Study of energy efficient supercritical coal-fired power plant dynamic responses and control strategies

Mohamed, Omar R. Ibrahim (2012). Study of energy efficient supercritical coal-fired power plant dynamic responses and control strategies. University of Birmingham. Ph.D.


Download (2MB)


The world is facing the challenge of global warming and environment protection. On the other hand, the demand of electricity is growing fast due to economic growth and increase in population. Since the growth in demand is also a heavy factor in energy equations, then the renewable energy alone is not able to generate enough electricity to fill the gap within a short time of period. Therefore, fossil fuel such as coal fired power plants cannot be ruled out immediately due to their generation capacity and flexibility in load following. However, any new coal fired stations should be cleaner compared with traditional power plants. Supercritical power plants are one of the most suitable choices for environmental enhancement and higher efficiency. However, there has been an issue of whether or not to adopt this technology in the UK because it is not clear whether the performance for SC plants can satisfy the British Gird Code requirement. This thesis reports a study of dynamic responses of SC power plants through mathematical modeling, and simulation for Gird Code compliance. It also presents a new control strategy based on an alternative configuration of generalized predictive control for power plant control.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Electronic, Electrical and Systems Engineering
Funders: None/not applicable
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
H Social Sciences > HD Industries. Land use. Labor
T Technology > TK Electrical engineering. Electronics Nuclear engineering


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year