Synthesis of coupled resonator circuits with multiple outputs using coupling matrix optimization

Skaik, Talal (2011). Synthesis of coupled resonator circuits with multiple outputs using coupling matrix optimization. University of Birmingham. Ph.D.


Download (4MB)


Design techniques used for two-port coupled resonator circuits are extended in this thesis to multi-port coupled resonator circuits. Three-port coupled resonator power dividers and diplexers are demonstrated in particular. The design approach is based on coupling matrix optimization, and it allows synthesis of coupled resonator power dividers with arbitrary power division, and diplexers with contiguous and non-contiguous bands. These components have been synthesised with novel topologies that can achieve Chebyshev and Quasi-elliptic filtering responses. To verify the design methodology, some components with Chebyshev filtering response have been designed, fabricated and tested. X-band coupled resonator devices have been realized using waveguide cavities: 3-dB power divider, unequal power divider, 4-resonator diplexer, and 12-resonator diplexer. An E-band 12-resonator coupled resonator diplexer has been designed to be used as a front end component in the transceiver of a wireless communications system. An H-band coupled resonator diplexer with embedded bends has been designed and realized using micromachining technology.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Electronic, Electrical and Systems Engineering
Funders: Other
Other Funders: Overseas Research Students Awards Scheme
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TA Engineering (General). Civil engineering (General)


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year