Quasi-classical theory of weakly anisotropic superconductors

Smith, Mark James (2012). Quasi-classical theory of weakly anisotropic superconductors. University of Birmingham. Ph.D.


Download (744kB)


This thesis starts by reviewing superconductivity in one-dimension where fluctuations cause a loss of supercurrent due to an intrinsic resistance. Solved via the Ginzburg-Landau equations, the theory of thermally activated phase slips given by Langer and Ambegaokar is outlined. In turn this leads to the investigation of superconductivity via a microscopic approach, in particular the quasi-classic green’s functions of Eilenberger. The Eilenberger equations are derived and considered in the dirty and weakly anisotropic limits which provides a simple derivation of the Ginzburg-Landau equations near the transition temperature. This prompts an extended derivation which includes the non-linear terms normally removed in deriving the Ginzburg-Landau equations. This is required for calculating effects at temperatures below the transition temperature. These quasi-classic equations of weakly anisotropic superconductors are first written for arbitrary temperature and impurity concentration then limited to the pure and dirty cases. The latter being simplified to zero temperature and solved in the context of thermally activated phase slips.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Physics and Astronomy
Funders: None/not applicable
Subjects: Q Science > Q Science (General)
Q Science > QC Physics
T Technology > T Technology (General)
URI: http://etheses.bham.ac.uk/id/eprint/3297


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year