · 101 1.4196 · 101 1.1236 · 101 1.1028 · 101 1.1302 · 101 1.1532 · 101

(160, 159) 2.4941 · 101 1.2009 · 101 5.5872 · 100 2.8317 · 100 2.2655 · 100 2.4326 · 100

(320, 319) 2.5441 · 101 1.2368 · 101 5.7167 · 100 2.4146 · 100 9.7494 · 10−1 8.2751 · 10−1

(640, 639) 2.5730 · 101 1.2628 · 101 5.9300 · 100 2.5521 · 100 8.6245 · 10−1 1.7729 · 10−1

(1280, 1279) 2.5753 · 101 1.2637 · 101 5.9389 · 100 2.5533 · 100 8.5193 · 10−1 4.2222 · 10−2

(2560, 2559) 2.5763 · 101 1.2643 · 101 5.9407 · 100 2.5549 · 100 8.5290 · 10−1 8.4493 · 10−3

(5120, 5119) 2.5767 · 101 1.2644 · 101 5.9421 · 100 2.5556 · 100 8.5340 · 10−1 0

Table 8.12: Discretization Errors for One-asset European Straddle Option.
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Nt

Error Type (Ns, Nu) 10 20 40 80 160 320

MSE

(10, 9) 3.8592 · 100 3.9193 · 100 3.9500 · 100 3.9656 · 100 3.9734 · 100 3.9773 · 100

(20, 19) 3.3772 · 100 3.5080 · 100 3.5763 · 100 3.6111 · 100 3.6287 · 100 3.6376 · 100

(40, 39) 1.6775 · 10−1 2.0965 · 10−1 2.3392 · 10−1 2.4695 · 10−1 2.5371 · 10−1 2.5714 · 10−1

(80, 79) 6.6814 · 10−3 1.6449 · 10−2 2.4871 · 10−2 3.0274 · 10−2 3.3278 · 10−2 3.4857 · 10−2

(160, 159) 3.6498 · 10−3 1.1743 · 10−3 5.3692 · 10−4 8.3513 · 10−4 1.3903 · 10−3 1.7867 · 10−3

(320, 319) 3.3934 · 10−3 9.7066 · 10−4 2.3308 · 10−4 3.8754 · 10−5 4.5095 · 10−5 1.3244 · 10−4

(640, 639) 3.4391 · 10−3 1.0044 · 10−3 2.4707 · 10−4 4.8855 · 10−5 5.8044 · 10−6 1.2324 · 10−6

(1280, 1279) 3.4656 · 10−3 1.0113 · 10−3 2.5297 · 10−4 5.0536 · 10−5 5.7500 · 10−6 7.5104 · 10−8

(2560, 2559) 3.4682 · 10−3 1.0123 · 10−3 2.5492 · 10−4 5.1542 · 10−5 6.0659 · 10−6 2.3412 · 10−9

(5120, 5119) 3.4670 · 10−3 1.0129 · 10−3 2.5521 · 10−4 5.1767 · 10−5 6.1606 · 10−6 0

MRE

(10, 9) 4.8311% 4.8311% 4.8311% 4.8311% 4.8311% 4.8311%
(20, 19) 8.0413% 8.1987% 8.2794% 8.3202% 8.3408% 8.3511%
(40, 39) 3.7754% 4.4095% 4.7346% 4.8991% 4.9824% 5.0241%
(80, 79) 0.6184% 1.2394% 1.5628% 1.7507% 1.8546% 1.9068%
(160, 159) 0.6728% 0.3213% 0.3277% 0.3270% 0.3772% 0.4481%
(320, 319) 0.6849% 0.3692% 0.1771% 0.0584% 0.0713% 0.1379%
(640, 639) 0.6887% 0.3804% 0.1905% 0.0847% 0.0268% 0.0138%
(1280, 1279) 0.6907% 0.3821% 0.1937% 0.0872% 0.0293% 0.0038%
(2560, 2559) 0.6909% 0.3824% 0.1945% 0.0883% 0.0305% 0.0005%
(5120, 5119) 0.6908% 0.3826% 0.1947% 0.0885% 0.0307% 0%

H0

(10, 9) 8.5188 · 101 8.5804 · 101 8.6116 · 101 8.6274 · 101 8.6353 · 101 8.6393 · 101

(20, 19) 7.9482 · 101 8.0970 · 101 8.1739 · 101 8.2128 · 101 8.2323 · 101 8.2422 · 101

(40, 39) 1.9403 · 101 2.1608 · 101 2.2771 · 101 2.3368 · 101 2.3671 · 101 2.3823 · 101

(80, 79) 3.9441 · 100 6.3030 · 100 7.7736 · 100 8.5828 · 100 9.0010 · 100 9.2131 · 100

(160, 159) 3.0040 · 100 1.6656 · 100 1.0653 · 100 1.3596 · 100 1.8007 · 100 2.0580 · 100

(320, 319) 2.9345 · 100 1.5699 · 100 7.6916 · 10−1 3.1235 · 10−1 3.3687 · 10−1 5.7912 · 10−1

(640, 639) 2.9625 · 100 1.6011 · 100 7.9413 · 10−1 3.5312 · 10−1 1.2159 · 10−1 5.5677 · 10−2

(1280, 1279) 2.9768 · 100 1.6081 · 100 8.0429 · 10−1 3.5947 · 10−1 1.2124 · 10−1 1.3748 · 10−2

(2560, 2559) 2.9790 · 100 1.6094 · 100 8.0765 · 10−1 3.6316 · 10−1 1.2458 · 10−1 2.4397 · 10−3

(5120, 5119) 2.9788 · 100 1.6101 · 100 8.0820 · 10−1 3.6400 · 10−1 1.2557 · 10−1 0

H1

(10, 9) 8.5189 · 101 8.5805 · 101 8.6117 · 101 8.6275 · 101 8.6354 · 101 8.6394 · 101

(20, 19) 7.9487 · 101 8.0974 · 101 8.1743 · 101 8.2132 · 101 8.2328 · 101 8.2426 · 101

(40, 39) 1.9405 · 101 2.1610 · 101 2.2773 · 101 2.3371 · 101 2.3673 · 101 2.3826 · 101

(80, 79) 3.9451 · 100 6.3039 · 100 7.7745 · 100 8.5838 · 100 9.0021 · 100 9.2142 · 100

(160, 159) 3.0050 · 100 1.6671 · 100 1.0678 · 100 1.3620 · 100 1.8026 · 100 2.0598 · 100

(320, 319) 2.9353 · 100 1.5703 · 100 7.6935 · 10−1 3.1255 · 10−1 3.3709 · 10−1 5.7933 · 10−1

(640, 639) 2.9634 · 100 1.6015 · 100 7.9434 · 10−1 3.5322 · 10−1 1.2167 · 10−1 5.5846 · 10−2

(1280, 1279) 2.9777 · 100 1.6086 · 100 8.0451 · 10−1 3.5957 · 10−1 1.2129 · 10−1 1.3916 · 10−2

(2560, 2559) 2.9799 · 100 1.6099 · 100 8.0787 · 10−1 3.6326 · 10−1 1.2461 · 10−1 2.4869 · 10−3

(5120, 5119) 2.9798 · 100 1.6106 · 100 8.0843 · 10−1 3.6410 · 10−1 1.2560 · 10−1 0

H1,w

(10, 9) 9.0270 · 101 9.0959 · 101 9.1309 · 101 9.1485 · 101 9.1574 · 101 9.1619 · 101

(20, 19) 9.2346 · 101 9.4125 · 101 9.5040 · 101 9.5503 · 101 9.5737 · 101 9.5854 · 101

(40, 39) 2.2289 · 101 2.5212 · 101 2.6779 · 101 2.7588 · 101 2.8000 · 101 2.8208 · 101

(80, 79) 5.1202 · 100 7.6242 · 100 9.3159 · 100 1.0265 · 101 1.0757 · 101 1.1008 · 101

(160, 159) 4.3019 · 100 2.8612 · 100 2.5475 · 100 2.9372 · 100 3.2870 · 100 3.5238 · 100

(320, 319) 4.2607 · 100 2.2127 · 100 1.0690 · 100 4.9416 · 10−1 5.4584 · 10−1 8.2999 · 10−1

(640, 639) 4.4363 · 100 2.3426 · 100 1.1424 · 100 4.9976 · 10−1 1.9269 · 10−1 1.5029 · 10−1

(1280, 1279) 4.4943 · 100 2.3830 · 100 1.1757 · 100 5.2261 · 10−1 1.8087 · 10−1 6.8155 · 10−2

(2560, 2559) 4.5183 · 100 2.3992 · 100 1.1895 · 100 5.2982 · 10−1 1.8060 · 10−1 1.5111 · 10−2

(5120, 5119) 4.5243 · 100 2.4026 · 100 1.1916 · 100 5.3209 · 10−1 1.8251 · 10−1 0

Table 8.13: Discretization Errors for One-asset American Straddle Option.
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(Ns, Nu)
Error Type

MSE MRE H0 H1 H1,w

(10, 9) 1.4474 · 102 22.9610% 5.0954 · 102 5.0955 · 102 5.1988 · 102

(20, 19) 4.6516 · 10−1 1.7377% 3.0728 · 101 3.0729 · 101 3.2168 · 101

(40, 39) 3.2089 · 10−2 0.8167% 8.4809 · 100 8.4841 · 100 9.8905 · 100

(80, 79) 1.1990 · 10−2 0.2852% 5.3331 · 100 5.3334 · 100 5.8284 · 100

(160, 159) 1.1649 · 10−3 0.1865% 1.6429 · 100 1.6448 · 100 2.2903 · 100

(320, 319) 5.5589 · 10−4 0.1156% 1.1716 · 100 1.1734 · 100 1.7642 · 100

(640, 639) 7.0396 · 10−7 0.0025% 4.2351 · 10−2 4.2376 · 10−2 5.4100 · 10−2

(1280, 1279) 8.0899 · 10−8 0.0015% 1.4356 · 10−2 1.4545 · 10−2 4.8301 · 10−2

(2560, 2559) 3.1047 · 10−8 0.0015% 8.8054 · 10−3 8.9643 · 10−3 3.7769 · 10−2

Table 8.14: Discretization Errors for One-asset Perpetual Straddle Option.

where S ∈ Ωi, vi(0,S) for i = 1, · · · , 8 is computed numerically and H(Ωi) is a finite-
element norm defined by one of the H0, H1 and H1,w norms over Ωi. We consider the
solutions on the largest computational domain Ω9 the benchmark solution, i.e. v∗ = v9 in
this section, and find its values either analytically (if applicable) or numerically.

8.6.1 Observation

One-asset Case

Since closed-form valuation is available for one-asset European put (EP), European call
(EC), perpetual put (PP), perpetual call (PC) and European straddle (ES), we use their
analytical solutions as benchmarks. Besides, due to the complicated payoff of straddle, we
also include its American and perpetual types (AS and PS) in our experiment. All the
results are listed in table [8.21].

It is obvious there is no big change after S(i)
max = 960 for the put options, EP and PP,

no matter whether they have early-exercise property or not. This may be due to the fact
that all their option values are all close/equal to zero at hight share prices and thus less
sensitive to the increase of S(i)

max. In contrast, we find the truncation errors of EC and ES,
whose values are far from zero at far-field bounds, decrease slowly as S(i)

max increases.
In the other cases with the early-exercise property, the AS, PC and PS options, their

identified/exact free boundaries associated with a call part are at 841.5, 1153 and 1173 sep-
arately. It is known that once a share price exceeds the free boundaries, its corresponding
option values are simply equal to its payoffs. Echoed with this property, the AS, PC and PS
produce the significant slumps of truncation errors after S(i)

max = 960, 1280 and 1280. Our
LCP solvers even show no numerical difference for AS and PS after Ω7 and Ω3 respectively.
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Nt

Error Type (Ns, Nu) 10 20 40 80 160 320

MSE

(10, 81) 4.2386 · 100 4.4668 · 100 4.6048 · 100 4.6800 · 100 4.7192 · 100 4.7392 · 100

(20, 361) 5.5120 · 10−1 5.3954 · 10−1 5.5435 · 10−1 5.6719 · 10−1 5.7500 · 10−1 5.7926 · 10−1

(40, 1521) 1.6413 · 10−1 1.0141 · 10−1 8.9128 · 10−2 8.8014 · 10−2 8.8747 · 10−2 8.9441 · 10−2

(80, 6241) 1.2704 · 10−1 5.5269 · 10−2 3.7915 · 10−2 3.4125 · 10−2 3.3485 · 10−2 3.3483 · 10−2

(160, 25281) 1.1249 · 10−1 4.0027 · 10−2 2.2090 · 10−2 1.7947 · 10−2 1.7115 · 10−2 1.7013 · 10−2

(320, 101761) 1.0853 · 10−1 3.6104 · 10−2 1.8078 · 10−2 1.3863 · 10−2 1.2987 · 10−2 1.2861 · 10−2

(640, 408321) 9.4783 · 10−2 2.2871 · 10−2 5.0576 · 10−3 9.3613 · 10−4 1.0441 · 10−4 0

MRE

(10, 81) 12.0871% 12.4160% 12.5835% 12.6680% 12.7105% 12.7318%
(20, 361) 7.6741% 7.9448% 8.0829% 8.1527% 8.1878% 8.2053%
(40, 1521) 2.6369% 2.5227% 2.6025% 2.6420% 2.6616% 2.6713%
(80, 6241) 1.8069% 1.0000% 0.7405% 0.6877% 0.6928% 0.6953%
(160, 25281) 1.7257% 0.8225% 0.5493% 0.5490% 0.5489% 0.5488%
(320, 101761) 1.7731% 0.8661% 0.7041% 0.7039% 0.7039% 0.7038%
(640, 408321) 1.7639% 0.8568% 0.4006% 0.1718% 0.0573% 0%

H0

(10, 81) 3.9801 · 103 4.0815 · 103 4.1440 · 103 4.1781 · 103 4.1960 · 103 4.2051 · 103

(20, 361) 1.5615 · 103 1.5230 · 103 1.5419 · 103 1.5628 · 103 1.5754 · 103 1.5823 · 103

(40, 1521) 9.3354 · 102 7.0504 · 102 6.5186 · 102 6.4768 · 102 6.5150 · 102 6.5489 · 102

(80, 6241) 8.6033 · 102 5.4015 · 102 4.2968 · 102 4.0242 · 102 3.9812 · 102 3.9846 · 102

(160, 25281) 8.3175 · 102 4.7698 · 102 3.3649 · 102 2.9526 · 102 2.8658 · 102 2.8569 · 102

(320, 101761) 8.2434 · 102 4.5868 · 102 3.0668 · 102 2.5898 · 102 2.4817 · 102 2.4672 · 102

(640, 408321) 7.8651 · 102 3.8635 · 102 1.8168 · 102 7.8164 · 101 2.6105 · 101 0

H1

(10, 81) 3.9802 · 103 4.0816 · 103 4.1441 · 103 4.1782 · 103 4.1960 · 103 4.2052 · 103

(20, 361) 1.5616 · 103 1.5231 · 103 1.5419 · 103 1.5629 · 103 1.5755 · 103 1.5824 · 103

(40, 1521) 9.3365 · 102 7.0517 · 102 6.5200 · 102 6.4781 · 102 6.5163 · 102 6.5503 · 102

(80, 6241) 8.6056 · 102 5.4048 · 102 4.3007 · 102 4.0282 · 102 3.9852 · 102 3.9885 · 102

(160, 25281) 8.3226 · 102 4.7775 · 102 3.3752 · 102 2.9639 · 102 2.8773 · 102 2.8684 · 102

(320, 101761) 8.2588 · 102 4.6119 · 102 3.1026 · 102 2.6312 · 102 2.5245 · 102 2.5100 · 102

(640, 408321) 7.8666 · 102 3.8643 · 102 1.8171 · 102 7.8179 · 101 2.6110 · 101 0

H1,w

(10, 81) 4.8751 · 103 5.0120 · 103 5.0993 · 103 5.1479 · 103 5.1733 · 103 5.1860 · 103

(20, 361) 2.9235 · 103 2.8857 · 103 2.9036 · 103 2.9204 · 103 2.9313 · 103 2.9374 · 103

(40, 1521) 2.8247 · 103 2.6893 · 103 2.6620 · 103 2.6594 · 103 2.6610 · 103 2.6625 · 103

(80, 6241) 2.9568 · 103 2.7994 · 103 2.7607 · 103 2.7524 · 103 2.7512 · 103 2.7513 · 103

(160, 25281) 3.0742 · 103 2.9158 · 103 2.8756 · 103 2.8664 · 103 2.8646 · 103 2.8644 · 103

(320, 101761) 3.6820 · 103 3.5488 · 103 3.5151 · 103 3.5072 · 103 3.5056 · 103 3.5054 · 103

(640, 408321) 1.1276 · 103 5.5335 · 102 2.6007 · 102 1.1185 · 102 3.7353 · 101 0

Table 8.15: Discretization Errors for Two-asset European Basket Straddle Option.
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Nt

Error Type (Ns, Nu) 10 20 40 80 160 320

MSE

(10, 81) 5.1865 · 100 5.4141 · 100 5.5636 · 100 5.6262 · 100 5.6648 · 100 5.6832 · 100

(20, 361) 3.2885 · 10−1 3.4581 · 10−1 3.5988 · 10−1 3.6853 · 10−1 3.7319 · 10−1 3.7562 · 10−1

(40, 1521) 3.9369 · 10−2 2.8258 · 10−2 2.7405 · 10−2 2.8540 · 10−2 2.9508 · 10−2 3.0094 · 10−2

(80, 6241) 2.3023 · 10−2 6.5699 · 10−3 2.4664 · 10−3 1.6190 · 10−3 1.5695 · 10−3 1.6649 · 10−3

(160, 25281) 2.2311 · 10−2 5.6227 · 10−3 1.2974 · 10−3 2.8445 · 10−4 9.9496 · 10−5 9.7239 · 10−5

(320, 101761) 2.2553 · 10−2 5.7390 · 10−3 1.3195 · 10−3 2.4820 · 10−4 2.8265 · 10−5 4.1706 · 10−6

(640, 408321) 2.2637 · 10−2 5.7950 · 10−3 1.3493 · 10−3 2.6060 · 10−4 3.0057 · 10−5 0

MRE

(10, 81) 19.7082% 19.8307% 19.8820% 19.8914% 19.9121% 19.9232%
(20, 361) 6.9144% 6.4295% 6.1816% 6.0496% 5.9804% 5.9448%
(40, 1521) 3.8507% 3.7519% 3.7002% 3.6713% 3.6543% 3.6447%
(80, 6241) 2.1769% 1.3843% 1.0486% 0.9228% 0.8766% 0.8639%
(160, 25281) 1.9060% 0.9765% 0.5087% 0.2867% 0.2140% 0.2101%
(320, 101761) 1.9488% 0.9805% 0.4780% 0.2173% 0.0877% 0.0438%
(640, 408321) 1.9332% 0.9654% 0.4622% 0.2020% 0.0684% 0%

H0

(10, 81) 4.3153 · 103 4.4092 · 103 4.4677 · 103 4.4919 · 103 4.5068 · 103 4.5137 · 103

(20, 361) 1.1990 · 103 1.2496 · 103 1.2826 · 103 1.3012 · 103 1.3108 · 103 1.3157 · 103

(40, 1521) 4.4493 · 102 3.6975 · 102 3.6311 · 102 3.7259 · 102 3.8008 · 102 3.8459 · 102

(80, 6241) 3.7293 · 102 1.9759 · 102 1.1904 · 102 9.5402 · 101 9.4116 · 101 9.7307 · 101

(160, 25281) 3.7618 · 102 1.8883 · 102 9.0612 · 101 4.2190 · 101 2.4601 · 101 2.4297 · 101

(320, 101761) 3.8148 · 102 1.9242 · 102 9.2249 · 101 3.9979 · 101 1.3439 · 101 5.1213 · 100

(640, 408321) 3.8374 · 102 1.9416 · 102 9.3692 · 101 4.1176 · 101 1.3984 · 101 0

H1

(10, 81) 4.3154 · 103 4.4093 · 103 4.4678 · 103 4.4920 · 103 4.5069 · 103 4.5138 · 103

(20, 361) 1.1990 · 103 1.2496 · 103 1.2827 · 103 1.3012 · 103 1.3109 · 103 1.3158 · 103

(40, 1521) 4.4500 · 102 3.6981 · 102 3.6317 · 102 3.7266 · 102 3.8014 · 102 3.8466 · 102

(80, 6241) 3.7299 · 102 1.9763 · 102 1.1908 · 102 9.5437 · 101 9.4149 · 101 9.7339 · 101

(160, 25281) 3.7627 · 102 1.8888 · 102 9.0635 · 101 4.2206 · 101 2.4618 · 101 2.4314 · 101

(320, 101761) 3.8165 · 102 1.9251 · 102 9.2292 · 101 4.0000 · 101 1.3450 · 101 5.1289 · 100

(640, 408321) 3.8405 · 102 1.9432 · 102 9.3766 · 101 4.1208 · 101 1.3995 · 101 0

H1,w

(10, 81) 4.7956 · 103 4.9056 · 103 4.9756 · 103 5.0031 · 103 5.0178 · 103 5.0252 · 103

(20, 361) 1.4449 · 103 1.4726 · 103 1.5011 · 103 1.5193 · 103 1.5293 · 103 1.5345 · 103

(40, 1521) 5.9939 · 102 5.1114 · 102 5.0557 · 102 5.1788 · 102 5.2914 · 102 5.3524 · 102

(80, 6241) 5.0805 · 102 2.6811 · 102 1.6830 · 102 1.4307 · 102 1.4385 · 102 1.4841 · 102

(160, 25281) 5.2803 · 102 2.6254 · 102 1.2577 · 102 6.1897 · 101 4.2480 · 101 4.3160 · 101

(320, 101761) 5.4060 · 102 2.7045 · 102 1.2879 · 102 5.5800 · 101 1.9976 · 101 1.0958 · 101

(640, 408321) 5.4565 · 102 2.7395 · 102 1.3139 · 102 5.7475 · 101 1.9450 · 101 0

Table 8.16: Discretization Errors for Two-asset American Basket Straddle Option.
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(Ns, Nu)
Error Type

MSE MRE H0 H1 H1,w

(10, 81) 8.7429 · 100 7.7385% 6.0772 · 103 6.0773 · 103 6.5314 · 103

(20, 361) 4.7840 · 10−1 4.4712% 1.4571 · 103 1.4572 · 103 1.6451 · 103

(40, 1521) 4.0459 · 10−2 2.2362% 4.4058 · 102 4.4067 · 102 6.7590 · 102

(80, 6241) 6.2147 · 10−3 1.1496% 1.6990 · 102 1.7007 · 102 4.8679 · 102

(160, 25281) 7.7160 · 10−4 0.2741% 6.3825 · 101 6.3990 · 101 2.8826 · 102

(320, 101761) 1.6405 · 10−4 0.0660% 2.9440 · 101 2.9758 · 101 1.6380 · 102

Table 8.17: Discretization Errors for Two-asset Perpetual Basket Straddle Option.

Two-asset Case

Table [8.22] shows the truncation errors of European minimum put (EMP), European
maximum call (EMC), European basket straddle (EBS), American basket straddle (ABS)
and perpetual basket straddle (PBS) in our two-asset experiments. We remind readers
that only the EMP and EMC have their closed-form analytical solutions valued over Ω9 as
benchmarks.

Similar to one-asset circumstances, we observe the put option (EMP) is less sensitive
to the change of far-field bound after S(i)

max = 1280 while other cases have the truncation
errors reduced slowly as S(i)

max increases. For the ABS and PBS options having their free
boundaries in call parts, we once again observe the significant drops of truncation errors
after S(i)

max = 1920 and 2560 respectively. Analogously this is because any share price of
S = (S(1), S(2)) exceeds those boundaries given by our option parameters, then they fall
into the early-exercise region where their option value is equal to their payoff and our LCP
solver produces almost no numerical error in the region.

Three-asset Case

There is no closed-form formula available for option pricing in a three-asset framework.
Consequently we consider only the basket options of European, American and perpetual
types (EBS, ABS and PBS) and record their truncation errors in table [8.23]. As expected,
we observe the slow slide of truncation errors when given increasingly large S(i)

max. But there
is no significant drop observed in the three-asset ABS and PBS options. This suggests
that even one of the share prices S = (S(1), S(2), S(3)) is greater than S(i)

max = 3200, it can
not guarantee the triple lies in the early-exercise region, which suggests a larger far-field
bound should be taken into account to further reduce the truncation error in the numerical
computation of the three-asset American and perpetual option pricing problems.
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Nt

Error Type (Ns, Nu) 10 20 40

MSE

(10, 729) 3.9998 4.1431 4.3400
(20, 6859) 0.3009 0.2587 0.2599
(40, 59319) 0.0806 0.0206 0.0117
(80, 493039) 0.0676 0.0080 0

MRE

(10, 729) 6.7487% 7.1180% 8.1541%
(20, 6859) 4.2117% 4.3065% 4.5255%
(40, 59319) 2.0992% 1.5031% 1.4870%
(80, 493039) 1.7458% 0.5615% 0%

H0

(10, 729) 2.0150 · 105 2.0370 · 105 2.0711 · 105

(20, 6859) 6.1654 · 104 5.6880 · 104 5.6625 · 104

(40, 59319) 3.3947 · 104 1.6961 · 104 1.2530 · 104

(80, 493039) 3.2468 · 104 1.1184 · 104 0%

H1

(10, 729) 2.0150 · 105 2.0371 · 105 2.0711 · 105

(20, 6859) 6.1656 · 104 5.6882 · 104 5.6627 · 104

(40, 59319) 3.3949 · 104 1.6963 · 104 1.2531 · 104

(80, 493039) 3.2472 · 104 1.1186 · 104 0%

H1,w

(10, 729) 2.9302 · 105 2.9611 · 105 3.0147 · 105

(20, 6859) 1.0129 · 105 9.1650 · 104 9.0130 · 104

(40, 59319) 6.6776 · 104 4.4992 · 104 4.0636 · 104

(80, 493039) 5.4830 · 104 1.8978 · 104 0%

Table 8.18: Discretization Errors for Three-asset European Basket Straddle Option.

Nt

Error Type (Ns, Nu) 10 20 40

MSE

(10, 729) 3.1945 3.8864 5.0983
(20, 6859) 0.2813 0.2417 0.3241
(40, 59319) 0.0926 0.0196 0.0171
(80, 493039) 0.0773 0.0101 0

MRE

(10, 729) 7.8764% 7.7308% 8.1634%
(20, 6859) 4.7095% 4.6200% 4.5768%
(40, 59319) 2.4109% 1.2357% 1.4767%
(80, 493039) 2.1687% 1.0184% 0%

H0

(10, 729) 1.7598 · 105 1.9109 · 105 2.1510 · 105

(20, 6859) 5.9325 · 104 5.4227 · 104 6.0919 · 104

(40, 59319) 3.6467 · 104 1.6661 · 104 1.4434 · 104

(80, 493039) 3.4690 · 104 1.2425 · 104 0

H1

(10, 729) 1.7598 · 105 1.9110 · 105 2.1510 · 105

(20, 6859) 5.9327 · 104 5.4228 · 104 6.0921 · 104

(40, 59319) 3.6469 · 104 1.6662 · 104 1.4437 · 104

(80, 493039) 3.4693 · 104 1.2427 · 104 0

H1,w

(10, 729) 2.6186 · 105 2.8503 · 105 3.2391 · 105

(20, 6859) 9.7643 · 104 8.5697 · 104 9.5093 · 104

(40, 59319) 6.5343 · 104 3.3586 · 104 2.9377 · 104

(80, 493039) 6.0431 · 104 2.1452 · 104 0

Table 8.19: Discretization Errors for Three-asset American Basket Straddle Option.
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(Ns, Nu)
Error Type

MSE MRE H0 H1 H1,w

(10, 729) 1.8370 · 101 6.1368% 4.3360 · 105 4.3360 · 105 6.3447 · 105

(20, 6859) 4.1047 · 100 6.1126% 2.3087 · 105 2.3087 · 105 3.8112 · 105

(40, 59319) 3.9071 · 10−1 4.7607% 7.4274 · 104 7.4279 · 104 1.6777 · 105

(80, 493039) 0 0% 0 0 0

Table 8.20: Discretization Errors for Three-asset Perpetual Basket Straddle Option.

8.6.2 Comment

We have seen the truncation errors are reduced with increasingly large far-field bounds
for the European, American and perpetual options in one-, two- and three-asset frame-
works. Such reduction makes mathematical sense because we approximate the Dirichlet
boundary conditions on the far-field bounds. The larger the far-field bound is, the better
approximation we should have.

Compared with calls and straddles, one-asset European and perpetual puts and a two-
asset minimum put generally have much smaller truncation errors. This is because they
have (near-)zero option values at high share prices and thus are less sensitive to the increase
of far-filed bounds.

When an option tends to be early exercised in the far-field area such as a maxi-
mum/basket call/straddle, we find that there exists a bounded value max

t∈[0,T ]
{Sf (t)} such

that once any of the share prices S = (S(1), · · · , S(d)) falls beyond max
t∈[0,T ]

{Sf (t)}, the com-

bination of shares falls into the early-exercise region. Given identical option types, we also
observe that the max

t∈[0,T ]
{Sf (t)} becomes larger if

• time to maturity is larger:
And there exists a limit as T →∞, which is the maximum bound of the free bound-
aries of perpetual options.

• number of assets is multiple:
So the S(i)

max needed to produce significant drop in the two-asset framework is generally
larger than that of its one-asset counterpart.

• the payoff is at least equal to that of another option:
So we observe S(i)

max needed to produce a significant drop of truncation errors for a
straddle option is generally larger than that of its call counterpart.

These observations suggest that when given the same far-filed bounds, the American and
perpetual options can be approximated better than their European counterparts if the
selected far-filed bounds are deeply in the early-exercise region. This is consistent with the
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Type S(i)
max

One-asset Options
EP EC ES AS PP PC PS

H0

640 3.1768 · 10−5 2.9859 · 10−2 2.3662 · 10−2 2.3593 · 10−4 4.7257 · 10−2 1.1721 · 10−1 1.0701 · 10−1

960 3.1754 · 10−5 2.0725 · 10−2 1.9901 · 10−2 9.7746 · 10−17 2.8330 · 10−2 9.0310 · 10−3 1.0563 · 10−2

1280 3.1754 · 10−5 1.7757 · 10−2 1.7529 · 10−2 5.9867 · 10−17 1.9402 · 10−2 7.9951 · 10−8 0
1600 3.1754 · 10−5 1.6298 · 10−2 1.6206 · 10−2 3.7879 · 10−17 1.4408 · 10−2 5.3239 · 10−8 0
1920 3.1754 · 10−5 1.5432 · 10−2 1.5387 · 10−2 2.5358 · 10−17 1.1283 · 10−2 3.8516 · 10−8 0
2240 3.1754 · 10−5 1.4859 · 10−2 1.4834 · 10−2 1.7107 · 10−17 9.1707 · 10−3 2.9476 · 10−8 0
2560 3.1754 · 10−5 1.4453 · 10−2 1.4437 · 10−2 0 7.6612 · 10−3 2.3477 · 10−8 0
2880 3.1754 · 10−5 1.4149 · 10−2 1.4139 · 10−2 0 6.5365 · 10−3 1.9264 · 10−8 0

H1

640 3.1778 · 10−5 2.9862 · 10−2 2.3664 · 10−2 6.2607 · 10−4 4.7257 · 10−2 1.1721 · 10−1 1.0701 · 10−1

960 3.1772 · 10−5 2.0726 · 10−2 1.9902 · 10−2 1.4114 · 10−16 2.8330 · 10−2 9.0310 · 10−3 1.0563 · 10−2

1280 3.1772 · 10−5 1.7757 · 10−2 1.7529 · 10−2 8.4766 · 10−17 1.9401 · 10−2 1.1611 · 10−7 0
1600 3.1772 · 10−5 1.6298 · 10−2 1.6207 · 10−2 5.4549 · 10−17 1.4408 · 10−2 7.7323 · 10−8 0
1920 3.1772 · 10−5 1.5432 · 10−2 1.5387 · 10−2 3.8385 · 10−17 1.1283 · 10−2 5.5940 · 10−8 0
2240 3.1772 · 10−5 1.4860 · 10−2 1.4834 · 10−2 2.7773 · 10−17 9.1706 · 10−3 4.2810 · 10−8 0
2560 3.1772 · 10−5 1.4453 · 10−2 1.4437 · 10−2 0 7.6611 · 10−3 3.4098 · 10−8 0
2880 3.1772 · 10−5 1.4149 · 10−2 1.4139 · 10−2 0 6.5364 · 10−3 2.7978 · 10−8 0

H1,w

640 4.5997 · 10−5 4.4535 · 10−2 3.5935 · 10−2 5.0870 · 10−2 4.8215 · 10−2 1.1721 · 10−1 1.0808 · 10−1

960 4.5801 · 10−5 3.1615 · 10−2 3.0421 · 10−2 9.8244 · 10−15 2.8749 · 10−2 9.0310 · 10−3 1.0599 · 10−2

1280 4.5801 · 10−5 2.7268 · 10−2 2.6932 · 10−2 5.6585 · 10−15 1.9663 · 10−2 1.3023 · 10−7 0
1600 4.5801 · 10−5 2.5105 · 10−2 2.4969 · 10−2 3.7434 · 10−15 1.4595 · 10−2 8.6818 · 10−8 0
1920 4.5801 · 10−5 2.3813 · 10−2 2.3746 · 10−2 2.7100 · 10−15 1.1427 · 10−2 6.2878 · 10−8 0
2240 4.5801 · 10−5 2.2955 · 10−2 2.2917 · 10−2 2.1124 · 10−15 9.2871 · 10−3 4.8159 · 10−8 0
2560 4.5801 · 10−5 2.2345 · 10−2 2.2321 · 10−2 0 7.7580 · 10−3 3.8384 · 10−8 0
2880 4.5801 · 10−5 2.1888 · 10−2 2.1872 · 10−2 0 6.6188 · 10−3 3.1511 · 10−8 0

Table 8.21: Nielsen Truncation Errors for One-asset Options.

argument in [72, Sec.5.2] that the multi-asset American options can be solved on a rather
small domain with a tolerable truncation error as long as Smax > max

t∈[0,T ]
{Sf (t)}.

In sum, we can consider such max
t∈[0,T ]

{Sf (t)} the minimum far-field bound value needed

to form a computational domain which provides no significant truncation errors for the
options tending to be exercised early in the far-field area.

8.7 Summary

In order to give a rapid feel for different options, we start with visualizing their calibrated
values and identifying corresponding (evolutionary) free boundaries (if any). For the first
time in literatures, we present the free boundaries of three-asset American and perpetual
options. The subsequent computational results are also very encouraging. When given
different early-exercise restrictions, different expiry restrictions and multiple assets, our
approach reveals positive results in terms of discretization errors and truncation errors.
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Type S(i)
max

Two-asset Options
EMP EMC EBS ABS PBS

H0

640 1.7093 · 10−3 6.7406 · 10−2 5.6415 · 10−2 4.1311 · 10−2 2.5815 · 10−1

960 1.5844 · 10−4 4.8473 · 10−2 2.4491 · 10−2 3.1460 · 10−3 9.6344 · 10−2

1280 1.2325 · 10−4 4.2202 · 10−2 2.0095 · 10−2 6.9812 · 10−4 3.1905 · 10−2

1600 1.2644 · 10−4 3.9093 · 10−2 1.7866 · 10−2 1.7765 · 10−4 1.0107 · 10−2

1920 1.2856 · 10−4 3.7240 · 10−2 1.6064 · 10−2 1.3042 · 10−5 2.7816 · 10−3

2240 1.3003 · 10−4 3.6011 · 10−2 1.3995 · 10−2 7.1199 · 10−16 5.7801 · 10−4

2560 1.3112 · 10−4 3.5137 · 10−2 1.1068 · 10−2 5.0408 · 10−16 1.1236 · 10−4

2880 1.3195 · 10−4 3.4483 · 10−2 6.6107 · 10−3 2.8670 · 10−16 4.9309 · 10−17

H1

640 1.7096 · 10−3 6.7412 · 10−2 5.6465 · 10−2 4.1358 · 10−2 2.5815 · 10−1

960 1.5851 · 10−4 4.8475 · 10−2 2.4495 · 10−2 3.1517 · 10−3 9.6344 · 10−2

1280 1.2331 · 10−4 4.2204 · 10−2 2.0097 · 10−2 6.9947 · 10−4 3.1905 · 10−2

1600 1.2649 · 10−4 3.9094 · 10−2 1.7867 · 10−2 1.7840 · 10−4 1.0107 · 10−2

1920 1.2860 · 10−4 3.7240 · 10−2 1.6065 · 10−2 1.3671 · 10−5 2.7816 · 10−3

2240 1.3007 · 10−4 3.6012 · 10−2 1.3996 · 10−2 7.2257 · 10−16 5.7802 · 10−4

2560 1.3115 · 10−4 3.5137 · 10−2 1.1068 · 10−2 5.1498 · 10−16 1.1236 · 10−4

2880 1.3198 · 10−4 3.4484 · 10−2 6.6109 · 10−3 2.9250 · 10−16 4.9310 · 10−17

H1,w

640 4.5491 · 10−3 9.8246 · 10−2 8.9795 · 10−2 8.2344 · 10−2 2.7340 · 10−1

960 4.2696 · 10−4 7.3077 · 10−2 3.6800 · 10−2 1.2215 · 10−2 1.0449 · 10−1

1280 1.8301 · 10−4 6.4374 · 10−2 3.0154 · 10−2 3.3252 · 10−3 3.6890 · 10−2

1600 1.8214 · 10−4 5.9966 · 10−2 2.6847 · 10−2 1.6485 · 10−3 1.3002 · 10−2

1920 1.8487 · 10−4 5.7308 · 10−2 2.3993 · 10−2 5.3731 · 10−4 4.3779 · 10−3

2240 1.8684 · 10−4 5.5532 · 10−2 2.0633 · 10−2 9.3637 · 10−15 1.3600 · 10−3

2560 1.8829 · 10−4 5.4263 · 10−2 1.6023 · 10−2 7.5483 · 10−15 3.5611 · 10−4

2880 1.8940 · 10−4 5.3311 · 10−2 9.4855 · 10−3 6.6291 · 10−15 7.6877 · 10−17

Table 8.22: Nielsen Truncation Errors for Two-asset Options.
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Type S(i)
max

Three-asset Options
EBS ABS PBS

H0

640 2.6493 · 10−1 2.4630 · 10−1 6.0163 · 10−1

960 9.4376 · 10−2 7.4381 · 10−2 3.8307 · 10−1

1280 4.4255 · 10−2 2.4460 · 10−2 2.3729 · 10−1

1600 2.8195 · 10−2 9.1403 · 10−3 1.4665 · 10−1

1920 2.0591 · 10−2 3.8488 · 10−3 8.9383 · 10−2

2240 1.4985 · 10−2 1.7609 · 10−3 5.2255 · 10−2

2560 9.8625 · 10−3 8.0723 · 10−4 2.7662 · 10−2

2880 4.8785 · 10−3 3.0533 · 10−4 1.1153 · 10−2

H1

640 2.6493 · 10−1 2.4630 · 10−1 6.0164 · 10−1

960 9.4377 · 10−2 7.4382 · 10−2 3.8307 · 10−1

1280 4.4255 · 10−2 2.4460 · 10−2 2.3729 · 10−1

1600 2.8195 · 10−2 9.1405 · 10−3 1.4665 · 10−1

1920 2.0591 · 10−2 3.8489 · 10−3 8.9383 · 10−2

2240 1.4985 · 10−2 1.7609 · 10−3 5.2255 · 10−2

2560 9.8625 · 10−3 8.0724 · 10−4 2.7662 · 10−2

2880 4.8786 · 10−3 3.0533 · 10−4 1.1153 · 10−2

H1,w

640 3.8038 · 10−1 3.6132 · 10−1 6.3843 · 10−1

960 1.3344 · 10−1 1.0917 · 10−1 3.8891 · 10−1

1280 6.2642 · 10−2 3.7676 · 10−2 2.3637 · 10−1

1600 3.8954 · 10−2 1.5054 · 10−2 1.4517 · 10−1

1920 2.7566 · 10−2 6.6686 · 10−3 8.8605 · 10−2

2240 1.9614 · 10−2 3.1721 · 10−3 5.2273 · 10−2

2560 1.2742 · 10−2 1.5084 · 10−3 2.8284 · 10−2

2880 6.3297 · 10−3 6.2237 · 10−4 1.2271 · 10−2

Table 8.23: Nielsen Truncation Errors for Three-asset Options.
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From the aspect of LCP algorithms, we find that the widely-introduced PSOR and
its variants deliver quite disappointing performance and the modulus method produces
convergent but incorrect solutions. In contrast, Howard’s method provids the most satis-
factory speed and accuracy, followed by the Lagrangian Multiplier method6 and Lemke’s
method, in large-scale multi-asset option pricing problems with an early-exercise property
which are highly demanding in terms of numerical computation.

We also observe the decrease of discretization errors with decreasing mesh sizes in space
and time even though their convergence order is not always trivial. We recognize there
exists a truncation error resulting from a bounded spatial domain but find that once the
far-field bound is large enough, say S(i)

max ≥ max
t∈[0,T ]

{Sf (t)}, then the truncation error is almost

ignorable for the options tending to be exercised early in the far-field area. For others with
(near-)zero option values in the far-field area, we also observe they are less sensitive to
the increase of far-field bounds and a properly large far-field value providing (near-)zero
far-field boundary condition values will produce ignorable truncation errors too.

We have seen in the chapter that the complementarity reformulation solvable with LCP
algorithms provides almost no numerical error in the early-exercise region and have decreas-
ing discretization errors with increasing mesh nodes in a multi-dimensional framework. In
contrast to the use of a penalty method which produces small but probably influential
errors propagating into the space-time domain, the reformulation accompanied with LCP
algorithms should be considered a genuine approach for the option pricing problems ac-
companied by an early-exercise property.

6The excellent performance of Lagrangian Multiplier method, which is a Newton-type iterative method,
suggests that the discrete systems of the transformed equations (as introduced in chapter two) along with
a symmetric coefficient matrix may also be efficiently solved by the Conjugate Gradient Methods, c.f.
[73, 65]. However, the log transform may cause the numerical errors scaled up exponentially.
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Chapter 9

Conclusion

We have presented a range of techniques aimed at solving the multi-asset option pricing
problems for European, American and perpetual cases in a unified variational approach. We
now flash through the points of this thesis, summarize our contributions, list possibilities
of future work and make concluding remarks in the final chapter.

9.1 Summary of Previous Chapters

In chapter two, we reviewed mainstream formulations of option pricing problems. Simulation-
based approaches mimic the assumed stochastic processes of the assets linked to an option.
They are simple to implement in practice; but for only one convergent option price, one
needs to simulate numerous paths, which is time-consuming and must be repeated once
an asset price changes. Their computational cost are relatively expensive compared with
the PDE/PDI-based approaches, especially in a multi-asset framework. On the account of
computational efficiency, our research focuses on the PDE/PDI approaches, which allow
us to obtain all possible option values when given different share prices or different time,
and accordingly prevent one from repeated computation due to the everyday price change.

Among PDE/PDI approaches, the front-tracking methods aim to track the free bound-
ary at every time step. However, the analytical properties of free boundaries of different
options are not well understood yet. The free boundaries of different options behave so
distinctively. For example, in one-asset case, the free boundaries of an American call and
an American put are located above and below the exercise price respectively while the
straddle counterpart has two on both sides. The variant behavior of different free bound-
aries makes the front-tracking method hard to implement in the generalized cases such as
exotic and multi-asset options.

Penalty methods of PDI-based approaches force the awkward inequality become an
equality by adding a penalty term into a partial differential inequality. Its idea is straight-
forward and can be applied even in high-dimensional cases. However, from analytical point
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of view, we know little about the possible impact of the artificial penalty term. Will it
overestimate or undervalue the option prices? What part of the domain will be influenced
most? As time goes by, how will the penalty errors propagate into the space-time domain?
All of these questions need to be further investigated from the functional point of view.
Besides, the artificial penalty term often makes a partial differential equation becomes a
nonlinear problem and demands more computational resources and a powerful numerical
algorithm for solution. From these aspects, the penalty method seems an overkill approach
for solving the BSM PDI.

To avoid the overkill manipulation, we decided to formulate our pricing problems in
variational form. We first describe the boundary conditions used in our models in chapter
three. In the following chapter, the pricing problems are rewritten as (4.9), (4.10) and
(4.11) for European, American and perpetual cases. The theorems 4.5, 4.6 and 4.7 and
proposition 4.8 justify their unique solutions when certain assumptions are met in selected
solution spaces. Especially, the theorem 4.7 is adapted from the work of [27] without using
a measure function but on a bounded domain.

The discrete weak formulations are presented in the form of linear system of equations
(LSE) and linear complementarity problem (LCP) in chapter five by using the finite ele-
ment method in space and the finite difference method in time. Finite element methods
have some favourable geometric and functional properties suitable for all dimensional prob-
lems. Using the tensor shape functions along with lexicographical ordering, we derived the
closed-form formulas for the exact component values of coefficient matrices in chapter six.
These formulas provide exact integral values and speed up the pre-processing procedure of
numerical computation.

Numerical algorithms for solving the LSE have been widely introduced and can be found
in various literatures and references therein. In contrast, those for the LCP are limitedly
understood and rarely used for solving partial differential inequalities. We consequently
surveyed up to six algorithms in chapter seven and sketched their implementing procedure.

In chapter eight, we identified and visualized their evolutionary option values and ac-
companying free boundaries when given different payoffs, exercise restrictions and up to
three assets. We also demonstrated the robustness of LCP solvers and compared their per-
formances in various circumstances. In particular, the PSOR method, which is widely intro-
duced for option pricing, manifest unsatisfactory performance. In contrast, the Howard’s
method, the Lagrangian Multiplier method and Lemke’s method solve identical problems
much faster and deserve more attention in the future study. The numerical errors were
subsequently investigated. As expected, the discretization errors are reduced with increas-
ingly small step sizes in space and time even though their convergence order is not trivial.
The reduction of truncation errors are also observed in all our experiments. Particularly,
the American and perpetual options can be solved on a small spatial domain as long as the
selected far field bound can make the d-tuple of share prices falls into the early-exercise
region (decided by the option parameters). The positive results adumbrate the promising
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future of variational formulation for option pricing problems.

9.2 Contribution

We now outline our main contributions and detail them in the following subsections.

• Finite Element Reformulation of the Black-Scholes-Merton (BSM) PDE/PDI.

• Adaption of the work of [27] to prove the theorem of unique solution of perpetual
option.

• Derivation of the closed-form formulas for elemental matrices.

• Calibration and visualization of various option values and free boundaries.

• Robustness investigation and comparison of LCP algorithms.

• Investigation of numerical errors.

• Achievement in programming.

9.2.1 Reformulation

The BSM PDE/PDI serve as the necessary condition for no-arbitrage argument in the
BSM model. By reformulating them in variational form, we obtain a unified and elegant
expression to present option pricing problems of European, American and perpetual cases
in a generalized multi-asset framework. Such variational forms are accompanied with either
all-Dirichlet boundary conditions or half-Dirichlet-half-Neumann boundary conditions. By
choosing proper solution spaces/sets and restricting to a large enough but bounded spatial
domain, their unique solutions can be guaranteed by the theorems and proposition in
chapter four. The subsequent discretization can be performed by projecting the infinite-
dimensional spaces/sets into their finite-dimensional counterparts.

9.2.2 Adaption

[27] focuses on a generalized unbounded domain and exploits a measure function to form
bounded functionals for variational formulations. Instead of considering unbounded do-
main, we restrict ourselves on a large (in terms of computation) but bounded domain, its
analogy of the theorem for unique solution of perpetual cases can then follows and can be
proved by using the same ideas as [27] from the functional point of view.
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9.2.3 Elemental Matrices

Conventionally, people adopt numerical integration to compute elemental matrices when
working on finite element methods. However, in a high-dimensional case, one needs to select
many enough Gaussian points to obtain satisfactory results of numerical integrals, which
generally requests for more floating-point operations per second (FLOPs) and is hence time-
consuming. Our formulas provide exact results of the integrals to form elemental matrices
without spending precious time for the pre-processing procedure of numerical computation.
The formulas are derived based on d−dimensioanl hyper-cube elements and d−linear shape
functions. The same idea can be easily extended to d−dimensioanl hyper-triangle elements
and higher-order shape functions in the future work.

9.2.4 Calibration and Visualization

We have identified and visualized the option values with the same type of payoff for Euro-
pean, American and perpetual cases in one-, two- and three-asset frameworks in chapter
eight. We visualize, for the first time, the free boundaries of three-asset options. Generally
the free boundary is a (d − 1)−dimesnional manifold in a d−asset framework. We also
found the analogy patterns of the free boundaries in different dimensional frameworks. It
can be observed that the free boundary of American options move toward to that of its
perpetual counterpart, namely the free boundary of steady state, as the time to maturity
tends to infinity.

9.2.5 LCP Algorithms

We have tested the robustness of variational inequality approach by comparing the nu-
merical solutions obtained by LCP algorithms with a few well-known exact solutions. The
robustness test shows us extremely positive results to support its use. We also compared
the performances of different LCP algorithms in terms of iteration number, computational
time, cost per iteration, mean-square, maximum-relative, H0, H1 and H1,w errors in differ-
ent payoffs and dimensions with and without time term involved. The widely introduced
algorithm, the PSOR method, and its hybrid variants manifest disappointing performance
in large-scale and high-dimensional problems. The modulus method produces biased solu-
tions significantly inconsistent from those obtained by other methods in many cases. Our
results indicate Howard’s method has the most satisfactory performance in terms of com-
putational time and accuracy for solving the large-scale LCP involved with multiple assets.
Following Howard’s method are the Lagrangian Multiplier method and Lemke’s method
which also deserve further study in the future.
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9.2.6 Numerical Errors

We investigated the numerical errors, including discretization errors and truncation errors,
by comparing the numerical solutions on different computational domains and meshes with
either numerical or exact solutions on the finest mesh. As expected, their discretization
errors are reduced as mesh size becomes finer. The truncation errors are decreased slowly
with increasingly large far-field bound values. Moreover, we found if an option has (near-
)zero values in the far-field area, such as a minimum put or a basket put, then its numerical
solutions are less sensitive to the increase of far-field bound. For the American/perpetual
options tending to be exercised almost surely on the far-field bounds, they can be solved
on a small spatial domain with satisfactory accuracy if their far-field area is deeply located
in the early-exercise region. Our discovery in a multi-dimensional framework is consistent
with that of [72, Sec.5.2] in a two-asset framework.

9.2.7 Programming

We have successfully built a Matlab program to price an arbitrary option of following
combinations in an objective sense, namely the object-oriented programming (OOP). Our
Matlab code can be converted into C++ code straightly to further speed up the computa-
tional time in the future.

Dimension:
One-asset,
Two-asset,
Three-asset,

×

Exercise
restriction:
European,
American,
Perpetual,

×

Portfolio
price:
Basket,
Minimum,
Maximum

×

Payoff:
Call,
Put,
Straddle.

9.3 Future Work

Our current work can be extended and improved from analytical and computational as-
pects. We list the possible directions to be further investigated by interested researchers.

9.3.1 Analytically

Jump Process:
It is interesting to investigate the pricing problems when stochastic part has a jump
process such as a more general α-stable Levy process whose variational inequality may
depend on a bilinear form involving a Fractional Laplacian operator, cf. [89, 87, 16].

Error Analysis:
We have seen the numerical behavior of discretization and truncation errors in our
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framework. However, the analytical investigation of the errors are very challenging
and has not yet been performed in our work. Conventionally, people investigate
the errors with coercivity and with an equality. Instead we have weak coercivity
and inequality (with complementarity condition) in our framework, these challenges
make the analysis even more difficult. If an a prior/posterior error estimate can be
derived from functional point of view, it can be further used in mesh refinement to
improve numerical computation.

Other Variational Formulations:
There are at least two possibilities to obtain other reformulations. Instead of con-
sidering the d−linear shape function, one may use the wavelet basis function to
reformulate the classical BSM operator as the wavelet BSM operator and obtain a
different reformulation. Another possibility is like [27] to exploit a measure function.
However, the measure function may make the computation of elemental matrices
more complicated and more time-consuming.

Matrix Analysis:
One can investigated further on the global elemental matrices or the coefficient matri-
ces used in the discrete forms. If their classes or properties can be identified exactly,
they may provide useful information to choose/adapt an algorithm to solve option
pricing problems more efficiently.

9.3.2 Computationally

Other Models:
It will be interesting to perform numerical experiments under other models and to
identify and visualize their option values and free boundaries. For example, the local-
volatility, stochastic-volatility and (Levy-)jump models may be suitable candidates.

Improvement of Time Discretization:
It is possible to use a higher-order Runge-Kutta method to improve the accuracy in
time discretization. Besides, a non-uniform time mesh may also be applied if an error
estimate can be designed.

Improvement of Spatial Discretization:
This can be performed from the following aspects.

1. Higher-order shape functions.

2. Adaptive mesh refinement.

3. Sparse grid multi-level methods.

cxli



Banded Sparse System:
A common point of all the discrete systems are the banded structure of their coeffi-
cient matrices. They have the pattern of 3d bands in a d−dimensioanl framework. It
requires further exploration and research to utilize the banded structure to solve the
systems more efficiently, probably with the knowledge of graph theory, cf. [29, 30].

Efficient Utilization of Computational Resources:
As the number of assets increases, the corresponding discrete systems grow expo-
nentially. Their computational capacity and capability are unavoidably highly de-
manded. These may be manipulated by combining the following techniques.

1. Domain decomposition.

2. Parallel computation.

3. Graphics processing unit (GPU) computation.

9.4 Concluding Remark

Compared with the prevalent use of classical Black-Scholes-Merton partial differential equa-
tion/inequality and finite difference method, the variational formulation and finite element
method seem less applied in the computation of mathematical finance. As we have seen,
the variational formulation is actually a unified approach for multi-asset European, Amer-
ican and perpetual options and the finite element method approximate the solutions in
functional sense and with favourable geometric properties. Their merits should draw more
attention in the future research of quantitative finance. In terms of numerical computation,
we expect more efficient algorithms to be designed for the subsequent discrete systems,
especially the large-scale linear complementarity problems of multi-asset American and
perpetual options.
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Appendix A

Unique Solution to Steady
Variational Inequality Problem with
Homogeneous Dirichlet BCs

[27] considers a Heston Model with an integro-differential operator A and a static obstacle
problem of the form 

Av ≥ f,
v ≥ g,
(Av − f)(v − g) = 0

where A is an elliptic differential operator, f ∈ L2(Ω) is non-negative and g is an obstacle
function. It is further reformulated as the steady variational inequality (SVI) of the form{

a(w − v, v) ≥ (w − v, f),
v ≥ g,

where a(·, ·) is a bilinear form. In the formulation of chapter four, we consider{
Lv ≤ −f ≡ 0,
v ≥ g.

⇔
{
−Lv ≥ f ≡ 0,
v ≥ g.

where the differential operator is the Black-Scholes-Merton (BSM) operator defined as

L :=
1

2

d∑
i=1

d∑
j=1

σijS
(i)S(j) ∂2

∂S(i)∂S(j)
+

d∑
i=1

(r − qi)S(i) ∂

∂S(i)
− r.

After reformulation, we have the corresponding BSM Static Variational Inequality (SVI){ (
b(w − v, v)− `(w − v)

)
≥ (w − v, f),

v ≥ g,
⇔
{
b(w − v, v) ≥ (w − v, f) + `(w − v) =: ˜̀

f (w − v),
v ≥ g.
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If only Dirichlet BCs are considered, then `(·) ≡ 0 in the formulation. Compared with
[27], −L = A, f ≡ 0 and there is an extra linear form `(·) in our formulation. We will
prove the existence and uniqueness to the BSM SVI by adapting the proof from [27]. Even
though f ≡ 0 in our formulation, the following proof can applied to a more general case
with f 6= 0. As a result, we will preserve the notation f in what follows.

A.1 Coercivity

Before moving to the detailed proof, we first recall the theorem of the unique solution to
a general SVI with strong coercivity (or V-ellipticity).

Theorem A.1 [44, Ch.1]
Consider a Gelfand triple H1(Ω) ↪→ L2(Ω) ↪→ H−1(Ω) = H1(Ω) with the induced norms
|| · ||H = || · ||H1(Ω) and || · ||L = || · ||L2(Ω) and a subspace V such that H1

0 (Ω) ⊆ V ⊂
H1(Ω) where H1

0 (Ω) is the subspace with homogeneous/zero Dirichlet boundary conditions.
Provided the linear form `(·) : V → R and bilinear form b(·, ·) : V × V → R in a steady
variational inequality (BSM SVI) are bounded and the bilinear is strong coercive or V-
elliptic, i.e., for all v ∈ V

b(w,w) ≥ c||w||2V for some c > 0,

where || · ||V is a norm on V, then there exists a unique solution to the SVI if f is
L2(Ω)−integrable.

Recall our bilinear form (4.3) in the BSM SVI satisfies Garding’s Inequality instead, i.e.

b(w,w) ≥ cH ||w||2Hω − cL||w||2L for some cH > 0, cL ≥ 0.

We now define a modified bilinear form

b̃(w, v) := b(w, v) + cL(w, v)L2(Ω) =: b(w, v) + cL(w, v),

which satisfies the strong coercivity w.r.t. || · ||2Hω

b̃(w,w) = b(w,w) + cL(w,w) ≥ cH ||v||2Hω .

A.2 Existence

A.2.1 Envelope Functions

Provided r > 0 in the BSM operator

L :=
1

2

d∑
i=1

d∑
j=1

σijS
(i)S(j) ∂2

∂S(i)∂S(j)
+

d∑
i=1

(r − qi)S(i) ∂

∂S(i)
− r,
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we assume there exist two envelope functions um, uM satisfying the following hypotheses.

Hypothesis A.2

H1: vm, vM ∈ H1,ω(Ω) ∩ Lq(Ω) ⊂ L2(Ω) for some q > 2.

H2: vM ≥ vm and vM ≥ g ≥ 0.

H3: −Lvm ≤ f ≤ −LvM .

A.2.2 Solution to Sequential Problems

Aim: ∃(vn)n∈N ⊂ H1,ω(Ω) ∩ Lq(Ω) ⊂ L2(Ω) for q > 2 such that

[A] b̃(w − vn, vn) ≥ (w − vn, f + cL · vn−1) + `(w − vn) for all w ∈ K and n = 1, 2, . . ..

[B] vn ≥ ψ ≥ 0where ψ = g is the obstacle/payoff function defined to form the closed
convex subset K.

[C] vM ≥ v1 ≥ v2 ≥ . . . ≥ vn−1 ≥ vn ≥ vn+1 ≥ . . . vm.

It is known that there exists a unique solution vn ≥ ψ ≥ 0 (i.e. vn ∈ K) to satisfy (A)
and (B) if f ∈ L2(Ω) and vn−1 ∈ L2(Ω). To start with, we let v0 = vM . In this fashion,
there exist unique solutions to [A] and [B] for n ∈ N.

Recall the notation x− := max{−x, 0}. We choose w − vn = w − v1 = −(v0 − v1)− for
n = 1 in [A] to obtain

[A1] b((v0 − v1)−,−v1) + cL · ((v0 − v1)−,+v0 − v1) ≥ ((v0 − v1)−,−f) − `((v0 − v1)−).

The hypothesis f ≤ −LvM implies (h+, f) + `(h+) ≤ b(h+, vM) (see Hypothesis [H3])
for all 0 ≤ h+ ∈ H1,ω(Ω). We take v0 = vM and h+ = +(v0 − v1)− to reach

[D1] b((v0 − v1)−, v0) ≥ ((v0 − v1)−, f) + `((v0 − v1)−).

Adding [A1] and [D1] up leads to

−
(
b((v0 − v1)−, (v0 − v1)−) + cL · ((v0 − v1)−, (v0 − v1)−)

)
≥ 0

⇒ 0 ≥ b̃((v0 − v1)−, (v0 − v1)−) ≥ cH ||(v0 − v1)−||2Hω ≥ 0

⇒ v0 ≥ v1.
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Assume vk−1 ≥ vk. We now choose −(vk − vk+1)− and (vk − vk+1)− as the w − vn for
n = k + 1 and n = k respectively in [A]. Summing the results up gives

−
(
b((vk − vk+1)−, (vk − vk+1)−) + cL · ((vk − vk+1)−, (vk − vk+1)−)

)
≥ cL ·

(
(vk − vk+1)−, (vk−1 − vk)

)
⇔ 0 ≤ cH · ||(vk − vk+1)−||2Hω ≤ b̃((vk − vk+1)−, (vk − vk+1)−)

≤ −cL ·
(
(vk − vk+1)−, (vk−1 − vk)

)
= cL ·

(
(vk − vk+1)−, (vk − vk−1)

)
≤ 0

⇔ ||(vk − vk+1)−||Hω = 0 ⇔ (vk − vk+1)− = 0 ⇔ vk ≥ vk+1.

Recall v0 := vM ≥ vm and v0 ≥ g. We now assume vk−1 ∈ K and vk−1 ≥ vm and set
w − vn = (vk − vm)− for n = k in [A] to obtain

b((vk − vm)−, vk) + cL · ((vk − vm)−, vk)

≥ ((vk − vm)−, f + cL · vk−1) + `((vk − vm)−)

⇔ b((vk − vm)−, vk − vm) + cL · ((vk − vm)−, vk − vm) + cL · ((vk − vm)−, vm)

≥ ((vk − vm)−, f + cL · vk−1) − b((vk − vm)−, vm) + `((vk − vm)−)

⇔ −
(
b((vk − vm)−, (vk − vm)−) + cL · ((vk − vm)−, (vk − vm)−)

)
≥ ((vk − vm)−, (f + Lvm) + cL · (vk−1 − vm)) ≥ 0

⇒ −b̃((vk − vm)−, (vk − vm)−) ≥ 0

⇒ 0 ≤ cH ||(vk − vm)−||2Hω ≤ b̃((vk − vm)−, (vk − vm)−) ≤ 0

⇒ ||(vk − vm)−||Hω = 0 ⇔ (vk − vm)− = 0 ⇔ vk ≥ vm.

We hence complete the proof of [C].

A.2.3 Convergence

Strong Convergence

Recall vM =: v0 ≥ v1 ≥ v2 ≥ . . . ≥ vm where (vn) ⊂ H1,ω(Ω) ⊂ L2(Ω) and uM , um ∈ Lq(Ω)
for some q > 2. Consequently, |vk| ≤ |vM | + |vm| + 1∈ Lq(Ω). This implies there exists
a subsequence (vnk) and a v ∈ L2(Ω) such that ||vnk − v||L → 0 ⇔ vnk → v in L2(Ω) as
nk →∞. Since (vn) is a decreasing sequence, the above result amounts to saying v is the
limit of (vn)n∈N in L2(Ω), i.e. ||vn − v||L → 0⇔ vn → v in L2(Ω) as n→∞.

Weak Convergence

Recall [A] ⇔ b̃(w, vn)− (w − vn, f + cLvn−1)− `(w − vn) ≥ b̃(vn, vn) ≥ cH ||vn||2Hω ≥ 0

⇒ b(w, vn) + cL(w, vn)− (w − vn, f + cLvn−1)− `(w − vn) ≥ cH ||vn||2Hω ≥ 0.
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We now take w = v0 := vM in the inequality.

0 ≤ cH ||vn||2Hω

≤ b(v0, vn) + cL(v0, vn)− (v0 − vn, f + cL · vn−1)− `(v0 − vn)

≤ c2||v0||Hω ||vn||Hω + cL||v0||L||vn||L + (||v0||L + ||vn||L)(||f ||L + cL||vn−1||L)

+c0(||v0||Hω + ||vn||Hω).

Recall that (vn)n∈N is convergent in L2(Ω) which implies ||vn||L is uniformly bounded
by some positive constant; (2)v0 ∈ Lq(Ω) with q > 2 also tells ||v0||L is uniformly bounded
by another positive constant. In this manner, we can rewrite the inequality as

0 ≤ cH ||vn||2Hω ≤ c||vn||Hω + c̃ (where c and c̃ are some positive constants)

⇔ 0 ≤ cH ||vn||Hω ≤ c+
c̃

||vn||Hω

.

The right hand side must be bounded and hence ||vn||Hω is bounded.

As (vn)n=1,2,... is a bounded sequence in H1,ω(Ω), there exist a subsequence (vnk) ⊂ (vn)
and a limit v ∈ H1,ω(Ω) such that (vnk) converges to v weakly, i.e. vnk ⇀ v. As (vn)
is a decreasing sequence and H1,ω(Ω) ⊂ L2(Ω), the result amounts to saying the (unique)
strong limit v in L2(Ω) of (vn)n=1,2,... is its weak limit in H1,ω(Ω), i.e. vn ⇀ v in H1,ω(Ω)
as n→∞.

A.2.4 Existence of Solution to Original Problem

The lemma below is also helpful to the following deduction.

Lemma A.3 [27, Lemma.B.3, p.110]
Consider a continuous/bounded bilinear form b : H ×H → R where H is a Hilbert space.
Provided wn ⇀ w in Hand sn → s in H,

1. lim
n→∞

b(wn, h) = b(w, h) for all h ∈ H;

2. lim
n→∞

b(wn, sn) = b(w, s);

3. if b(·, ·) is strongly coercive, then lim
n→∞

inf b(wn, wn) ≥ b(w,w).

cxlvii



With [A], we have

b̃(w − vn, vn) ≥ (w − vn, f + cLvn−1) + `(w − vn)

⇒ lim
n→∞

b(w, vn) + cL · lim
n→∞

(w, vn)− lim
n→∞

(w − vn, f)

≥ lim
n→∞

b̃(vn, vn) + cL · lim
n→∞

(w, vn−1)− cL · lim
n→∞

(vn, vn−1) + `(w)− lim
n→∞

`(vn)

⇒ b(w, v) + cL · (w, v)− (w − v, f) ≥ b̃(v, v) + cL · (w, v)− cL · (v, v) + `(w − v)

⇔ b(w − v, v) ≥ (w − v, f) + `(w − v)

Since we consider continuous functions, vm ≤ vn ≤ vM , g ≤ vn for n = 1, 2, . . . and
vn → v (strongly) in L2(Ω), we can conclude max{vm, g} ≤ v ≤ vM .

A.3 Uniqueness

A.3.1 Comparison of Solutions

Lemma A.4
Assume V is a subspace of a Hilbert space H. Suppose ṽ1 and ṽ2 are the solutions to the
following variational inequality problems with i = 1, 2 respectively.

For all w̃ ∈ Ki := {w ∈ V : w ≥ gi}, find ṽi such that

(P̃ .1) b̃(w̃ − ṽi, ṽi) ≥ (w̃ − ṽi, f̃ i) + `(w̃ − ṽi),
(P̃ .2) ṽi ∈ Ki,

where `(·) and b̃(·, ·) are bounded. If b̃(·, ·) is strongly coercive, f̃ 1 ≤ f̃ 2 and g1 ≤ g2, then
ṽ1 ≤ ṽ2.

Proof.
Let w̃ − ṽ1 = −(ṽ2 − ṽ1)− and w̃ − ṽ2 = +(ṽ2 − ṽ1)− for i = 1, 2 in (P̃ .1) respectively.
Summing the results gives

b̃((ṽ2 − ṽ1)−, ṽ2 − ṽ1) ≥ ((ṽ2 − ṽ1)−, f̃ 2 − f̃ 1)

⇔ 0 ≤ cH ||(ṽ2 − ṽ1)−||2Hω ≤ b̃((ṽ2 − ṽ1)−, (ṽ2 − ṽ1)−) ≤ 0

⇒ ṽ2 ≥ ṽ1.

Lemma A.5
Assume V is a subspace of a Hilbert space H. Suppose ṽ1 and ṽ2 are the solutions to the
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following variational inequality problems with i = 1, 2 respectively.

For all w̃ ∈ K := {w ∈ V : w ≥ g}, find ṽi such that

(P̃ .3) b̃(w̃ − ṽi, ṽi) ≥ (w̃ − ṽi, f̃) + βi · `(w̃ − ṽi),
(P̃ .4) ṽi ∈ K,

where `(·) and b̃(·, ·) are bounded and `(w̃) ≥ 0 if w̃ ≥ 0. If b̃(·, ·) is strongly coercive,
0 < β1 < β2, then ṽ1 ≤ ṽ2.

Proof.
Similarly, let w̃ − ṽ1 = −(ṽ2 − ṽ1)− and w̃ − ṽ2 = +(ṽ2 − ṽ1)− for i = 1, 2 in (P̃ .3)
respectively. Summing up the results gives

b̃((ṽ2 − ṽ1)−, ṽ2 − ṽ1) ≥ (β2 − β1) · `((ṽ2 − ṽ1)−) ≥ 0

⇔ 0 ≤ cH ||(ṽ2 − ṽ1)−||2Hω ≤ b̃((ṽ2 − ṽ1)−, (ṽ2 − ṽ1)−) ≤ 0

⇒ ṽ2 ≥ ṽ1.

A.3.2 Solution to the Variational Equality Associated with a Dis-
tortion Function

In addition to the hypotheses of envelope functions, we further assume there exists a
distortion function φ over the bounded domain Ω satisfying the following hypotheses.

Hypothesis A.6

H1’: 0 ≤ φ ⊂ H1,ω(Ω).

H2’: 0 ≤ −Lφ.

H3’: −L(vm + φ) > 0.

H4’: sup
S∈Ω

vM + φ

−L(vm + φ)
<∞.

We recall a classical elliptic PDE of the form

−Lv = f.

Assume it has no Neumann BCs, then its variational form is

b(w, v) = (w, f).

We now consider L : H1,ω(Ω) ∩ H2(Ω) → L2(Ω). Assume there exists such function
vφ ∈ H1,ω(Ω) ∩H2(Ω) such that, cf.[27, Lemma 3.21, p.35],

H5’: b(w, vφ) = (w,−Lφ) for all w ∈ H1,ω
0 (Ω).
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H6’: Lvφ = Lφ.

Combining [H2] with [H6’], we have the following property.

0 < −L(um + φ) ≤ f − Lvφ =: f̃φ ≤ −L(uM + φ) (A.1)

A.3.3 Distorted Problem

We now consider the distorted variational inequality problem (P̂ ) as below.

(P̂ )


For all w̃φ ∈ K̃φ := {w ∈ V : w ≥ g̃φ}, find ṽφ such that

(P̂.1) b(w̃φ − ṽφ, ṽφ) ≥ (w̃φ − ṽφ, f̃φ) + `(w̃φ − ṽφ),

(P̂.2) ṽφ ∈ K̃φ,

where f̃φ := f − Lvφ > 0. We further assume there exists two envelope functions ṽm, ṽM
as previous discussion such that

• ṽm ≤ ṽφ ≤ ṽM .

• −Lṽm ≤ f̃φ ≤ −LṽM .

• ṽM ≤ vM + φ.

• −Lṽm ≥ −L(vm + φ).

Assume ṽφ
1 and ṽφ

2 are two distinct solutions to P̂ . Without loss of generality, we may
assume ∃D ⊂ Ω such that

[AA] ṽφ
1(S) � ṽφ

2(S),∀S ∈ D.

We define a function α(S) := min{1, ṽφ
2(S)

ṽφ
1(S)
} ≤ 1 where we also define 0

0
=: 0 and

1
0

=:∞. Note that

α(S) · ṽφ1(S) = min{ṽφ1(S), ṽφ
2(S)} ∈ K̃φ,

because both solutions satisfy the obstacle condition ṽφ ≥ g̃φ.
We further define the constant αinf := inf

S∈Ω
α(S) . If αinf = 1, then it implies ∀S ∈ Ω,

α(S) = min{1, ṽφ
2(S)

ṽφ
1(S)
} ≥ αinf = 1 and ṽφ

2(S) ≥ ṽφ
1(S) over the whole Ω. This contradicts

[AA]. As a result,

0 ≤ αinf < 1.
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We now choose a constant β which is close enough to αinf such that

[BB] 0 ≤ αinf < β < 1,

[CC] f̃
1

:= β · (f̃φ + cLṽφ
1) ≤ (f̃φ + cLṽφ

2) =: f̃
2
.

[CC] can be justified if the following holds.

β · (f̃φ + cLṽφ
1) ≤ f̃φ + cL · αinf · ṽφ1

⇔ [CC’]
ṽφ

1

f̃φ
≤ 1− β
cL · (β − αinf)

.

On the one hand,

ṽφ
1

f̃φ
≤ ṽM
−Lṽm

≤ vM + φ

−L(vm + φ)
≤ sup

vM + φ

−L(vm + φ)
<∞,

i.e. the LHS of [CC’] is bounded, say the LHS< k for some k > 0. On the other hand, the
RHS of [CC’] can be an arbitrarily large but finite number. As a result, we can select the
β close enough to αinf (from its right) such that [CC’] holds.

Recall we assume ṽφ
1 and ṽφ

2 are two different solutions to (P̂ ).

β2 ·
(

(P̂.1) + cL(w̃φ − ṽφ, ṽφ)
)

with ṽφ = ṽφ
1 gives

b̃(β(w̃φ − ṽφ1), βṽφ
1) ≥ (β(w̃φ − ṽφ1), β(f̃φ + cLṽφ

1)) + β · `(β(w̃φ − ṽφ1)).

Let ṽ1 := βṽφ
1, f̃

1
:= β(f̃φ + cLṽφ

1) and note ṽ1 = βṽφ
1 ≥ βg̃φ =: g̃1. We find ṽ1 = βṽφ

1 is

the solution to the problem (P̂1).

(P̂1)


For all w̃ ∈ K̃φ, find ṽ1 such that

(P̂1.1) b̃(w̃ − ṽ1, ṽ1) ≥ (w̃ − ṽ1, f̃
1
) + β · `(w̃ − ṽ1),

(P̂1.2) ṽ1 ∈ K̃φ,

Similarly (P̂1) + cL(w̃φ − ṽφ, ṽφ) with ṽφ = ṽφ
2 gives

b̃(w̃φ − ṽφ2, ṽφ
2) ≥ (w̃φ − ṽφ2, f̃φ + cLṽφ

2) + `(w̃φ − ṽφ2).

Let ṽ2 := ṽφ
2, f̃

2
:= f̃φ + cLṽφ

2 and note ṽ2 = ṽφ
1 ≥ g̃φ =: g̃2. We find ṽ2 := ṽφ

2 is the

solution to the problem (P̂2).

(P̂2)


For all w̃ ∈ K̃φ, find ṽ2 such that

(P̂2.1) b̃(w̃ − ṽ2, ṽ2) ≥ (w̃ − ṽ2, f̃
2
) + 1 · `(w̃ − ṽ2),

(P̂2.2) ṽ2 ∈ K̃φ,
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Provided b̃(·, ·) is strongly coercive, f̃
2 ≥ f̃

1
(by [CC]) and g̃2 = g̃φ ≥ g̃1 (due to

0 < β < 1), we conclude

[DD] ṽ2 := ṽφ
2 ≥ βṽφ

1 =: ṽ1,

with the help of Lemma A.4 and Lemma A.5 .
Recall 0 ≤ αinf < β < 1. We can find ε > 0 such that

0 < ε < β − αinf ⇒ [EE] 0 < αinf + ε < β.

Since αinf := inf
S∈Ω

α(S), for the ε above, one can find a subset Dε ⊂ Ω such that for all

S ∈ Dε,

[FF] α(S) ≤ αinf + ε < β,

[GG] 1 > α(S) := min{1, ṽφ
2(S)

ṽφ
1(S)
} =

ṽφ
2(S)

ṽφ
1(S)

.

However, for all S ∈ Dε, we have

ṽφ
2 = min{1, ṽφ

2(S)

ṽφ
1(S)
} · ṽφ1 = α(S) · ṽφ1 < β · ṽφ1 < ṽφ

2,

with the help of [DD],[FF] and [GG]. We reach the contradiction ṽφ
2(S) < ṽφ

2(S) for all

S ∈ Dε. We can now conclude that the solution to the distorted problem P̂ is unique.

A.3.4 Original Problem

Suppose ṽφ is the unique solution to the distorted variational problem (P̂ ). Subtracting

(w̃φ − ṽφ,−Lφ) from (P̂.1) and using f − Lvφ =: f̃φ gives

b(w̃φ − ṽφ, ṽφ − ṽφ) ≥ (w̃φ − ṽφ, f) + `(w̃φ − ṽφ).

Let v := ṽφ − vφ and w − v = w̃φ − ṽφ. We find v is the solution to the original problem
below.

Original Problem (P)


For all w ∈ K := {w ∈ V : w ≥ g}, find v such that

(P.1) b̃(w − v, v) ≥ (w − v, f) + `(w − v),
(P.2) v ∈ K.

Suppose v1 and v2 are two solutions to the original problem (P). With identical φ and
vφ, we have ṽφ

1 = v1 +vφ and ṽφ
2 = v2 +vφ as two solutions to the corresponding distorted

problem (P̂ ). However, (P̂ ) has a unique solution, which implies v1 + vφ = ṽφ
1 = ṽφ

2 =
v2 + vφ ⇔ v1 = v2 over the whole domain Ω. Namely, the original problem (P) actually
has a unique solution.
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Appendix B

Elemental Computation by
Quadrature

Conventionally, numerical integration is adopted when treating integration for finite ele-
ment techniques. To simplify the numerical procedure, a canonical approach is mapping a
physical element to a reference oneand applying numerical quadrature over the reference
domain.

B.1 Change of variable

A direct approach to map a hypercube to the reference one is to scale and shift it using

S∗ = J−1(S− S
(e)
1 )↔ S = S

(e)
1 + JS∗ =: Te(S∗)

where J−1 and J are Jacobian matrices. Take the two-dimensional square element as an
example, we have

J :=
dST

dS∗
=

[
∂S(j)

∂S
(i)
∗

]
2×2

=

(
h1 0
0 h2

)
, (B.1)

and

J−1 :=

( 1
h1

0

0 1
h2

)
. (B.2)

Note both J and J−1 are symmetric diagonal in this case.
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In this manner, integrals over a common element can be rewritten as follows. For the
local indices `1, `2 ∈ {1, . . . , 2d},

M
(e)
`1,`2

:= | det (J)|
∫
Ω∗

N (`1)
∗ N (`2)

∗ dΩ∗,

K
(e)
`1,`2

:= | det (J)|
∫
Ω∗

(∇∗N (`1)
∗ )T (J−1T∗J

−1)(∇∗N (`2)
∗ )dΩ∗,

A
(e)
`1,`2

:= | det (J)|
∫
Ω∗

N (`1)
∗ (D̃∗

T
J−1)(∇∗N (`2)

∗ )dΩ∗.

where

T∗ :=
1

2
·Σ� (Te(S∗) Te(S)T ),

D̃∗ := D̄� (Te(S∗)).

We now focus on L
(B,b)
` which is associated with the integral over a Neumann boundary

element Γ
(b)

N(B) ⊂ ΓN(B) ⊂ ΓN for some B ∈ {1, . . . , d}. Analogously we define a boundary

reference element Γ∗N := [0, 1]d−1 and a domain transform function SB = T Bb (S∗) where

S∗ ∈ Γ∗N and SB = (S(1), . . . , S(B) = Smax, . . . , S
(d)) ∈ Γ

(b)

N(B) . Their boundary Jacobian

matrices are denoted by JB and JB
−1 of size 2d−1 × 2d−1. A shape function over Γ

(b)

N(B) is

denoted by N `
b . With the help of these notations, we can find the components of (Neumann

boundary) load vector as follows. For all ` ∈ {1, . . . , 2d−1},

L
(B,b)
` := | det (JB)|

∫
Γ∗N

fB∗ N
(`)
∗ dΓ∗N

where

fB∗ := n ·TB
∗ ∇g

TB
∗ :=

1

2
·Σ� (T Bb (S∗) T Bb (S∗)T ).

B.2 Comment

Conventionally, the integrals over each computational element are computed using quadra-
ture techniques after a change of variable. The integrals of mass matrices are element-
independent, so it is efficient to compute them once and for all on a reference element.
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However, the integrals of other elemental matrices are still element-dependent which re-
quests the numerical integration repeated element by element. As well, numerical inte-
gration can achieve satisfactory accuracy only when the number of Gaussian points (over
the reference element) is large enough. This number generally increases as number of
dimensions increases or order of needed accuracy increase.

If the numerical integration (up to satisfactory accuracy on the computational domain)
is performed element by element in high-dimensional cases, then such process for our
problems is time-consuming compared with using the exact closed-form formulas of the
integrals. Due to this, we employ the closed-form formulas introduced in the chapter six
for our computation.
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