# INVESTIGATION OF THE STRUCTURE AND FUNCTION OF SECH, A NOVEL COMPONENT OF THE SEC MACHINERY IN *ESCHERICHIA COLI*

by

## MAX ALEXANDER WYNNE

A thesis submitted to the University of Birmingham for the degree of

## DOCTOR OF PHILOSOPHY

School of Biosciences College of Life and Environmental Sciences University of Birmingham December 2022

# UNIVERSITY<sup>OF</sup> BIRMINGHAM

# **University of Birmingham Research Archive**

### e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.

# Abstract

The Sec machinery translocates proteins across, or inserts proteins into, the cytoplasmic membrane and is responsible for translocation of approximately 20% of all proteins synthesised by the bacterium Escherichia coli. The aim of the work presented in this thesis was to investigate the function, mechanism and structure of a novel component of the Sec machinery, SecH (YecA). SecH contains two structural domains that were identified previously with the aid of bioinformatics: an N-terminal UPF0149 domain and a C-terminal metal binding domain (MBD). The MBD is nearly identical to the C-terminal MBD of the essential ATPase SecA, which mediates the interaction of SecA with the molecular chaperone SecB and with ribosomes. A phylogenetic analysis of the distribution of SecH in different bacterial species presented in this thesis suggested that SecH is strongly co-conserved with SecB. Biochemical and biophysical binding studies indicate that SecH binds to both SecB and ribosomes in a manner that is dependent on the MBD. Structural modelling, size exclusion chromatography and native mass spectrometry indicate that SecH dimerises in solution, and site-specific crosslinking suggests that it forms higher order oligomers *in vivo*. Copurification experiments indicate that SecH interacts with a broad range of client proteins when overexpressed and these include Sec substrates when expressed in strains with a Sec defect. These results are consistent with previous reports suggesting that SecH has molecular chaperone activity. SecH also copurifies strongly with SecA. Biochemical studies suggest SecH does not modulate the ATPase activity of SecA or increase the rate of ADP dissociation in the absence of SecYEG or substrate protein. However, structural modelling suggests that SecH may directly interact with SecA. Taken together, these results suggest that SecH is a novel component of the Sec machinery that interacts with the ribosome, SecB, SecA and also Sec substrate protein.

# Acknowledgments

I owe a great deal of gratitude to my supervisor, Dr Damon Huber. From the moment I joined his lab, I received tremendous support and guidance that has helped me develop into a competent scientist. I will never cease to be amazed at the sheer depth of his knowledge and his love of science and I am truly thankful for the opportunity he gave me to work in his lab.

I'd like to thank some of the amazing people in T101 who made working in the lab each day even more fun, including Dr Mat, Dr Fatemah, Dr Kara, Sammi, Dana, Deema, Gabi, Manpreet and Chen. A special thank you is reserved for Dr Mat Milner. From the day I had my interview, you made me feel welcome and a part of T101. You are one of the most selfless people I've worked with and your calm nature and ability to solve any microbiological issue is a true wonder. I'd also like to thank my flatmate and resident mass spectrometry expert Kish. It's been a truly enjoyable 3 years living with you. The countless hours of watching football, cricket and endless other documentaries made living in Birmingham just that little bit more bearable.

Most importantly, I owe everything to my family. Without their support I would never have made it this far. Mum, your constant love and care for me has made me the person I am today. This PhD is as much yours as it is mine. Dad, I am extremely thankful for all the support you have given me for as long as I can remember. Josh, thank you for being an incredibly caring brother. Thank you for always checking up on me and protecting me throughout my life. You really are the best brother I could have asked for. I may have never shown it in the way I ought to, but I deeply love and appreciate you all.

A special thank you also is reserved for extended family members Tony and Sarah for all the support you have given me.

Finally, thank you to Hannah for all your love, kindness and support over the last few years. I have never met someone who understands me so well. You know exactly how to cheer me up in the sad times, comfort me in the hard times and on a daily basis you make me laugh until I can't breathe. I hope you know how special you are. Here's to many more years of happiness.

# For Grandpa Heinz (1932-2022)

"Don't get nervous, you've done that all before. But just... slow. Don't rush. You've got time. And think before you write! That's all I can say. I'm sure you'll be alright..."

# Table of Contents

| 1.   | CHAPTER 1<br>BACTERIAL SECRETION<br>SIGNAL SEQUENCES |                                               | 1<br>2<br>2 |
|------|------------------------------------------------------|-----------------------------------------------|-------------|
| 1.1. |                                                      |                                               |             |
| 1.2. |                                                      |                                               |             |
| 1.3. | CO                                                   | MPONENTS OF THE BACTERIAL SEC SYSTEM          | 3           |
|      | 1.3.1.                                               | SecYEG                                        | 3           |
|      | 1.3.2.                                               | SecA                                          | 6           |
|      | 1.3.3.                                               | SecB                                          | 14          |
|      | 1.3.4.                                               | Signal Recognition Particle (SRP)             | 16          |
|      | 1.3.5.                                               | YidC                                          | 17          |
|      | 1.3.6.                                               | SecDF                                         | 17          |
|      | 1.3.7.                                               | YajC                                          | 18          |
| 1.4. | THE                                                  | ROLE OF MOLECULAR CHAPERONES IN TRANSLOCATION | 18          |
| 1.5. | TRA                                                  | NSLOCATION PATHWAYS                           | 21          |
|      | 1.5.1.                                               | Coupled Translocation                         | 21          |
|      | 1.5.2.                                               | Uncoupled Translocation                       | 22          |
| 1.6. | QUALITY CONTROL                                      |                                               | 24          |
|      | 1.6.1.                                               | SecYEG Jamming                                | 24          |
|      | 1.6.2.                                               | Mislocalisation of Sec Substrates             | 24          |
|      | 1.6.3.                                               | SecY Proof Reading                            | 24          |
|      | 1.6.4.                                               | Cell Stress Responses                         | 25          |
| 1.7. | SEC                                                  | CH (YECA)                                     | 26          |
| 1.8. | AIM                                                  | S AND OBJECTIVES                              | 28          |
| 2.   | CHAPTER 2                                            |                                               | 30          |

| 2.1. | ME     | DIA AND GROWTH CONDITIONS           | 31 |
|------|--------|-------------------------------------|----|
| 2.2. | STR    | RAINS AND PLASMIDS                  | 31 |
| 2.3. | BUF    | FFERS                               | 33 |
| 2.4. | MOI    | LECULAR GENETICS                    | 35 |
|      | 2.4.1. | Plasmid Purification                | 35 |
|      | 2.4.2. | DNA Separation and Visualisation    | 35 |
|      | 2.4.3. | DNA Amplification                   | 36 |
|      | 2.4.4. | Colony PCR                          | 37 |
|      | 2.4.5. | DNA Precipitation                   | 37 |
|      | 2.4.6. | DNA Purification                    | 38 |
|      | 2.4.7. | Molecular Cloning                   | 38 |
| 2.5. | BAC    | CTERIAL TRANSFORMATION              | 39 |
|      | 2.5.1. | Electroporation                     | 39 |
|      | 2.5.2. | Chemical Transformation             | 40 |
| 2.6. | P1 1   |                                     | 40 |
|      | 2.6.1. | Removal of Kanamycin Cassette       | 41 |
| 2.7. | PRC    | DTEIN EXPRESSION AND PURIFICATION   | 42 |
|      | 2.7.1. | Protein Expression                  |    |
|      | 2.7.2. | Protein Purification                | 42 |
|      | 2.7.3. | Anion Exchange Chromatography       | 43 |
|      | 2.7.4. | Size Exclusion Chromatography       | 43 |
|      | 2.7.5. | Protein Concentration Determination | 43 |
|      | 2.7.6. | SDS -PAGE                           | 44 |
|      | 2.7.7. | Silver Staining                     | 44 |
|      | 2.7.8. | Western Blotting                    | 45 |
| 2.8. | MAS    | SS SPECTROMETRY ANALYSIS            | 45 |

| 2.9. | RIB     | RIBOSOME COSEDIMENTATION ASSAY      |    |  |
|------|---------|-------------------------------------|----|--|
| 2.10 | . MIC   | ROSCALE THERMOPHORESIS (MST)        | 46 |  |
| 2.11 | . BAG   | CTERIAL TWO HYBRID ASSAY            | 47 |  |
| 2.12 | . STF   | UCTURAL MODELLING                   | 48 |  |
| 2.13 | . DSF   |                                     | 48 |  |
| 2.14 | . SIT   |                                     | 49 |  |
|      | 2.14.1. | Strain Construction                 | 49 |  |
|      | 2.14.2. | Protein Expression and Purification | 49 |  |
|      | 2.14.3. | Photo-Crosslinking                  | 49 |  |
| 2.15 | . ATF   | PASE ACTIVITY ASSAY                 | 50 |  |
| 2.16 | . MAI   | NT-ADP FLUORESCENCE                 | 50 |  |
| 2.17 | . SIZI  | E EXCLUSION CHROMATOGRAPHY          | 51 |  |
| 2.18 | . PUL   | L-DOWN ASSAY                        | 51 |  |
| 3.   | CHAP    | TER 3                               | 52 |  |
| 3.1. | INT     | RODUCTION                           | 53 |  |
| 3.2. | RES     | SULTS                               | 55 |  |
|      | 3.2.1.  | Metal Binding Domain Conservation   | 55 |  |
|      | 3.2.2.  | SecH-SecB Co-Occurrence             | 58 |  |
|      | 3.2.3.  | Structural Modelling                | 61 |  |
|      | 3.2.4.  | Metal Binding Domain Model          | 64 |  |
|      | 3.2.5.  | SecB-SecH Model                     | 66 |  |
| 3.3. | DIS     |                                     | 69 |  |
| 4.   | CHAP    | TER 4                               | 72 |  |
| 4.1. | INT     | INTRODUCTION7                       |    |  |
| 4.2. | RES     | SULTS                               | 79 |  |

|      | 4.2.1.  | SecH – Ribosome Interaction                                      | 79  |
|------|---------|------------------------------------------------------------------|-----|
|      | 4.2.2.  | SecB- SecH Interaction – Microscale Thermophoresis               | 81  |
|      | 4.2.3.  | SecB – SecH Interaction – DSP Crosslinking                       | 83  |
|      | 4.2.4.  | SecB- SecH Interaction – Bacterial Two Hybrid Screen             | 86  |
| 4.3. | DIS     |                                                                  | 88  |
| 5.   | CHAP    | ER 5                                                             | 91  |
| 5.1. | INT     | RODUCTION                                                        | 92  |
| 5.2. | RES     | ULTS                                                             | 94  |
|      | 5.2.1.  | Site-Specific Crosslinking Protein Design                        | 94  |
|      | 5.2.2.  | SecH- SecB Photo-Crosslinking                                    | 98  |
|      | 5.2.3.  | Photo-Crosslinking of SecH Mutant Lysates                        | 102 |
|      | 5.2.4.  | Identification of Crosslinked Proteins                           | 104 |
|      | 5.2.5.  | SecH Pull-Down from Mutant Protein Lysates in Cells Lacking SecB | 107 |
|      | 5.2.6.  | SecH Co-Purification from Mutant Protein Lysates                 | 110 |
|      | 5.2.7.  | Size Exclusion Chromatography                                    | 116 |
|      | 5.2.8.  | Native Mass Spectrometry                                         | 118 |
|      | 5.2.9.  | SecH-Mediated Stimulation of ATPase Activity                     | 121 |
|      | 5.2.10. | SecH -Mediated Stimulation of Nucleotide Exchange                | 124 |
|      | 5.2.11. | Structural Models of SecH Oligomers                              | 126 |
|      | 5.2.12. | SecH-SecA Structural Model                                       | 132 |
| 5.3. | DIS     |                                                                  | 135 |
| 6.   | CONC    | UDING REMARKS                                                    | 138 |
| 6.1. | SEC     | H IN THE SEC PATHWAY                                             | 139 |
| 6.2. | MEC     | HANISM OF SECH                                                   | 140 |
| 7.   | BIBLIC  | GRAPHY                                                           | 143 |
| 8.   | APPEN   |                                                                  | 155 |

# List of Figures

| FIGURE 1 – CRYSTAL STRUCTURE OF SECYEG IN ITS RESTING STATE                          | 5                |
|--------------------------------------------------------------------------------------|------------------|
| FIGURE 2 - STRUCTURES OF SECA IN DIFFERENT CONFORMATIONS.                            | 9                |
| FIGURE 3 - GENERAL ATP CYCLE OF AN ATPASE.                                           | 13               |
| FIGURE 4 - BACTERIAL SEC SECRETION.                                                  | 23               |
| FIGURE 5 - DOMAIN ORGANISATION OF SECH                                               | 27               |
| FIGURE 6- LOGO OF CONSENSUS SEQUENCE OF THE SECA MBD AND SECH MBD.                   | 57               |
| FIGURE 7 - TABLE OF SECH CONTAINING SPECIES AND CO-OCCURRING SECB.                   | 60               |
| FIGURE 8 - STRUCTURAL MODELLING OF SECH.                                             | 63               |
| FIGURE 9 - DETERMINED STRUCTURE SECA METAL BINDING DOMAIN (PDB:1SX1), AND MODELLED   | SECH             |
| METAL BINDING DOMAIN.                                                                | 65               |
| FIGURE 10 - STRUCTURES OF SECA AND SECH METAL BINDING DOMAINS INTERACTING WITH SECB  | 68               |
| FIGURE 11 - DSP REACTION SCHEME.                                                     | 75               |
| FIGURE 12 – SCHEMATIC OF THE BACTERIAL TWO HYBRID ASSAY                              | 77               |
| FIGURE 13 - COSEDIMENTATION OF SECH WITH VACANT 70S RIBOSOMES                        | 80               |
| FIGURE 14 – SECB – SECH INTERACTION MEASURED USING MICROSCALE THERMOPHORESIS.        | 82               |
| FIGURE 15 - DSP-MEDIATED CROSSLINKING OF SECB AND SECH.                              | 85               |
| FIGURE 16- BACTERIAL TWO HYBRID SCREEN BETWEEN SECB AND SECH.                        | 87               |
| FIGURE 17 – SCHEMATIC OF BPA-INCORPORATION INTO PROTEINS                             | 96               |
| FIGURE 18- SECH STRUCTURAL MODEL WITH RESIDUES CHOSEN FOR BPA INCORPORATION.         | 97               |
| FIGURE 19 – WESTERN BLOT OF BPA-INCORPORATED SECH MUTANTS INCUBATED WITH SECB AND    | EXPOSED          |
| то UV light                                                                          | 99               |
| FIGURE 20- ANTI-BIOTIN WESTERN BLOT OF POTENTIAL SECB-CROSSLINKING MUTANTS.          | 101              |
| FIGURE 21 – WESTERN BLOT OF MUTANT N91 AND F101 LYSATES BEFORE AND AFTER EXPOSURE 1  | го <b>365 мм</b> |
| UV LIGHT                                                                             | 103              |
| FIGURE 22 - ANTI-BIOTIN WESTERN BLOT OF PROTEINS SECH MUTANTS PULLED DOWN FROM LYSAT | ES USING         |
| STREPTAVIDIN.                                                                        | 109              |

| FIGURE 23 - MOLECULAR FUNCTION ENRICHMENT OF IDENTIFIED COPURIFYING PROTEINS       | 111              |
|------------------------------------------------------------------------------------|------------------|
| FIGURE 24 – WESTERN BLOT AGAINST LAMB OF PROTEINS COPURIFYING WITH SECH MUTANT PR  | OTEINS IN        |
| CELLS LACKING SECB                                                                 | 113              |
| FIGURE 25 - WESTERN BLOT AGAINST SECA OF PROTEINS COPURIFYING WITH SECH MUTANT PRO | <b>DTEINS IN</b> |
| CELLS LACKING SECB                                                                 | 115              |
| FIGURE 26 - SECB AND SECH SIZE EXCLUSION CHROMATOGRAM.                             | 117              |
| FIGURE 27- NATIVE MASS SPECTRUM OF PURIFIED SECH                                   | 119              |
| FIGURE 28 - NATIVE MASS SPECTRUM OF SECH DIMERS.                                   | 120              |
| FIGURE 29- REACTION SCHEME OF NADH-COUPLED ATPASE ASSAY.                           | 122              |
| FIGURE 30 – ATPASE ASSAYS OF SECA IN THE PRESENCE OF SECH                          | 123              |
| FIGURE 31 -FLUORESCENCE OF MANT-ADP DISSOCIATION FROM SECA.                        | 125              |
| FIGURE 32- STRUCTURAL MODELS OF UPF1049 DIMERS.                                    | 127              |
| FIGURE 33 – STRUCTURAL MODEL OF SECH TETRAMER                                      | 129              |
| FIGURE 34 - ALPHAFOLD2 MODEL OF DIMERIC SECH WITH SUMO, 6x-HIS AND AVITAG          | 131              |
| FIGURE 35 – ALPHAFOLD2 STRUCTURAL MODELLING OF SECH WITH SECA.                     | 134              |

# List of Tables

| TABLE 1- STRAINS USED IN THIS STUDY.                                                                           | 31                 |
|----------------------------------------------------------------------------------------------------------------|--------------------|
| TABLE 2 - PLASMIDS USED IN THIS STUDY.                                                                         | 32                 |
| TABLE 3 - BUFFERS USED IN THIS STUDY                                                                           | 33                 |
| TABLE 4 – COMPONENTS FOR PCR DNA AMPLIFICATION                                                                 | 36                 |
| TABLE 5 – PCR STEPS                                                                                            | 37                 |
| TABLE 6 – MOLECULAR FUNCTION ENRICHMENT OF IDENTIFIED CROSSLINKING ADDUCTS.                                    | 106                |
| TABLE 7 – MASS SPECTROMETRY RESULTS FROM SECTION 5.2.4 – W13BPA 33-43 KDA                                      | 156                |
| TABLE 8 - MASS SPECTROMETRY RESULTS FROM SECTION 5.2.4 – W13BPA 42-65 KDA                                      | 159                |
| TABLE 9 - MASS SPECTROMETRY RESULTS FROM SECTION 5.2.4 – W13BPA 65-100 KDA                                     | 162                |
| TABLE 10 - MASS SPECTROMETRY RESULTS FROM SECTION 5.2.4– N91BPA 34-43 KDA                                      | 164                |
| TABLE 11 - MASS SPECTROMETRY RESULTS FROM SECTION 5.2.4 – N91BPA 43-65 KDA                                     | 167                |
| TABLE 12 - MASS SPECTROMETRY RESULTS FROM SECTION 5.2.4 – N91BPA 65-100 KDA                                    | 170                |
| TABLE 13 – MASS SPECTROMETRY RESULTS OF PROTEINS IN N91 <sup>BPA</sup> 45 KDA BAND, FROM SECTION               | <b>n 5.2.5</b> 174 |
| TABLE 14 - MASS SPECTROMETRY RESULTS OF PROTEINS IN N91 $^{\mbox{\scriptsize BPA}}$ 100 kDa band, from Section | on 5.2.5           |
|                                                                                                                | 174                |
| TABLE 15 - MASS SPECTROMETRY RESULTS OF PROTEINS IN N91 <sup>BPA</sup> 150 kDa band, from Section              | on 5.2.5           |
|                                                                                                                | 175                |
| TABLE 16 - MASS SPECTROMETRY RESULTS OF PROTEINS IN N91 <sup>BPA</sup> 200 KDA BAND, FROM SECTIO               | on 5.2.5           |
|                                                                                                                | 175                |
| TABLE 17 – MASS SPECTROMETRY RESULTS FROM SECTION 5.2.6– WT SECH                                               | 175                |
| TABLE 18 - MASS SPECTROMETRY RESULTS FROM SECTION 5.2.6- SECHN91                                               | 183                |
| TABLE 19 - MASS SPECTROMETRY RESULTS FROM SECTION 5.2.6- SECHF101                                              | 192                |

Chapter 1

Introduction

## 1.1. Bacterial secretion

Proteins are synthesised by the ribosome in the cytoplasm, however many proteins function outside of the cytoplasm. For example, close to 30% of the entire proteome in *Escherichia coli* is localised outside of the cytoplasm (Driessen and Nouwen, 2008). In gram-negative bacteria, proteins can be localised in the cytoplasm, periplasm, embedded in the inner or outer membrane, or secreted outside the cell. Specialised secretion systems are required to allow the passage of proteins across or into the cytoplasmic membrane. In bacteria, the two principal transport mechanisms across the cytoplasmic (i.e., inner) membrane are the Sec pathway and the twin arginine translocation (Tat) pathway. In *E. coli*, the Sec system is responsible for the translocation of 20% of all synthesised proteins (Cranford-Smith and Huber, 2018). The Sec system can translocate proteins either as they are being translated (coupled translocation), or after they have been translated (uncoupled translocation). Integral membrane proteins constitute 7.5% of synthesised proteins, and are principally translocated *via* the coupled translocated pathway (Cranford-Smith and Huber, 2018). 13.5% of synthesised proteins, however, are translocated through the uncoupled translocation pathway and consist largely of periplasmic and outer membrane proteins (Cranford-Smith and Huber, 2018).

## 1.2. Signal Sequences

Sec substrates are recognised by virtue of a signal encoded into the primary structure of the protein, called the signal sequence. Signal sequences vary in length from 18 - 30 amino acids (Fekkes and Driessen, 1999).

The signal sequence has three principal components: A N-terminus that is enriched in positively charged amino acids, a hydrophobic central region and a C-terminus that is enriched in polar amino acids (von Heijne, 1990). The positively charged amino-terminus has been suggested to make important electrostatic interactions with the membrane (von Heijne, 1990). Mutations in the N-terminal region to reduce the positive charge cause a reduction in the rate of translocation, but do not completely block translocation (Vlasuk et al., 1983).

The C-terminal polar region is known to be essential for recognition by the membraneembedded signal peptidase which cleaves the signal sequence during or after translocation (Paetzel et al., 2002). Positions -1 and -3 relative to the polar region are critical for this recognition, where generally only small uncharged amino acids can be present and maintain recognition (Fikes et al., 1990). Many inner membrane proteins that are translocated by the Sec pathway do not contain signal sequences. In these cases, only the periplasmic loops are translocated through the inner membrane. These proteins contain  $\alpha$ -helical stop-transfer signals which stops their translocation and ensures they remain in the membrane (von Heijne, 1994).

## 1.3. Components of the Bacterial Sec System

#### 1.3.1. SecYEG

SecYEG is a multimeric complex that forms a translocation channel, which is responsible for the passage of proteins across the inner membrane. SecYEG is evolutionarily conserved throughout all kingdoms of life, with homologues found in eukaryotes and archaea (Veenendaal et al., 2004). In bacteria and archaea, SecYEG allows passage across the cytoplasmic membrane whereas its eukaryotic homologues allow transit across the membrane of the endoplasmic reticulum (Greenfield and High, 1999).

SecY is a highly evolutionarily conserved membrane protein that forms the core channel of the translocon (Hartmann et al., 1994). It contains 10 membrane-spanning helices as well as regions that traverse both the cytoplasm and the periplasm (Van den Berg et al., 2004). The structure from *Methanococcus jannaschii* suggests that SecY forms an hourglass shape, with hydrophobic residues permeating at the site of constriction, forming a 'seal' to prevent diffusion of non-substrate molecules (Van den Berg et al., 2004). The second short transmembrane helix, TM2a, functions as a plug, which works by blocking the entrance to a cytoplasmic funnel which allows access to the channel. The signal sequence of secretory proteins is inserted into the channel as a loop and is recognised by transmembrane helices TM2 and TM7 (Van den Berg et al., 2004). SecY also contains a lateral gate involving transmembrane segments 2, 8, 7 and which opens to allow the insertion of membrane proteins into the membrane (du Plessis et al., 2009; Van den Berg et al., 2004).

While not directly involved in translocating substrates, SecE wraps around SecY forming a Vshape, and stabilises SecY (Lycklama a Nijeholt et al., 2013). SecG is not essential for viability but enhances the rate of translocation (Nishiyama et al., 1994). SecG contains a cytoplasmic loop that blocks the entrance to the SecY channel in the absence of SecA (Tanaka et al., 2015).



Figure 1 – Crystal structure of SecYEG in its resting state

Crystal structure of SecYEG from *Thermus thermophilus*. SecY, which forms the main protein-conducting channel, is coloured in green. The periplasmic plug is coloured in yellow and the hydrophobic amino acids which form a ring at the site of constriction are coloured in magenta. SecE is coloured in blue. SecG, and the cytoplasmic loop that blocks the entrance to the channel is coloured in red. PBD: 5AWW (Tanaka et al., 2015).

#### 1.3.2. SecA

SecA, is an ATPase found in bacteria that, through the hydrolysis of ATP, functions to facilitate translocation of proteins though the SecYEG channel. In *E. coli*, the SecA monomer is a 102 kDa square-like protein and is comprised of six domains: (i) Nucleotide Binding Domain 1 (amino acids 1 -220 and 378-411) (ii) Pre-protein crosslinking domain (PPXD) (amino acids 221-377) (iii) Nucleotide Binding Domain 2 (amino acids 412-620) (iv)  $\alpha$ -helical Scaffold Domain (amino acids 621-672 and 756 -832) (v)  $\alpha$ - helical wing domain (amino acids 673-755) (vi) Carboxy-Terminal Linker (amino acids 833-901) (Jamshad et al., 2019).

Nucleotide Binding Domain 1 and 2 confer ATPase activity. NBD 1 and NBD 2 have an overall similar fold, and are proximal to each other, allowing for a nucleotide to bind in the interface between the two domains (Hunt et al., 2002). NBD 1 and 2 are structurally similar to DEAD-box proteins, a protein family which contains RNA helicases. DEAD refers to the consensus motif DExD/H in the Walker B motif (amino acids 205-227) that is responsible for nucleotide binding (Mitchell and Oliver, 1993). In *E. coli*, valine is present instead of alanine, giving the motif DEVD.

The PPXD was initially identified by crosslinking studies as an interacting site for preprotein and for signal peptide (Kimura et al., 1991) (Musial-Siwek et al., 2007). The PPXD is structurally very flexible, and this movement allows for opening and closing of a clamp that is formed with NBD 1 and NBD 2 that traps substrates (Zimmer and Rapoport, 2009). The PPXD is responsible for a large proportion of the interaction of SecA with SecY (Zimmer et al., 2008). The HSD consists of an alpha helix that extends from the NBD1 to the HWD as well as a twohelix finger (2HF). The HSD is involved in protein-protein interactions, functioning as part of the interface of the SecA dimer, whilst also making contacts with SecY during translocation (Hunt et al., 2002; Zimmer et al., 2008). The helices of the 2HF, in the open conformation, protrude from SecA, and are inserted into the pore of SecYEG during translocation (Zimmer et al., 2008). The helical wing domain (HWD) is situated on one corner of the square-like SecA. It consists principally of  $\alpha$ -helices and sits between the 2HF and the HSD.

At the extreme C-terminus is a highly flexible subdomain, the C-Terminal Tail (CTT). The CTT is comprised of a metal binding domain (MBD) and a disordered flexible linker domain (FLD). It has been suggested that the CTT plays a role in regulating SecA activity. Crosslinking studies propose that the FLD binds to the substrate-binding region, autoinhibiting SecA (Jamshad et al., 2019).

The MBD contains a CXCXSX<sub>3</sub> $\Omega$ X<sub>2</sub>C(H/C) motif which coordinates a metal ion *via* three cysteines, a serine and a histidine residue ( $\Omega$  corresponds to aromatic amino acids) (Cranford-Smith et al., 2020; Dempsey et al., 2004). The MBD confers the ability to bind SecB and interact with the ribosome (Fekkes et al., 1997; Jamshad et al., 2019). The almost-invariant serine is important for determining the preference of the MBD for iron binding as well as for correct folding of the MBD (Cranford-Smith et al., 2020).

SecA is conformationally dynamic. In the open conformation, the PPXD (Figure 2, red) is distant from the HWD (Figure 2, yellow) and closer to NBD 2 (Figure 2, green). In the closed conformation, the PPXD is no longer in proximity to NBD 2, rotating away and bringing it

close to the HWD. The open conformation refers to the opening of the clamp, where substrates can bind in between the PPXD, NBDs and HSD (Zimmer et al., 2008). Upon binding to SecYEG, SecA undergoes a large conformational change. The PPXD makes a large rotation away from the HWD to the NBD 2, and the 2HF protrudes into SecYEG (Zimmer et al., 2008). The conformational changes result in an increase in SecA ATPase activity by reducing the affinity of SecA for ADP (Robson et al., 2009).



Figure 2 - Structures of SecA in different conformations.

The nucleotide binding domains I and II are in purple and green respectively. The helical scaffold domain is in orange, and the 2 helical finger is in cyan. The PPXD is in red, and the helical wing domain is in yellow. The loop of the PPXD that contacts the two nucleotide binding domains is highlighted in blue. The C-terminal tail is flexible and is therefore unresolved in crystal structures **a**) SecA from *Bacillus subtillis* in an open conformation, bound to ADP (PDB: 1TF2). **b**) SecA from *Bacillus subtillis* in a closed conformation, with the PPXD sitting up against the HWD (PBD: 1M6N). **c**) SecA from *Thermotoga maritima* when bound to SecY. The PPXD swings from the HWD to the NBDs and the PPXD loop (blue) contacts the NBDs (Zimmer et al., 2008) (PBD:3DIN).

# 1.3.2.1. MECHANISM OF SECA-DEPENDENT TRANSLOCATION THROUGH SECYEG

The mechanism by which SecA couples its ATPase activity to power preprotein translocation through SecYEG remains unclear, with several proposed mechanisms: The power stroke model, the Brownian ratchet model, and a unifying model. The ATPase activity of SecA is stimulated in several different ways. Binding to phospholipids, SecB, SecYEG and preproteins all stimulate SecA ATPase activity (Lill et al., 1990; Miller et al., 2002). In its cytoplasmic state, SecA is ADP bound, with a low ATPase activity (Sianidis et al., 2001). The ADP-bound state of SecA is very stable, and ADP release is the rate limiting step in its ATPase cycle (Fak et al., 2004).

The power stroke model was the first model to be proposed and has since been refined. It suggests a purely mechanical mechanism of conformational changes that physically push preprotein through SecYEG. When bound to ADP, SecA is in the open conformation, with the 2HF not inserted into SecYEG. Either ATP binding or hydrolysis causes clamp closure around the preprotein and insertion of the 2HF into SecYEG which actively pushes the nascent protein through the channel which occurs *via* a conserved tyrosine on the end of the 2HF which has been shown to crosslink to polypeptide chains (Catipovic et al., 2019; Erlandson et al., 2008). The 2HF retracts after ATP hydrolysis, and phosphate release causes the clamp to return to the open conformation. This model does not account for backsliding, as SecA is usually ADP-bound, where the clamp will be open therefore not interacting with the polypeptide and preventing reverse diffusion back through the channel. A 'Push and Slide' mechanism has further refined this model to account for backsliding of the preprotein (Bauer et al., 2014). In

this model, the 2HF interacts with only a subset of amino acids. Therefore, when faced with non-interacting amino acids, a power stroke may not lead to a pushing of the preprotein into SecYEG. Upon ATP hydrolysis, the 2HF retracts allowing the preprotein to diffuse in either direction. This diffusion would continue to occur until the 2HF contacts amino acids it is able to recognise, and a power stroke would occur.

In the Brownian ratchet model, the 2HF of SecA plays a key regulatory role in sensing and controlling diffusion of preprotein through SecYEG (Allen et al., 2016). SecA binding to SecYEG primes the channel, causing the channel to remain partially open. This allows restricted diffusion of less-bulky amino acids through the pore via Brownian motion. The presence of bulky amino acids, e.g., tryptophan, form blocks which cannot fit through the restricted aperture of SecYEG. The 2HF senses these blocks and through a conformational change, stimulates ADP release. ATP binding widens the aperture of the pore, allowing free diffusion of substrate again, before ATP hydrolysis narrows the channel. This prevents backsliding of already-translocated bulky amino acids in the periplasm back through the channel. Further, a proton-ratchet mechanism to aid Brownian motion has been suggested (Allen et al., 2022). The proton-motive force in *E. coli* causes a net negative electrochemical charge (and higher pH) on the cytoplasmic side of the membrane and is known to be important for Sec-mediated translocation (Schiebel et al., 1991). The electrochemical potential difference promotes diffusion of negatively charged amino acids through the channel. Given the relatively high pH at the cytosolic side of the membrane, lysine can be deprotonated before entering the channel, removing its positive charge, enhancing diffusion through the pore. When entering the lower pH environment of the periplasm, the lysine side chain can be re-protonated, restoring its

positive charge, biasing it against diffusing back towards the negative cytoplasmic side of the membrane (Allen et al., 2022).

The third proposed model is reciprocating piston mechanism (Kusters and Driessen, 2011). This model integrates both the ATP-powered mechanical pushing and passive diffusion. In this model, SecA binds to SecYEG as a dimer. One protomer actively interacts with the translocon whereas the second protomer interacts solely with the SecYEG-bound SecA. The dimerisation allows the PPXD of both protomers to contact the preprotein. ATP binding to SecA causes insertion of the signal sequence into the channel and release of SecB from SecA. Upon ATP hydrolysis, SecA then monomerises as one protomer dissociates. The conformational change caused by ATP hydrolysis allows for the first preprotein translocation step into the channel. It is then suggested that a soluble SecA protomer rebinds to SecYEG-bound SecA and captures part of the untranslocated preprotein. This capturing then allows for free diffusion by Brownian motion unidirectionally through the channel. ATP binding then causes a power stroke, further pushing the polypeptide through the pore. ATP hydrolysis causes SecA monomerization again and the processive cycle continues until completion.

#### 1.3.2.2. NUCLEOTIDE EXCHANGE FACTORS

Nucleotide exchange factors (NEFs) are present across all domains of life, and act upon enzymes that hydrolyse adenosine triphosphate (ATP) and guanosine triphosphate (GTP) (Bracher and Verghese, 2015; Packschies et al., 1997; Raimo et al., 1999). Despite this, there are currently no known NEFs that act upon SecA (Fak et al., 2004). Molecular machines, such as SecA, can use ATP as a source of power. Hydrolysis of the  $\gamma$ -phosphate releases energy which is utilised to power processive conformational cycles of motor proteins. ATPases start off their cycle by binding to ATP. The  $\gamma$ -phosphate is hydrolysed, the phosphate group is released, and the protein remains bound to adenosine diphosphate (ADP). ADP is released allowing the cycle to continue upon rebinding of ATP.



Figure 3 - General ATP cycle of an ATPase.

ATP-bound ATPase hydrolyses ATP, releasing inorganic phosphate. This step can be stimulated by ATPase activating proteins (AAP). The ATPase is then bound by ADP, which it must release in order to rebind another ATP. This step is stimulated by nucleotide exchange factors (NEFs). The cycles of ATPases can be controlled by additional proteins. ATPase activating proteins (AAPs) improve the ATPase rate by directly improving the rate of hydrolysis of ATP. Conversely, nucleotide exchange factors decrease the affinity of ADP to the motor protein, increasing the rate at which ADP can dissociate, allowing ATP to rebind. In *E. coli*, the best characterised NEF is GrpE, which is a NEF for DnaK (Packschies et al., 1997).

GrpE is essential for viability (Ang and Georgopoulos, 1989). GrpE interacts with DnaK as dimer and interacts with a large area across the face of DnaK. GrpE does not directly contact the nucleotide binding cleft. Instead, binding of GrpE induces conformational changes in DnaK which causes DnaK to 'open', which disrupts the nucleotide binding site (Harrison et al., 1997). The interaction between GrpE and Dnak stimulates the rate of ADP release 5000-fold (Packschies et al., 1997).

#### 1.3.3. SecB

SecB, a homotetrameric chaperone, is responsible for maintaining a subset of secretory proteins in an unfolded state. SecB is present in all  $\alpha$ -,  $\beta$ - and  $\gamma$ -proteobacteria (van der Sluis and Driessen, 2006).

Crystal structures of SecB from *E. coli* and *Haemophilus influenzae* show that SecB assembles as a tetramer by forming a dimer of dimers (Dekker et al., 2003; Xu et al., 2000). The tertiary structure of SecB is comprised of 4 antiparallel  $\beta$ -sheets, with two  $\alpha$ - helices connected by an 11-residue loop (Xu et al., 2000). Monomers assemble into dimers through an interaction of the first  $\beta$ -sheet with the first  $\alpha$ - helix. The dimer is then stabilised through hydrogen bonds between the two opposing  $\beta$ -sheets. Two dimers then form a tetramer *via* polar interactions of the side chains of amino acids from the first  $\alpha$ - helix.

SecB binds almost exclusively to unfolded proteins, and does so with low specificity *in vitro*, but high affinity (Randall and Hardy, 2002). *In vivo*, however, SecB shows high specificity (Kumamoto and Francetic, 1993). SecB binds to hydrophobic patches in the mature region of preproteins, without recognising the signal sequence (Huang et al., 2016). SecB client proteins interact with SecB by wrapping around SecB, and the SecB client-binding regions can accommodate up to 250 interacting residues (Huang et al., 2016).

Early evidence indicated that SecB recognises substrates and transfers them to SecA for translocation through the SecYEG channel (Hartl et al., 1990). Indeed, SecB does interact with SecA (den Blaauwen et al., 1997). However, it has recently been shown that the interaction between SecB and nascent polypeptides is dependent on SecA interacting with the ribosome (Huber et al., 2017). This suggests that SecA interacts with nascent proteins before SecB, and may therefore explain why, *in vivo*, SecB shows high selectivity.

*SecB* mutants show defects in translocation, and a cold-sensitive phenotype (Francetic and Kumamoto, 1996; Wild et al., 1993). Interestingly, the translocation defects extend to proteins that are not usually SecB clients (Francetic and Kumamoto, 1996). When overexpressed, SecB rescues aggregation and temperature sensitive phenotypes of both DnaK and Trigger Factor mutants, indicating SecB may also function as a general chaperone (Ullers et al., 2004).

#### **1.3.4.** Signal Recognition Particle (SRP)

The SRP is a cytoplasmic ribonucleoprotein complex that consists of a GTPase subunit, fiftyfour homologue (Ffh) and 4.5S RNA (Rosenblad et al., 2003). Ffh consists of three domains, G, N and M. The N- domain exists as a collection of 4 helices, adjacent to the G-domain, which confers GTPase activity. The M domain is located at the carboxy terminus, connected by a 30 amino acid linker and contains 5  $\alpha$  -helices which together form a binding site for the signal sequence (Freymann et al., 1997; Hainzl et al., 2011).

The SRP recognises and binds nascent chains with hydrophobic signal sequences as they emerge from the ribosome, forming a ribosome-nascent chain complex (RNC) (Janda et al., 2010). This interaction is mediated by Ffh. The SRP binds to the ribosome close to the ribosome exit tunnel. The NG domain of Ffh binds nearby ribosomal proteins uL23 and uL29. The M domain also interacts with uL23, and the 4.5S RNA makes contact with ribosomal protein bL32 (Jomaa et al., 2016; Schaffitzel et al., 2006).

The SRP recognises signal sequences that are highly hydrophobic (Lee and Bernstein, 2001). RNC-SRP complexes recruit and bind FtsY. FtsY, known as the SRP receptor, is a peripheral membrane protein that interacts with SecYEG (Angelini et al., 2005). FtsY contains three domains: an N-terminal A domain, as well as the N and G domains which are homologous to those present in FtsH (Luirink and Sinning, 2004). FfH interacts with FtsY to delivery RNCs to the membrane-bound SecYEG *via* the N-G domain present in both proteins (Egea et al., 2004).

#### 1.3.5. YidC

In *E. coli*, SecYEG forms a super-complex in the cytoplasmic membrane with the integral membrane proteins SecD, SecF, YajC and YidC (Schulze et al., 2014). These proteins are non-core components that play various roles in assisting the translocation machinery (Martin et al., 2019).

YidC, a membrane protein insertase, and its homologues are conserved across all domains of life, though its function has not been fully elucidated (Zhang et al., 2009). As well as working in tandem with SecYEG, YidC can also function as membrane protein insertase with Secindependent substrates (Serek et al., 2004). Independently, the YidC family are known to assist in the insertion of respiration-related proteins, including the  $F_1 F_0$  ATP synthase subunit c (van der Laan et al., 2004). However, evidence shows SecYEG and YidC are both required for efficient insertion of subunits a and b of  $F_1F_0$  ATP Synthase (Yi et al., 2004). Subunit a of cytochrome c oxidase also requires the Sec-dependent YidC pathway for insertion (du Plessis et al., 2006). Together, this points to an important role of YidC in assembling respiration-related complexes.

#### 1.3.6. SecDF

SecD was discovered in a genetic screen which resulted in cold-sensitive phenotypes and defects in protein translocation (Gardel et al., 1987). It was later found, through complementation experiments, that the *secD* locus contains two different genes, *secD* and *secF* (Gardel et al., 1990).

The high-resolution structure of SecDF from *Thermus thermophilus* shows that SecDF is comprised of a single polypeptide that forms 12 transmembrane helices and 6 periplasmic

17

sections (P1-P6) (Tsukazaki et al., 2011). P1 and P4 form separate domains. P1 consists of a head and base region linked by a hinge, and the P4 domain consists of a ferredoxin-like domain. The head of P1 domain has been suggested to interact with preprotein to prevent backsliding (Tsukazaki et al., 2011). The interface between SecD and SecF contains charged residues which allows the flow of protons, and the flow protons through SecDF is essential for its function (Tsukazaki et al., 2011).

The SecDF complex catalyses translocation. The rate of translocation both *in vitro* and *in vivo* is slower in the absence of the SecDF complex (Nouwen et al., 2005; Pogliano and Beckwith, 1994a). The large periplasmic loop of SecD is important for stimulation of translocation. Deletion of this loop decreases the rate of proOmpA translocation *in vitro* (Nouwen et al., 2005).

#### 1.3.7. YajC

*yajC*, located on the *secD* operon together with *secD* and *secF*, encodes a 12 kDa integral membrane protein (Pogliano and Beckwith, 1994b). YajC is found as part of the holotranslocon, a large super complex, consisting of SecYEG-SecDF-YajC-YidC (Komar et al., 2016). While the exact function of YajC remains unclear, it has been shown that YajC forms a functional complex with SecDF *in vivo* (Duong and Wickner, 1997). The SecDF-YajC complex has a functional interaction with SecG, enhancing its stabilisation (Kato et al., 2003).

## 1.4. The Role of Molecular Chaperones in Translocation

The majority of soluble periplasmic and outer membrane proteins are translocated through the uncoupled translocation pathway i.e., they are fully, or almost fully synthesised before translocation. In the absence of chaperones, proteins tend to fold into their native states, or misfold and aggregate. Sec translocation is only permissible to unfolded proteins, which therefore necessitates the presence of chaperones, such as SecB, which bind to nascent substrates and prevent premature cytoplasmic folding.

To effectively deal with both folding and unfolding of nascent proteins, many cytoplasmic chaperones are present in bacteria with varying functions. Foldases, in an ATP-dependent manner, assist in the folding of proteins, and include GroEL/GroES and DnaK. In contrast deaggregases, such as ClpB, assist in the de-aggregation of protein aggregates (Schlee et al., 2001). Other chaperones, often referred to as holdases, exhibit anti-folding activity, and function in an ATP-independent manner to prevent folding, aggregation or proteolytic degradation.

In *E. coli*, the chaperone Trigger Factor interacts with the ribosome and can bind to many nascent Sec substrates, including maltose binding protein and  $\beta$ -lactamase (Hoffmann et al., 2012). The largest subset of Trigger Factor substrates is outer membrane proteins (Oh et al., 2011). Deletion of the *tig* gene *in vivo* accelerates the rate of translocation of SecB substrates. Indeed, overexpression of Trigger Factor delays the translocation of OmpA (Lee and Bernstein, 2002). This suggests Trigger Factor plays a role in delaying the entry of secretory proteins into the translocation pathway. Further to this, *tig* inactivation can supress the translocation defects of a *secB* mutant, likely by allowing earlier entry into the secretory pathway (Ullers et al., 2007).

The DnaK/DnaJ chaperone system is a generalised chaperone system in *E. coli*, responsible for assisting the folding of a myriad of cytoplasmic proteins. The chaperone system is also responsible for aiding refolding of non-native proteins and preventing protein aggregation. In

this system, DnaJ (Hsp40) delivers unfolded or misfolded client proteins to DnaK (Hsp70). The ATPase DnaK, once bound to DnaJ and substrate protein, can hydrolyse ATP. ATP hydrolysis stimulates a conformational change driving protein refolding. The homodimeric protein GrpE is responsible for regulating nucleotide exchange (Rosenzweig et al., 2019). The DnaK/J system also binds to aggregated clients, serving as a molecular crowbar to pry out individual polypeptides with the assistance of ClpB (Goloubinoff et al., 1999). Overexpression of DnaK can also increase the efficiency of export of Sec substrates (Phillips and Silhavy, 1990). Overexpression of DnaJ is also sufficient to supress the cold-sensitive phenotypes of secB mutants, highlighting the role of the chaperone system in maintaining Sec substrates in a translocation-competent state (Sakr et al., 2010).

The GroEL/GroES chaperone system is one of the best-characterised chaperone systems in *E. coli.* Non-native proteins bind a ring the cavity of the large subunit GroEL. Binding of the GroES cap to GroEL induces ATP hydrolysis and a conformational change, altering the chemical environment of the folding cavity, which is thought to promote protein folding (Horwich et al., 2006). Evidence suggests that this system is involved in Sec-dependent translocation. Overexpression of GroEL improves the efficiency of Sec-dependent export of LamB *in vivo* in a  $\beta$ -galactosidase assay (Phillips and Silhavy, 1990). GroEL and GroES mutants can also cause defects in Sec substrate export (Kusukawa et al., 1989).

# 1.5. Translocation Pathways

In bacteria, there are two principal Sec-translocation pathways: coupled translocation and uncoupled translocation (Oswald et al., 2021). Signal sequences are required for proteins entering the Sec translocation pathway. Sec substrates are sorted into the different secretory pathways by virtue of differences in the properties of the signal sequence. The hydrophobicity of the signal sequence is the principal determining factor in pathway entrance. The SRP recognises both highly hydrophobic signal sequences as well transmembrane helices (Tsirigotaki et al., 2017). If not recognised by the SRP, SecA and trigger factor then interact with the signal sequence. Recently, it has been discovered that some mature domains of preproteins are essential for translocation and may be recognised by SecA (Chatzi et al., 2017). Preproteins may completely evade ribosome-bound proteins and instead bind to cytoplasmic chaperones including SecB, which recognises a 9 amino acid motif that contains basic and aromatic side chains (Sala et al., 2014). Together with the protein machinery, translocation of nascent proteins is driven by the proton motive force (PMF) and the hydrolysis of ATP (Schiebel et al., 1991).

#### **1.5.1.** Coupled Translocation

Coupled translocation (Figure 4) is the mechanism whereby protein translation and protein translocation occur simultaneously. This pathway is principally mediated by the SRP. The SRP binds to the ribosome and recognises highly hydrophobic signal sequences, forming an RNC-SRP complex. The SRP delivers Sec substrates to the SecYEG by interacting with peripheral membrane protein FtsY (Draycheva et al., 2018). FtsY interacts with SecYEG on two cytosolic loops, C4 and C5 (Kuhn et al., 2011). This forms the SecYEG-FtsY-SRP-RNC quaternary

complex, which leads to GTPase activation. Hydrolysis of GTP ultimately allows for insertion of preproteins into the SecYEG channel, and SRP and FtsY dissociate and are recycled back into the cytoplasm (Saraogi et al., 2014).

#### **1.5.2.** Uncoupled Translocation

The second mechanism of protein transport through SecYEG is uncoupled translocation (Figure 4), which occurs independently of protein translation, and it is mediated by the ATPase SecA. In bacteria, the majority of Sec substrates are translocated *via* the uncoupled translocation pathway, including outer membrane proteins and periplasmic proteins (Cranford-Smith and Huber, 2018). Ribosome-bound SecA recognises nascent peptides cotranslationally through its interaction with ribosomal protein uL23, close to the ribosome exit channel (Huber et al., 2011; Jamshad et al., 2019). The molecular chaperone SecB is then recruited to nascent substrate proteins by SecA (Huber et al., 2017). SecB then delivers preproteins to SecA-bound SecYEG for translocation across the inner membrane.

The molecular chaperone Trigger Factor binds to ribosomes and scans for nascent substrates. Trigger Factor and the SRP can both be bound to the ribosome simultaneously and screen emerging preproteins (Bornemann et al., 2014). Trigger Factor binds to hydrophobic patches on emerging preproteins with adjacent positively charged amino acids, which weakens the SRP-RNC interaction, ultimately excluding these proteins from the coupled translocation pathway (Bornemann et al., 2014; Patzelt et al., 2001). It is not yet clear how preproteins bound by TF are then targeted to the Sec machinery.



#### Figure 4 - Bacterial Sec secretion.

Coupled translation mediated by SRP (purple) delivers the RNC to SecYEG and YidC (orange) *via* its receptor FtsY. Substrates can pass through the SecYEG channel into the periplasm or enter the lipid phase through the lateral gate. Uncoupled translocation is often mediated by chaperones, including ribosome-bound Trigger Factor (green), and SecB (red) which binds to substrates in the cytoplasm. SecA (blue) binds to substrates whilst bound to the ribosome. Once delivered to the membrane, substrates are translocated in a SecA-dependent fashion. Figure adapted from (Tsirigotaki et al., 2016) and made in BioRender.
# 1.6. Quality Control

#### 1.6.1. SecYEG Jamming

Substrates passing through the SecYEG can become stuck, blocking the channel (Bieker et al., 1990). Ribosome stalling also causes translocon jamming during coupled translocation. Jammed translocons are dealt with by the membrane embedded protease FtsH, which proteolytically degrades jammed SecYEG (van Stelten et al., 2009). The toxicity of SecYEG jamming is suppressed by the induction of the Cpx pathway, a two-component system that regulates gene expression in response to cell envelope stress, including expression of YccA (Cosma et al., 1995; Price and Raivio, 2009). YccA inhibits the protease FtsH, supressing the toxic effects of SecYEG degradation as a result of jamming (van Stelten et al., 2009).

#### 1.6.2. Mislocalisation of Sec Substrates

Sec substrates can sometimes escape sorting pathways and become mislocalised in the cytoplasm. Sec substrates that accumulate in the cytoplasm can be degraded by Lon protease, including proOmpF and proOmpC (Sakr et al., 2010). Indeed, in the absence of Lon protease Sec substrates accumulate in the cytoplasm (Sakr et al., 2010).

#### 1.6.3. SecY Proof Reading

SecY itself also has an intrinsic quality control mechanism. Suppressor mutants named prl were isolated which permitted export of preproteins that did not contain signal sequences (Smith et al., 2005). *PrlA* mutants in SecY were found to be capable of exporting signal sequence-less maltose binding protein (Derman et al., 1993). It has been demonstrated that outer membrane proteins OmpF and OmpC lacking a conserved motif are not fully translocated to the periplasm. When using the *PrlA* mutants, however, the translocation defect is supressed (Jung et al., 2020).

This suggests SecY plays a quality control role ensuring defective outer membrane porins do not reach the outer membrane.

#### 1.6.4. Cell Stress Responses

Destruction of SecYEG complexes can lead to cell stress by causing an increase in concentration of untranslocated preprotein in the cytoplasm (Oswald et al., 2021). Temperature-induced stress can also lead to an accumulation of aggregated proteins (Arsene et al., 2000). In order to deal with this, cells express  $\sigma$ -32 – a sigma factor that enhances transcription of specific genes (Grossman et al., 1987). Mutations in the *secB* gene lead to the induction of the  $\sigma$ -32 pathway, due to the accumulation of Sec proteins in the cytoplasm (Wild et al., 1993). Upon induction,  $\sigma$ -32 dissociates from its usual state bound to DnaK/DnaJ and associates with RNA polymerase, promoting transcription of heat shock proteins including chaperones DnaK and GroEL (Chakraborty et al., 2014). The  $\sigma$ -32 pathway also modulates expression of FtsH and Lon protease, which play key roles in Sec quality control, including destruction of jammed SecYEG and degradation of accumulated Sec substrates (Jiang et al., 2021).

# 1.7. SecH (YecA)

SecH (Uniprot: P0AD05) is a protein of unknown function that contains a C-terminal MBD that is homologous to the C-terminal MBD in SecA that interacts with both SecB and ribosomes. Recent evidence suggests that SecH assists in Sec-dependent translocation (Smith et al., 2020). SecH contains two domains: The N-terminal domain of unknown function, UPF0149 and the C-terminal MBD which is nearly identical to the SecA MBD (Figure 5).

The structure of the UPF1049 in SecH is unknown. However, small angle x-ray scattering (SAXS) analysis of SecH suggests that, in solution, SecH is monomeric (Cranford-Smith, 2018). In contrast, high-resolution structural models of other UPF0149 domain proteins suggest that the UPF0149 domain forms homodimeric complexes (Michalska et al., 2012).

The UPF0149 domain is found in both SecH proteins and YgfB proteins. Though the function of YgfB remains unknown, it has been suggested to interact with RNA polymerase (Malecki et al., 2014). YgfB has also been suggested to be involved in multidrug resistance in *Pseudomonas aeuginosa*, by promoting expression of beta lactamase *ampC* (Sonnabend et al., 2020). *In vitro*, *E. coli* SecH prevents aggregation of porcine citrate synthase, suggesting it functions as a chaperone with holdase activity (Smith et al., 2020).

SecA interacts with SecB via the MBD on the extreme carboxyl-terminus of SecA, suggesting the MBD of SecH also interacts with SecB (Jamshad et al., 2019). Further, experiments using transposon-directed insertion-site sequencing (TraDIS) can identify which genes are essential for survival. A library of 500,000 mutants with the Tn5 transposon inserted at random sites was

created in a  $\Delta secH$  mutant and was sequenced. No insertions were found in *secB*, indicating SecB becomes essential in the absence of SecH. This suggests SecB and SecH have overlapping functions. Indeed,



#### Figure 5 - Domain organisation of SecH

SecH contains 2 domains: an N-terminal UPF1049 domain from position 1 to 184 and a 20 amino C-terminal MBD from position 202 to 221. A sequence alignment of the MBD of SecA and SecH (CLUSTAL Omega) indicates the two domains have high sequence similarity. The amino acids in the SecA MBD that contact SecB (Zhou and Xu, 2003), highlighted in blue, are identical in SecH. The metal-coordinating residues (Zhou and Xu, 2003), highlighted in yellow ,are all identical, except for the replacement of histidine in SecA with cysteine in SecH.

in BW25113, a  $\Delta secH\Delta secB$  double mutant is not viable (Smith et al., 2020). However, a  $\Delta secH$  $\Delta secB$  double mutant can be introduced in MG1655. In this mutant strain, both the coldsensitive phenotype and the cell envelope defect are enhanced compared to a  $\Delta secB$  mutant. These data indicate SecB and SecH have an overlapping role, giving credence to the idea that SecH is in fact a novel component of the Sec pathway.

SecH plays an unknown role in Sec-dependent translocation. In a  $\beta$ -galactosidase assay, LacZ is fused to MalE, which encodes MBP, a periplasmic Sec substrate, thereby targeting  $\beta$ galactosidase to the periplasm and rendering it inactive.  $\beta$ -galactosidase activity is significantly increased in a  $\Delta$ *secH* mutant compared to its parent strain, indicating deletion of SecH leads to translocation defects (Smith et al., 2020). Overexpression of SecH in this assay leads to a decrease in  $\beta$ -galactosidase activity, suggesting SecH assists in Sec-dependent translocation. However, in a  $\Delta$ *secB* mutant, overexpression of SecH leads to an increase in  $\beta$ -galactosidase activity, suggesting SecH inhibits translocation in the absence of SecB. SecH increases the translocation-coupled ATPase activity of SecA, suggesting SecH may deliver substrate protein to SecA (Cranford-Smith, 2018).

# 1.8. Aims and Objectives

The aim of the work presented in this thesis was to investigate the function, structure and molecular mechanism of SecH. Data on both the function and structure of SecH is scarce. Although it is known that SecH assists Sec-dependent translocation, there is no current

understanding of its mechanism. The majority of SecH consists of a domain of unknown function, and therefore there is no information on its predicted function or interaction partners. The rest of SecH comprises a SecA-like MBD, however whether it functions in a similar manner or makes the same interacts as it does in SecA is currently unknown.

This study aims to further characterise the structure and function of SecH through investigations of its two domains. This study will first investigate the MBD of SecH to determine its similarity to the SecA MBD. Using structural modelling, the structure of the MBD and SecH as a whole will be investigated, with the aim to determine whether the protein: protein interactions made in the SecA MBD can be made in the SecH MBD. Further, the interactions of the SecH MBD will be investigated and characterised using biochemical and biophysical *in vitro* and *in vivo* assays.

Aided by structural insights, this study also aims to characterise the protein: protein interactions made by the UPF1049 domain using biochemical assays including photo-crosslinking. The oligomeric state of SecH will also be investigated, using *in vitro* and *in vivo* experiments together with structural modelling. Probing the structure and the interactions of the UPF0149 will aid in the understanding of the role of SecH in the Sec pathway and the substrates with which it interacts.

# Chapter 2

# Materials and Methods

# 2.1. Media and Growth Conditions

Lysogeny broth (LB) was used for all bacterial growth, comprising of NaCl 10 g/L, Tryptone 10 g/L and Yeast Extract 5 g/L. Overnight cultures were grown in 5 mL LB in 30 mL plastic universal containers. Cultures were then grown in 2 L plastic flasks in a shaking incubator at 180 rpm.

LB agar comprised of 1% (w/v) agar in LB. Bacteria on LB agar plates were grown at 37°C unless otherwise stated. Antibiotics were used at concentrations of: Ampicillin 200  $\mu$ g/mL, Kanamycin 50  $\mu$ g/mL and Chloramphenicol 25  $\mu$ g/mL.

# 2.2. Strains and Plasmids

| Table 1- Strains u | ised in th | nis Study. |
|--------------------|------------|------------|
|--------------------|------------|------------|

| Name                        | Description                                                                                                                                                                                                            | Reference/                 |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                             |                                                                                                                                                                                                                        | Source                     |
| E. coli<br>DH5α             | F <sup>-</sup> endA1 glnV44 thi-<br>1 recA1 relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15<br>$\Delta(lacZYA-argF)$ U169, hsdR17( $r_{\kappa}^{-}m_{\kappa}^{+}$ ), $\lambda^{-}$                                          | Lab Stock                  |
| <i>E. coli</i><br>BL21(DE3) | <i>E. coli</i> str. B F <sup>-</sup> <i>ompT</i> gal dcm lon $hsdS_B(r_B^-m_B^-) \lambda$ (DE3<br>[ <i>lacI lacUV5-T7p07 ind1 sam7 nin5</i> ]) [ <i>malB</i> <sup>+</sup> ] <sub>K-12</sub> ( $\lambda$ <sup>S</sup> ) | Lab Stock                  |
| <i>E. coli</i><br>BTH101    | cyaA mutant for Bacterial Two Hybrid screens                                                                                                                                                                           | (Karimova et<br>al., 1998) |
| MAW012                      | BL21(DE3) $\triangle secB$                                                                                                                                                                                             | This study                 |

 Table 2 - Plasmids Used in this Study.

| Name           | Description                                                                | Reference/Source            |
|----------------|----------------------------------------------------------------------------|-----------------------------|
| pTCS070        | pCA528-His6 -SUMO-secH                                                     | (Cranford-Smith, 2018)      |
| pCS071         | pCA528-His6 -SUMO- <i>secH∆MBD</i>                                         | (Cranford-Smith, 2018)      |
| pDRH625        | pCA528-His6-SUMO- <i>secA</i>                                              | (Huber et al., 2011)        |
| pDRH585        | pCA528-His6-SUMO- <i>secB</i>                                              | (Huber et al., 2011)        |
| pKT25          | Expresses T25 fragment of <i>Bordetella pertussis</i><br>adenylate cyclase | (Karimova et al., 1998)     |
| pUT18C         | Expresses T18 fragment of <i>Bordetella pertussis</i><br>adenylate cyclase | (Karimova et al., 1998)     |
| pMAW002        | pKT25-secB                                                                 | This study                  |
| pMAW003        | pUT18C-secH                                                                | This study                  |
| pMAW004        | pUT18C-upf0149                                                             | This study                  |
| pMAW005        | pUT18C-secHMBD                                                             | This study                  |
| pMAW010        | pUT18C-secACTT                                                             | This study                  |
| pCP20          | Contains FLP recombinase                                                   | (Datsenko and Wanner, 2000) |
| pSUP-          | Contains gene encoding amber suppressor                                    | (Datsenko and Wanner,       |
| BpaRS-<br>6TRN | tRNA and mutant tyrosyl-tRNA synthetase required for incorporation of Bpa. | 2000)                       |
| pMAW017        | pCA528-His6-SUMO- <i>secH</i> -W13Am-AviTag                                | This study                  |
| pMAW018        | pCA528-His6-SUMO- <i>secH</i> -H25Am-AviTag                                | This study                  |

| pMAW019 | pCA528-His6-SUMO- <i>secH</i> -W52Am-AviTag  | This study |
|---------|----------------------------------------------|------------|
| pMAW020 | pCA528-His6-SUMO- <i>secH</i> -Y63Am-AviTag  | This study |
| pMAW021 | pCA528-His6-SUMO- <i>secH</i> -F80Am-AviTag  | This study |
| pMAW022 | pCA528-His6-SUMO- <i>secH</i> -N91Am-AviTag  | This study |
| pMAW023 | pCA528-His6-SUMO- <i>secH</i> -F101Am-AviTag | This study |
| pMAW024 | pCA528-His6-SUMO- <i>secH</i> -D129Am-AviTag | This study |
| pMAW025 | pCA528-His6-SUMO- <i>secH</i> -L146Am-AviTag | This study |
| pMAW026 | pCA528-His6-SUMO- <i>secH</i> -M159Am-AviTag | This study |
| pMAW027 | pCA528-His6-SUMO- <i>secH</i> -L173Am-AviTag | This study |
| pMAW028 | pCA528-His6-SUMO- <i>secH</i> -R203Am-AviTag | This study |
| pMAW029 | pCA528-His6-SUMO- <i>secH</i> -K214Am-AviTag | This study |

# 2.3. Buffers

# Table 3 - Buffers Used in This Study

| Use                     | Name           | Components                                                                                                                                                                    |  |  |
|-------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Protein<br>Purification | Lysis Buffer   | 20 mM HEPES, 25 mM KOAc, 10 mM Mg<br>(OAc)2 1 mM TCEP, Dnase I (Sigma),<br>cOmplete <sup>™</sup> EDTA-free Protease Inhibitor<br>Cocktail (Roche) and Lysozyme (Thermofisher) |  |  |
|                         | High Salt Wash | 20 mM HEPES, 500 mM KOAc, 10 mM Mg                                                                                                                                            |  |  |
|                         | Buffer         | (OAc) <sub>2</sub> , 50 mM Imidazole and 1 mM TCEP                                                                                                                            |  |  |

|                 | Low Salt Wash    | 20 mM HEPES, 25 mM KOAc, 10 mM Mg                                                          |  |
|-----------------|------------------|--------------------------------------------------------------------------------------------|--|
|                 | Buffer           | (OAc) <sub>2</sub> , 50 mM Imidazole and 1 mM TCEP                                         |  |
|                 |                  | 20 mM HEPES, 25 mM KOAc, 10 mM Mg                                                          |  |
|                 | Elution Buffer   | (OAc) <sub>2</sub> , 500 mM Imidazole and 1 mM TCEP                                        |  |
|                 | Duffor A         | 20 mM HEPES, 25 mM KOAc, 10 mM Mg                                                          |  |
|                 | Buildi A         | (OAc) <sub>2</sub> 1 mM TCEP                                                               |  |
|                 | Buffer B         | 20 mM HEPES, 500 mM KOAc, 10 mM Mg                                                         |  |
|                 | Bullet B         | (OAc) <sub>2</sub> and 1 mM TCEP                                                           |  |
| Incubation      | Drotain Assaus   | 20 mM HEPES, 25 mM KOAc, 10 mM Mg                                                          |  |
| Buffer          | FIOTEIII Assays  | (OAc) <sub>2</sub>                                                                         |  |
| 7 Duffer        | β-galactosidase  | 60 μM Na <sub>2</sub> HPO <sub>4</sub> , 40μM NaH <sub>2</sub> PO <sub>4</sub> , 10 μM KCl |  |
|                 | assays           | and $1 \mu M MgSO_4$                                                                       |  |
| TKM Buffer      | ATP-assays       | 10 mM Tris-Cl pH 7.6, 50 mM KCl, 2 mM MgCl <sub>2</sub>                                    |  |
|                 | Agarose Gel      | 40 mM Tris, 20 mM glacial acetic acid, 1 mM                                                |  |
| TAE Buffer      | Electrophoresis  | EDTA                                                                                       |  |
| 5V Loommili     |                  | 0.02% (w/v) bromophenol-blue, 30% (v/v)                                                    |  |
| 5X Laemmi       | SDS-PAGE         | glycerol, 10% (w/v) SDS and 250 mM Tris-HCL                                                |  |
| Sample Buffer   | Sample Buffer    | (pH 6.8)                                                                                   |  |
| SDS Running     |                  |                                                                                            |  |
| Buffer          | SDS-PAGE         | 25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS                                                |  |
| Transfer Buffer | Western Blotting | 25 mM Tris, 192 mM glycine, 20% methanol                                                   |  |
| Pull Down       | Biotin Pull Down | 50 mM Tris-HCL pH 7.5, 150 mM NaCl, 1 mM                                                   |  |
| Binding Buffer  | Assays           | EDTA, 2% Triton X-100                                                                      |  |

# 2.4. Molecular Genetics

#### 2.4.1. Plasmid Purification

DNA was prepared from 5 mL overnight cultures in LB grown at  $37^{\circ}$ C overnight and shaken at 180 rpm, supplemented with the appropriate antibiotics. The DNA was extracted using a QIAprep Spin Miniprep Kit (Qiagen). Cells were pelleted at 17,000 x g for 5 minutes and resuspended in 250 µL Buffer P1. 250 µL of buffer P2 was added and mixed by inversion 5 times to allow cell lysis. Cell lysis was stopped by addition of 350 µL buffer N3 and inversion 5 times. Lysates were centrifuged for 10 minutes at 17,000 x g to remove cellular debris. 800 µL of supernatant was applied to a QIAprep Spin Column, and columns were centrifuged for 1 minute. 750 µL buffer PB was added to the column and the column was centrifuged for 1 minute. The column was centrifuged again for 1 minute to remove residual ethanol. DNA was eluted with the addition of 50 µL dH<sub>2</sub>O, allowed to stand for 1 minute and centrifuged for 1 minute.

#### 2.4.2. DNA Separation and Visualisation

DNA fragments were separated using agarose gel electrophoresis. 1% w/v agarose was suspended in TAE buffer and SYBR Safe stain (APExBIO) was added at 1:10000 ratio. Fragments were mixed with 6X loading buffer (New England Biolabs). Gels were run in TAE buffer until the samples were fully resolved. MassRuler Mix (Thermofisher) was used at the DNA ladder. Gels were imaged using a Gel Doc XR+ (Bio-Rad).

### 2.4.3. **DNA Amplification**

Genes to be amplified for plasmid construction (Table 2) were amplified by Phusion<sup>®</sup> High-Fidelity DNA Polymerase (New England Biolabs) or Q5<sup>®</sup> High-Fidelity DNA Polymerase (New England Biolabs). The polymerase chain reaction was carried out using the components and conditions in Table 4 and Table 5.

| Component                      | Volume                | Final Concentration   |
|--------------------------------|-----------------------|-----------------------|
| 5X Buffer                      | 10 µL                 | 1X                    |
| Template DNA                   | < 250 ng              | < 250 ng              |
| 10 µM Forward Primer           | 2.5 μL                | 0.5 μΜ                |
| 10 µM Reverse Primer           | 2.5 μL                | 0.5 μΜ                |
| 10 mM dNTP Mix                 | 1 μL                  | 200 µM                |
| 100 % DMSO                     | 1.5 μL                | 3%                    |
| Nuclease-free H <sub>2</sub> O | to 50 μL final volume |                       |
| DNA polymerase                 | 0.5 μL                | 1 unit/50 μL reaction |
|                                |                       |                       |

 Table 4 – Components for PCR DNA Amplification

#### **Table 5 – PCR Steps**

| Step                 | Cycles | Temperature | Time              |
|----------------------|--------|-------------|-------------------|
| Initial Denaturation | 1      | 98°C        | 30 seconds        |
| Denaturation         |        | 98°C        | 10 seconds        |
| Annealing            | 30     | 45°C – 72°C | 30 seconds        |
| Extension            |        | 72°C        | 30 seconds per kb |
| Final Extension      | 1      | 72°C        | 10 minutes        |
| Hold                 | 1      | 4°C         |                   |

#### 2.4.4. Colony PCR

For colony PCR, MyTaq Red Mix (Bioline) was used. Each single colony was picked using a sterile 20  $\mu$ L pipette tip and resuspended in 20  $\mu$ L nuclease free dH<sub>2</sub>O. 10  $\mu$ L of the resuspended colony was boiled for 10 minutes before 2  $\mu$ L was added to the reaction mixture.

#### 2.4.5. **DNA Precipitation**

DNA precipitation was used to remove salts from DNA buffer prior to electrotransformation of bacteria. 100% Ammonium acetate was added at 1:1 volume to the suspended DNA. Isopropanol was then added at 2:1 volume. The reaction was mixed and centrifuged for 15 minutes at room temperature. The supernatant was removed and a 2:1 volume of 70% ethanol was added followed by centrifugation for 10 minutes at room temperature. The supernatant was again removed, and the residual ethanol was evaporated in the Concentrator 5301 (Eppendorf). 15  $\mu$ L of nuclease-free sterile water was used to resuspend the pellet and the mixture was incubated at 50°C for 10 minutes to ensure resuspension of DNA.

#### 2.4.6. **DNA Purification**

PCR products needed for downstream applications were purified using the QIAquick PCR Purification Kit (Qiagen). All centrifugation steps were at 17,000 x g for 1 minute. 5 volume of Buffer PB were added to 1 volume of PCR reaction and mixed by pipetting. The sample was applied to QIAquick column and centrifuged. 750  $\mu$ L Buffer PE was added to wash the column and was centrifuged for 1 minute. Residual ethanol was removed by centrifugation for 1 minute. The column was placed in a fresh 1.5 mL microcentrifuge tube and 50  $\mu$ L of dH<sub>2</sub>O was added to the column to elute the DNA. The column was allowed to stand for 1 minute and was then centrifuged.

#### 2.4.7. Molecular Cloning

Plasmids were constructed from amplified PCR fragments either by restriction digestion and ligation or NEBuilder<sup>®</sup> HiFi DNA Assembly (New England Biolabs). For restriction enzymebased cloning, 1 µg of DNA of the SecA CTT and pUT18c were digested using 1 µL high fidelity restriction endonucleases SmaI and BamHI in rCutSmart Buffer<sup>TM</sup> (New England Biolabs). The digested plasmid and digested SecA CTT were ligated using a molar ratio of vector to insert at 1:3, with the vector at a concentration of 0.0.2 pmol. 2 µL of T4 DNA Ligase (New England Biolabs) was used in T4 DNA ligase buffer, and the reaction was incubated at 4°C overnight. Excess salt was then removed for downstream transformations as described in section 2.4.5 DNA Precipitation. All other plasmids were constructed using NEBuilder<sup>®</sup> HiFi DNA Assembly. The desired DNA for insertion into plasmids was amplified by PCR and the vector was linearised and amplified by PCR. The vector was digested with 1 µL DpnI (New England Biolabs) and incubated for 1 hour at 37°C to remove methylated host DNA. The vector and insert were added at a molar ratio of 1:2, with a maximum of 0.2 pmol of DNA. The DNA fragments were incubated with NEBuilder<sup>®</sup> HiFi DNA Assembly Master Mix at 50°C for 15 minutes. 1 µL of the assembly product was used in the subsequent transformation.

### 2.5. Bacterial Transformation

#### 2.5.1. Electroporation

#### 2.5.1.3. PREPARATION OF ELECTROCOMPETENT CELLS

Electrocompetent cells were prepared according to (Sambrook et al., 2006). 5 mL of overnight culture were diluted 1:100 in LB and grown at 37°C until the cultures  $OD_{600}$  reached 0.5. The cells were centrifuged at 2000 x g for 10 minutes at 4°C. The supernatant was removed, and the cells were resuspended in the same volume of ice-cold dH<sub>2</sub>O. This step was repeated, resuspending in 1/3 the volume of dH<sub>2</sub>O. The pellet was then washed with 1/50 of the original volume with ice-cold sterile 10% glycerol. Finally, the cells were centrifuged and resuspended with 1/100 of the original volume with 10% glycerol and split into individual 100 µL aliquots. The aliquots were snap-frozen in liquid nitrogen and stored at -80°C.

#### 2.5.1.4. Electroporation

A 30  $\mu$ L aliquot of electrocompetent cells was mixed with 1  $\mu$ L of product DNA in a 1mm gap electroporation cuvette (Scientific Laboratory Supplies) and electroporated at 1750 V. 970  $\mu$ L of LB was immediately added, and the recovered cells were incubated at 37°C and shaken at 180 rpm for 1 hour. 100  $\mu$ L of the cells were then plated on LB agar plates supplemented with the appropriate antibiotics and incubated overnight at 37°C.

#### 2.5.2. Chemical Transformation

50  $\mu$ L aliquots of chemically competent cells (New England Biolabs) were thawed on ice. 1  $\mu$ L of plasmid DNA was added to the cells, mixed by gentle pipetting, and incubated on ice for 30 minutes. The mixture was heat-shocked in a 42°C water bath for 30 seconds before being placed on ice for 2 minutes. 950  $\mu$ L of LB was added, and the cells were incubated at 37°C and shaken at 180 rpm for 1 hour. 100  $\mu$ L of the cells were plated on LB agar selection plates containing the appropriate antibiotics and incubated overnight at 37°C.

## 2.6. P1 Transduction

P1 lysates were used to transduce a *secB* mutant from the Keio collection to the chromosome of *E. coli* BL21 by using bacteriophage to package the disrupted gene from the donor strain and recombine it into the recipient strain (Baba et al., 2006; Miller, 1972). 50  $\mu$ L of overnight culture of strain DRH959 (MG1655  $\Delta$ *secB*::kan), which contains a *secB* allele that has been replaced with a kanamycin cassette flanked by FLP recognition target sites, was incubated with 5 mL LB and supplemented with 25 mM CaCl<sub>2</sub> and varying volumes of P1 phage (1 $\mu$ L – 5  $\mu$ L). Cultures were grown until lysis was visible and were then centrifuged at 4000 x g for 10 minutes. 100  $\mu$ L of chloroform was added to the supernatant to kill any remaining bacteria.

1 mL of overnight culture containing the recipient strain was centrifuged at 4000 x g for 1 minute and the supernatant was discarded. The resulting pellet was resuspended in 500  $\mu$ L resuspension buffer (100 mM CaCl<sub>2</sub>, 10 mM MgCl<sub>2</sub>). 100  $\mu$ l of resuspended cells was incubated with 20  $\mu$ L of P1 lysate and 80  $\mu$ L LB for 20 minutes at 37°C in a static incubator. 200  $\mu$ L of sodium citrate was added to kill the P1 phage and 500  $\mu$ L of LB was added and incubated at 37°C in a shaking incubator for 1.5 hours to allow recovery of the bacteria. The transductants were centrifuged at 4000 x g for 1 minute and resuspended in 200  $\mu$ L sodium citrate and plated on selective media containing kanamycin. Resulting colonies were screened by colony PCR to ensure the loss of the *secB* gene.

#### 2.6.1. Removal of Kanamycin Cassette

The kanamycin cassette was removed using the FLP recombinase plasmid pCP20 (Baba et al., 2006).  $\Delta secB::kan$  BL21 electrocompetent cells were transformed with plasmid pCP20 and recovered with 1 mL LB for 1.5 hours at 30°C. The transformants were centrifuged at 4000 x g for 1 minute and resuspended in 100 µL LB, plated on selective media containing both kanamycin and ampicillin, and incubated overnight at 30°C. Resulting colonies were restreaked on LB plates and incubated at 42°C to induce the FLP recombinase. Resulting colonies were restreaked on LB, kanamycin, and ampicillin plates to screen for colonies sensitive to both antibiotics. Colonies sensitive to both antibiotics were grown overnight and stored in glycerol stocks at -80°C.

# 2.7. Protein Expression and Purification

#### 2.7.1. **Protein Expression**

Plasmids containing genes for protein expression were transformed into the *E. coli* expression strain BL21 (DE3) which carries the T7 RNA polymerase under the control of a lac promoter. When grown from glycerol stocks, the desired strain was streaked onto an LB agar plate with the appropriate antibiotics and incubated at 37°C overnight. An individual colony was used to inoculate a 5 mL LB culture with the appropriate antibiotics and was incubated overnight at 37°C. The overnight culture was then subcultured 1:200 into 1L of LB. Cultures were grown to an OD<sub>600</sub> of 0.8 and then the temperature was reduced to 18°C. Protein expression was induced with 1 mM isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG) and incubated overnight. Cells were harvested by centrifugation at 4500 x g for 30 minutes at 4°C with a JLA-8.1000 rotor (Beckman Coulter).

#### 2.7.2. **Protein Purification**

Cell pellets were resuspended in lysis buffer and incubated on a rolling incubator at 4°C until cells were fully resuspended. Cells were lysed by cell disruption using a C3 Emulsiflex (Avestin) high pressure homogeniser. Resuspended cells were cycled 3 times through the homogeniser at 17,000 psi. Lysed cells were centrifuged at 27,000 x g for 20 minutes at 4°C to remove cell debris, using a JA-20 rotor (Beckman Coulter). The lysate was cycled through a HisTrap<sup>TM</sup> (Cytiva) column overnight using a peristaltic pump at 4°C. The bound protein was washed with 5 column volumes (CVs) of high salt wash buffer followed by 5 CVs of low salt wash buffer. The protein was eluted in 25 1 mL fractions collected in 1.5 mL microcentrifuge tubes, using elution buffer. Protein-containing fractions were determined by adding 2  $\mu$ L of

each fraction to 198 µL 1X Bradford Reagent (Sigma) and looking for the appearance of a blue colour. Protein-containing fractions were pooled and dialysed (SnakeSkin 10 kDa MWCO) against buffer A at 4°C overnight. The eluted protein was incubated with SUMO protease (purified in the lab) to remove the N-terminal 6xHis-SUMO fusion tag. The tag was subsequently removed from the sample by running the sample through a His column, allowing the tag to bind to the column and the cleaved protein to flow through.

#### 2.7.3. Anion Exchange Chromatography

The cleaved protein was concentrated using a 10 kDa MWCO protein concentrator spin column (Vivaspin<sup>®</sup>). The concentrated protein was run through a 1 mL Resource<sup>TM</sup> Q anion exchange column, using an ÅKTA<sup>TM</sup> pure (GE Healthcare). The protein was eluted using a salt gradient with Buffer B. The protein was eluted in 2 mL fractions.

#### 2.7.4. Size Exclusion Chromatography

Size exclusion chromatography was the last step in purification, performed using a Superdex 75 10/300 GL column (GE Healthcare). The column was equilibrated, and the protein was eluted using buffer A. Proteins were eluted in 2 mL fractions. Fractions containing purified protein were pooled and concentrated. The purified protein was aliquoted, snap frozen in liquid nitrogen and stored at -80°C.

#### 2.7.5. **Protein Concentration Determination**

Protein concentration was determined using an extinction coefficient calculated using ExPASy, part of online resource ProtParam, assuming all cysteine residues were reduced. Concentration of protein was determined using a Nanodrop (ThermoFisher), measuring light absorbance at

280 nm and calculated according to the Beer-Lambert Law  $A = \varepsilon cl$ , where A = absorbance,  $\varepsilon$ = extinction coefficient, c= concentration and l = path length.

#### 2.7.6. **SDS -PAGE**

Protein samples were mixed with 5X Laemmli sample buffer at a ratio of 4:1 and boiled for 5 minutes. Proteins were analysed by SDS-PAGE according to (Sambrook et al., 2006). Proteins were separated using a 12 % resolving gel. In 10 mL, this consisted of 2.5 mL 1.5 M Tris (pH 8.8), 100  $\mu$ L 10% (w/v) sodium dodecyl sulphate (SDS), 100  $\mu$ L 10% (w/v) ammonium persulfate (APS), 5 mL 30% (w/v) acrylamide and 4  $\mu$ L tetramethylethylenediamine (TEMED). 5 mL of stacking buffer consisted of 630  $\mu$ L 1.0M Tris (pH 6.8), 50  $\mu$ L 10% (w/v) SDS, 50  $\mu$ L 10% (w/v) APS, 830  $\mu$ L 30% (w/v) acrylamide and 5  $\mu$ L TEMED. The gels were cast in 0.75 mm Mini-PROTEAN spacer plates. Gels were run in SDS running buffer until the loading dye reached the end of the gel. Gels were fixed with 50% (v/v) ethanol and 10% acetic acid. Gels were stained with 0.1% (w/v) Coomassie R250, 20% (v/v) methanol and 10% (v/v) acetic acid. Gels were destained with 50% (v/v) methanol and 10% acetic acid.

#### 2.7.7. Silver Staining

To stain gels using silver staining, gels were washed twice in ultrapure water for 5 minutes before being stained with a silver stain kit (Pierce). Gels were fixed in 30% (v/v) ethanol and 10% (v/v) acetic acid. Gels were then washed twice in 10% (v/v) ethanol for 5 minutes followed by twice in deionised water for 5 minutes. Gels were incubated with sensitiser solution for 1 minute, washed with ultrapure water for 1 minute before being incubated with silver stain for

30 minutes. Gels were rinsed twice with deionised water before being incubated with developer solution. The developing reaction was stopped using a stop solution of 5% (v/v) acetic acid.

#### 2.7.8. Western Blotting

Proteins in SDS PAGE gels were transferred to nitrocellulose membranes (Amersham<sup>TM</sup> Protran<sup>TM</sup>, 0.45 µm) according to (Sambrook et al., 2006). The proteins were transferred to the membrane using a wet transfer with a sandwich consisting of sponge and blotting filter paper (ThermoFisher) in transfer buffer. Proteins were transferred at 50 V for 3 hours or overnight at 15 V. Membranes were blocked with 5% (w/v) casein in TBS (Skimmed milk powder (Sainsbury's), 50 mM Tris-HCL, 150 mM NaCl) for 1 hour. Membranes were rinsed 3 times with TBS, and then incubated with the appropriate primary antibody in TBS at room temperature for 1 hour on an orbital shaker. The membrane was then washed 3 times for 15 minutes with TBST (TBS + 0.1% (v/v) Tween-20) then incubated with an anti-rabbit- HRP-linked secondary antibody in TBS for 1 hour on an orbital shaker. The membrane was washed twice in TBST for 15 minutes and rinsed with TBS before being developed with ECL<sup>TW</sup> Prime Western Blotting Detection Reagent (Cytiva Amersham<sup>TM</sup>). Chemiluminescence was detected with a Gel Doc XR+ (Bio-Rad).

## 2.8. Mass Spectrometry Analysis

Proteins samples to be analysed by mass spectroscopy were excised from Coomassie-stained SDS-PAGE gels and submitted for liquid chromatography mass spectrometry (LC-MS/MS) analysis. The mass spectrometry data was filtered to include proteins that had a score sequest of 10 or more. The score sequest is a measure of how well the MS/MS spectrum for each peptide

matches the theoretical MS/MS spectrum. The higher the score, the better the confidence in identification of the protein.

## 2.9. Ribosome Cosedimentation Assay

Ribosome sedimentation assays were performed according to (Jamshad et al., 2019). 1  $\mu$ M of purified 70S ribosomes were incubated with SecH and SecH $\Delta$ MBD at varying concentrations in incubation buffer. Samples were incubated at 25°C for 15 minutes, before being layered on a 30% sucrose cushion (60% (v/v) sucrose made up in incubation buffer). Samples were ultracentrifuged at 200,000 x g for 2 hours at 4°C. Ribosomal pellets were resuspended in 1X SDS sample buffer and analysed by SDS-PAGE and western blotting.

## 2.10. Microscale Thermophoresis (MST)

Purified SecB was labelled using an NT-647-NHS labelling kit (NanoTemper). 160 nM labelled SecB was incubated with serial dilutions of SecH or SecH $\Delta$ MBD from 200  $\mu$ M to 6 nM in incubation buffer with 0.05% Tween. MST was performed using Monolith Premium Capillaries (NanoTemper), with a Monolith NT.115 (Nanotemper). The K<sub>D</sub> was determined by fitting the curve to a non-linear regression one site total binding equation:

Y=Bmax\*X/(Kd+X) + NS\*X + Background

Where Bmax = maximum specific binding,  $K_D =$  equilibrium dissociation constant, NS = slope of non-specific binding and background = amount of nonspecific binding.

# 2.11. Bacterial Two Hybrid Assay

Plasmids for bacterial two hybrid assay (pMAW002, pMAW003, pMAW004 and pMAW005) were designed and constructed using NEB HIFIBuilder. pMAW010 was constructed using restriction digestion and ligation. All plasmids were co-transformed with pMAW002 into BTH101 electrocompetent cells.

Overnight cultures were diluted 1:100 into fresh LB and grown until exponential phase. Cultures were then cooled on ice for 20 minutes, and  $O.D_{600}$  was measured. 500 µL of culture was mixed with 500 µL of Z buffer. Cells were lysed with 25 µL chloroform and 15 µL 0.1% SDS and vortexed. Cultures were warmed at 28°C in a water bath for 5 minutes and 200 µL ONPG was added. The reaction was stopped after appearance of deep-yellow colour with 500 µL Na<sub>2</sub>CO<sub>3</sub>. Absorbance was then measured at 420 nm. Miller units were then calculated by the given equation:

$$Miller Units = \frac{OD420}{OD600 X Culture vol. (mL) X Time of incubation (minutes)} x 1000$$

The resulting data was analysed statistically using a one-way ANOVA. The null hypothesis was rejected, and the data was analysed using *post-hoc* t-tests which correct the p-value for multiple comparisons.

# 2.12. Structural Modelling

The **P**rotein **H**omology/analog**Y R**ecognition **E**ngine V 2.0 (Phyre2) server was used to model the structure of SecH. SecH was modelled against UPF0149 domain protein lpg0076 from *Legionella pnuemophilia*, structure 4GYT (RSCB PDB). The modelled protein was visualised using the pyMOL Molecular Graphics System (Version 2.5.2, Schrödinger, LLC). AlphaFold2 and AlphaFold2 Multimer were used to model SecH and SecH in complex with SecB as well as oligomeric SecH complexes (Mirdita et al., 2022). Using Google Colaboratory, models can be created using both AlphaFold2 and AlphaFold Multimer. The AlphaFold online database was also used for single protein models (Jumper et al., 2021).

# 2.13. DSP Crosslinking

Purified SecB was incubated with purified SecH at both 2  $\mu$ M and 4  $\mu$ M at 25°C for 30 minutes. Dithiobis (succinimidyl propionate) (DSP) (ThermoFisher) was added at concentrations of 0.2 mM, 1 mM and 5 mM to induce crosslinking and the reactions were incubated at 25°C for 30 minutes. The crosslinking reaction was quenched with Tris-HCl at a final concentration of 50 mM. Samples were mixed with 5X SDS loading buffer and 10  $\mu$ L of each sample was separated by SDS PAGE and analysed by western blotting.

# 2.14. Site-Specific Crosslinking

#### 2.14.1. Strain Construction

Plasmids pMAW017-pMAW029 were designed using Snapgene<sup>®</sup> (Insightful Science). The genes were synthesised, and the plasmids constructed by GENEWIZ. Each plasmid was electroporated into *E. coli* BL21 containing pSUP-BpaRS-6TRN.

#### 2.14.2. Protein Expression and Purification

Proteins were expressed as previously described and grown in the presence of 1 mM 4-Benzoyl-L-phenylalanine (Bpa, Bachem). Cultures were grown in covered flasks to reduce excess light that may activate Bpa crosslinking. Proteins were purified as previously described, using only the HisTrap<sup>™</sup> step with the columns covered to reduce excess light. The eluted proteins were cleaved using SUMO protease (Sigma-Aldrich), and incubated overnight at 4°C. The SUMO tag was removed by flowing the cleaved protein through a HisTrap column. The polyhistidine-SUMO tag bound to the column and the cleaved protein flowed through and was collected. The proteins were buffer exchanged to remove imidazole using a 10 kDa MWCO protein concentrator spin column.

#### 2.14.3. Photo-Crosslinking

SecB at 2  $\mu$ M was mixed with mutant Bpa-labelled proteins at a final concentration of 2  $\mu$ M in incubation buffer and incubated at 25 °C for 30 minutes. 200  $\mu$ L of each reaction was added to a round-bottom 96 well plate and exposed to UV light with a wavelength of 365 nm for 30 minutes on ice.

For photo-crosslinking of cell lysates, harvested cells were resuspended in lysis buffer. Buffer volume was adjusted to ensure an equal O.D. 600 across samples. Resuspended cells were lysed

as previously described in section 2.7.2. 200  $\mu$ L of each cell lysate was added to a round-bottom 96 well plate and exposed to UV light with a wavelength of 265 nm for 30 minutes on ice.

# 2.15. ATPase Activity Assay

The SecA ATPase activity assay was used according to (Cranford-Smith, 2018). The SecA ATPase activity was measured indirectly by coupling ATP hydrolysis to the oxidation of NADH to NAD+. On hydrolysis of ATP to ADP by SecA, pyruvate kinase produces pyruvate from ADP and phosphoenolpyruvate. Lactate dehydrogenase reduces pyruvate into lactate whilst simultaneously oxidising NADH, and the depletion of NADH is followed using absorbance at 340 nm. Each reaction contained with 20 units/mL Lactate dehydrogenase, 100 units/mL pyruvate kinase, 1  $\mu$ M SecA and varying concentrations of SecH and SecH $\Delta$ MBD. Reactions were incubated at room temperature before 1 mM ATP, 500  $\mu$ M phosphoenolpyruvate and 200  $\mu$ M NADH were added and mixed by pipetting. The absorbance was followed at 340 nm using Zenith 304rt Spectrophotometer. Rates were determined by using a linear regression on the depletion of NADH to determine the slope ( $\Delta$ A<sub>340</sub>.min<sup>-1</sup>). The rate was then divided by the extinction coefficient of NADH at 340 (6220 M<sup>-1</sup>) and the concentration of SecA to yield the specific activity. Resulting data was analysed using a one-way ANOVA.

## 2.16. MANT-ADP Fluorescence

The rate of ADP dissociation from SecA was measured, according to (D'Lima and Teschke, 2014) using Förster Resonance Energy Transfer (FRET) between the tryptophan's in SecA as the donor and 2'-(or-3')-O-(N-Methylanthraniloyl) Adenosine 5'-Diphosphate (MANT-ADP)

as the acceptor (Robson et al., 2009). 0.5  $\mu$ M SecA was preincubated with 1.2  $\mu$ M MANT-ADP in the presence and absence of 0.5  $\mu$ M SecH. Reactions were set up in TKM buffer and the measurements were taken in a quartz cuvette maintained at 20°C. Tryptophans were excited at 295 nm and the emission of the MANT-ADP was measured at 450 nm, both with a 5 nm bandpass. The reaction was followed at 20°C upon addition of excess ATP (1mM) in order to prevent rebinding of MANT-ADP. The dissociation constant was determined by fitting the curves to a one phase exponential decay equation:

$$Y = (Y0 - NS) * \exp(-K * X) + NS$$

Where K is the rate constant, Y0 is the fluorescence at time zero and NS is the background fluorescence.

## 2.17. Size Exclusion Chromatography

100  $\mu$ L of 17.5  $\mu$ M SecH and SecB were injected into a Superdex 20 10/300 GL column at a flow rate of 0.4 mL.min<sup>-1</sup> and eluted with incubation buffer. Protein was eluted and collected in 250  $\mu$ L fractions and further analysed by SDS PAGE and western blotting.

## 2.18. Pull-Down Assay

Hydrophilic streptavidin beads (New England Biolabs) were resuspended by gentle shaking before being vortexed for 1 minute. 50  $\mu$ L of beads were aliquoted into sterile microcentrifuge tubes. A magnet was applied to separate the beads from the supernatant and the supernatant was removed. Beads were washed three times in 500  $\mu$ L pull-down binding buffer. The beads were mixed with 5 mL biotinylated samples and incubated on a rolling mixer for 30 minutes. The magnet was applied to the beads and the supernatant was removed. The beads were washed 3 times as before, before being resuspended in 50  $\mu$ L 1X SDS buffer. Chapter 3

# Bioinformatic Analysis of SecH

## 3.1. Introduction

SecH, initially named YecA, is a protein of unknown function which was first identified by the SecA-like Metal Binding Domain (MBD) (InterPro: IPR004027). The MBD in SecA interacts with SecB, which suggests SecH also makes this interaction with SecB and is therefore involved in Sec-dependent translocation. SecH consists of two domains: an N-terminal UPF1049 domain and the C-terminal metal binding domain. The UPF0149 domain is found in SecH and YgfB proteins and forms a principally alpha-helical secondary structure. The UPF0149 domain is typically present only in gamma proteobacteria (Blum et al., 2021).

In SecA, the MBD is a well conserved domain. The MBD is found at the extreme C- terminal end of SecA and interacts with SecB and the ribosome (Jamshad et al., 2019; Patel et al., 2006). The MBD is highly conserved amongst SecA proteins, however MBD sequences in YecA family proteins are more variable (Jiang et al., 2021). The conserved motif in SecA is  $CXCXSX_3\Omega X_2C(H/C)$  where  $\Omega$  corresponds to aromatic amino acids (Jamshad et al., 2019). N-terminal to this motif are a highly conserved arginine and asparagine. Both of these residues contact SecB (Zhou and Xu, 2003).

The SecB-SecA interaction occurs *via* amino acids in the SecA MBD that are conserved in the SecH MBD, suggesting SecH also interacts with SecB. In the *H. influenzae* co-crystal structure of SecB-SecA, the side chains of amino acids corresponding to R878, N879, K889 and K891 of the SecA MBD are involved in the interaction (Zhou and Xu, 2003). The amino acids at these positions are identical in the MBD of SecH, suggesting that SecH might physically interact with SecB.

The SecA MBD also interacts with the ribosome (Jamshad et al., 2019). The ribosomal surface, and particularly the ribosomal exit tunnel, are negatively charged and the SecA MBD contains many well conserved positively charged lysines which may electrostatically interact with the ribosomal surface (Jamshad et al., 2019; Lu et al., 2007). Indeed, SecA binds to ribosomal protein uL23 which is close to the entrance of the ribosomal exit tunnel (Jamshad et al., 2019). Alteration of the cysteines involved in metal coordination disrupt the ribosomal interaction, indicating correct folding of the MBD is required for the interaction (Jamshad et al., 2019).

The physiological metal ligand of the MBD was first thought to be zinc but has now been suggested to be iron (Cranford-Smith et al., 2020). In a co-crystal structure of SecB and the SecA C-terminus from *Haemophilus influenzae*, a single zinc ion is coordinated by the three cysteines and a histidine (Zhou and Xu, 2003). However, recently it has been suggested that *in vivo*, the MBD binds to iron (Cranford-Smith et al., 2020). Mass spectrometry analysis indicates that the MBD binds to iron as well as zinc, and NMR spectroscopy suggests the MBD preferentially binds to iron.

In this chapter, computational methods were used to investigate the structure and function of SecH, and the complex that may form between SecH and SecB. To this end, the co-occurrence of SecB and SecH was investigated to determine whether the two proteins may interact. Homology modelling and *de novo* modelling was used to investigate the tertiary structure of SecH, with particular focus on the metal binding domain to understand its similarity to the SecA MBD. AlphaFold Multimer was also used to model the multimeric interface between SecH and SecB in comparison to known structures of the SecA-SecB interaction.

# 3.2. Results

#### **3.2.1.** Metal Binding Domain Conservation

To investigate whether the SecH MBD could be capable of interacting with SecB, the consensus sequence of the SecH MBD was compared against the consensus sequence of the SecA MBD from species containing SecH (Figure 6). If the amino acids known to interact with SecB in the SecA MBD are conserved in the SecH MBD, it would suggest that SecH also interacts with SecB. 156 representative phylogenetic families were analysed, from a previous investigation into the SecA MBD as a basis for comparison (Jamshad et al., 2019).

The amino acids in SecA that contact SecB are fully conserved in the SecA MBD and are also identical in the SecH MBD (Figure 6). In *E. coli* SecA, the SecB-interacting residues are R881, N882 K892 and K894 (Zhou and Xu, 2003). The metal coordinating residues in *E. coli* SecA are C885, C887, C896 and H897 (Zhou and Xu, 2003). Almost all of these are identical in the SecH MBD. In SecA, the fourth metal-coordinating residue is either a histidine or cysteine, in SecH this amino acid is more likely to be a cysteine (Figure 6b). Indeed, H897 is replaced by a fourth cysteine in *E. coli* SecH.

The SecA MBD contains an invariant serine (S889) that is also conserved in the SecH MBD (Figure 6). This serine is important for the overall structure of the MBD, likely forming a hydrogen bond with the third cysteine (C896) (Dempsey et al., 2004). As well as this, S889 is involved in metal coordination and mediates the preference of the MBD for iron-binding (Cranford-Smith et al., 2020).

The SecA MBD has a well conserved tyrosine residue in between the two lysines involved in SecB binding, which has been suggested to be important for MBD stabilisation (Zhou and Xu, 2003). In the SecH MBD, this residue is replaced by phenylalanine, conserving its aromatic property.

The SecA MBD has 3 positively charged lysines and one arginine that may be important for its interaction with ribosome (Jamshad et al., 2019). These charged amino acids are fully conserved in the SecH MBD, indicating SecH binds to the ribosome.



Figure 6- Logo of consensus sequence of the SecA MBD and SecH MBD.

The list of representative bacterial species (Jamshad et al., 2019) was manually searched for SecHcontaining species. The SecA and SecH sequence from each resulting species was taken (Uniprot) and a logo was created (Crooks et al., 2004). Residues involved in SecB binding highlighted with blue arrow. Metal-coordinating residues highlighted with green arrow (Zhou and Xu, 2003).

#### 3.2.2. SecH-SecB Co-Occurrence

The similar sequence of the SecA MBD and the SecH MBD suggested that the SecH might interact with SecB. If SecH interacts with SecB, it would be expected that SecB is present in SecH-containing species. To investigate this, the co-occurrence of SecH and SecB was analysed using the list of 156 representative phylogenetic families (Figure 7).

It was found that SecH proteins are present predominantly in Proteobacteria, principally in  $\beta$  and  $\gamma$  -proteobacteria (Figure 7). In addition, one SecH species is also present in *Chlorobaculum tepidum* and *Pelobacter propionicus*. SecB is present in all but *Chlorobaculum tepidum* and *Pelobacter propionicus*. With the exception of the two species lacking SecB, all SecHcontaining species are  $\alpha$ -,  $\beta$ -and -  $\gamma$  -Proteobacteria. This distribution of SecH is similar to SecB, where SecB is present in almost all  $\alpha$ -,  $\beta$ -and -  $\gamma$  -Proteobacteria and is sparsely distributed elsewhere (Sala et al., 2013).

Within the SecH- containing species, the amino acids involved in metal coordination and SecB binding are all perfectly conserved. This co-occurrence suggests that the two proteins interact with one another.

|                                 |                   | SecH                | SecB                |                                                        |
|---------------------------------|-------------------|---------------------|---------------------|--------------------------------------------------------|
| Class                           | Species           | Accession<br>Number | Accession<br>Number | MBD Sequence                                           |
| α -                             | Magnetococcus     |                     |                     |                                                        |
| Proteobacteria                  | Marinus           | AOLBK9              | AOLD65              | GRNEP <u>C</u> P <u>C</u> GSGKKFKK <u>CC</u> GNPANSVH  |
|                                 | Janthinobacterium |                     |                     |                                                        |
|                                 | sp.               | A6SW96              | A6T312              | GRNDE <u>C</u> S <u>C</u> GSGKKYKK <u>CC</u> GAATEGGAE |
|                                 | Rhodoferax        |                     |                     |                                                        |
|                                 | ferrireducens     | Q220H9              | Q21YV7              | GRNDP <u>C</u> P <u>C</u> GSGKKYKK <u>CC</u> GA        |
|                                 | Chromobacterium   | 0700001             | 0711/75             |                                                        |
| 0                               | violaceum         | Q7NWQ1              | Q/NYZ5              | GRNDA <u>C</u> P <u>C</u> GSGKKYKA <u>CC</u> GAN       |
| р -                             | Nisseria          |                     |                     | GRNDP <u>C</u> P <u>C</u> GSGRKYKA <u>CC</u> GKN       |
| Proteobacteria                  | meningitidis      | Q9JZG0              | Q9JY16              |                                                        |
|                                 | Dechloromonas     | 0.4751.10           | 0.4141.01           |                                                        |
|                                 | aromatica         | Q47EU0              | Q4YIGI              | GRNDP <u>C</u> P <u>C</u> GSGKKFKQ <u>CC</u> GSPEKLN   |
|                                 | Aromatoleum       | 0.50000             | 0.505014            |                                                        |
|                                 | aromaticum        | Q5P0Q8              | Q5P/N1              | GRNEA <u>C</u> P <u>C</u> GSGKKYKK <u>CC</u> GAPR      |
|                                 | Azoarcus sp.      | A1K5N6              | A1K9C3              | GRNEP <u>C</u> P <u>C</u> GSGKKYKK <u>CH</u> GADA      |
| γ <b>-</b>                      | Escherichia coli  | P0AD05              | P10408              | GRNDP <u>C</u> P <u>C</u> GSGKKFKQ <u>CC</u> LH        |
| <sup>y-</sup><br>Proteobacteria | Salmonella        |                     |                     |                                                        |
|                                 | typhimurium       | Q8ZNU3              | Q7CPH8              | GRNDP <u>C</u> P <u>C</u> GSGKKFKQ <u>CC</u> LH        |
|                         | Hahella<br>chejuensis     | Q2SEB0 | Q2SMA3 | GRNDP <u>C</u> P <u>C</u> GSGKKFKK <u>CC</u> L  |
|-------------------------|---------------------------|--------|--------|-------------------------------------------------|
|                         | Vibrio cholera            | Q9KSZ9 | Q9KNS8 | GRNDA <u>C</u> P <u>C</u> DSGKKFKQ <u>CC</u> GQ |
| δ/ ε-<br>Proteobacteria | Pelobacter<br>propionicus | A1AQ56 | -      | GRNDP <u>C</u> P <u>C</u> GSGIKYKK <u>CC</u> GK |
| Chlorobia               | Chlorobaculum<br>tepidum  | Q8KA93 | -      | GRNDL <u>C</u> P <u>C</u> GSGKKYKK <u>CS</u> GQ |

## Figure 7 - Table of SecH containing species and co-occurring SecB.

From the list of 156 representative phylogenetic families (Jamshad et al., 2019), SecHcontaining species were manually identified using UniProt. These species were then investigated to determine whether they contain SecB. The sequence of the metal binding domain is displayed, and the metal-binding residues are underlined. Accession numbers refer to UniProt Accession Numbers.

#### 3.2.3. Structural Modelling

Understanding the structure of SecH is important to gain insight into its function. To investigate the structure of SecH, in the absence of experimentally determined structures of entire SecH family proteins, homology modelling and artificial intelligence- based structural modelling was used to predict the tertiary structure of SecH.

Two methods were used to predict the structure of SecH: Phyre2, a homology modelling tool (Figure 8a) and AlphaFold2 (Figure 8b). Homology modelling uses the primary structure of a protein together with the previously determined structures of homologous proteins to model the tertiary structure of a novel protein. There are two high resolution structural models of UPF0149 domain-containing proteins, the structure 4GYT (PDBe) was chosen given its higher degree of sequence similarity. The first 170 amino acids, representing 77% coverage were modelled with 99.9% confidence. The C-terminal tail and metal binding domain were not modelled because there are no existing high-resolution structures of SecH family proteins containing both the UPF1049 domain and metal binding domain. AlphaFold2, unlike Phyre2, was able to predict the entire structure of SecH including the MBD. AlphaFold2 uses neural networks to create a model based on primary sequence alone. The neural network uses a multiple sequence alignment together with calculations of spatial information from a distance matrix to construct a final 3D model (Jones and Thornton, 2022; Jumper et al., 2021).

The models from both methods were largely consistent. Similar to known structures of UPF0149 domain -containing proteins, the SecH predicted structures contain 7 alpha helices, comprising of 4 helices at the N-terminus, and 3 C-terminal helices in an up-down-up

orientation (Galkin et al., 2004). A small 5-residue helix between helices 5 and 6 is present in structure 4GYT. The other UPF0149 structure from YgfB (PDBe: 1izm) also contains this helix, though it is directly adjacent to helix 5 (Galkin et al., 2004). This additional helix is not present in the modelled structures and is replaced by a linker. The connecting loop between helix 3 and 4 in structure 4GYT comprises of 6 amino acids and 8 amino acids in structure 1IZM. The modelled structures suggest this loop in SecH is extended, comprising of 12 amino acids, which may confer additional structural flexibility.

Despite the similarities in the two models, the AlphaFold2 model has some differences compared to the Phyre2 model. In the AlphaFold model, helix 5 of SecH is broken up by a  $\beta$ -hairpin motif. This is two antiparallel  $\beta$ -sheets linked by 4 amino acids. There is a 12 amino acid linker between helix 3 and 4 in the Phyre2 model, though in the AlphaFold2 model a 3-residue helix is present in the middle of this linker. In agreement with the determined structures, the Phyre2 model predicts a linker region between helix 6 and 7. The AlphaFold2 model, however, predicts a small 9 residue helix in between these two helices.

AlphaFold2 could also be used to model the SecH MBD. Amino acids 189-198 were predicted with low confidence (Per-residue confidence score (pLDDT) between 70 and 50). These residues consist of a long, disordered region linking the UPF0149 domain to the MBD. The lack of secondary structure in this region gives doubt about the location of the MBD relative to the UPF0149 domain. The MBD itself was predicted with high confidence (pLDDT > 90). The entirety of the UPF0149 domain was predicted with very high confidence, except for the  $\beta$ -hairpin motif on helix 5 which was predicted with lower confidence (pLDDT between 90 and 70).



Figure 8 - Structural Modelling of SecH.

Structures are colour-coded from N- to C-terminus by rainbow. **a**) Homology models of SecH using Phyre2 – front and 180° reverse angles. The SecH sequence was inputted, and homologous structural models were searched. 4GYT was used as the template structure as it had the highest percentage sequence identity. **b**) Forward and 180° reverse angle of SecH AlphaFold artificial intelligence-based model from the E. coli K12 SecH sequence.

#### 3.2.4. Metal Binding Domain Model

To investigate the structure of the SecH MBD and its structural similarity to the SecA MBD, its structure was modelled using homology modelling and compared to a crystal structure of the SecA MBD. The *E. coli* SecA MBD structure determined by NMR shows the MBD coordinating a zinc ion *via* amino acids corresponding to C885, C887, C896 and H897 in a tetrahedral geometry (Figure 9a) (Dempsey et al., 2004).

Phyre 2 was used to model the SecH MBD as, in the absence of a metal, AlphaFold predicted the formation of disulphide bonds between the side chains of the 4 cysteine amino acids. The solution NMR structure of the SecA MBD was used as the template (PDBe: 1sx1) as it had the highest degree of sequence similarity. The domain was modelled with 99.3% confidence and 67% sequence coverage. It is not possible to model the structure in the presence of a metal ion.

The modelled structure (Figure 9b) shows large similarity to the determined structure, which is expected given the high degree of conservation (Figure 9a). C207 and C209 of SecH (corresponding to C885 and C887 in SecA) are in close proximity with the invariant serine inbetween. These residues are located above where the metal would be coordinated. C218 and C219 in SecH (corresponding to C896 and H897 in SecA) are located below the pocket pointing towards the binding region. C218 in the SecH MBD has a different geometry compared to C896 in SecA. In the NMR structure, C896 of SecA faces inwards towards the metal, whereas the model depicts C218 of SecH facing outwards towards the solution. The aromatic F215 (Y893 in SecA) is proximal to the metal binding site in the same orientation as in SecA. S889 in SecA hydrogen bonds with C896, with a distance of 3.6 Å between the two residues. The SecH MBD

model places S211 and C218 in a similar conformation with a distance of 3.4 Å between the two residues which would allow for hydrogen bond formation.



# Figure 9 - Determined structure SecA metal binding domain (PDB:1SX1), and modelled SecH metal binding domain.

a) Structure of SecA metal binding domain coordinating a zinc ion, determined by NMR. Residues involved in metal coordination are highlighted in magenta. Potential iron binding residues coloured in blue. b) Modelled structure of SecH metal binding domain from Phyre2. The SecH MBD sequence was inputted, and homologous structural models were searched. 1sx1 was used as the template structure as it had the highest percentage sequence identity. Residues suspected to be involved in metal coordination are coloured in magenta. Potential iron binding residues coloured in blue. Structures modelled in Pymol.

#### 3.2.5. SecB-SecH Model

The sequence conservation of the SecH MBD and the co-occurrence of SecB in SecHcontaining species suggests the two proteins interact. To investigate the structure of this interaction, and whether the MBD of SecH is capable of interacting with SecB in a similar fashion to the SecA MBD, AlphaFold-Multimer was used to predict the structure of a SecB-SecH MBD complex in comparison to the determined structure of SecB – SecAMBD. AlphaFold-Multimer is an extension of AlphaFold, which models protein chains and is able to predict multimer interfaces of complexes with known stoichiometry (Evans et al., 2022).

In the SecA MBD-SecB complex, the SecA MBD is located at the interface of a homodimeric SecB (Figure 10a). The SecA MBD interacts primarily with amino acids on the first  $\beta$ - sheet of both SecB protomers (Zhou and Xu, 2003). The quaternary structure of the AlphaFold-Multimer model (Figure 10b) is consistent with the determined SecA-SecB structure (Figure 10a). The model predicts the same interaction of the two SecB protomers, with the first  $\beta$ - sheet of each monomer parallel to each other. The SecH MBD, as with the SecA MBD, is predicted to interact with SecB at the interface between the two monomers.

In *H. influenzae*, SecA binds to SecB at the interface of the SecB homodimer through four conserved residues in the MBD: R878, N879, K889 and K891 (Figure 10c– Magenta). R878 forms a salt bridge with E31. N879 hydrogen bonds with both V28 and D27. K889 also forms two salt bridges with E31 and E86, although this is on protomer B of SecB. Finally, K891 of SecA hydrogen bonds with S29.

The interface between the SecH MBD and SecB in the AlphaFold Multimer model (Figure 10d) is mostly similar to the known SecA-SecB structure (Figure 10c). R203 of SecH (R878 in SecA) is still in proximity to the conserved glutamic acid residue on subunit A, but in the model it may be hydrogen bonding to E77 on subunit B. N204 of SecH (N879 in SecA) is also in close proximity to the conserved aspartic acid residue, but not close enough to form a hydrogen bond. The valine in *H. influenzae* is replaced by an isoleucine in the *E. coli* SecB but is not located in proximity to N204. K214 of SecH (K889 in SecA) is in close proximity to the two conserved glutamic acid residues in the SecB subunit B. K216 of SecH (K891 in SecA) is positioned in close proximity to S22 (S29 in *H. influenzae*), close enough to form a hydrogen bond.



Figure 10 - Structures of SecA and SecH metal binding domains interacting with SecB.

**a**) Quaternary structure overview of *Haemophilus influenzae* (*H. influenzae*) SecB dimer with SecA MBD bound at the interface of two dimers (PDB:10ZB). **b**) AlphaFold predicted structure of two *E. coli* SecB protomers with SecH MBD. **c**) Structure of *H. influenzae* SecA metal binding domain when in complex with *H. influenzae* SecB (PBD:10ZB), coordinating a zinc ion. Residues involved in SecB binding are highlighted in magenta. **d**) AlphaFold predicted structure of *E. coli* SecH metal binding domain in complex with *E. coli* SecB, coordinating no metal. Amino acids corresponding to SecB-binding residues in Figure 10c are highlighted in magenta.

## 3.3. Discussion

This chapter firstly set out to investigate the relationship between SecB and SecH. Sequence analysis indicates that the MBD of SecH is well-conserved and almost identical to that of SecA. The residues involved in the SecB interaction are fully conserved in SecH, suggesting SecH and SecB should also interact. The positively charged lysines and arginines are fully conserved in the SecH MBD, suggesting the MBD interacts with the ribosome.

Although the co-occurrence analysis suggests an interaction between SecH and SecB, SecH is found in two species that lack SecB. Although there is no SecB in *Pelobacter propionicus*, a SecB protein is present in close relative *Pelobacter carbinolicus*, though there is no SecH present in this species suggesting that this species recently lost SecB and may be in the process of losing SecH. One SecB species in *Chlorobaculum tepidum* is also present. However, in this species the fourth metal coordinating cysteine is replaced with a serine, which is not seen in any other SecH MBD sequence suggesting that SecH might interact with another component of the Sec machinery in addition to SecB. This likely disrupts metal coordination and may alter its ability to bind to SecB.

Homology modelling and AlphaFold modelling were used in conjunction to predict the overall structure of SecH. The UPF0149 domain was modelled with high confidence and is in broad agreement between the two methods. The UPF0149 domain model is broadly consistent with the two determined UPF0149 domain structures. However, the AlphaFold2 model predicts helix 5 is broken up by a  $\beta$ - sheet that is not seen in any other known UPF0149 structure. This  $\beta$ - sheet is surface exposed and could therefore be functionally important. However, this sheet

was modelled with lower confidence than the rest of the domain, indicating a  $\beta$ - sheet may not be the true fold. Between helix 5 and 6 in the two high-resolution determined structures is a small helix. However, in both the Phyre2 and AlphaFold2 model, no helix is present. The lack of a helix may destabilise the structure with a linker making the SecH UPF0149 domain more flexible. This region of the protein is also surface exposed which could alter protein function if the helix is involved in protein: protein interactions.

The SecH MBD was modelled by both AlphaFold2 (Figure 8b) and homology modelling (Figure 9b) and showed significant similarities to the determined structure of the SecA MBD. The AlphaFold2 model could only model the region between the UPF0149 domain and the MBD with low confidence. This indicates that this region is intrinsically disordered. SecA contains a flexible linker domain (FLD) N-terminal to the MBD. This model suggests that SecH also contains an FLD linking the UPF0149 domain to the MBD. This may have implications for the function of SecH and may also explain the difficulties in crystalising the protein. The homology model of the SecA MBD indicates the conserved metal-coordinating residues are arranged similarly to the SecA MBD, permissive for coordination of a metal ion.

AlphaFold multimer was used to predict the quaternary structure of the SecB-SecHMBD interaction. The SecH MBD is predicted to bind in the same location as that of the SecA MBD, with the same amino acid side chains in SecB in close proximity to the conserved amino acid side chains in the MBD of SecH. However, the structural model predicts a loss of the asparagine hydrogen bond in the MBD to SecB as well as an alternate hydrogen bond of the arginine residue in the SecH MBD. The loss of these interactions may alter the affinity of the SecH MBD for SecB compared to the SecA MBD-SecB interaction. The entire structure of SecH was

initially used in the multimer prediction. However, the flexibility of the linker domain means the predicted position of the UPF0149 domain relative to the MBD is highly unreliable. Therefore, the location of the UPF0149 domain when SecB is in contact with the MBD is difficult to model and renders the resulting models unreliable and variable.

The results in this chapter indicate the MBD of SecH is a protein: protein interaction domain that can bind to the ribosome and SecB. The data also suggest that the function of SecH involves interaction with SecB. However, these results are predictions and require experimental confirmation. To test these hypotheses, in the next chapter, the interactions of SecH with the ribosome and SecB are explored.

Chapter 4

## Investigation of the Interactions of the

# Metal-Binding Domain of SecH

## 4.1. Introduction

The MBD of SecA binds to SecB and ribosomes (Jamshad et al., 2019; Zhou and Xu, 2003). SecA interacts with the ribosome and this interaction has been suggested to be mediated by the conserved positively charged amino acids in the MBD (Jamshad et al., 2019). These amino acids are conserved in the SecH MBD, suggesting that SecH also interacts with the ribosome (Figure 6). Ribosome cosedimentation assays indicate that the SecA MBD alone cosediments with ribosomes and altering the conserved cysteines in the MBD disrupts the SecA-ribosome interaction (Jamshad et al., 2019). Crosslinking experiments suggest that this interaction occurs close to the polypeptide exit tunnel of the ribosomes (Jamshad et al., 2019).

Sequence analysis and co-occurrence analysis (Figure 6 and Figure 7) indicate that the MBD of SecH also interacts with SecB and ribosomes, and this is further evidenced by structural modelling of SecH and SecB (Figure 10d), suggesting the MBD of SecH interacts with SecB in a similar fashion to SecA. Taken together, these results suggest that the MBD of SecH is an interaction domain that is able to bind to SecB and ribosomes to facilitate the function of the rest of the protein.

In this chapter, Microscale Thermophoresis (MST), chemical crosslinking and a two-hybrid assay were used to investigate the interaction between SecB and SecH. MST follows the migration of a fluorescently labelled protein down a temperature gradient. One protein is fluorescently labelled, and the second protein of interest is titrated in, and a temperature gradient is induced. The resulting signal is impacted by both Temperature-Related Intensity Change (TRIC) and thermophoresis. TRIC refers to the changes in fluorophore signal which occur depending on the temperature of the solution. The thermophoresis signal is affected by thermophoresis of the proteins, which is the movement of proteins in a temperature gradient. This property is affected by size, charge and hydration shell. The second protein of interest is added to the fluorescently labelled protein and heat is applied. Protein binding alters the thermophoretic ability of the complex which can be detected by a change in MST signal. MST can be used to detect the interaction of two proteins *in vitro* and to calculate the equilibrium dissociation constant (K<sub>D</sub>). For example, MST has been used to measure the SecA-SecYEG interaction in lipid nanodiscs, showing a dependence in binding on the presence of anionic lipids (Koch et al., 2016).

Protein-protein interactions can also be detected *in vitro* using crosslinking agents. The addition of a crosslinker will cause nearby and interacting proteins to form covalent inter-protein crosslinks. If the two proteins interact, in the presence of chemical crosslinker dithiobis (succinimidyl propionate) (DSP) they should form a covalent link, increasing their overall mass. DSP contains an N-Hydroxysuccinimide (NHS) ester at each end, with an 8-carbon spacer arm in-between which corresponds to 11.4Å. The NHS ester is highly reactive and forms amide bonds by reacting with primary amines. Primary amines are found at the N-termini of proteins as well as the side chains of lysines. The reaction is shown in Figure 11. This method has been used to investigate the interactions of SecYEG with YidC and SecD (Schulze et al., 2014).



#### Figure 11 - DSP reaction scheme.

One half of DSP is shown, with its 8-carbon spacer arm and NHS ester group. The primary amine of the reacting protein attacks the carbonyl group of the NHS ester. An unstable tetrahedral intermediate is formed, which results in the loss of the NHS group to be lost and the formation of an amide bond to the remainder of the crosslinker. Figure drawn with Chemdraw 21.0.0

A bacterial two hybrid (BTH) screen was used to investigate the SecB- SecH interaction in vivo (Figure 12). The assay functions by using the catalytic domain of adenylate cyclase from Bordetella pertussis, which consists of two separate components, T25 and T18. These two fragments separately have no catalytic activity, but their catalytic activity is restored if the two fragments interact with each other. Each fragment can be fused to two separate proteins of interest. If the two proteins of interest interact, the two fragments of adenylate cyclase are brought into close proximity with each other, restoring the catalytic activity of adenylate cyclase. The active adenylate cyclase produces cyclic AMP (cAMP), which binds to the catabolite activator protein (CAP). The CAP/cAMP complex activates the expression of the lactose and maltose utilisation pathways. Maltose metabolism can be indirectly visualised by the breakdown of maltose on McConkey agar plates, causing a pH change, resulting in the formation of red colonies. Lactose metabolism can be visualised by the breakdown of X-gal by  $\beta$ -galactosidase on LB agar, forming blue colonies.  $\beta$ -galactosidase expression can also be detected through the breakdown of lactose mimic ortho-Nitrophenyl- $\beta$ -galactosidase (ONPG). β-galactosidase hydrolyses ONPG into galactose and ortho-nitrophenol which forms a yellow colour that can be measured spectrophotometrically. These screens can be used in both yeast and bacteria and have been used to investigate many different protein interactions. For example, bacterial two hybrid screens have been used to demonstrate interactions between EntC and EntB, two proteins involved in the production of iron chelator enterobactin (Ouellette et al., 2022).



Figure 12 – Schematic of the bacterial two hybrid assay.

**a**) The T25 and T18 fragments of adenylate cyclase are active when fused together, producing cAMP from ATP. **b**) When the two fragments of adenylate cyclase are not interacting, no cAMP is produced. **c**) When T25 and T18 are separately fused to two interacting proteins X and Y, the interaction of X and Y brings T25 and T18 into close proximity, activating the catalytic activity and results in the production of cAMP. **d**) cAMP interacts with CAP, forming the CAP/cAMP complex which binds to DNA and promotes the transcription of reporter genes including  $\beta$ -galactosidase.

To investigate the interaction between the SecH MBD and the ribosome, a ribosome cosedimentation was used. Purified ribosomes were incubated with purified SecH. The incubated solution was layered on a 30% sucrose and ultracentrifuged. The density of ribosomes results in more rapid sedimentation compared to other cellular proteins. As a result, any proteins interacting with the ribosome will sediment along with the ribosomes. The resulting ribosomal pellet was probed by western blotting for the presence of SecH.

In this chapter, a number of protein: protein interaction assays were used in order to probe the interactions the MBD of SecH makes. The interaction of the MBD with the ribosome was investigated using a ribosome cosedimentation assay. The interaction of the MBD and SecB was then investigated using both *in vitro* and *in vivo* methods. This chapter presents the first evidence indicating the MBD of SecH makes the same interactions as that of the SecA MBD, interacting with both SecB and ribosomes.

## 4.2. Results

#### 4.2.1. SecH – Ribosome Interaction

The analysis in Chapter 3 indicated the SecH MBD contains the same amino acids thought to be involved in the interaction in SecA with the ribosome. A ribosome cosedimentation assay was used to investigate the interaction between SecH and ribosomes *in vitro*. To determine whether wild type SecH can bind to ribosomes, SecH was incubated with ribosomes, with SecH at concentrations ranging from 1  $\mu$ M to 32  $\mu$ M, and the resulting pellet was probed with an antibody against SecH (Figure 13a). Incubating the ribosome alone resulted in no detectable SecH in the pellet (lane 1). Upon adding increasing concentrations of SecH, SecH began to cosediment, and SecH saturated at 16  $\mu$ M (lane 7).

To determine whether the MBD was required for ribosome binding, cosedimentation assays were repeated using SecH $\Delta$ MBD (Figure 13b). When the MBD was removed (lanes 5 and 6), cosedimentation with the ribosome was severely disrupted. Signal quantification indicates that the signal fell by 64%. The loading control signal between 8  $\mu$ M SecH and 8  $\mu$ M SecH $\Delta$ MBD remain consistent (lanes 3 and 5), as do the 16  $\mu$ M lanes (lanes 4 and 6), indicating the reduction in signal was not due to issues in antibody detection of SecH lacking the MBD.





Figure 13 - Cosedimentation of SecH with vacant 70S ribosomes.

 $\mu$ M ribosomes were incubated at 25°C for 15 minutes with indicated concentrations of SecH (0.5 – 512 pmol). Incubated solutions were layered on top of a 30% sucrose cushion and centrifuged for 2 hours at 75,000 rpm. Ribosomal pellets were resuspended in binding buffer. Samples were mixed with SDS loading buffer and 10  $\mu$ L of sample was loaded onto a 12% SDS-PAGE gel. Proteins were transferred onto a nitrocellulose membrane and western blotted. **a**)  $\alpha$ - SecH western blot of wild type SecH cosedimentation assay with increasing concentrations of SecH. 32 pmol SecH used as loading control and 3 pmol ribosomes were loaded **b**)  $\alpha$ - SecH western blot of cosedimentation assay with both SecH and SecH $\Delta$ MBD. Loading control contained 8 pmol (in 8  $\mu$ M lane) or 16 pmol (in 16  $\mu$ M lane) of respective SecH variant.

#### 4.2.2. SecB- SecH Interaction – Microscale Thermophoresis

MST was used to further confirm the SecB-SecH interaction *in vitro* and to calculate the affinity of SecH for SecB. Increasing concentrations of SecH were titrated into 160 nM SecB which was fluorescently labelled with the NT-647-NHS dye.

When increasing the concentration of SecH in the presence of SecB, the fluorescence change followed a characteristic dose-response relationship characteristic of binding in an MST experiment (Figure 14a). The curve was fitted using non-linear regression one site binding equation and allowed for a calculation of apparent  $K_D = 129$  nM. The characteristic dose-response relationship was not seen when increasing the concentration of SecH $\Delta$ MBD in the presence of SecB (Figure 14b). The mean response to the addition of SecH and SecH $\Delta$ MBD was also plotted (Figure 14c). This was calculated as the difference between the minimum and maximum response from each individual experiment. The addition of SecH to SecB had a large impact on the thermophoresis of SecB. However, when SecH $\Delta$ MBD was added, there was a negligible change in SecB thermophoresis. The difference between SecH and SecH $\Delta$ MBD response was statistically significant (p<0.01) (unpaired T-test).



Figure 14 – SecB – SecH interaction measured using microscale thermophoresis.

SecB was labelled with NT-647-NHS labelling kit. 160 nM labelled SecB was incubated with concentrations of SecH or SecH $\Delta$ MBD ranging from 6 nM to 200  $\mu$ M at 25°C for 30 minutes in the presence of 0.05% Tween and loaded into capillaries. MST was performed with a Monolith NT.115 at 100% power. Error bars are representative of 1 standard deviation. Experiments were performed 5 times for SecH and in triplicate for SecH $\Delta$ MBD. The response was normalised to the maximum value for each individual experiment. **a**) Binding curve of SecB with SecH being titrated in at increasing concentrations. **b**) Binding curve of SecB with SecH $\Delta$ MBD being titrated in at increasing concentrations. **c**) Magnitude of the response of fluorescently labelled SecB on addition of unlabelled SecH and SecH $\Delta$ MBD.

#### 4.2.3. SecB – SecH Interaction – DSP Crosslinking

The results presented in Chapter 3 indicated that SecH could interact with SecB. To further investigate whether the two proteins interact, chemical crosslinking using DSP was used. If SecH binds to SecB, it should be possible to create a chemical crosslink between the two proteins.

 $2 \mu$ M and  $4 \mu$ M SecH were incubated with  $2 \mu$ M and  $4 \mu$ M SecB in the presence of 0.2 mM DSP. SecB and SecH were also incubated in the presence of 0.05% Tween, as the presence of Tween had been important for measuring the interaction of SecB and SecH using MST.

Purified SecB incubated in the presence of DSP showed 3 distinct bands at 17 kDa, 34 kDa and  $\approx 50$  kDa (Figure 15a lane 1). These bands likely correspond to the SecB monomer, dimer and tetramer respectively. Purified SecH showed a strong band at 26 kDa (lane 2). A small band at  $\approx 50$  kDa appeared indicating some SecH may dimerise. When SecB and SecH were incubated together and DSP is added, a band at  $\approx 43$  kDa appeared (indicated by an asterisk, lanes 3-6), corresponding to a SecH monomer and SecB monomer, indicating a heterodimeric crosslink. To confirm these bands were crosslinks, the samples were blotted against both SecB and SecH (Figure 15b). The four crosslinking bands cross reacted against antisera directed against SecB and SecH (lanes 3-6), apart from the first crosslinking band against the SecH antibody. The appearance of the bands against both antibodies suggested that the band is the crosslinking adduct. The strongest signal was seen in the sample containing Tween, suggesting Tween contributes to the interaction between SecB and SecH.

To determine the effect of the MBD on the interaction of the SecB and SecH, purified SecH $\Delta$ MBD was used to crosslink with SecB (Figure 15c). SecB and SecH together in the presence of DSP formed the same crosslinking adduct (lane 4). However, when the MBD was removed from SecH, the discernible crosslinking adduct disappeared (lane 5). This suggests that SecB and SecH interact *in vitro*, and the interaction is dependent on the SecH MBD.



Figure 15 - DSP-mediated crosslinking of SecB and SecH.

Proteins at their indicated concentrations were incubated at 25°C for 30 minutes before addition of 0.2 mM DSP. The reaction was allowed to proceed at room temperature for 1 hour before being quenched with 1  $\mu$ L of 50 mM Tris-HCL. Samples were mixed with SDS loading buffer and 10  $\mu$ L was loaded onto an SDS PAGE gel. **a**) Silver stain of DSP-mediated crosslinking between SecH and SecB. Asterisk represents running position of band containing possible crosslink. **b**) Western blot of band containing possible crosslink between SecB and SecH. The sample was blotted against SecB and SecH. **c**) Silver stain of DSP mediated crosslinking between SecH and SecH. **c**) Silver stain of DSP mediated crosslinking between SecB and SecH. **c**) Silver stain of DSP mediated crosslinking between SecB and SecH. **c**) Silver stain of DSP mediated crosslinking between SecB and SecH. **c**) Silver stain of DSP mediated crosslinking between SecB and SecH. **c**) Silver stain of DSP mediated crosslinking between SecB and SecH. **c**) Silver stain of DSP mediated crosslinking between SecB and SecH. **c**) Silver stain of DSP mediated crosslinking between SecB and SecH. **c**) Silver stain of DSP mediated crosslinking between SecB and SecH and SecHamBD. Asterisk represents running position of the protein band containing the SecB-SecH crosslink.

#### 4.2.4. SecB- SecH Interaction – Bacterial Two Hybrid Screen

To determine whether the SecH MBD could interact with SecB *in vivo*, a bacterial two hybrid screen was used to probe the interaction. SecB was fused to the T25 fragment of adenylate cyclase, and the interacting proteins to be investigated were expressed as a fusion protein with the T18 fragment of adenylate cyclase. The pUT18c plasmid alone, containing just the T18 fragment with no fusion protein, was used as a negative control. The SecA C-terminal tail (SecACTT), which is well established to interact with SecB, was used as a positive control. The plasmids were transformed into strain BTH101, expressed, and the resulting  $\beta$ -galactosidase activity was assayed (Figure 16).

Compared to the negative control, SecACTT displayed the strongest  $\beta$ -galactosidase activity with SecB (44 Miller Units). Full length SecH had the next strongest interaction with SecB (15 Miller Units), and this interaction compared to the negative control was statistically significant (p<0.01). The MBD alone had a  $\beta$ -galactosidase activity with similar intensity to full length SecH (14 Miller Units), and this interaction compared to the negative control was also statistically significant (p<0.05). The UPF0149 domain alone, i.e., SecH $\Delta$ MBD (12 Miller Units), showed a similar  $\beta$ -galactosidase activity compared to the control (11 Miller Units). This data suggests that *in vivo* SecH interacts with SecB, and the interaction is dependent on the MBD.



Figure 16- Bacterial two hybrid screen between SecB and SecH.

Each strain was cultured overnight and diluted 1:100 into LB and grown until exponential phase. Cultures were chilled on ice for 20 minutes and the OD<sub>600</sub> was recorded. 500 mL culture was mixed 1:1 with Z buffer. Lysis was induced by addition of 25  $\mu$ L chloroform and 0.1% SDS. The solutions were incubated at 28°C for 5 minutes at 200  $\mu$ L ONPG was added. The time taken for appearance of deep-yellow colour was measured and the reaction was quenched by addition of 500  $\mu$ L Na<sub>2</sub>CO<sub>3</sub>. Absorbances were then measured at 420 nm and the resulting miller units for each reaction was calculated. Error bars represented as 1 standard deviation. Statistical analyses used ANOVA to determine there was a statistically significant difference between the means (p<0.0001). Multiple unpaired t-tests, which corrects the p-value for multiple hypothesis testing were then used.

## 4.3. Discussion

The results in this chapter suggest that SecH interacts with SecB, *via* the MBD, *in vitro* and *in vivo*. The results also indicate that SecH binds to ribosomes, and the interaction is dependent on the MBD. These data suggest that SecH is a Sec protein.

This chapter first set out to demonstrate that SecH interacts with the ribosome. The cosedimentation experiments indicate that SecH, *via* the MBD, interacts with the ribosome. Removal of the MBD does not completely disrupt cosedimentation. This could indicate that other regions of SecH contact the ribosome, as is the case with SecA. In the future, repeating this experiment with the MBD alone would help to determine the contribution of the UPF0149 domain to cosedimentation. It may also be the case that a proportion of the purified ribosomes still contains nascent chains, which then may be bound by the UPF0149 domain of SecH. When investigating the effect of removing the MBD, SecH and SecH $\Delta$ MBD without ribosomes cosediment in very small amounts. This is likely due to the propensity of SecH to increasingly aggregate after purification and after very few freeze-thaw cycles.

This chapter also set out to investigate the interaction between SecB and SecH. MST experiments suggest SecH does bind to SecB. However, SecH was only able to detectably affect the thermophoretic property of SecB in the presence of 0.05% Tween, which was added due to concerns of surface adsorption to capillaries. Western blotting of the DSP-crosslinked SecB-SecH complex indicated the strongest signal came from the sample that contained 0.05% Tween. This suggests Tween stabilises the interaction between the two proteins.

MST also allowed for determination of K<sub>D</sub> for the SecB-SecH interaction, which was measured to be 130 nM. This affinity is in the expected range; *in vitro* the SecA- SecB K<sub>D</sub> $\approx$  1-2 µM, and when SecA is membrane-bound this increases to 30 nM (den Blaauwen et al., 1997; Hartl et al., 1990). This K<sub>D</sub> is notably higher than the SecB-SecA interaction in solution - 1.7 µM and even higher than the SecACTT-SecB interaction - 2.7 µM (Patel et al., 2006). In contrast, the bacterial two hybrid screen shows *in vivo* that the SecH-SecB interaction is much weaker than the SecACTT-SecB interaction. However, the bacterial two hybrid screen may not be a useful tool for determination of the strength of an interaction. Many factors can influence the interaction in this assay, including steric hindrance of the T18 and T25 fragments.

As described in Chapter 3, the amino acids involved in SecB binding in the SecA MBD are identical in SecH. Given that the  $K_D$  for the SecB-SecH interaction *in vitro* is higher than for SecA-SecB, it is possible that other amino acids from the UPF0149 domain contribute to the interaction. Indeed, in the bacterial two hybrid screen, the  $\beta$ -galactosidase activity in the SecH-SecB assay was slightly higher than in the SecHMBD- SecB assay, indicating the UPF0149 may contribute partly to this interaction.

Despite the apparent higher affinity of SecH for SecB *in vitro*, *in vivo* the bacterial two hybrid screen indicates the SecH interaction is much weaker than the SecACTT-SecB interaction. This may be explained by the SecHMBD-SecB model in Chapter 3. This model suggests that some of the interactions made by the SecA MBD are not made in the SecH MBD with SecB, which may contribute to the reduced strength of the interaction.

The data in this chapter suggest that the MBD of SecH, similar to SecA, can interact with the ribosome as well as SecB *in vitro* and *in vivo*. This indicates that SecH may play a role in Secsubstrate recognition and delivery of nascent substrates from the ribosome to SecB and SecA. That the MBD makes these interactions in both SecA and SecH may signify an existence of a subset of Sec proteins that play an as of yet unknown role in Sec-dependent translocation. The interactions with the ribosome and SecB place SecH in the Sec-dependent pathway. However, the role it plays in this pathway is unknown. In the next chapter, the function of the UPF0149 domain is investigated to shed light on the potential role of SecH as a Sec protein. Chapter 5

# Investigation of the Function of the

# UPF0149 Domain

All data was acquired and analysed by Max Wynne, with the exception of native mass spectrometry data which was acquired and analysed by Kish Adoni.

### 5.1. Introduction

The UPF0149 domain is present in YgfB- and YecA-family proteins. Though structures have been determined for two of these proteins (PDB: 4GYT, 1IZM), the ultimate function of the domain remains unknown (Galkin et al., 2004; Michalska et al., 2012).

SecH has an apparent effect on translocation. A *secH* knockout inhibits translocation of maltose binding protein (MBP), and overexpression of SecH increases the efficiency of MBP translocation. Further, overexpression of SecH in strains lacking *secB* inhibits translocation of MBP, suggesting SecH passes client proteins to SecB (Smith et al., 2020).

SecH has holdase chaperone activity. SecH prevents the aggregation of porcine citrate synthase *in vitro* (Smith et al., 2020). *In vivo*, SecH promiscuously binds to many proteins, suggesting it has chaperone activity (Smith et al., 2020). However, the mechanism of client binding and recognition is currently unknown.

SecH modulates the ATPase activity of SecA *in vitro*. In the presence of SecYEG and substrate protein, SecH significantly increases the SecA ATPase rate by almost 40% (Cranford-Smith, 2018). It is not currently clear whether this occurs due to a direct interaction of SecH with SecA, or if the chaperone activity of SecH functions to increase the concentration of substrate protein for SecA.

In this chapter, the function of the UPF1049 domain was investigated. Site specific crosslinking was used to capture the interaction of SecH with Sec substrates. *In vitro* assays were also used to probe the direct effect of SecH on the ATPase activity of SecA. Size exclusion chromatography, photo-crosslinking and native mass spectrometry were used to probe the oligomerisation of SecH. Structural modelling was used to predict the interaction interface of SecH oligomers as well as the interactions between SecH and SecA. This chapter provides evidence that SecH does not directly interact with SecA in the absence of SecYEG and substrate protein. This chapter also provides the first evidence of SecH oligomerising *in vivo*.

## 5.2. Results

#### 5.2.1. Site-Specific Crosslinking Protein Design

SecH, in vivo, promiscuously interacts with a large number of proteins (Smith et al., 2020). Further, the MBD of SecA binds to ribosomes to aid the interaction of SecA with nascent proteins, suggesting SecH may also interact with substrate proteins (Jamshad et al., 2019). In order to investigate the interactions that the UPF1049 domain makes, the unnatural amino acid p-benzoyl-l-phenylalanine (Bpa) was incorporated at different positions across the surface of SecH (Figure 17). Bpa is an unnatural amino acid that can form covalent bonds with CH, NH, SH and OH chemical groups, which is enhanced by UV light. (Schwarz et al., 2016). The structural model of SecH (Figure 8) was explored to select residues for incorporation of Bpa. Amino acids that are surface-exposed, near hydrophobic patches and residues on loops were considered for incorporation. In total, 11 amino acids were selected: W13, H25, W52, Y63, F80, N91, D129, F101, L146, M159 and L173 (Figure 18). At the N-terminus, W13 protrudes into the solvent from the first helix. H25 is present on the loop connecting helix 1 to helix 2. W52 is located in the middle of helix 3. Y63 sits in the long connecting loop between helix 3 and 4. F80 protrudes into the solvent from the middle of helix 4. Next, the hydrophobic N91 is situated at the C-terminal end of helix 4. F101 is located at the surface of helix 5 and protrudes into the solvent. Negatively charged D129 is located on the loop between helices 5 and 6. L146 is located at the end of helix 6. The connecting loop to helix 7 contains M159, and the middle of helix 7 holds L173.

The mutant proteins were designed to include an N-terminal 6x-His tag and SUMO tag and a C-terminal AviTag which allows for biotinylation of the protein (Jamshad et al., 2019). Bpa is incorporated at the amber codon, which would normally cause termination of translation. Bpa incorporation therefore allows translation of the remainder of the protein, including the C-terminal AviTag. Therefore, Bpa-incorporated proteins can be detected by western blotting using HRP-conjugated streptavidin, which binds to biotin.


**Figure 17 – Schematic of Bpa-incorporation into proteins.** 

The plasmid pSUP-BpaRS-6TRN expresses a mutant tRNA/tRNA synthetase from *M. jannaschii*, which recognises amber stop codons (TAG). Recognition of the amber stop mRNA codon UAG normally results in termination of translation. The suppressor tRNA, however, incorporates the unnatural amino acid Bpa, allowing for continuation of translation. Figure made using BioRender.



Figure 18- SecH structural model with residues chosen for Bpa incorporation.

SecH was modelled as described in Chapter 3. The structural model is presented with positions chosen for Bpa incorporation highlighted as spheres. Residues were chosen to effectively cover a large amount of the surface of the protein to increase the probability of capturing interacting surfaces of the protein. Positions showing possible crosslinks are coloured in blue, and positions showing no potential crosslinks are coloured in red. Model visualised in pyMOL.

### 5.2.2. SecH- SecB Photo-Crosslinking

The results in chapter 4 suggested that some amino acids in the UPF0149 domain of SecH may contribute to the interaction of SecH with SecB. In order to identify residues in the UPF0149 that may contact SecB, the Bpa-incorporated mutant proteins were purified using a HisTrap column and incubated with SecB to determine whether crosslinks form. Each mutant was incubated with SecB and exposed to UV light at 365 nm. These samples were blotted against biotin (Figure 19).

The majority of the mutant proteins were expressed, with a band visible at 25 kDa. However, H25, W52, F80 were not produced in detectable amounts. A crosslink between SecH and SecB would yield a crosslinking adduct at around 42 kDa as seen previously in section 4.2.3. Purified SecH<sup>W13Bpa</sup>, SecH<sup>Y63Bpa</sup>, SecH<sup>N91Bpa</sup>, SecH<sup>F101Bpa</sup>, SecH<sup>L146Bpa</sup> and SecH<sup>L173Bpa</sup> contained many bands at a wide range of different sizes suggesting these mutants are crosslinking to many different proteins, which may include SecB, and this occurs either during growth or during preparation and purification.



# Figure 19 – Western blot of Bpa-incorporated SecH mutants incubated with SecB and exposed to UV light.

 $2 \mu M$  SecB was incubated with each SecH mutant at a concentration of  $2 \mu M$  in binding buffer. 200  $\mu$ L of each incubation reaction was exposed to UV light at 365 nm on ice for 30 minutes in a round bottom- 96 well plate. 10  $\mu$ L of each sample was loaded onto an SDS-PAGE gel and then western blotted against biotin. From these experiments, 6 SecH mutants contained banding patterns that could possibly contain a SecB crosslink: W13Bpa, Y63Bpa, N91Bpa, F101Bpa, L146Bpa and L173Bpa. To further probe for a crosslink, these 6 mutants were incubated both with and without SecB and exposed to UV light to determine whether a SecB crosslinking band appears when crosslinking is induced (Figure 20).

Except for SecH mutant W13Bpa, all other mutants displayed the wide variety of bands that cross-react with biotin in the absence of SecB, indicating that the mutant proteins had already formed these crosslinks *in vivo*. The sizes of the crosslinking bands varied, suggesting the mutants are crosslinking to many different proteins. On addition of SecB, no SecH mutant contained an additional band at 42 kDa, suggesting that none of the SecH mutants crosslink to SecB.



### Figure 20- Anti-biotin western blot of potential SecB-crosslinking mutants.

 $2 \mu M$  of each mutant was incubated either alone or  $2 \mu M$  of SecB. 200  $\mu L$  of each sample was crosslinked by exposure to UV light at 365 nm for 20 minutes on ice. 10  $\mu L$  of each sample was loaded onto an SDS PAGE gel and then western blotted against biotin.

### 5.2.3. Photo-Crosslinking of SecH Mutant Lysates

Western blotting of purified SecH mutants suggested that the SecH mutants are forming crosslinks to many different proteins either during growth or purification. To confirm that the suspected crosslinking bands seen were occurring *in vivo*, and to identify the crosslinked proteins, lysates of cells producing mutant proteins were exposed to UV light to induce crosslinking. N91Bpa and F101Bpa mutants were chosen as they were the most consistent in showing a variety of crosslinking bands. Cells were grown and lysed as previously described in the presence of 1 mM Bpa and the cell lysates were exposed to UV light at 365 nm for 30 minutes on ice and then blotted against biotin (Figure 21). Both mutants had two distinct bands. The higher band at 45 kDa represents the expressed mutant protein with the SUMO tag (and 6x-His tag) still attached to the N-terminus and the AviTag, which is biotinylated, at the C-terminus. The smaller band is likely the mutant protein that has had the SUMO tag cleaved *in vivo* through non-specific cleavage.

Both the N91Bpa and F101Bpa samples contained faint bands at high molecular weights that reacted with anti-biotin antibody, indicating low levels of crosslinking without direct exposure to UV light. On exposure to 365 nm UV light, these bands became more prominent, especially with mutant N91Bpa. This indicates that both N91Bpa and F101Bpa crosslink to a variety of different proteins *in vivo* both spontaneously but largely on direct exposure to UV light.





Mutant proteins were grown as previously described in the presence of 1mM Bpa, 1 mM IPTG and appropriate antibiotics. Cells were lysed using a C3 Emulsiflex homogeniser and clarified by centrifugation to remove cellular debris. 200  $\mu$ L of each lysate was exposed to 365 nm UV light for 30 minutes on ice. 10  $\mu$ L of each sample was loaded on to an SDS PAGE gel before being blotted against biotin.

### 5.2.4. Identification of Crosslinked Proteins

Identifying the proteins that crosslink to the mutant SecH proteins could give insight into the function of the UPF0149 domain by elucidating its substrate specificity. As the mutant N91Bpa protein showed a large representative banding pattern, the purified protein was run on an SDS-PAGE gel, together with W13Bpa as a negative control. W13Bpa was used as a negative control as no crosslinking bands were seen (Figure 20). Sections of the gel where the banding patterns occurred were excised and sent for protein identification by mass spectrometry. 3 sections of the gel were excised containing crosslinking bands: 34-43 kDa, 43 kDa – 65 kDa and 65 kDa-100 kDa. Several constraints were used to filter the identified proteins in order to reduce the likelihood of false positive results and only identify crosslinked proteins: (i) Only proteins with 2 or more unique peptides were included (ii) Only proteins with a score sequest result of 10 or more were included (iii) the molecular weight from each gel slice was filtered to include only crosslinking proteins by subtracting the molecular weight of SecH (25 kDa), given that on an SDS PAGE gel, proteins that are covalently linked to SecH will resolve with a molecular weight that is 25 kDa greater than their actual molecular weight.

Mass spectrometry analysis identified 116 proteins in the N91Bpa sample compared to 29 proteins with W13Bpa (Appendix Table 7-Table 12), consistent with the wide range of adducts produced by N91Bpa *in vivo* (Figure 21). This suggested the N91Bpa mutant protein is crosslinking to more proteins compared to W13Bpa. These proteins identified in the N91Bpa sample were analysed for enrichments to determine similarities between them using the Database for Annotation, Visualisation and Integrated Discovery (DAVID). Gene Ontology (GO) was used to annotate these proteins based on their molecular function. This analysis found

that the proteins identified in the N91Bpa sample were enriched for non-specific functions including proteins with catalytic activity (p=0.0000002) and protein-binding proteins (p = 0.0000048) (Table 6). The identified proteins were also enriched for nucleotide-binding proteins. However, closer inspection of the proteins within the enriched categories did not reveal any common sequence or structural motif, consistent with previous data that *in vivo* SecH interacts promiscuously with a wide range of proteins (Smith et al., 2020). In addition, SecA was among the proteins identified in N91Bpa (11 peptides and 12 peptide spectral matches (PSMs)) and W13Bpa (5 peptides and 5 PSMs), suggesting that SecA interacts with SecH *in vivo*.

| Molecular Function<br>Term | Number of<br>Proteins | P-value   | Number of<br>Secretory<br>Proteins |
|----------------------------|-----------------------|-----------|------------------------------------|
| Catalytic Activity         | 30                    | 0.0000002 | 2                                  |
| Nucleotide Binding         | 34                    | 0.0000024 | 2                                  |
| Protein Binding            | 54                    | 0.0000048 | 9                                  |

### Table 6 – Molecular Function Enrichment of identified crosslinking adducts.

Proteins identified as potential crosslinking adducts were analysed using DAVID. The GO Molecular Function Database is an annotated database that contains GO terms for each protein, which describes its molecular function. Using this database, the GO terms for each of the inputted proteins were analysed to determine any enrichment. The above table contains the GO term, the number of proteins that are annotated with this term, the p value and the number of secretory proteins associated with each enrichment. The null hypothesis states that the inputted list of proteins being enriched for the particular GO term is due to random chance. The full list of identified proteins can be found in the Appendix (Table 7-Table 12).

### 5.2.5. SecH Pull-Down from Mutant Protein Lysates in Cells Lacking SecB

*In vivo*, SecH inhibits translocation in cells lacking SecB, suggesting that it may interact with Sec substrates before SecB. Therefore, to investigate the interaction of SecH with Sec substrates, *secB* was removed from the chromosome of *E. coli* BL21 to increase the probability of SecH interacting with Sec substrates. The SecH Bpa mutant proteins were expressed in the presence of 2% maltose to induce the expression of the mal regulon, including Sec substrate LamB. SecH Bpa mutants which showed the largest number of crosslinking adducts, SecH N91<sup>Bpa</sup> and SecH F101<sup>Bpa</sup>, as well WT SecH, were then overexpressed and exposed to UV light to induce crosslinking. The WT SecH and the two mutant SecH proteins were pulled down from the lysate using streptavidin-coated magnetic beads, which binds to the C-terminal biotin tag, and washed with binding buffer containing 2% Triton X-100 and western blotted against biotin (Figure 22).

The full-length tagged SecH resolved with a molecular weight of 45 kDa. In both the N91Bpa and F101Bpa samples, two bands with a strong signal resolved with approximate molecular weights of 100 and 150 kDa. Finally, a large band was present in the F101Bpa sample at 200 kDa. To identify the proteins in the bands, the 45, 100, 150 and 200 kDa bands present in the F101Bpa sample were excised and sent for identification by mass spectrometry (Appendix Table 13 - Table 16).

In the protein band corresponding to 45 kDa, the most abundant protein identified was SecH (6 Peptides, 15 PSMs). Elongation factor Tu (43 kDa – 2 peptides, 2 PSMs), Cysteine desulfurase

(45 kDa – 2 peptides 2 PSMs), 3-dehydroquinate synthase (39 kDa- 1 peptides, 1 PSM) and transcription termination factor Rho (47 kDa – 1 peptide 1 PSM) were also present in trace amounts in this band.

In the 100 kDa band, SecH was the most abundant protein, with 4 peptides identified and 18 PSMs. Bifunctional aspartokinase/homoserine dehydrogenase (89 kDa) and Glyceraldehyde-3-phosphate dehydrogenase (36 kDa) were also identified, however these two proteins had a significantly lower abundance, with 2 peptides and 2 PSMS, and 1 peptide with 1 PSM respectively. If the excised band contained a SecH-protein crosslink, it would be expected that the crosslinked protein would be found in a similar abundance to SecH. This suggests that the excised band at 100 kDa is likely a SecH dimer.

The protein band excised at 150 kDa also contained SecH (4 peptides, 13 PSMs). The only other protein identified was Apartokinase (49 kDa). This protein was also at significantly lower abundance, with only 1 peptide identified and 1 PSM, indicating it is likely a contaminating protein. The protein band that resolved at 200 kDa contained SecH (4 peptides, 6 PSMs). The other protein present was Elongation Factor Tu. This protein was also at significantly lower abundance (2 peptides and 2 PSMs). Taken together, this suggests that the excised band at 150 kDa and 250 kDa contain higher order SecH multimers, consistent with the molecular weight of a trimer and tetramer.





Mutant proteins were grown as previously described in the presence of 1mM Bpa, 1 mM IPTG and appropriate antibiotics. Cells were lysed using a C3 Emulsiflex homogeniser and clarified by centrifugation to remove cellular debris. Biotinylated SecH and crosslinked proteins were pulled down using streptavidin beads. 50  $\mu$ L beads were washed in pull-down binding buffer three times, before being incubated with 5 mL lysate for 30 minutes. The beads were then washed three times and bound proteins were eluted by resuspension in 50  $\mu$ L 1X SDS buffer and were boiled for 5 minutes. Samples were separated by SDS PAGE and western blotted against biotin.

### 5.2.6. SecH Co-Purification from Mutant Protein Lysates

The data in the previous section suggested that in the absence of SecB, both F101Bpa and N91Bpa crosslink to form higher order SecH oligomers. However, pull-down assays in the presence of 2% Triton disrupts the interaction of copurifying proteins with the SecH mutant proteins. To investigate which proteins copurify with SecHF101<sup>Bpa</sup> and SecHN91<sup>Bpa</sup> in the absence of SecB, these mutant proteins were pulled down from lysates of cells lacking SecB as previously described, with binding buffer that did not contain Triton and analysed by mass spectrometry (Appendix Table 17-Table 19). In the WT SecH sample, where SecH oligomers had not been stabilised, WT SecH copurified with 176 proteins (Table 17). In contrast, N91Bpa copurified with 474 proteins (Table 18) and F101Bpa copurified with 310 proteins (Table 19). This suggests that oligomeric SecH interacts more strongly with proteins than WT SecH.

The identified copurifying proteins were analysed for enrichments by DAVID to investigate the molecular function of the copurifying proteins (Figure 23). The proteins copurifying with WT SecH, SecHN91<sup>Bpa</sup> and SecHF101<sup>Bpa</sup> were all found to be significantly enriched for ribosomal proteins, consistent with results from Chapter 4 that SecH binds to the ribosome. Further, all samples were enriched for RNA binding proteins. In all cases, the majority of the RNA-binding proteins were ribosomal subunit proteins. Indeed, WT SecH and SecHF101<sup>Bpa</sup> were both enriched for rRNA binding proteins. These results suggest in the absence of SecB, SecH copurifies strongly with ribosomes.

| WT | SecH |
|----|------|
|----|------|

| Molecular Function Term            | Number of Proteins | P-value               | Number of<br>Secretory Proteins |  |  |  |
|------------------------------------|--------------------|-----------------------|---------------------------------|--|--|--|
| Protein-binding                    | 116                | 3.9*10 <sup>-19</sup> |                                 |  |  |  |
| Structural constituent of ribosome | 25                 | 1.1*10 <sup>-16</sup> | 26                              |  |  |  |
| RNA binding                        | 37                 | 1.9*10 <sup>-14</sup> |                                 |  |  |  |
| rRNA binding                       | 22                 | 6.0*10 <sup>-13</sup> |                                 |  |  |  |
| SecHN91 <sup>Bpa</sup>             |                    |                       |                                 |  |  |  |

| Molecular Function Term   | Number of Proteins | P-value               | Number of<br>Secretory Proteins |  |  |
|---------------------------|--------------------|-----------------------|---------------------------------|--|--|
| Ribosomal Protein         | 40                 | 9.6*10 <sup>-26</sup> |                                 |  |  |
| Ribonucleoprotein         | 40                 | 2.7*10 <sup>-25</sup> |                                 |  |  |
| rRNA-binding              | 34                 | 1.5*10 <sup>-19</sup> | 47                              |  |  |
| RNA binding               | 54                 | 3.2*10 <sup>-19</sup> |                                 |  |  |
| SecHF101 <sup>Bpa</sup>   |                    |                       |                                 |  |  |
| Molecular Function Term   | Number of Proteins | P-value               | Number of<br>Secretory Proteins |  |  |
| Protein-binding           | 148                | 1.4*10 <sup>-20</sup> |                                 |  |  |
| Identical protein binding | 74                 | 1.2*10 <sup>-12</sup> |                                 |  |  |
| Structural constituent of | 24                 | 1.5*10 <sup>-12</sup> | 52                              |  |  |

1.1\*10-9

### Figure 23 - Molecular Function Enrichment of identified copurifying proteins.

36

ribosome

**RNA** binding

Identified copurifying proteins were analysed using DAVID to identify enrichments. Using this database, the GO terms for each of the inputted proteins were analysed to determine any enrichment. The above table contains the GO term, the number of proteins that are annotated with this term the p value and the number of secretory proteins copurifying with each mutant. The null hypothesis states that the inputted list of proteins being enriched for the particular GO term is due to random chance. The full list of proteins can be found in the appendix (Table 17 - Table 19).

Cells were grown in the presence of 2% maltose to induce expression of Sec substrate LamB. It was found that LamB was one of the most strongly enriched proteins that copurified due to cross-linked stabilisation of SecH multimers. LamB copurified more strongly with both N91Bpa (9 peptides and 10 PSMs) and F101Bpa (7 peptides and 9 PSMs) compared to WT SecH (1 peptide and 1 PSM), suggesting LamB interacts more strongly with oligomerised SecH in the absence of SecB.

To confirm these mass spectrometry results, the SecH pull-down samples were western blotted using antibodies directed against LamB (Figure 24). The LamB signal was significantly stronger in the N91Bpa and F101Bpa samples compared to WT SecH. This suggests that LamB copurifies with SecH and may do so more strongly with oligomerised SecH.



# Figure 24 – Western blot against LamB of proteins copurifying with SecH mutant proteins in cells lacking SecB.

Strains were grown as previously described in the presence of 1mM Bpa, 1 mM IPTG, 2% maltose and appropriate antibiotics. Cells were lysed using a C3 Emulsiflex homogeniser and clarified by centrifugation to remove cellular debris. Biotinylated SecH and copurifying proteins were pulled down using streptavidin beads. 50  $\mu$ L beads were washed in pull-down binding buffer lacking Triton three times, before being incubated with 5 mL lysate for 30 minutes. The beads were then washed three times and bound proteins were eluted by resuspension in 50  $\mu$ L 1X SDS buffer and were boiled for 5 minutes. Samples were separated by SDS PAGE and western blotted against the SecH increases the ATPase activity of SecA in translocation-coupled ATPase assays, suggesting SecH may interact with SecA. SecA copurified in similar abundance with both WT SecH and the two SecH mutant proteins, suggesting SecH interacts with SecA *in vivo* in the absence of SecB. To confirm these results, the SecH-pull down samples were blotted using antibodies directed against SecA (Figure 25). The strongest signal was detected at 100 kDa in the N91<sup>Bpa</sup> sample both before and after exposure to UV light. There was a weaker signal detected in the WT SecH sample, and no signal detected in the F101Bpa sample. This indicates SecA copurifies with WT SecH, and more strongly copurifies with N91Bpa, suggesting SecA interacts with SecH *in vivo*.



## Figure 25 - Western blot against SecA of proteins copurifying with SecH mutant proteins in cells lacking SecB.

Mutant proteins were grown as previously described in the presence of 1mM Bpa, 1 mM IPTG, 2% maltose and appropriate antibiotics. Cells were lysed using a C3 Emulsiflex homogeniser and clarified by centrifugation to remove cellular debris. Biotinylated SecH and copurifying proteins were pulled down using streptavidin beads. 50  $\mu$ L beads were washed in pull-down binding buffer lacking Triton three times, before being incubated with 5 mL lysate for 30 minutes. The beads were then washed three times and bound proteins were eluted by resuspension in 50  $\mu$ L 1X SDS buffer and were boiled for 5 minutes. Samples were separated by SDS PAGE and western blotted against SecA.

### 5.2.7. Size Exclusion Chromatography

To investigate the possibility that SecH oligomerises, size exclusion chromatography was used (Figure 26). Size exclusion chromatography is used to separate proteins in a solution by their size. Within a size exclusion column, there is a porous resin consisting of beads. Smaller proteins are able to diffuse into these beads whereas larger proteins cannot. As a result, larger proteins have a smaller volume to navigate and therefore elute earlier, whilst smaller proteins travel through the beads and elute later. If SecH dimerises, this complex (50 kDa) would have a similar size to SecB, which forms a 68 kDa tetramer, and could be detected using size exclusion chromatography.

Purified SecH was run through a Superdex 200 column, represented as a cyan trace (Figure 26). SecH eluted as a larger peak at around 16 mL, with a peak that spans from 16 mL – 14 mL. Western blotting of the fractions corresponding to both peaks with antisera directed against SecH indicated both peaks contain SecH. This peak suggests that in solution SecH adopts both monomeric and dimeric conformations.

Next, purified SecB, which is a 68 kDa tetramer in solution, was passed through the column, represented as magenta trace. The protein eluted as a sharp peak at roughly 14 mL. This peak eluted at a similar volume to the broad SecH peak, suggesting SecH forms a dimer with a similar, but slightly smaller molecular weight, which is consistent with a SecH dimer (50 kDa).



Figure 26 - SecB and SecH size exclusion chromatogram.

Purified proteins were diluted to desired concentrations in 20 mM HEPES, 25 mM KOAc<sub>2</sub>, 10 mM Mg (OAc)<sub>2</sub> 100  $\mu$ L of .70  $\mu$ M SecB and 17.5  $\mu$ M SecH were run through a Superdex 200 10/300 GL column at a flow rate of 0.4 mL.min<sup>-1</sup>. Fractions were collected and diluted in SDS loading buffer. 15  $\mu$ L of each sample was loaded on an SDS PAGE gel and subsequently western blotted. SecB represented by a magenta trace and SecH is represented by a cyan trace.

### 5.2.8. Native Mass Spectrometry

The results in the previous section suggested that SecH dimerises. To confirm that SecH dimerises in solution, purified SecH was analysed by native mass spectrometry (MS). By maintaining proteins in their native conformation, native mass spectrometry can be used to analyse intact proteins and the non-covalent interactions they make.

SecH was identified by calculating the charge states for each peak, allowing calculation of the mass corresponding to each charge state distribution. Under the conditions used for native MS, the most abundant species had a molecular weight consistent with monomeric SecH (Figure 27). However, dimeric SecH was also present in detectable quantities indicating that SecH does form homodimers in solution with low affinity between protomers (Figure 28).



Figure 27- Native Mass spectrum of purified SecH.

 $5 \mu$ M SecH in 100 mM ammonium acetate was analysed by native mass spectrometry. The large peaks correspond to different charge states of SecH monomers. The monomeric charge states of SecH, between m/z 2400 and 3200 are highlighted in red, and the dimeric charge states of SecH, between m/z 3400 and 4100are highlighted in blue. Small amounts of SecH dimers are detectable.



Figure 28 - Native Mass spectrum of SecH dimers.

 $5 \,\mu$ M SecH in 100 mM ammonium acetate was analysed by native mass spectrometry. The peaks corresponding to SecH dimers between m/z 3300 and 4100 are poorly resolved due to low abundance but indicate presence of SecH dimers. The charge states of each peak are highlighted in blue.

### 5.2.9. SecH-Mediated Stimulation of ATPase Activity

The finding that SecH copurifies with SecA, and other ATPases, suggested that it might enhance the ATPase activity of SecA by interacting with it directly. To investigate this possibility, an NADH-coupled ATPase was used to determine the effect of SecH on the ATPase activity of SecA. This assay couples ATP hydrolysis to pyruvate kinase, which generates ATP from ADP, converting phosphoenolpyruvate to pyruvate. Lactate dehydrogenase catalyses the conversion of pyruvate to lactate, whilst oxidising NADH to NAD+. The oxidation of NADH can be measured spectrophotometrically by the decrease in absorbance at 340 nm (Figure 29).

SecH and SecH $\Delta$ MBD were added at 2:1, 1:1, and decreasing stoichiometries with SecA to probe its effect on the ATPase activity of SecA (Figure 30). SecA alone was measured and used as the control. In the presence of both WT SecH and SecH $\Delta$ MBD, there was no discernible difference in the specific activity of SecA at any stoichiometry. There is no significant different between the means of the different samples (One-way ANOVA p>0.05).



### Figure 29- Reaction scheme of NADH-coupled ATPase assay.

SecA ATP hydrolysis generates ADP, which is used by pyruvate kinase to catalyse the formation of pyruvate from phosphoenolpyruvate. Lactate dehydrogenase then catalyses the reduction of pyruvate to lactate by oxidising NADH to NAD+. The reaction is followed spectrophotometrically as NADH absorbs light at 340 nm.



Figure 30 – ATPase assays of SecA in the presence of SecH.

a

Reactions were run in the presence of TKM buffer (20 mM Tris-HCl, 50 mM KCl, 2 mM MgCl<sub>2</sub> and 0.05% Tween). Reactions were made up with 500  $\mu$ M phosphoenolpyruvate, 200  $\mu$ M NADH, 20 units/mL lactate dehydrogenase and 100 units/mL pyruvate kinase and 1  $\mu$ M SecA and varying concentrations of SecH. Reactions were started by addition of 1 mM ATP and absorbance at 340 nm was immediately measured at 10 second intervals. Linear regressions were used to determine the rate from each individual experiment. Each rate was used to calculate the specific activity of SecA. Specific activities were normalised to SecA alone. Data is representative of 9 independent experiments. Error bars represent 1 standard deviation.

### 5.2.10. SecH -Mediated Stimulation of Nucleotide Exchange

Nucleotide exchange, which occurs after ATP hydrolysis, is the rate limiting step in the SecA ATPase cycle (Fak et al., 2004). Therefore, the inability of SecH to increase the ATPase activity of SecA suggested that it was not a nucleotide exchange factor for SecA. However, in many cases nucleotide exchange factors may increase the exchange rate for both ADP and ATP, raising the possibility that the increased rate of exchange of ATP in the presence of SecH could compete with ATP hydrolysis. This may explain the small decrease in ATPase activity caused by SecH $\Delta$ MBD.

The effect of SecH on the rate of nucleotide exchange was investigated by the use of fluorescent nucleotide analogue MANT-ADP. MANT-ADP binding to proteins causes an increase in Förster Resonance Energy Transfer (FRET) at 440 nm. Dissociation of MANT-ADP can be measured spectrophotometrically by following the decrease of this fluorescence on the addition of ATP.

Firstly, the dissociation rate of MANT-ADP was measured with SecA alone and in the presence of WT SecH (Figure 31a). The dissociation constant of MANT-ADP with SecA alone was  $0.050 \text{ s}^{-1}$ , compared with  $0.051 \text{ s}^{-1}$  in the presence of SecH. There was no significant difference between the means of the two groups (two tailed t-test, p> 0.05).

Next, the dissociation of MANT-ADP was measured with SecA alone and in the presence of SecH $\Delta$ MBD to determine how the UPF0149 domain alone impacts MANT-ADP dissociation (Figure 31b). The dissociation constant of MANT-ADP with SecA alone in these experiments was 0.026 s<sup>-1</sup>. In the presence of SecH $\Delta$ MBD, the dissociation constant was 0.030 s<sup>-1</sup>. Again, there was no significant difference between the means of the two groups (two tailed t-test, p>0.05).

These results suggest that SecH does not directly modulate the affinity of SecA for MANT-ADP.



Figure 31 -Fluorescence of MANT-ADP dissociation from SecA.

0.5  $\mu$ M SecA was incubated either alone or with 0.5  $\mu$ M of a SecH variant in the presence of 1.2  $\mu$ M MANT-ADP, buffered with TKM buffer. Measurements were taken in a quartz cuvette maintained at 25°C. Tryptophans were excited at 295 nm and the emission of MANT-ADP was measured at 450 nm, both with a 5 nm bandpass. **a**) Left panel represents dissociation curve of MANT-ADP in the presence of only SecA. Right panel represents dissociation curve of MANT-ADP in the presence of SecA and WT SecH. **b**) Right panel represents dissociation curve of MANT-ADP in the presence of SecA. Left panel represents dissociation curve of SecA and SecH $\Delta$ MBD. Data includes 3 replicates for WT SecH experiments and 5 replicates for SecH $\Delta$ MBD.

### 5.2.11. Structural Models of SecH Oligomers

The size exclusion experiments, together with native mass spectrometry data and photocrosslinking data all suggest that SecH forms dimers and possibly higher order oligomers. To investigate whether this was structurally plausible, AlphaFold2 Multimer was used to model the structure of SecH oligomers. SecH was modelled as a dimer, with 4 of the 5 resulting models predicting the same dimerisation interface (Figure 32c). In this model, helix 3 of protomer 1 (cyan) makes many interactions with helix 4 of protomer 2 (green). This includes hydrogen bonds of E50 of helix 3 in one protomer with T73 of helix 4 in the second protomer, as well as hydrophobic interactions of A60 of helix 3 with the carbon atoms in the side chain of E69. The same interactions are made with the helix 3 of protomer 2 and helix 4 of protomer 1. In UPF0149 domain protein lpg0076, dimerisation also occurs with helix 3, however this helix interacts with helix 5 of the second protomer (Figure 32b) (PDB: 4GYT) (Michalska et al., 2012). In the UPF0149 domain protein from *Haemophilus influenzae*, dimerisation occurs via helices 6 and 7 of two protomers (Figure 32a). Figure 32d shows the SecH dimer model with amino acids N91 and F101 highlighted in green. When Bpa is incorporated at these positions in the absence of SecB, crosslinks form between the two protomers forming stabilised dimers in vivo (section 5.2.5).



Figure 32- Structural models of UPF1049 dimers.

a) Model of UPF0149 domain-containing protein YgfB from *Haemophilus influenzae* (PBD:11ZM). Each protomer coloured by rainbow.
b) Model of UPF0149 domain-containing protein YgfB from *Legionella pneumophila* (PBD:4GYT). Each protomer coloured by rainbow.
c) Model of two SecH protomers forming a homodimer. Each monomer coloured by rainbow.
d) Model of two SecH protomers forming a homodimer. Positions showing crosslinks are coloured in green and those that did not are coloured in red. Models visualised in pyMOL.

To investigate the structure of higher order oligomers, AlphaFold2 was used to model a SecH trimer and tetramer. In all models of a SecH trimer, 3 protomers of SecH were not predicted to contact each other at the same time, suggesting SecH may form tetrameric complexes by interacting as a 'dimer of dimers'. Indeed, in the AlphaFold models of tetrameric SecH, SecH forms a 'dimer of dimers', with a two-fold symmetry (Figure 33a). The interface between the two dimers consists of packing between helix 6 and 7 of one protomer on the first dimer with another protomer on the second dimer. This interface between two UPF0149 domain protomers occurs in protein HI0807 in *H. influenzae* (Figure 32c). Notably, the surface between the two dimers contains many negatively charged amino acids. This suggests positively charged amino acids may bind in this region, causing dissociation of tetramers into dimers. Figure 33b shows the locations of positions 91 and 101, in which Bpa was incorporated and resulting crosslinking formed stabilised SecH homotetrameric complexes in the absence of SecB (section 5.2.5). Position 91 is located at interface of tetrameric SecH and is in close proximity to the SecH protomer. Position 101, though further away from the tetramer interface, is in close proximity to the SecH



### Figure 33 – Structural model of SecH tetramers.

AlphaFold2 Multimer model of SecH tetramer, formed by two interacting dimers. **a**) Each monomer is coloured by rainbow. **b**) AlphaFold2 Multimer model with each promoter coloured separately. Positions showing crosslinks are coloured in green and those that did not are coloured in red. Models were visualised in pyMOL. The results in section 5.2.5 suggested that SecH mutants F101Bpa and N91Bpa crosslink to SecH protomers to form dimeric complexes. Using AlphaFold2 SecH with the C-terminal 6xHis and SUMO tag, together with the N-terminal biotin tag was modelled (Figure 34). In this model, the asparagine at position 91 is adjacent to the SUMO tag from the second protomer, which would allow for photo-crosslinking of Bpa. Bpa-incorporated proteins can crosslink to amino acids over distances up to 20 Å (Forne et al., 2012). The side chain of phenylalanine at position 101 faces the second protomer and is approximately 20 Å away from the closest side chain on the second protomer. Accounting for the size of Bpa, which spans at least 10 Å, the model is consistent with both SecHN91<sup>Bpa</sup> and SecHF101<sup>Bpa</sup> protomers crosslinking to form dimeric complexes.



Figure 34 - AlphaFold2 model of dimeric SecH with SUMO, 6x-His and AviTag.

Two SecH promoters modelled by AlphaFold2 Multimer. Two protomers are coloured in blue and green. The F101 residues are coloured in magenta and the N91 residues are coloured in red. The distance from amino acid F101 to the closest amino acid on the second protomer is measured from the  $\alpha$ -carbon of F101 to the closest atom on the second promoter. Model visualised in pyMOL.
#### 5.2.12. SecH-SecA Structural Model

The results in the section 5.2.4 suggested that SecH interacts with a variety of proteins. SecH also increases the ATPase activity of SecA in the presence of SecYEG and preprotein. Taken together, these data suggest SecH could directly interact with SecA. To investigate the potential interaction with SecH and SecA, AlphaFold2 Multimer was used to model the interaction between the two proteins (Figure 35). Monomeric and dimeric SecH were both modelled with SecA. Two SecH protomers were not predicted by AlphaFold2 to both interact with SecA. The AlphaFold2 models of monomeric SecH with SecA predict a SecH monomer makes the majority of its interactions with NBD2 of SecA (Figure 35b). Some contacts are also made with the HSD and to a lesser extent NBD1.

The  $\beta$ -hairpin motif that precedes helix 5 of SecH contacts the intersection of NBD2 and the HSD (Figure 35c). R104 of SecH is in close contact with the H620 of NBD2 and P621 at the N-terminus of the HSD. This arginine may form like-charged interactions with H620 if the histidine is protonated (Heyda et al., 2010). In this model, the nitrogen atom of the arginine side chain interacts with the nitrogen on the main chain of P621. F101, which was replaced with Bpa, is adjacent to this arginine residue in SecH. However, the model predicts that F101 faces away from SecA. It is not possible to model the structure with Bpa instead of natural amino acids.

Amino acids from the linker region between helices 1 and 2 as well as the linker region between helices 6 and 7 in SecH also contact SecA (Figure 35d). E150 of SecH forms a salt bridge between the anionic carboxy group of glutamic acid and the cationic ammonium group of SecA K609 in NBD2. F153 of SecH is in close proximity to form interactions with M606 of SecA. Methionine interactions with aromatic residues frequently stabilise protein structures (Weber and Warren, 2019). Another salt bridge is formed between D24 of SecH and R602 of SecA. R602 of SecA contributes to ribosome binding, interacting with 23S RNA H7 (Wang et al., 2019). Y63 was replaced by Bpa in crosslinking experiments, and this residue is present on a flexible loop between helices 4 and 5. This residue sits in close proximity to the SecA-SecH interaction surface. This model suggests SecH interacts with SecA in close proximity to the substrate-binding region of SecA, suggesting SecH could pass substrate protein to SecA.



Figure 35 – AlphaFold2 structural modelling of SecH with SecA.

Using AlphaFold2 Multimer, the SecA and SecH sequences were used to model their interaction. **a**) AlphaFold2 model of SecA coloured by domain. **b**) Overall view of model with SecH (blue) bound to SecA. **c**) Image of residue interaction of SecH with the N-terminus of the HSD. **d**) View of SecH residues interacting with helix of NBD2. Residues replaced by Bpa in crosslinking experiments in SecH highlighted in yellow. NBD1 – Purple, NBD2 – Green, HSD- orange, HWD – Yellow, 2HF- Cyan. Models visualised in pyMOL.

### 5.3. Discussion

This chapter set out to investigate both the function and mechanism of the UPF0149 domain of SecH. Photo-crosslinking experiments suggested that the UPF1049 domain *in vivo* interacts promiscuously with many proteins. Together with evidence that SecH increases the translocation-coupled ATPase rate of SecA, it was reasoned SecH may play a role in directly altering the ATPase cycle of SecA. NADH-coupled ATPase assays and MANT-ADP dissociation assays indicate SecH does not directly alter the ATPase rate of SecA or alter its rate of ADP release. Pull down assays of photo-crosslinked SecH suggest that *in vivo*, in the absence of SecB, SecH oligomerises. Oligomerisation of SecH is also evidenced by size exclusion experiments and native mass spectrometry. Copurification analysis of SecH in the absence of SecB also suggests SecH interacts with Sec substrate LamB and SecA.

11 mutant SecH proteins containing photo-inducible crosslinker Bpa were purified in order to investigate the protein: protein interactions of SecH. Mass spectrometry analysis of overexpressed N91Bpa suggested that SecH interacts with a wide variety of proteins. This data is consistent with SecH having molecular chaperone activity.

SecH increases the ATPase rate of SecA in translocation-coupled ATPase assays. However, the data in this chapter suggest SecH does not do this in the absence of SecYEG and substrate protein. This raises the possibility that SecH passes substrate protein to SecA, which then increases the SecA ATPase rate. In the AlphaFold2 model of the SecH -SecA complex, SecH interacts with SecA adjacent to the substrate binding domain, suggesting SecH could pass substrate protein directly to SecA.

Photo-crosslinking experiments, size exclusion chromatography and native mass spectrometry experiments all suggest that SecH oligomerises. Size exclusion chromatography analysis suggests that a proportion of SecH elutes at a similar volume as SecB (68 kDa), suggesting that SecH dimerises. Native spectrometry analysis of purified SecH also identified monomeric and dimeric SecH. Photo-crosslinking experiments suggest that *in vivo*, SecH forms oligomers which may include trimers and tetramers. Western blotting of the pulled-down photo-crosslinked SecH mutants in the absence of SecB (Figure 22) indicates a greater proportion of SecH is in an oligomeric form compared to native mass spectrometry, suggesting that substrate binding promotes oligomerisation of SecH. These SecH mutants, however, contained an N-terminal SUMO tag. Structural modelling of dimeric SecH with the SUMO tag indicated that the SUMO moiety could be involved in the dimer interface. This suggests the SUMO tag may influence the oligomerisation of SecH.

Structural modelling of SecH oligomers predict a dimer interface that is consistent with highresolution structural models of known UPF0149 domain proteins. The modelled SecH dimerisation interface is similar to the determined structure of the UPF0149 domain protein from *Legionella pnuemophilia*, with helix 3 of each protomer at the site of dimerisation. Pull down assays suggested SecH may form tetramers. Structural models of SecH tetramers suggest this may be plausible. In the predicted tetramer interface, helix 6 and 7 of one protomer interact with helix 6 and 7 on the corresponding dimer, which is also seen in the dimer interface of UP0149 domain -containing protein from *Haemophilus influenzae*. The results in this chapter suggest that *in vivo* SecH oligomerises, and oligomeric SecH may interact more strongly with other proteins, including Sec substrate LamB. The results in this chapter suggest that SecH does not directly alter the ATPase activity of SecA, but SecH does interact with SecA *in vivo*. Structural modelling suggests that SecH *via* the UPF1049 domain, can also directly interact with SecA.

# Concluding Remarks

In this thesis, the structure and function of SecH was investigated. The results presented suggest that the MBD of SecH interacts with both SecB and ribosomes. The results also suggest that SecH may interact with SecA. Results in this thesis also suggest that SecH in solution is in both monomeric and dimeric states and forms higher-order complexes *in vivo*. Taken together, the results presented in this thesis suggest that SecH is a novel component of the Sec machinery.

### 6.1. SecH in the Sec pathway

The last component of the Sec machinery to be discovered was YidC, more than 20 years ago. This study indicates SecH, *via* its SecA-like MBD, interacts with components of the Sec pathway. The identification of a novel Sec protein, and a domain that interacts with components of the Sec pathway, suggests there may be even more unidentified accessory Sec proteins. Indeed, in *E. coli*, protein of unknown function YchJ also contains the SecA-like MBD at its C-terminus. At the N-terminus it contains another domain of unknown function UPF0225, suggesting the existence of other unidentified Sec proteins with unknown functions.

The results in this study indicate that SecH binds to both ribosomes and SecB *via* the MBD. Therefore, it possible that SecH interacts with Sec substrates as they are emerging from the ribosome and passes them to SecB. Consistent with this, overexpression of SecH decreases translocation efficiency in the absence of SecB, indicating SecH interacts with substrates and passes client to protein to SecB (Smith et al., 2020).

Previous data also indicates that SecH interacts with SecA, increasing the translocation-coupled ATPase activity of SecA. However, *in vitro* assays suggest that there is no functional interaction between SecA and SecH in the absence of substrate protein or SecYEG. This indicates that as

well as passing substrate to SecB, SecH may also pass substrate protein directly to SecA which would explain the increase in ATPase activity of SecA in the presence of SecH, SecYEG and preprotein, but not in the presence of only SecH. Structural models generated in this thesis suggest that SecH interacts with SecA *via* the NBD2, close to the preprotein binding region, suggesting it is structurally feasible for SecH to pass preprotein directly to SecA.

The substrate specificity of SecH remains unknown. Consistent with many molecular chaperones, SecH has been found to promiscuously bind to many proteins *in vivo* (Smith et al., 2020). This study was unable to directly identify a specific subset of secretory proteins that SecH interacts with. However, mass spectrometry analysis of proteins copurifying with SecH in strains with a Sec defect indicates that SecH copurifies strongly with Sec substrates including LamB and OmpF. An investigation into gene expression in *S. typhimurium* found that the expression of SecH under anaerobic shock increases 4-fold (Kroger et al., 2013). Therefore, SecH may bind to a specific subset of secretory proteins that are expressed under anaerobic conditions. To investigate this, future studies could use ribosome profiling under different conditions, including anaerobic stress, to identify the substrate pool of SecH.

### 6.2. Mechanism of SecH

The UPF0149 domain remains a domain of unknown function, despite the presence of two high-resolution structural models of this domain. Both of these structural models indicate that the UPF0149 domain has a preference for forming homodimeric complexes (Galkin et al., 2004; Michalska et al., 2012). However, initial studies of SecH *in vitro* found that purified SecH is principally monomeric (Cranford-Smith, 2018). This study provides evidence that suggests the

UPF0149 domain of SecH dimerises in solution and forms higher order oligomers *in vivo*. In a strain lacking *secB*, SecH formed oligomeric complexes consistent with dimers and tetramers. The absence of *secB* causes an accumulation of Sec substrates in the cytoplasm. The formation of higher order oligomers of SecH in this strain suggests that SecH may bind to client proteins in an oligomeric form.

In contrast, modelling of SecH in complex with SecA and SecB suggests SecH interacts with both proteins in a monomeric form. This indicates a potential dimer-monomer transition. In the future, the structure of SecH could be investigated using cryo-electron microscopy to analyse the structure of a complex of SecH in the presence of unfolded protein as well as SecA and SecB. Using Cryo-electron microscopy would be particularly advantageous in the case of SecH as it has proven difficult to crystalise, likely due in part to the flexibility of the MBD. Experiments in this thesis probing the oligomerisation of SecH, including size exclusion chromatography and native mass spectrometry, could be repeated with SecH in the presence of Sec substrate to investigate the effect of substrate protein on the oligomerisation of SecH.

6 of the Bpa-incorporated SecH mutants showed large banding patterns when western blotted against Biotin after purification, suggesting these positions may be substrate binding regions. However, as shown in Figure 18, these residues are largely spread across the face of SecH, suggesting SecH may not have one substrate binding region. It may be the case that SecH interacts with substrates in a similar way to SecB, with a small motif that is repeated across the primary sequence of the protein. In the future, after identification of SecH substrates, a peptide scan could be used to characterise a potential SecH binding motif – as was used to identify the SecB substrate binding motif (Knoblauch et al., 1999).

Taken together, the data in this thesis demonstrates that the MBD of SecH binds to SecB and the ribosome. The results also suggest that SecH copurifies with many proteins *in vivo*, consistent with results that SecH has molecular chaperone activity. In strains with a Sec defect, SecH copurifies with Sec substrates as well as SecA, suggesting it plays a role in the Sec-dependent translocation pathway. The results also indicate that SecH oligomerises both *in vitro* and *in vivo*. These results have investigated the function, structure and mechanism of SecH and provides a foundation for further structural and functional elucidation of SecH in the future.

# Bibliography

- Allen, W.J., R.A. Corey, P. Oatley, R.B. Sessions, S.A. Baldwin, S.E. Radford, R. Tuma, and I. Collinson. 2016. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. *Elife*. 5.
- Allen, W.J., R.A. Corey, D.W. Watkins, A.S.F. Oliveira, K. Hards, G.M. Cook, and I. Collinson. 2022. Rate-limiting transport of positively charged arginine residues through the Secmachinery is integral to the mechanism of protein secretion. *Elife*. 11.
- Ang, D., and C. Georgopoulos. 1989. The heat-shock-regulated grpE gene of Escherichia coli is required for bacterial growth at all temperatures but is dispensable in certain mutant backgrounds. J Bacteriol. 171:2748-2755.
- Angelini, S., S. Deitermann, and H.G. Koch. 2005. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. *EMBO Rep.* 6:476-481.
- Arsene, F., T. Tomoyasu, and B. Bukau. 2000. The heat shock response of Escherichia coli. *Int J Food Microbiol.* 55:3-9.
- Baba, T., T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K.A. Datsenko, M. Tomita, B.L. Wanner, and H. Mori. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol.* 2:2006 0008.
- Bauer, B.W., T. Shemesh, Y. Chen, and T.A. Rapoport. 2014. A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. *Cell*. 157:1416-1429.
- Bieker, K.L., G.J. Phillips, and T.J. Silhavy. 1990. The sec and prl genes of Escherichia coli. *J* Bioenerg Biomembr. 22:291-310.
- Blum, M., H.Y. Chang, S. Chuguransky, T. Grego, S. Kandasaamy, A. Mitchell, G. Nuka, T.
  Paysan-Lafosse, M. Qureshi, S. Raj, L. Richardson, G.A. Salazar, L. Williams, P. Bork, A.
  Bridge, J. Gough, D.H. Haft, I. Letunic, A. Marchler-Bauer, H. Mi, D.A. Natale, M.
  Necci, C.A. Orengo, A.P. Pandurangan, C. Rivoire, C.J.A. Sigrist, I. Sillitoe, N. Thanki,
  P.D. Thomas, S.C.E. Tosatto, C.H. Wu, A. Bateman, and R.D. Finn. 2021. The InterProprotein families and domains database: 20 years on. *Nucleic Acids Res.* 49:D344-D354.
- Bornemann, T., W. Holtkamp, and W. Wintermeyer. 2014. Interplay between trigger factor and other protein biogenesis factors on the ribosome. *Nat Commun.* 5:4180.

- Bracher, A., and J. Verghese. 2015. The nucleotide exchange factors of Hsp70 molecular chaperones. *Front Mol Biosci.* 2:10.
- Catipovic, M.A., B.W. Bauer, J.J. Loparo, and T.A. Rapoport. 2019. Protein translocation by the SecA ATPase occurs by a power-stroke mechanism. *EMBO J.* 38.
- Chakraborty, A., S. Mukherjee, R. Chattopadhyay, S. Roy, and S. Chakrabarti. 2014. Conformational adaptation in the E. coli sigma 32 protein in response to heat shock. *J Phys Chem B.* 118:4793-4802.
- Chatzi, K.E., M.F. Sardis, A. Tsirigotaki, M. Koukaki, N. Sostaric, A. Konijnenberg, F. Sobott, C.G. Kalodimos, S. Karamanou, and A. Economou. 2017. Preprotein mature domains contain translocase targeting signals that are essential for secretion. *J Cell Biol.* 216:1357-1369.
- Cosma, C.L., P.N. Danese, J.H. Carlson, T.J. Silhavy, and W.B. Snyder. 1995. Mutational activation of the Cpx signal transduction pathway of Escherichia coli suppresses the toxicity conferred by certain envelope-associated stresses. *Mol Microbiol.* 18:491-505.
- Cranford-Smith, T. 2018. Genetic, biochemical and structural characterisation of YecA, a novel component of the bacterial Sec machinery. *In* School of Bioscience. Vol. PhD. University of Birmingham, Birmingham.
- Cranford-Smith, T., and D. Huber. 2018. The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. *FEMS Microbiol Lett.* 365.
- Cranford-Smith, T., M. Jamshad, M. Jeeves, R.A. Chandler, J. Yule, A. Robinson, F. Alam, K.A. Dunne, E.H. Aponte Angarita, M. Alanazi, C. Carter, I.R. Henderson, J.E. Lovett, P. Winn, T. Knowles, and D. Huber. 2020. Iron is a ligand of SecA-like metal-binding domains in vivo. J Biol Chem. 295:7516-7528.
- Crooks, G.E., G. Hon, J.M. Chandonia, and S.E. Brenner. 2004. WebLogo: a sequence logo generator. *Genome Res.* 14:1188-1190.
- D'Lima, N.G., and C.M. Teschke. 2014. ADP-dependent conformational changes distinguish Mycobacterium tuberculosis SecA2 from SecA1. J Biol Chem. 289:2307-2317.
- Datsenko, K.A., and B.L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proc Natl Acad Sci U S A*. 97:6640-6645.
- Dekker, C., B. de Kruijff, and P. Gros. 2003. Crystal structure of SecB from Escherichia coli. *J Struct Biol.* 144:313-319.

- Dempsey, B.R., M. Wrona, J.M. Moulin, G.B. Gloor, F. Jalilehvand, G. Lajoie, G.S. Shaw, and B.H. Shilton. 2004. Solution NMR structure and X-ray absorption analysis of the Cterminal zinc-binding domain of the SecA ATPase. *Biochemistry*. 43:9361-9371.
- den Blaauwen, T., E. Terpetschnig, J.R. Lakowicz, and A.J. Driessen. 1997. Interaction of SecB with soluble SecA. *FEBS Lett.* 416:35-38.
- Derman, A.I., J.W. Puziss, P.J. Bassford, Jr., and J. Beckwith. 1993. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. *EMBO J.* 12:879-888.
- Draycheva, A., S. Lee, and W. Wintermeyer. 2018. Cotranslational protein targeting to the membrane: Nascent-chain transfer in a quaternary complex formed at the translocon. *Sci Rep.* 8:9922.
- Driessen, A.J., and N. Nouwen. 2008. Protein translocation across the bacterial cytoplasmic membrane. *Annu Rev Biochem*. 77:643-667.
- du Plessis, D.J., G. Berrelkamp, N. Nouwen, and A.J. Driessen. 2009. The lateral gate of SecYEG opens during protein translocation. *J Biol Chem.* 284:15805-15814.
- du Plessis, D.J., N. Nouwen, and A.J. Driessen. 2006. Subunit a of cytochrome o oxidase requires both YidC and SecYEG for membrane insertion. *J Biol Chem.* 281:12248-12252.
- Duong, F., and W. Wickner. 1997. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. *EMBO J.* 16:2756-2768.
- Egea, P.F., S.O. Shan, J. Napetschnig, D.F. Savage, P. Walter, and R.M. Stroud. 2004. Substrate twinning activates the signal recognition particle and its receptor. *Nature*. 427:215-221.
- Erlandson, K.J., S.B. Miller, Y. Nam, A.R. Osborne, J. Zimmer, and T.A. Rapoport. 2008. A role for the two-helix finger of the SecA ATPase in protein translocation. *Nature*. 455:984-987.
- Evans, R., M. O'Neill, A. Pritzel, N. Antropova, A. Senior, T. Green, A. Žídek, R. Bates, S. Blackwell, J. Yim, O. Ronneberger, S. Bodenstein, M. Zielinski, A. Bridgland, A. Potapenko, A. Cowie, K. Tunyasuvunakool, R. Jain, E. Clancy, P. Kohli, J. Jumper, and D. Hassabis. 2022. Protein complex prediction with AlphaFold-Multimer. *bioRxiv*:2021.2010.2004.463034.
- Fak, J.J., A. Itkin, D.D. Ciobanu, E.C. Lin, X.J. Song, Y.T. Chou, L.M. Gierasch, and J.F. Hunt. 2004. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the ratelimiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. *Biochemistry*. 43:7307-7327.
- Fekkes, P., and A.J. Driessen. 1999. Protein targeting to the bacterial cytoplasmic membrane. *Microbiol Mol Biol Rev.* 63:161-173.

- Fekkes, P., C. van der Does, and A.J. Driessen. 1997. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. *EMBO J.* 16:6105-6113.
- Fikes, J.D., G.A. Barkocy-Gallagher, D.G. Klapper, and P.J. Bassford, Jr. 1990. Maturation of Escherichia coli maltose-binding protein by signal peptidase I in vivo. Sequence requirements for efficient processing and demonstration of an alternate cleavage site. J Biol Chem. 265:3417-3423.
- Forne, I., J. Ludwigsen, A. Imhof, P.B. Becker, and F. Mueller-Planitz. 2012. Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. *Mol Cell Proteomics*. 11:M111 012088.
- Francetic, O., and C.A. Kumamoto. 1996. Escherichia coli SecB stimulates export without maintaining export competence of ribose-binding protein signal sequence mutants. *J Bacteriol.* 178:5954-5959.
- Freymann, D.M., R.J. Keenan, R.M. Stroud, and P. Walter. 1997. Structure of the conserved GTPase domain of the signal recognition particle. *Nature*. 385:361-364.
- Galkin, A., E. Sarikaya, C. Lehmann, A. Howard, and O. Herzberg. 2004. X-ray structure of HI0817 from Haemophilus influenzae: protein of unknown function with a novel fold. *Proteins*. 57:874-877.
- Gardel, C., S. Benson, J. Hunt, S. Michaelis, and J. Beckwith. 1987. secD, a new gene involved in protein export in Escherichia coli. *J Bacteriol.* 169:1286-1290.
- Gardel, C., K. Johnson, A. Jacq, and J. Beckwith. 1990. The secD locus of E. coli codes for two membrane proteins required for protein export. *EMBO J.* 9:4205-4206.
- Goloubinoff, P., A. Mogk, A.P. Zvi, T. Tomoyasu, and B. Bukau. 1999. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. *Proc Natl Acad Sci U S A*. 96:13732-13737.
- Greenfield, J.J., and S. High. 1999. The Sec61 complex is located in both the ER and the ER-Golgi intermediate compartment. *J Cell Sci.* 112 (Pt 10):1477-1486.
- Grossman, A.D., D.B. Straus, W.A. Walter, and C.A. Gross. 1987. Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. *Genes Dev.* 1:179-184.
- Hainzl, T., S. Huang, G. Merilainen, K. Brannstrom, and A.E. Sauer-Eriksson. 2011. Structural basis of signal-sequence recognition by the signal recognition particle. *Nat Struct Mol Biol.* 18:389-391.

- Harrison, C.J., M. Hayer-Hartl, M. Di Liberto, F. Hartl, and J. Kuriyan. 1997. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. *Science*. 276:431-435.
- Hartl, F.U., S. Lecker, E. Schiebel, J.P. Hendrick, and W. Wickner. 1990. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. *Cell*. 63:269-279.
- Hartmann, E., T. Sommer, S. Prehn, D. Gorlich, S. Jentsch, and T.A. Rapoport. 1994. Evolutionary conservation of components of the protein translocation complex. *Nature*. 367:654-657.
- Heyda, J., P.E. Mason, and P. Jungwirth. 2010. Attractive interactions between side chains of histidine-histidine and histidine-arginine-based cationic dipeptides in water. *J Phys Chem B*. 114:8744-8749.
- Hoffmann, A., A.H. Becker, B. Zachmann-Brand, E. Deuerling, B. Bukau, and G. Kramer. 2012. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. *Mol Cell*. 48:63-74.
- Horwich, A.L., G.W. Farr, and W.A. Fenton. 2006. GroEL-GroES-mediated protein folding. *Chem Rev.* 106:1917-1930.
- Huang, C., P. Rossi, T. Saio, and C.G. Kalodimos. 2016. Structural basis for the antifolding activity of a molecular chaperone. *Nature*. 537:202-206.
- Huber, D., M. Jamshad, R. Hanmer, D. Schibich, K. Doring, I. Marcomini, G. Kramer, and B. Bukau. 2017. SecA Cotranslationally Interacts with Nascent Substrate Proteins In Vivo. J Bacteriol. 199.
- Huber, D., N. Rajagopalan, S. Preissler, M.A. Rocco, F. Merz, G. Kramer, and B. Bukau. 2011. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. *Mol Cell*. 41:343-353.
- Hunt, J.F., S. Weinkauf, L. Henry, J.J. Fak, P. McNicholas, D.B. Oliver, and J. Deisenhofer. 2002. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science. 297:2018-2026.
- Jamshad, M., T.J. Knowles, S.A. White, D.G. Ward, F. Mohammed, K.F. Rahman, M. Wynne, G.W. Hughes, G. Kramer, B. Bukau, and D. Huber. 2019. The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity. *Elife*. 8.
- Janda, C.Y., J. Li, C. Oubridge, H. Hernandez, C.V. Robinson, and K. Nagai. 2010. Recognition of a signal peptide by the signal recognition particle. *Nature*. 465:507-510.

- Jiang, C., M. Wynne, and D. Huber. 2021. How Quality Control Systems AID Sec-Dependent Protein Translocation. *Front Mol Biosci.* 8:669376.
- Jomaa, A., D. Boehringer, M. Leibundgut, and N. Ban. 2016. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. *Nat Commun.* 7:10471.
- Jones, D.T., and J.M. Thornton. 2022. The impact of AlphaFold2 one year on. *Nat Methods*. 19:15-20.
- Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko, A. Bridgland, C. Meyer, S.A.A. Kohl, A.J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A.W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. 2021. Highly accurate protein structure prediction with AlphaFold. *Nature*. 596:583-589.
- Jung, S., V. Bader, A. Natriashvili, H.G. Koch, K.F. Winklhofer, and J. Tatzelt. 2020. SecYmediated quality control prevents the translocation of non-gated porins. *Sci Rep.* 10:16347.
- Karimova, G., J. Pidoux, A. Ullmann, and D. Ladant. 1998. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. *Proc Natl Acad Sci U S A*. 95:5752-5756.
- Kato, Y., K. Nishiyama, and H. Tokuda. 2003. Depletion of SecDF-YajC causes a decrease in the level of SecG: implication for their functional interaction. *FEBS Lett.* 550:114-118.
- Kimura, E., M. Akita, S. Matsuyama, and S. Mizushima. 1991. Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli. *J Biol Chem.* 266:6600-6606.
- Knoblauch, N.T., S. Rudiger, H.J. Schonfeld, A.J. Driessen, J. Schneider-Mergener, and B. Bukau. 1999. Substrate specificity of the SecB chaperone. J Biol Chem. 274:34219-34225.
- Koch, S., J.G. de Wit, I. Vos, J.P. Birkner, P. Gordiichuk, A. Herrmann, A.M. van Oijen, and A.J. Driessen. 2016. Lipids Activate SecA for High Affinity Binding to the SecYEG Complex. *J Biol Chem.* 291:22534-22543.
- Komar, J., S. Alvira, R.J. Schulze, R. Martin, A.N.J.A. Lycklama, S.C. Lee, T.R. Dafforn, G. Deckers-Hebestreit, I. Berger, C. Schaffitzel, and I. Collinson. 2016. Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. *Biochem J.* 473:3341-3354.
- Kroger, C., A. Colgan, S. Srikumar, K. Handler, S.K. Sivasankaran, D.L. Hammarlof, R. Canals, J.E. Grissom, T. Conway, K. Hokamp, and J.C. Hinton. 2013. An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. *Cell Host Microbe*. 14:683-695.

- Kuhn, P., B. Weiche, L. Sturm, E. Sommer, F. Drepper, B. Warscheid, V. Sourjik, and H.G. Koch. 2011. The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon. *Traffic.* 12:563-578.
- Kumamoto, C.A., and O. Francetic. 1993. Highly selective binding of nascent polypeptides by an Escherichia coli chaperone protein in vivo. *J Bacteriol.* 175:2184-2188.
- Kusters, I., and A.J. Driessen. 2011. SecA, a remarkable nanomachine. *Cell Mol Life Sci.* 68:2053-2066.
- Kusukawa, N., T. Yura, C. Ueguchi, Y. Akiyama, and K. Ito. 1989. Effects of mutations in heatshock genes groES and groEL on protein export in Escherichia coli. *EMBO J.* 8:3517-3521.
- Lee, H.C., and H.D. Bernstein. 2001. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. *Proc Natl Acad Sci U S A*. 98:3471-3476.
- Lee, H.C., and H.D. Bernstein. 2002. Trigger factor retards protein export in Escherichia coli. J Biol Chem. 277:43527-43535.
- Lill, R., W. Dowhan, and W. Wickner. 1990. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. *Cell*. 60:271-280.
- Lu, J., W.R. Kobertz, and C. Deutsch. 2007. Mapping the electrostatic potential within the ribosomal exit tunnel. *J Mol Biol.* 371:1378-1391.
- Luirink, J., and I. Sinning. 2004. SRP-mediated protein targeting: structure and function revisited. *Biochim Biophys Acta*. 1694:17-35.
- Lycklama a Nijeholt, J.A., J. de Keyzer, I. Prabudiansyah, and A.J. Driessen. 2013. Characterization of the supporting role of SecE in protein translocation. *FEBS Lett.* 587:3083-3088.
- Malecki, M., C. Barria, and C.M. Arraiano. 2014. Characterization of the RNase R association with ribosomes. *BMC Microbiol.* 14:34.
- Martin, R., A.H. Larsen, R.A. Corey, S.R. Midtgaard, H. Frielinghaus, C. Schaffitzel, L. Arleth, and I. Collinson. 2019. Structure and Dynamics of the Central Lipid Pool and Proteins of the Bacterial Holo-Translocon. *Biophys J.* 116:1931-1940.
- Michalska, K., X. Xu, H. Cui, A. Savchenko, and A. Joachimiak. 2012. Crystal structure of lpg0076 protein from Legionella pneumophila (PDB ID: 4GYT).

- Miller, A., L. Wang, and D.A. Kendall. 2002. SecB modulates the nucleotide-bound state of SecA and stimulates ATPase activity. *Biochemistry*. 41:5325-5332.
- Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. xvi, 466 p. pp.
- Mirdita, M., K. Schutze, Y. Moriwaki, L. Heo, S. Ovchinnikov, and M. Steinegger. 2022. ColabFold: making protein folding accessible to all. *Nat Methods*. 19:679-682.
- Mitchell, C., and D. Oliver. 1993. Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. *Mol Microbiol.* 10:483-497.
- Musial-Siwek, M., S.L. Rusch, and D.A. Kendall. 2007. Selective photoaffinity labeling identifies the signal peptide binding domain on SecA. J Mol Biol. 365:637-648.
- Nishiyama, K., M. Hanada, and H. Tokuda. 1994. Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. *EMBO J.* 13:3272-3277.
- Nouwen, N., M. Piwowarek, G. Berrelkamp, and A.J. Driessen. 2005. The large first periplasmic loop of SecD and SecF plays an important role in SecDF functioning. *J Bacteriol.* 187:5857-5860.
- Oh, E., A.H. Becker, A. Sandikci, D. Huber, R. Chaba, F. Gloge, R.J. Nichols, A. Typas, C.A. Gross, G. Kramer, J.S. Weissman, and B. Bukau. 2011. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. *Cell*. 147:1295-1308.
- Oswald, J., R. Njenga, A. Natriashvili, P. Sarmah, and H.G. Koch. 2021. The Dynamic SecYEG Translocon. *Front Mol Biosci.* 8:664241.
- Ouellette, S., P. Pakarian, X. Bin, and P.D. Pawelek. 2022. Evidence of an intracellular interaction between the Escherichia coli enzymes EntC and EntB and identification of a potential electrostatic channeling surface. *Biochimie*.
- Packschies, L., H. Theyssen, A. Buchberger, B. Bukau, R.S. Goody, and J. Reinstein. 1997. GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. *Biochemistry*. 36:3417-3422.
- Paetzel, M., A. Karla, N.C. Strynadka, and R.E. Dalbey. 2002. Signal peptidases. *Chem Rev.* 102:4549-4580.
- Patel, C.N., V.F. Smith, and L.L. Randall. 2006. Characterization of three areas of interactions stabilizing complexes between SecA and SecB, two proteins involved in protein export. *Protein Sci.* 15:1379-1386.

- Patzelt, H., S. Rudiger, D. Brehmer, G. Kramer, S. Vorderwulbecke, E. Schaffitzel, A. Waitz, T. Hesterkamp, L. Dong, J. Schneider-Mergener, B. Bukau, and E. Deuerling. 2001. Binding specificity of Escherichia coli trigger factor. *Proc Natl Acad Sci U S A*. 98:14244-14249.
- Phillips, G.J., and T.J. Silhavy. 1990. Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli. *Nature*. 344:882-884.
- Pogliano, J.A., and J. Beckwith. 1994a. SecD and SecF facilitate protein export in Escherichia coli. *EMBO J.* 13:554-561.
- Pogliano, K.J., and J. Beckwith. 1994b. Genetic and molecular characterization of the Escherichia coli secD operon and its products. *J Bacteriol.* 176:804-814.
- Price, N.L., and T.L. Raivio. 2009. Characterization of the Cpx regulon in Escherichia coli strain MC4100. *J Bacteriol.* 191:1798-1815.
- Raimo, G., M. Masullo, and V. Bocchini. 1999. The interaction between the archaeal elongation factor 1alpha and its nucleotide exchange factor 1beta. *FEBS Lett.* 451:109-112.
- Randall, L.L., and S.J. Hardy. 2002. SecB, one small chaperone in the complex milieu of the cell. *Cell Mol Life Sci.* 59:1617-1623.
- Robson, A., V.A. Gold, S. Hodson, A.R. Clarke, and I. Collinson. 2009. Energy transduction in protein transport and the ATP hydrolytic cycle of SecA. *Proc Natl Acad Sci U S A*. 106:5111-5116.
- Rosenblad, M.A., J. Gorodkin, B. Knudsen, C. Zwieb, and T. Samuelsson. 2003. SRPDB: Signal Recognition Particle Database. *Nucleic Acids Res.* 31:363-364.
- Rosenzweig, R., N.B. Nillegoda, M.P. Mayer, and B. Bukau. 2019. The Hsp70 chaperone network. *Nat Rev Mol Cell Biol.* 20:665-680.
- Sakr, S., A.M. Cirinesi, R.S. Ullers, F. Schwager, C. Georgopoulos, and P. Genevaux. 2010. Lon protease quality control of presecretory proteins in Escherichia coli and its dependence on the SecB and DnaJ (Hsp40) chaperones. J Biol Chem. 285:23506-23514.
- Sala, A., P. Bordes, and P. Genevaux. 2014. Multitasking SecB chaperones in bacteria. *Front Microbiol.* 5:666.
- Sala, A., V. Calderon, P. Bordes, and P. Genevaux. 2013. TAC from Mycobacterium tuberculosis: a paradigm for stress-responsive toxin-antitoxin systems controlled by SecB-like chaperones. *Cell Stress Chaperones*. 18:129-135.

- Sambrook, J., D.W. Russell, and J. Sambrook. 2006. The condensed protocols from Molecular cloning : a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. v, 800 p. pp.
- Saraogi, I., D. Akopian, and S.O. Shan. 2014. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. *J Cell Biol.* 205:693-706.
- Schaffitzel, C., M. Oswald, I. Berger, T. Ishikawa, J.P. Abrahams, H.K. Koerten, R.I. Koning, and N. Ban. 2006. Structure of the E. coli signal recognition particle bound to a translating ribosome. *Nature*. 444:503-506.
- Schiebel, E., A.J. Driessen, F.U. Hartl, and W. Wickner. 1991. Delta mu H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. *Cell*. 64:927-939.
- Schlee, S., Y. Groemping, P. Herde, R. Seidel, and J. Reinstein. 2001. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATPbinding sites. J Mol Biol. 306:889-899.
- Schulze, R.J., J. Komar, M. Botte, W.J. Allen, S. Whitehouse, V.A. Gold, A.N.J.A. Lycklama, K. Huard, I. Berger, C. Schaffitzel, and I. Collinson. 2014. Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. *Proc Natl Acad Sci U S A*. 111:4844-4849.
- Schwarz, R., D. Tanzler, C.H. Ihling, and A. Sinz. 2016. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor beta/delta upon Ligand Binding. *PLoS One*. 11:e0151412.
- Serek, J., G. Bauer-Manz, G. Struhalla, L. van den Berg, D. Kiefer, R. Dalbey, and A. Kuhn. 2004. Escherichia coli YidC is a membrane insertase for Sec-independent proteins. *EMBO J.* 23:294-301.
- Sianidis, G., S. Karamanou, E. Vrontou, K. Boulias, K. Repanas, N. Kyrpides, A.S. Politou, and A. Economou. 2001. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. *EMBO J.* 20:961-970.
- Smith, M.A., W.M. Clemons, Jr., C.J. DeMars, and A.M. Flower. 2005. Modeling the effects of prl mutations on the Escherichia coli SecY complex. *J Bacteriol.* 187:6454-6465.
- Smith, T.C., M. Wynne, C. Carter, C. Jiang, M. Jamshad, M.T. Milner, Y. Djouider, E. Hutchinson, P.A. Lund, I. Henderson, and D. Huber. 2020. AscA (YecA) is a molecular chaperone involved in Sec-dependent protein translocation in *Escherichia coli*. *bio*Rxir:2020.2007.2021.215244.
- Sonnabend, M.S., K. Klein, S. Beier, A. Angelov, R. Kluj, C. Mayer, C. Gross, K. Hofmeister, A. Beuttner, M. Willmann, S. Peter, P. Oberhettinger, A. Schmidt, I.B. Autenrieth, M. Schutz, and E. Bohn. 2020. Identification of Drug Resistance Determinants in a Clinical

Isolate of Pseudomonas aeruginosa by High-Density Transposon Mutagenesis. *Antimicrob Agents Chemother*. 64.

- Tanaka, Y., Y. Sugano, M. Takemoto, T. Mori, A. Furukawa, T. Kusakizako, K. Kumazaki, A. Kashima, R. Ishitani, Y. Sugita, O. Nureki, and T. Tsukazaki. 2015. Crystal Structures of SecYEG in Lipidic Cubic Phase Elucidate a Precise Resting and a Peptide-Bound State. *Cell Rep.* 13:1561-1568.
- Tsirigotaki, A., J. De Geyter, N. Sostaric, A. Economou, and S. Karamanou. 2017. Protein export through the bacterial Sec pathway. *Nat Rev Microbiol.* 15:21-36.
- Tsukazaki, T., H. Mori, Y. Echizen, R. Ishitani, S. Fukai, T. Tanaka, A. Perederina, D.G. Vassylyev, T. Kohno, A.D. Maturana, K. Ito, and O. Nureki. 2011. Structure and function of a membrane component SecDF that enhances protein export. *Nature*. 474:235-238.
- Ullers, R.S., D. Ang, F. Schwager, C. Georgopoulos, and P. Genevaux. 2007. Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli. *Proc Natl Acad Sci U S A*. 104:3101-3106.
- Ullers, R.S., J. Luirink, N. Harms, F. Schwager, C. Georgopoulos, and P. Genevaux. 2004. SecB is a bona fide generalized chaperone in Escherichia coli. *Proc Natl Acad Sci U S A*. 101:7583-7588.
- Van den Berg, B., W.M. Clemons, Jr., I. Collinson, Y. Modis, E. Hartmann, S.C. Harrison, and T.A. Rapoport. 2004. X-ray structure of a protein-conducting channel. *Nature*. 427:36-44.
- van der Laan, M., P. Bechtluft, S. Kol, N. Nouwen, and A.J. Driessen. 2004. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. *J Cell Biol.* 165:213-222.
- van der Sluis, E.O., and A.J. Driessen. 2006. Stepwise evolution of the Sec machinery in Proteobacteria. *Trends Microbiol.* 14:105-108.
- van Stelten, J., F. Silva, D. Belin, and T.J. Silhavy. 2009. Effects of antibiotics and a protooncogene homolog on destruction of protein translocator SecY. *Science*. 325:753-756.
- Veenendaal, A.K., C. van der Does, and A.J. Driessen. 2004. The protein-conducting channel SecYEG. *Biochim Biophys Acta*. 1694:81-95.
- Vlasuk, G.P., S. Inouye, H. Ito, K. Itakura, and M. Inouye. 1983. Effects of the complete removal of basic amino acid residues from the signal peptide on secretion of lipoprotein in Escherichia coli. J Biol Chem. 258:7141-7148.

von Heijne, G. 1990. The signal peptide. J Membr Biol. 115:195-201.

- von Heijne, G. 1994. Membrane proteins: from sequence to structure. *Annu Rev Biophys Biomol Struct.* 23:167-192.
- Wang, S., A. Jomaa, M. Jaskolowski, C.I. Yang, N. Ban, and S.O. Shan. 2019. The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. *Nat Struct Mol Biol.* 26:919-929.
- Weber, D.S., and J.J. Warren. 2019. The interaction between methionine and two aromatic amino acids is an abundant and multifunctional motif in proteins. *Arch Biochem Biophys.* 672:108053.
- Wild, J., W.A. Walter, C.A. Gross, and E. Altman. 1993. Accumulation of secretory protein precursors in Escherichia coli induces the heat shock response. *J Bacteriol.* 175:3992-3997.
- Xu, Z., J.D. Knafels, and K. Yoshino. 2000. Crystal structure of the bacterial protein export chaperone secB. *Nat Struct Biol.* 7:1172-1177.
- Yi, L., N. Celebi, M. Chen, and R.E. Dalbey. 2004. Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J Biol Chem. 279:39260-39267.
- Zhang, Y.J., H.F. Tian, and J.F. Wen. 2009. The evolution of YidC/Oxa/Alb3 family in the three domains of life: a phylogenomic analysis. *BMC Evol Biol.* 9:137.
- Zhou, J., and Z. Xu. 2003. Structural determinants of SecB recognition by SecA in bacterial protein translocation. *Nat Struct Biol.* 10:942-947.
- Zimmer, J., Y. Nam, and T.A. Rapoport. 2008. Structure of a complex of the ATPase SecA and the protein-translocation channel. *Nature*. 455:936-943.
- Zimmer, J., and T.A. Rapoport. 2009. Conformational flexibility and peptide interaction of the translocation ATPase SecA. *J Mol Biol.* 394:606-612.

# Appendix

| UniProt          | Gene  | Coverage | Pentides | PSMs    | Unique   | ΔΔs | MW         | Score   |  |
|------------------|-------|----------|----------|---------|----------|-----|------------|---------|--|
| Accession ID     | Name  | [%]      | reptites | 1 51415 | Peptides | ппр | [kDa]      | Sequest |  |
| P0A6B7           | iscS  | 68       | 22       | 42      | 22       | 404 | 45.1       | 125.27  |  |
| Q57261           | truD  | 74       | 20       | 38      | 20       | 349 | 39.1       | 118.51  |  |
| P0CE47           | tufA  | 69       | 20       | 33      | 20       | 394 | 43.3       | 97.95   |  |
| P00370           | gdhA  | 62       | 19       | 29      | 19       | 447 | 48.6       | 89.44   |  |
| P25539           | ribD  | 67       | 19       | 2.8     | 19       | 367 | 40.3       | 93.4    |  |
| P03023           | lacI  | 60       | 16       | 28      | 16       | 360 | 38.6       | 85.16   |  |
| P06087           | hicB  | 48       | 16       | 20      | 16       | 355 | 40.3       | 00.22   |  |
| P75863           | webY  | 63       | 16       | 26      | 16       | 360 | 40.5       | 78.04   |  |
| D0A019           | ycoA  | 16       | 16       | 20      | 16       | 296 | 40.0       | 61 71   |  |
| P0A9J8           | pheA  | 40<br>57 | 10       | 20      | 10       | 221 | 45.1       | 72 22   |  |
| POADUS           | yecA  | 50       | 0        | 23      | 0        | 221 | 23         | 75.22   |  |
| PUADV5           | yndw  | 50       | 14       | 24      | 14       | 335 | 37.1       | 70.43   |  |
| Q46851           | gpr   | 80       | 19       | 24      | 19       | 346 | 38.8       | 79.19   |  |
| POACP/           | purR  | 50       | 15       | 23      | 15       | 341 | 38.2       | 69.38   |  |
| P0A825           | glyA  | 46       | 14       | 21      | 14       | 417 | 45.3       | 55.03   |  |
| P0ACI0           | rob   | 63       | 15       | 20      | 15       | 289 | 33.1       | 52.82   |  |
| P60390           | rsmH  | 61       | 15       | 19      | 15       | 313 | 34.9       | 56.45   |  |
| P30177           | ybiB  | 61       | 14       | 18      | 14       | 320 | 35         | 60.57   |  |
| P00887           | aroH  | 43       | 12       | 17      | 12       | 348 | 38.7       | 45.42   |  |
| P76291           | cmoB  | 56       | 13       | 17      | 13       | 323 | 37         | 45.96   |  |
| P67910           | hldD  | 50       | 14       | 17      | 14       | 310 | 34.9       | 43.59   |  |
| P0ABO0           | coaBC | 47       | 14       | 16      | 14       | 406 | 43.4       | 44.86   |  |
| P69797           | manX  | 44       | 10       | 16      | 10       | 323 | 35         | 34.53   |  |
| P0ABD5           | accA  | 55       | 13       | 16      | 13       | 319 | 35.2       | 47 79   |  |
| P77398           | arnA  | 25       | 14       | 15      | 14       | 660 | 74.2       | 29.53   |  |
| P0A774           | rnoA  | 51       | 13       | 15      | 13       | 329 | 36.5       | 38.63   |  |
| P76116           | vncE  | 32       | 10       | 14      | 10       | 353 | 38.6       | 35.88   |  |
| D21151           | fod A | 32       | 10       | 14      | 10       | 297 | 40.0       | 14 57   |  |
| F211J1<br>D29621 | holD  | 45       | 10       | 14      | 10       | 224 | 40.9       | 20.67   |  |
| P20031           | noib  | 40       | 10       | 13      | 10       | 334 | 30.9       | 39.07   |  |
| P03885           | amic  | 35       | 11       | 15      | 11       | 417 | 45.0       | 25.25   |  |
| P/58/6           | rimi  | 37       | 11       | 13      | 11       | 396 | 44.3       | 33.47   |  |
| P0A847           | tgt   | 34       | 11       | 13      | 11       | 375 | 42.6       | 33.65   |  |
| P39286           | rsgA  | 47       | 12       | 13      | 12       | 350 | 39.2       | 33.93   |  |
| P17802           | mutY  | 31       | 9        | 12      | 9        | 350 | 39.1       | 20.16   |  |
| P37661           | eptB  | 27       | 10       | 12      | 10       | 563 | 63.8       | 32.86   |  |
| P0A9B2           | gapA  | 39       | 11       | 12      | 11       | 331 | 35.5       | 21.45   |  |
| P0A6U3           | mnmG  | 21       | 8        | 11      | 8        | 629 | 69.5       | 14.02   |  |
| P77690           | arnB  | 27       | 7        | 11      | 7        | 385 | 42.2       | 34.28   |  |
| P0A717           | prs   | 40       | 9        | 10      | 9        | 315 | 34.2       | 22.79   |  |
| P0A910           | ompA  | 37       | 9        | 10      | 9        | 346 | 37.2       | 33.82   |  |
| P12008           | aroC  | 33       | 7        | 9       | 7        | 361 | 39.1       | 27.4    |  |
| P29680           | hemE  | 29       | 8        | 9       | 8        | 354 | 39.2       | 17.52   |  |
| P76373           | ugd   | 24       | 8        | 9       | 8        | 388 | 43.6       | 16.25   |  |
| P0A9S5           | øldA  | 26       | 6        | 8       | 6        | 367 | 38.7       | 19.09   |  |
| A0A1V1IFM5       | gsk-4 | 24       | 7        | 8       | 7        | 434 | 48.4       | 13.36   |  |
| POADG7           | guaB  | 13       | 4        | 8       | 4        | 488 | 52         | 10.84   |  |
| POADR8           | ppnN  | 20       | 8        | 8       | 8        | 454 | 50.9       | 16.59   |  |
| P17115           | gutO  | 20       | 8        | 8       | 8        | 321 | 34         | 13.52   |  |
| D0AD01           | guiQ  | 23       | 0        | 0       | 0        | 321 | 28         | 25.32   |  |
| P0AD91           | haa7  | 22       | 0        | 0       | 0        | 269 | J0<br>41.7 | 10.46   |  |
| P3/031           | UCSZ  | 22       | 1        | 7       | 1        | 200 | 41.7       | 10.40   |  |
| P33043           | riuD  | 50       | 0        | 7       | 0        | 520 | 5/.1       | 10.03   |  |
| POAC41           | sdhA  | 14       | 1        | 1       | 7        | 588 | 64.4       | 16.21   |  |
| P37051           | purU  | 25       | 5        | 6       | 5        | 280 | 31.9       | 4.14    |  |
| P0A6Y5           | hslO  | 27       | 6        | 6       | 6        | 292 | 32.5       | 13.72   |  |
| P22188           | murE  | 12       | 5        | 6       | 5        | 495 | 53.3       | 9.85    |  |
| P60716           | lipA  | 21       | 5        | 6       | 5        | 321 | 36         | 7.49    |  |
| P37631           | yhiN  | 19       | 6        | 6       | 6        | 400 | 43.7       | 12.06   |  |
| P0A9K3           | ybeZ  | 23       | 6        | 6       | 6        | 346 | 39         | 14.91   |  |
|                  |       |          |          |         |          |     |            |         |  |

## Table 7 – Mass spectrometry results from Section 5.2.4 – W13Bpa 33-43 kDa

| P23003  | trmA  | 14        | 5  | 6 | 5 | 366  | 41.9  | 12.6         |
|---------|-------|-----------|----|---|---|------|-------|--------------|
| P0AG40  | ribE  | 22        | 5  | 5 | 5 | 313  | 34.7  | 9.68         |
|         | rimO  | 15        | 1  | 5 | 4 | 441  | 40.6  | 15.1         |
| FUALI4  | -14 A | 15        | 2  | 5 | 4 | 441  | 49.0  | 1.5.1        |
| PUABH/  | gitA  | 9         | 3  | 5 | 3 | 427  | 48    | 1.08         |
| P0ACR4  | ye1E  | 19        | 4  | 5 | 4 | 293  | 32.7  | 8.64         |
| P06959  | aceF  | 10        | 5  | 5 | 5 | 630  | 66.1  | 7.13         |
| P0ABK5  | cysK  | 23        | 5  | 5 | 5 | 323  | 34.5  | 8.5          |
| P0A8J8  | rhlB  | 10        | 4  | 4 | 4 | 421  | 47.1  | 8.7          |
| P21645  | lpxD  | 24        | 4  | 4 | 4 | 341  | 36    | 6.72         |
| P60757  | hisG  | 18        | 1  |   | 1 | 200  | 33.3  | 2.64         |
| D7(102  | ms0   | 10        | 4  | 4 | 4 | 233  | 26.1  | 2.04         |
| P70193  | ynnG  | 10        | 4  | 4 | 4 | 334  | 30.1  | 10.69        |
| P33030  | yeiR  | 17        | 4  | 4 | 4 | 328  | 36.1  | 4.55         |
| P0ABZ6  | surA  | 11        | 4  | 4 | 4 | 428  | 47.3  | 8.68         |
| P28630  | holA  | 12        | 3  | 4 | 3 | 343  | 38.7  | 12.09        |
| P0ADO2  | fabY  | 16        | 4  | 4 | 4 | 329  | 37.1  | 11.19        |
| P0A8E1  | vcfP  | 18        | 3  | 4 | 3 | 180  | 21.2  | 8.07         |
| D00831  | altB  | 3         | 4  | 4 | 4 | 1/86 | 163.2 | 6.05         |
| D04062  | gitD  | 10        | 4  | 4 | 4 | 246  | 27.4  | 0.95         |
| P0A955  | gatD  | 12        | 4  | 4 | 4 | 340  | 37.4  | 9.09         |
| P39451  | adhP  | 13        | 3  | 4 | 3 | 336  | 35.4  | 4.69         |
| P0A855  | tolB  | 11        | 4  | 4 | 4 | 430  | 45.9  | 4.33         |
| P0A705  | infB  | 4         | 4  | 4 | 4 | 890  | 97.3  | 8.71         |
| P0A9B6  | epd   | 11        | 4  | 4 | 4 | 339  | 37.3  | 7.19         |
| P0A6W0  | glsA2 | 18        | 4  | 4 | 4 | 308  | 33.5  | 9.53         |
| POAEG6  | sucB  | 12        | 4  | 4 | 4 | 405  | 44    | 10.87        |
| DCC049  | Suc D | 12        | 2  | 2 | 4 | 403  | 52.0  | 2.10         |
| P66948  | bepA  | 10        | 3  | 3 | 3 | 48/  | 53.9  | 3.19         |
| P39406  | rsmC  | 18        | 3  | 3 | 3 | 343  | 37.6  | 1.68         |
| P28304  | qorA  | 9         | 2  | 3 | 2 | 327  | 35.2  | 1.87         |
| P27306  | sthA  | 11        | 3  | 3 | 3 | 466  | 51.5  | 8.41         |
| P37610  | tauD  | 10        | 3  | 3 | 3 | 283  | 32.4  | 6.78         |
| P0A935  | mltA  | 11        | 3  | 3 | 3 | 365  | 40.4  | 8 53         |
| P76422  | thiD  | 16        | 2  | 3 | 2 | 266  | 28.6  | 7.88         |
| F /0422 |       | 10        | 2  | 3 | 2 | 200  | 20.0  | 7.00         |
| PUA/B3  | nadK  | 20        | 3  | 3 | 3 | 292  | 32.5  | 3.03         |
| P0ACP1  | cra   | 11        | 3  | 3 | 3 | 334  | 38    | 7.92         |
| P0A722  | lpxA  | 13        | 3  | 3 | 3 | 262  | 28.1  | 8.22         |
| P0ABH9  | clpA  | 9         | 3  | 3 | 3 | 758  | 84.2  | 2.35         |
| P37692  | rfaF  | 9         | 3  | 3 | 3 | 348  | 39    | 2.02         |
| POACN7  | cvtR  | 11        | 3  | 3 | 3 | 341  | 37.8  | 3.42         |
| POAES6  | ovrB  | 6         | 3  | 3 | 3 | 804  | 80.0  | 5.02         |
| POACS0  | gyib  | 11        | 3  | 2 | 2 | 004  | 09.9  | 9.76         |
| POCG19  | rpn   | 11        | 2  | 3 | 2 | 228  | 24.4  | 8.76         |
| P14294  | topB  | 4         | 1  | 3 | 1 | 653  | 73.2  | 0            |
| P02931  | ompF  | 9         | 3  | 3 | 3 | 362  | 39.3  | 6.46         |
| P68187  | malK  | 13        | 3  | 3 | 3 | 371  | 41    | 1.87         |
| P0AE18  | map   | 9         | 2  | 2 | 2 | 264  | 29.3  | 5.62         |
| P0A9K9  | slvD  | 10        | 2  | 2 | 2 | 196  | 20.8  | 4 97         |
| D020/3  | lamB  | 7         | 2  | 2 | 2 | 116  | 10.0  | 3.06         |
| F02943  | lamb  | 2         | 2  | 2 | 2 | 440  | 49.9  | 3.90         |
| P06/10  | dnaX  | 2         | 2  | 2 | 2 | 643  | /1.1  | 0            |
| P0AD70  | ampH  | 8         | 2  | 2 | 2 | 385  | 41.8  | 6.34         |
| P0A850  | tig   | 5         | 2  | 2 | 2 | 432  | 48.2  | 0            |
| P04036  | dapB  | 11        | 2  | 2 | 2 | 273  | 28.7  | 2.13         |
| P0AEX9  | malE  | 7         | 2  | 2 | 2 | 396  | 43.4  | 0            |
| P0A7B5  | proB  | 7         | 2. | 2 | 2 | 367  | 39    | 0            |
| POACC7  | almU  | 5         | 2  | 2 | 2 | 456  | 19.2  | 1 73         |
| P0A7G6  | racA  | 7         | 2  | 2 | 2 | 353  | 38    | 4.75         |
| P0A/00  | TECA  | 7         | 2  | 2 | 2 | 333  | 30    | 4.33         |
| P64588  | yqjI  | 8         | 2  | 2 | 2 | 207  | 23.4  | 4.3          |
| P0C0V0  | degP  | 5         | 2  | 2 | 2 | 474  | 49.3  | 5.14         |
| P0ACP5  | gntR  | 9         | 2  | 2 | 2 | 331  | 36.4  | 2.17         |
| P0ADR6  | rlmM  | 5         | 2  | 2 | 2 | 366  | 41.9  | 0            |
| P06992  | rsmA  | 16        | 2  | 2 | 2 | 273  | 30.4  | 2.09         |
| P0ADG4  | suhB  | 10        | 2  | 2 | 2 | 267  | 29.2  | 2 54         |
| D67660  | whoI  | 0         | 2  | 2 | 2 | 207  | 22.2  | 1.64         |
| D12205  | ynaj  | 10        | 2  | 2 | 2 | 290  | 25.2  | 1.04<br>5.00 |
| P12295  | ung   | 10        | 2  | 2 | 2 | 229  | 25.7  | 5.00         |
| POABC3  | hflC  | 5         | 2  | 2 | 2 | 334  | 37.6  | 2.1          |
| P0AC53  | zwf   | 4         | 2  | 2 | 2 | 491  | 55.7  | 4.97         |
| P75825  | hcp   | 4         | 1  | 2 | 1 | 550  | 60    | 0            |
| P07023  | tyrA  | 6         | 2  | 2 | 2 | 373  | 42    | 0            |
| P0AB71  | fbaA  | 8         | 2  | 2 | 2 | 359  | 39.1  | 4.67         |
| POA9E3  | cvsP  | 7         | 2  | 2 | 2 | 324  | 36.1  | 4.12         |
| D77591  | ostC  | 11        | 2  | 2 | 2 | 406  | 13.6  | 2 20         |
| F//J01  | asic  | - 11<br>5 | 2  | 2 | 2 | 400  | 45.0  | 2.29         |
| P46139  | dgcN  | 5         | 1  | 2 | 1 | 408  | 46    | 0            |
| P75913  | ghrA  | 9         | 2  | 2 | 2 | 312  | 35.3  | 0            |
| P07639  | aroB  | 10        | 2  | 2 | 2 | 362  | 38.9  | 2.31         |
| P36999  | rlmA  | 6         | 1  | 1 | 1 | 269  | 30.4  | 2.5          |
| P76215  | astE  | 4         | 1  | 1 | 1 | 322  | 35.8  | 1.61         |
|         |       |           |    |   |   | -    |       |              |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D06721            | metC         | 5  | 1 | 1 | 1 | 305  | 13.2         | 2 28 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|----|---|---|---|------|--------------|------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D22225            | torA         | 1  | 1 | 1 | 1 | 949  | 43.2         | 0    |
| PA0393         PA0         S         1         1         1         1         4-34         4-7.3         2-441           P26672         treB         5         1         1         1         300         43.3         0           P26672         treB         5         1         1         1         473         51         0           PK0LD7         proP         3         1         1         1         300         43.3         0           PK0207         accb         4         1         1         304         33.3         2.21           PK0306         accb         4         1         1         304         33.3         2.21           PK0313         tdh         2         1         1         1         344         35.5         0           P76237         dg.1         1         1         344         35.5         0         1         1         344         35.5         0           P77434         alaC         2         1         1         1         311         35.5         0           P78485         gnf1         5         1         1         1         312.2                                                                                                                                                                                                                                                                                                                                                                                                | F 33223           | 101A         | 4  | 1 | 1 | 1 | 424  | 94.4<br>47.2 | 0    |
| P24241       00gE       0       1       1       1       390       45.3       0         P25672       treB       5       1       1       1       392       41.9       0         PV7774       hamB       3       1       1       1       392       41.9       0         P08300       usg       4       1       1       1       344       33.3       0         P08307       usg       4       1       1       1       344       33.3       0         P04305       accD       4       1       1       1       344       37.2       0         P76237       dg2J       2       1       1       1       313       35.6       0         P74344       alaC       2       1       1       1       312       32.3       0         P7333       dpF       5       1       1       1       313       34.97       0         P04835       gnT       5       1       1       1       438       45.9       0         P04835       gnT       5       1       1       1       44.9       0       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P00393            | nan          | 3  | 1 | 1 | 1 | 434  | 47.5         | 2.41 |
| P366/2         treB         5         1         1         1         4/3         5         0           PWC0L7         proP         3         1         1         1         300         54.8         0           PWS300         usg         4         1         1         304         33.3         2.21           PW3910         hemY         2         1         1         304         33.3         2.21           PW3913         tdh         2         1         1         1         344         37.2         0           P76237         dg.1         1         1         311         35.5         0         0           PMAD6         sdaC         3         1         1         1         311         35.5         0           PMAD6         sdaC         3         1         1         1         311         35.5         0           P77344         alaC         2         1         1         1         312         32.3         0           P3835         gnIT         5         1         1         1         312         32.4         0           P4188         thO         2                                                                                                                                                                                                                                                                                                                                                                                                      | P42641            | ODgE         | 6  | 1 | 1 | 1 | 390  | 43.3         | 0    |
| P77774       bumB       3       1       1       1       392       419       0         P08300       usg       4       1       1       1       337       36.3       0         P08300       usg       4       1       1       1       344       33.3       2.21         P0A025       accD       4       1       1       1       398       45.2       0         P07615       tdh       2       1       1       1       446       33.3       2.21         P76257       dgcl       2       1       1       1       4496       56.6       0         P77434       alaC       2       1       1       1       412       46.2       1.8         P77335       dpF       5       1       1       1       313       31.5       0         P61889       mdh       4       1       1       1       438       45.9       0         P00345       marC       5       1       1       1       456       65.6       0         P03835       marC       5       1       1       1       457.3       2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P36672            | treB         | 5  | 1 | 1 | 1 | 473  | 51           | 0    |
| POC01.7         proP         3         1         1         1         500         54.8         0           POX830         accD         4         1         1         1         337         36.3         0           POX905         accD         4         1         1         1         304         33.3         2.21           PO7913         tdh         2         1         1         1         344         37.2         0           P76237         dg2         2         1         1         1         344         37.2         0           P76237         dg2         2         1         1         1         344         37.5         0           P0AAD6         sdaC         3         1         1         1         334         37.5         0           P73313         dpF         5         1         1         1         334         37.5         0           P03835         gnd         4         1         1         1         1334         45.9         0           P04384         thoD         2         1         1         1         1438         8.8         6.6                                                                                                                                                                                                                                                                                                                                                                                                          | P77774            | bamB         | 3  | 1 | 1 | 1 | 392  | 41.9         | 0    |
| P08300         usg         4         1         1         337         36.3         0           P0AQ05         accD         4         1         1         1304         33.3         2.21           P0AQ05         accD         4         1         1         1304         33.3         2.21           P0AQ05         accD         2         1         1         1         398         45.2         0           P70255         ttcA         2         1         1         1         496         0         0           P77434         alcC         2         1         1         1         422         46.9         0           P77434         alcC         2         1         1         1         334         37.5         0           P08355         gatT         5         1         1         1         312         32.3         0           P084853         tnaA         2         1         1         1         350         39.8         0           P14484         treA         2         1         1         1         356         3         0           P14482         treA         2<                                                                                                                                                                                                                                                                                                                                                                                               | P0C0L7            | proP         | 3  | 1 | 1 | 1 | 500  | 54.8         | 0    |
| P0AQ65         accD         4         1         1         1         304         33.3         2.21           P07913         tdh         2         1         1         1         398         45.2         0           P07913         tdh         2         1         1         1         341         37.2         0           P70237         dgcJ         2         1         1         1         341         37.5         0           P0AAD6         sdcC         3         1         1         1         412         46.2         1.8           P37313         dppF         5         1         1         1         334         37.5         0           P61889         mdf         1         1         1         438         45.9         0           P38353         gnT         5         1         1         1         438         45.9         0           P0A749         murA         2         1         1         1         448         0         0           P1342         traA         2         1         1         1         455         0         0           P2018                                                                                                                                                                                                                                                                                                                                                                                                            | P08390            | usg          | 4  | 1 | 1 | 1 | 337  | 36.3         | 0    |
| P0ACB7         henY         2         1         1         1         398         45.2         0           P70237         dgJ         2         1         1         1         341         37.2         0           P70055         tteA         2         1         1         1         449         56.6         0           P70055         tteA         2         1         1         1         449         6.9         0           P77434         alsC         2         1         1         1         433         45.9         0           P77331         dppF         5         1         1         1         334         45.9         0           P08353         gnf         5         1         1         1         471         52.7         2.45           P4188         traA         2         1         1         1         480         51.3         2.15           P13482         treA         2         1         1         1         480         51.3         2.15           P30748         murA         6         1         1         1         1         1         1         1     <                                                                                                                                                                                                                                                                                                                                                                                            | P0A9Q5            | accD         | 4  | 1 | 1 | 1 | 304  | 33.3         | 2.21 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P0ACB7            | hemY         | 2  | 1 | 1 | 1 | 398  | 45.2         | 0    |
| P76055       ttcA       2       1       1       1       406       56.6       0         P70055       ttcA       2       1       1       1       429       46.9       0         P77434       alaC       2       1       1       1       429       46.9       0         P77434       alaC       2       1       1       1       423       43.7       0         P77434       alaC       2       1       1       1       334       37.5       0         P81889       mdh       4       1       1       1       438       45.9       0         P0A853       maA       2       1       1       1       438       45.9       0         P04749       murA       6       1       1       1       448       0       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5 <td>P07913</td> <td>tdh</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>341</td> <td>37.2</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                    | P07913            | tdh          | 2  | 1 | 1 | 1 | 341  | 37.2         | 0    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P76237            | dgcJ         | 2  | 1 | 1 | 1 | 496  | 56.6         | 0    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P76055            | ttcA         | 2  | 1 | 1 | 1 | 311  | 35.5         | 0    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P0AAD6            | sdaC         | 3  | 1 | 1 | 1 | 429  | 46.9         | 0    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P77434            | alaC         | 2  | 1 | 1 | 1 | 412  | 46.2         | 1.8  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P37313            | dnnF         | 5  | 1 | 1 | 1 | 334  | 37.5         | 0    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P61880            | mdh          | 1  | 1 | 1 | 1 | 312  | 32.3         | 0    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D30835            | antT         | 5  | 1 | 1 | 1 | /38  | 15.0         | 0    |
| PORAGJ         Utar         2         1         1         1         1         1         32.7         2.2-3           POA749         murA         6         1         1         1         30.8         0           POA749         murA         6         1         1         1         419         44.8         0           P2159         pybA         2         1         1         1         440         51.3         2.15           P2159         pybA         2         1         1         1         480         51.3         2.15           P2018         cydD         1         1         1         1         565         63.6         0           P2018         cydD         1         1         1         1         343         37.2         1.6           P21513         rne         2         1         1         1         334         37.2         0           P0A7030         rho         3         1         1         1         1         1.97         1.97           P33232         libD         3         1         1         1         1.1         1.1         1.1         1.1 <td>D0A852</td> <td>gitt 1</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>438</td> <td>527</td> <td>2.45</td>                                                                                                                                                                                                                                                                       | D0A852            | gitt 1       | 2  | 1 | 1 | 1 | 438  | 527          | 2.45 |
| P24188IntO2111350 $53.6$ 0P0A749murA61114480P21599pykA2111480 $51.3$ 2.15P13482treA211156563.60P30748moaD261111818.84.56P29018cydD111123225.92.48P77737oppF31111061118.11.95P0A630rho31111061118.11.95P0A630rho3111419471.97P3232lldD311123927.30P0A759rpsM111111133.09P25535ubil311140044.21.95P77743prpR1111138841.40P0A856sucC311138841.40P0A867mtK311138841.40P0A864lsdC211138241.41.75P0A6A6lsdC211138341.40P0A784rsd611118841.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PUA633            | tulaA        | 2  | 1 | 1 | 1 | 4/1  | 32.7         | 2.43 |
| P0A (49)murA611141944.80P2159pykA211148051.32.15P13482treA21111818.84.56P30748moaD261111818.84.56P29018cydD11111588650P45577prQQ411133437.21.6P21513me21111.061118.11.95P0AG30rho31111.964.70P0A815trmB51111.181.313.09P25323ubil31111.181.313.09P25353ubil31111.181.51.95P77743prpR11111.860P0A865sucC31111.1445.50P0A874rsd61111.181.821.85P0A661teuC21111.8441.90P0A875rsd1111.8841.40P0A759p5M1111.863.68P0A867htk31111.8441.9P0A877 <td>P24188</td> <td>trnO</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>350</td> <td>39.8</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P24188            | trnO         | 2  | 1 | 1 | 1 | 350  | 39.8         | 0    |
| P21599       pykA       2       1       1       1       480       51.3       2.15         P30748       moaD       26       1       1       1       565       63.6       0         P30748       moaD       26       1       1       1       81       8.8       4.56         P20018       cydD       1       1       1       1       588       65       0         P45577       proQ       4       1       1       1       232       2.59       2.48         P77737       oppF       3       1       1       1       334       37.2       1.6         P21513       me       2       1       1       1       1.1       1.95       P0AG30       rho       3       1       1       1       1.95         P0AG30       rho       3       1       1       1       2.13       30.6       42.7       0         P0A815       trmB       5       1       1       1       1.83       31.3       3.09         P25535       ubil       3       1       1       1       1.86       0         P0A836       succ <th< td=""><td>P0A/49</td><td>murA</td><td>6</td><td>1</td><td>1</td><td>1</td><td>419</td><td>44.8</td><td>0</td></th<>                                                                                                                                                                                                                                                                                                                                                                     | P0A/49            | murA         | 6  | 1 | 1 | 1 | 419  | 44.8         | 0    |
| P13482       treA       2       1       1       1       565       63.6       0         P30748       moaD       26       1       1       1       1       81       8.8       4.56         P29018       cydD       1       1       1       1       88       65       0         P45577       proQ       4       1       1       1       334       37.2       1.6         P21513       me       2       1       1       1       1061       118.1       1.95         P0AG30       rho       3       1       1       1       306       42.7       0         P0A355       trmB       5       1       1       1       107       18.6       0         P0A759       rpsM       11       1       1       118       13.1       3.09         P25535       ubil       3       1       1       1       118.6       0         P0A836       sucC       3       1       1       1384       41.9       0         P0A817       metK       3       1       1       1384       41.9       0         P0A817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P21599            | pykA         | 2  | 1 | 1 | 1 | 480  | 51.3         | 2.15 |
| P30748       moaD       26       1       1       1       81       8.8       4.56         P29018       cydD       1       1       1       1       88       65       0         P45577       proQ       4       1       1       1       232       25.9       2.48         P77737       oppF       3       1       1       1       061       118.1       1.95         P046360       rho       3       1       1       1       1061       118.1       1.95         P0A815       trmB       5       1       1       239       27.3       0         P0A759       rpsM       11       1       1       1400       44.2       1.95         P77743       prpR       1       1       1       1.86       0       0         P25355       ubil       3       1       1       1.88       41.4       0       0         P24069       traV       4       1       1       1.88       41.4       0       0         P0A836       sucC       3       1       1       1.88       41.4       0       0         P0A817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P13482            | treA         | 2  | 1 | 1 | 1 | 565  | 63.6         | 0    |
| P29018         cydD         1         1         1         1         1         588         65         0           P45577         proQ         4         1         1         1         232         25.9         2.48           P77737         oppF         3         1         1         1         334         37.2         1.6           P215131         rne         2         1         1         1         334         37.2         1.6           P215131         rne         2         1         1         1         1.95         P           P0A3030         rho         3         1         1         1         396         42.7         0           P0A7S9         rpSM         11         1         1         1         239         27.3         0           P0A7S9         rpSM         11         1         1         1         1.86         0           P41069         traV         4         1         1         1         1.71         18.6         0           P0A836         suC         3         1         1         1         384         41.4         0           P0A817 <td>P30748</td> <td>moaD</td> <td>26</td> <td>1</td> <td>1</td> <td>1</td> <td>81</td> <td>8.8</td> <td>4.56</td>                                                                                                                                                                                                                                                                                | P30748            | moaD         | 26 | 1 | 1 | 1 | 81   | 8.8          | 4.56 |
| P45577       prQ       4       1       1       1       232       25.9       2.48         P77737       oppF       3       1       1       1       334       37.2       1.6         P21513       rne       2       1       1       1       1061       118.1       1.95         P0A630       rho       3       1       1       1       419       47       1.97         P33232       IldD       3       1       1       1       396       42.7       0         P0A815       trmB       5       1       1       1       239       27.3       0         P0A815       trmB       5       1       1       1       18       1.3.1       3.09         P25535       ubil       3       1       1       1       18       1.3.1       3.09         P25535       ubil       3       1       1       1       171       18.6       0         P0A836       sucC       3       1       1       1       188       41.4       0         P0A636       sucC       2       1       1       1       188       1.9       0 </td <td>P29018</td> <td>cydD</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>588</td> <td>65</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                       | P29018            | cydD         | 1  | 1 | 1 | 1 | 588  | 65           | 0    |
| P77737       oppF       3       1       1       1       334       37.2       1.6         P21513       rne       2       1       1       1       1061       118.1       1.95         P0AG30       rho       3       1       1       1       419       47       1.97         P33232       IldD       3       1       1       1       396       42.7       0         P0A815       trmB       5       1       1       1       239       27.3       0         P0A759       rpsM       11       1       1       1.838       41.4       1.95         P77743       prpR       1       1       1       1       1.95       1.88       0         P0A856       sucC       3       1       1       1       1.95       1.88       0         P0A867       hflK       3       1       1       1       1.88       0       0         P0A867       hflK       3       1       1       1       1.88       1.82       1.85         P0A6A6       leuC       2       1       1       1       1.88       1.98       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P45577            | proQ         | 4  | 1 | 1 | 1 | 232  | 25.9         | 2.48 |
| P21513       me       2       1       1       1       1061       118.1       1.95         P0AG30       rho       3       1       1       1       419       47       1.97         P33232       lldD       3       1       1       1       396       42.7       0         P0A815       trmB       5       1       1       1       239       27.3       0         P0A759       rpSM       11       1       1       141       13.1       3.09         P25535       ubit       3       1       1       1       400       44.2       1.95         P77743       prpR       1       1       1       171       18.6       0         P0A836       sucC       3       1       1       1       388       41.4       0         P0A847       rsd       6       1       1       1       188       1.85       0         P0AFX4       rsd       6       1       1       1       188       41.4       0         P0A66       leuC       2       1       1       1       466       49.9       0         P0A661<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P77737            | oppF         | 3  | 1 | 1 | 1 | 334  | 37.2         | 1.6  |
| P0AG30         rho         3         1         1         1         419         47         1.97           P33232         IIdD         3         1         1         1         396         42.7         0           P0A815         trmB         5         1         1         1         239         27.3         0           P0A759         rpsM         11         1         1         1239         27.3         0           P0A759         rpsM         11         1         1         1396         42.7         195           P77743         prpR         1         1         1         1400         44.2         1.95           P77743         prpR         1         1         1         171         18.6         0           P0A836         sucC         3         1         1         1         419         45.5         0           P0A817         metK         3         1         1         1         388         41.4         0           P0A817         metK         3         1         1         1         456         49.9         0           P0A817         metK         3                                                                                                                                                                                                                                                                                                                                                                                                  | P21513            | rne          | 2  | 1 | 1 | 1 | 1061 | 118.1        | 1.95 |
| P33232       IdD       3       1       1       1       396       42.7       0         P0A815       trmB       5       1       1       1       239       27.3       0         P0A759       rpsM       11       1       1       1       18       13.1       3.09         P25535       ubil       3       1       1       1       400       44.2       1.95         P77743       prpR       1       1       1       1       171       18.6       0         P0A856       sucC       3       1       1       1       171       18.6       0         P0A817       metK       3       1       1       1       384       41.4       0         P0AFX4       rsd       6       1       1       1       158       18.2       1.85         P0A6A6       leuC       2       1       1       1       158       18.2       1.85         P0A6A6       leuC       2       1       1       1       1466       49.9       0         P0A651       ccar       4       1       1       1       1466       39.9       0 <td>P0AG30</td> <td>rho</td> <td>3</td> <td>1</td> <td>1</td> <td>1</td> <td>419</td> <td>47</td> <td>1.97</td>                                                                                                                                                                                                                                                                                                                                                                           | P0AG30            | rho          | 3  | 1 | 1 | 1 | 419  | 47           | 1.97 |
| P0A815         trmB         5         1         1         1         239         27.3         0           P0A759         rpsM         11         1         1         1         18         13.1         3.09           P25535         ubil         3         1         1         1         400         44.2         1.95           P77743         prpR         1         1         1         528         58.6         0           P41069         traV         4         1         1         1         1771         18.6         0           P0A817         metK         3         1         1         1         419         45.5         0           P0A817         metK         3         1         1         1         384         41.9         0           P0A6A6         leuC         2         1         1         1         158         18.2         1.85           P0A6A6         leuC         2         1         1         1         466         49.9         0           P0A616         cca         4         1         1         1         416         41.4         1.75                                                                                                                                                                                                                                                                                                                                                                                                          | P33232            | 11dD         | 3  | 1 | 1 | 1 | 396  | 42.7         | 0    |
| POA759       rpsM       11       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< td=""><td>P0A815</td><td>trmB</td><td>5</td><td>1</td><td>1</td><td>1</td><td>239</td><td>27.3</td><td>0</td></th1<>                                                                                                                                                                                                                                                                                                                                                                              | P0A815            | trmB         | 5  | 1 | 1 | 1 | 239  | 27.3         | 0    |
| Party Properties       Party Properties       Party Properties       Party Properies       < | P04759            | rnsM         | 11 | 1 | 1 | 1 | 118  | 13.1         | 3.09 |
| P77743       prpR       1       1       1       1       528       58.6       0         P41069       traV       4       1       1       1       528       58.6       0         P0A836       sucC       3       1       1       1       388       41.4       0         P0A817       metK       3       1       1       1       388       41.9       0         P0A817       metK       3       1       1       1       384       41.9       0         P0A817       metK       3       1       1       1       188       18.2       1.85         P0A666       leuC       2       1       1       1       466       49.9       0         P09030       xthA       3       1       1       1       268       31       0         P0DMC5       rcsC       1       1       1       1       382       41.4       1.75         P06661       cca       4       1       1       1       369       39.9       0         P0AF08       mrp       5       1       1       1       460       50.7       1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D25535            | ubil         | 3  | 1 | 1 | 1 | 400  | 13.1         | 1.05 |
| P41069       traV       4       1       1       1       1       171       18.6       0         P0A836       sucC       3       1       1       1       171       18.6       0         P0A836       sucC       3       1       1       1       171       18.6       0         P0A817       metK       3       1       1       1       388       41.4       0         P0AFX4       rsd       6       1       1       1       384       41.9       0         P0AFX4       rsd       6       1       1       1       158       18.2       1.85         P0A664       leuC       2       1       1       1       466       49.9       0         P09030       xthA       3       1       1       1       268       31       0         P0DMC5       rcsC       1       1       1       1       382       41.4       1.75         P06961       cca       4       1       1       1       369       39.9       0         P0ABB4       atpD       3       1       1       1       334       37.4 <t< td=""><td>1 23333<br/>D77742</td><td>nrnP</td><td>1</td><td>1</td><td>1</td><td>1</td><td>528</td><td>59.6</td><td>0</td></t<>                                                                                                                                                                                                                                                                                                                                                                   | 1 23333<br>D77742 | nrnP         | 1  | 1 | 1 | 1 | 528  | 59.6         | 0    |
| PA1009       uav       4       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <th1< th="">       1       <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                       | F///43            | pipk<br>troV | 1  | 1 | 1 | 1 | 171  | 19.6         | 0    |
| P0A856       succ       5       1       1       1       1       388       41.4       0         P0ABC7       hflK       3       1       1       1       419       45.5       0         P0A817       metK       3       1       1       1       384       41.9       0         P0AFX4       rsd       6       1       1       1       158       18.2       1.85         P0A6A6       leuC       2       1       1       1       466       49.9       0         P0A6A6       leuC       2       1       1       1       466       49.9       0         P0A661       carA       3       1       1       1       268       31       0         P0DMC5       rcsC       1       1       1       382       41.4       1.75         P06961       cca       4       1       1       1       412       46.4       0         P0AF08       mrp       5       1       1       1       474       50.7       1.91         P0A90       lpdA       2       1       1       1       460       50.3       0 </td <td>P41009</td> <td>uav</td> <td>4</td> <td>1</td> <td>1</td> <td>1</td> <td>1/1</td> <td>10.0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                | P41009            | uav          | 4  | 1 | 1 | 1 | 1/1  | 10.0         | 0    |
| P0A8C/       httik       3       1       1       1       419       45.5       0         P0A817       metK       3       1       1       1       384       41.9       0         P0AFX4       rsd       6       1       1       1       158       18.2       1.85         P0A6A6       leuC       2       1       1       1       466       49.9       0         P09030       xthA       3       1       1       1       268       31       0         P0MC5       rcsC       1       1       1       1       382       41.4       1.75         P06961       cca       4       1       1       1       369       39.9       0         P0AF08       mrp       5       1       1       1       460       50.3       0         P0A9P0       lpdA       2       1       1       1       460       50.3       0         P0A9P0       lpdA       2       1       1       1       460       50.3       0         P0A9P0       lpdA       2       1       1       1       346.3       368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P0A836            | sucC         | 3  | 1 | 1 | 1 | 388  | 41.4         | 0    |
| P0A81/       metk       3       1       1       1       384       41.9       0         P0AFX4       rsd       6       1       1       1       158       18.2       1.85         P0A6A6       leuC       2       1       1       1       466       49.9       0         P09030       xthA       3       1       1       1       268       31       0         P0DMC5       rcsC       1       1       1       1       949       106.4       1.98         P0A6F1       carA       3       1       1       1       382       41.4       1.75         P06961       cca       4       1       1       1       412       46.4       0         P0AF08       mrp       5       1       1       1       460       50.3       0         P0ABB4       atpD       3       1       1       1       464       0       0         P0A9D0       lpdA       2       1       1       1       334       37.4       0         P0A6U5       rsmG       5       1       1       1       148       16.8       3.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | POABC/            | hflK         | 3  | 1 | 1 | 1 | 419  | 45.5         | 0    |
| P0AFX4rsd611115818.21.85P0A6A6leuC211146649.90P09030xthA3111268310P0DMC5rcsC1111949106.41.98P0A6F1carA311138241.41.75P06961cca411141246.40P0AF08mrp511136939.90P0ABB4atpD311146050.30P0A9P0lpdA211147450.71.91P00954trpS711133437.40P0A6U5rsmG511120723.42.66P0A9A9fur911114816.83.68P06612topA211138342.32.42P05020pyrC311132835.21.72P0A659cbpA511132835.21.72P0A6659cbpA511115517.30P45395kdsD2111788.30P69776lpp1811131433.90<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P0A817            | metK         | 3  | 1 | 1 | 1 | 384  | 41.9         | 0    |
| P0A6A6leuC211146649.90P09030xthA3111268310P0DMC5rcsC1111949106.41.98P0A6F1carA311138241.41.75P06961cca411141246.40P0AF08mrp511136939.90P0ABB4atpD311146050.30P0A9P0lpdA211147450.71.91P00954trpS711133437.40P0A6U5rsmG511120723.42.66P0A9A9fur911114816.83.68P06612topA211138342.32.42P05020pyrC311134838.81.61P395kdsD211130634.40P45395kdsD211132835.21.72P0AG86secB1311115517.30P69776lpp1811131433.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P0AFX4            | rsd          | 6  | 1 | 1 | 1 | 158  | 18.2         | 1.85 |
| P09030xthA31111268310P0DMC5rcsC1111949106.41.98P0A6F1carA311138241.41.75P06961cca411138241.41.75P0AF08mrp511141246.40P0ABB4atpD311136939.90P0A9P0lpdA211144050.71.91P00954trpS711133437.40P0A9A9fur911120723.42.66P0A9A9fur911186597.32.38P06612topA211138342.32.42P05020pyrC311134838.81.61P36659cbpA511130634.40P45395kdbD211132835.21.72P0A686secB131111788.30P69776lpp1811131433.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P0A6A6            | leuC         | 2  | 1 | 1 | 1 | 466  | 49.9         | 0    |
| P0DMC5rcsC11111949106.41.98P0A6F1carA311138241.41.75P06961cca411138241.41.75P0AF08mrp511141246.40P0AF08mrp511136939.90P0ABB4atpD311136939.90P0ABB4atpD311136939.90P0ABB4atpD311136939.90P0ABB4atpD311146050.30P0A9P0lpdA211147450.71.91P00954trpS7111120723.42.66P0A9A9fur9111114816.83.68P06612topA2111138342.32.42P05020pyrC311134838.81.61P36659cbpA511132835.21.72P0AG86secB1311131433.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P09030            | xthA         | 3  | 1 | 1 | 1 | 268  | 31           | 0    |
| P0A6F1carA311138241.41.75P06961cca411141246.40P0AF08mrp511136939.90P0ABB4atpD311146050.30P0A9P0lpdA211147450.71.91P00954trpS711133437.40P0A6U5rsmG511120723.42.66P0A9A9fur911114816.83.68P06612topA211138342.32.42P05020pyrC311136634.40P45395kdsD211132835.21.72P0AG86secB13111788.30P69776lpp1811131433.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P0DMC5            | rcsC         | 1  | 1 | 1 | 1 | 949  | 106.4        | 1.98 |
| P06961cca411141246.40P0AF08mrp511136939.90P0ABB4atpD311146050.30P0A9P0lpdA211147450.71.91P00954trpS711133437.40P0A6U5rsmG511120723.42.66P0A9A9fur911114816.83.68P06612topA211186597.32.38P23908argE311138342.32.42P05020pyrC311130634.40P45395kdsD211132835.21.72P0AG86secB13111788.30P69776lpp1811131433.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P0A6F1            | carA         | 3  | 1 | 1 | 1 | 382  | 41.4         | 1.75 |
| P0AF08mrp511136939.90P0ABB4atpD311146050.30P0A9P0lpdA211147450.71.91P00954trpS711133437.40P0A6U5rsmG511120723.42.66P0A9A9fur911114816.83.68P06612topA211186597.32.38P23908argE311138342.32.42P05020pyrC311130634.40P45395kdsD211132835.21.72P0AG86secB13111788.30P69776lpp1811131433.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P06961            | cca          | 4  | 1 | 1 | 1 | 412  | 46.4         | 0    |
| P0ABB4atpD311146050.30P0A9P0lpdA211147450.71.91P00954trpS711133437.40P0A6U5rsmG511120723.42.66P0A9A9fur911114816.83.68P06612topA211186597.32.38P23908argE311138342.32.42P05020pyrC311130634.40P45395kdsD211130634.40P45395kdsD2111788.30P69776lpp18111788.30P76177ydgH511131433.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P0AF08            | mrp          | 5  | 1 | 1 | 1 | 369  | 39.9         | 0    |
| P0A9P0IpdA211147450.71.91P00954trpS711133437.40P0A6U5rsmG511120723.42.66P0A9A9fur911114816.83.68P06612topA211138342.32.38P23908argE311138342.32.42P05020pyrC311134838.81.61P36659cbpA511130634.40P45395kdsD211132835.21.72P0AG86secB13111788.30P69776lpp1811131433.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P0ABB4            | atpD         | 3  | 1 | 1 | 1 | 460  | 50.3         | 0    |
| P00954       trpS       7       1       1       1       334       37.4       0         P0A6U5       rsmG       5       1       1       1       1       334       37.4       0         P0A6U5       rsmG       5       1       1       1       1       207       23.4       2.66         P0A9A9       fur       9       1       1       1       148       16.8       3.68         P06612       topA       2       1       1       1       148       16.8       3.68         P05020       pyrC       3       1       1       1       383       42.3       2.42         P05020       pyrC       3       1       1       1       306       34.4       0         P45395       kdsD       2       1       1       1       306       34.4       0         P45395       kdsD       2       1       1       1       328       35.2       1.72         P0AG86       secB       13       1       1       1       155       17.3       0         P69776       lpp       18       1       1       1       314 <td>P0A9P0</td> <td>lpdA</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>474</td> <td>50.7</td> <td>1.91</td>                                                                                                                                                                                                                                                                                                                                                                        | P0A9P0            | lpdA         | 2  | 1 | 1 | 1 | 474  | 50.7         | 1.91 |
| POAGUS       rsmG       5       1       1       1       207       23.4       2.66         POA9A9       fur       9       1       1       1       148       16.8       3.68         P06612       topA       2       1       1       1       148       16.8       3.68         P05020       pyrC       3       1       1       1       383       42.3       2.42         P05020       pyrC       3       1       1       1       348       38.8       1.61         P36659       cbpA       5       1       1       1       306       34.4       0         P45395       kdsD       2       1       1       1       328       35.2       1.72         P0AG86       secB       13       1       1       1       155       17.3       0         P69776       lpp       18       1       1       1       314       33.9       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P00954            | trnS         | 7  | 1 | 1 | 1 | 334  | 37.4         | 0    |
| POA9A9       fur       9       1       1       1       148       16.8       3.68         P0612       topA       2       1       1       1       148       16.8       3.68         P06612       topA       2       1       1       1       148       16.8       3.68         P23908       argE       3       1       1       1       383       42.3       2.42         P05020       pyrC       3       1       1       1       348       38.8       1.61         P36659       cbpA       5       1       1       1       306       34.4       0         P45395       kdsD       2       1       1       1       328       35.2       1.72         P0AG86       secB       13       1       1       1       155       17.3       0         P69776       lpp       18       1       1       1       78       8.3       0         P76177       ydgH       5       1       1       1       314       33.9       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P0A6U5            | rsmG         | 5  | 1 | 1 | 1 | 207  | 23.4         | 2 66 |
| P06612       topA       2       1       1       1       1       140       1600       5000         P06612       topA       2       1       1       1       1       1655       97.3       2.38         P23908       argE       3       1       1       1       383       42.3       2.42         P05020       pyrC       3       1       1       1       348       38.8       1.61         P36659       cbpA       5       1       1       1       306       34.4       0         P45395       kdsD       2       1       1       1       328       35.2       1.72         P0AG86       secB       13       1       1       1       155       17.3       0         P69776       lpp       18       1       1       1       78       8.3       0         P76177       ydgH       5       1       1       1       314       33.9       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P04949            | fur          | 9  | 1 | 1 | 1 | 148  | 16.8         | 3.68 |
| P 10012       topA       2       1       1       1       1       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       <                                                                                                                                                                                                                                                                                                                                                                                                                                        | P06612            | tonA         | 2  | 1 | 1 | 1 | 865  | 07.3         | 2.00 |
| P25908       arge       5       1       1       1       565       42.5       2.42         P05020       pyrC       3       1       1       1       348       38.8       1.61         P36659       cbpA       5       1       1       1       306       34.4       0         P45395       kdsD       2       1       1       1       328       35.2       1.72         P0AG86       secB       13       1       1       1       78       8.3       0         P69776       lpp       18       1       1       1       314       33.9       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D22008            | oreE         | 2  | 1 | 1 | 1 | 202  | 42.2         | 2.38 |
| P05020         pyrc         5         1         1         1         348         38.8         1.61           P36659         cbpA         5         1         1         1         306         34.4         0           P45395         kdsD         2         1         1         1         328         35.2         1.72           P0AG86         secB         13         1         1         1         155         17.3         0           P69776         lpp         18         1         1         1         78         8.3         0           P76177         ydgH         5         1         1         1         314         33.9         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F 23900           | arge         | 3  | 1 | 1 | 1 | 249  | 42.3         | 2.42 |
| P30059         CDPA         5         1         1         1         306         34.4         0           P45395         kdsD         2         1         1         1         328         35.2         1.72           P0AG86         secB         13         1         1         1         155         17.3         0           P69776         lpp         18         1         1         1         78         8.3         0           P76177         ydgH         5         1         1         1         314         33.9         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P03020            | pyrc         | 5  | 1 | 1 | 1 | 348  | 38.8         | 1.01 |
| P45395     KdsD     2     1     1     1     328     35.2     1.72       P0AG86     secB     13     1     1     1     155     17.3     0       P69776     lpp     18     1     1     1     78     8.3     0       P76177     ydgH     5     1     1     1     314     33.9     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P30039            | CODA         | 5  | 1 | 1 | 1 | 306  | 34.4         | 0    |
| P0AG86         secB         13         1         1         1         155         17.3         0           P69776         lpp         18         1         1         1         78         8.3         0           P76177         ydgH         5         1         1         1         314         33.9         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P45395            | kdsD         | 2  | 1 | 1 | 1 | 328  | 35.2         | 1.72 |
| P69776         lpp         18         1         1         1         78         8.3         0           P76177         ydgH         5         1         1         1         314         33.9         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P0AG86            | secB         | 13 | 1 | 1 | 1 | 155  | 17.3         | 0    |
| P76177 ydgH 5 1 1 1 314 33.9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P69776            | lpp          | 18 | 1 | 1 | 1 | 78   | 8.3          | 0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P76177            | ydgH         | 5  | 1 | 1 | 1 | 314  | 33.9         | 0    |

| UniProt      | Gene  | Coverage | Dentidae | DCM- | Unique   |      | MW    | Score   |
|--------------|-------|----------|----------|------|----------|------|-------|---------|
| Accession ID | Name  | [%]      | Peptides | PSMs | Peptides | AAS  | [kDa] | Sequest |
| P0A825       | glyA  | 71       | 28       | 96   | 28       | 417  | 45.3  | 310     |
| P00370       | gdhA  | 74       | 27       | 71   | 27       | 447  | 48.6  | 208.42  |
| POADR8       | ppnN  | 77       | 30       | 61   | 30       | 454  | 50.9  | 161.08  |
| P0A6B7       | iscS  | 73       | 26       | 61   | 26       | 404  | 45.1  | 167.53  |
| POABZ6       | surA  | 59       | 21       | 51   | 21       | 428  | 47.3  | 158.36  |
| POCE47       | tufA  | 77       | 21       | 51   | 21       | 394  | 43.3  | 151.32  |
| P0ADG7       | guaB  | 75       | 26       | 49   | 26       | 488  | 52    | 154     |
| P0A847       | tgt   | 73       | 25       | 43   | 25       | 375  | 42.6  | 138.71  |
| P0ACC7       | glmU  | 59       | 20       | 40   | 20       | 456  | 49.2  | 122.31  |
| P27306       | sthA  | 69       | 22       | 38   | 22       | 466  | 51.5  | 117.59  |
| P21599       | pykA  | 62       | 22       | 37   | 22       | 480  | 51.3  | 97.62   |
| P0AC53       | zwf   | 62       | 27       | 36   | 27       | 491  | 55.7  | 97.96   |
| P0A850       | tig   | 56       | 21       | 34   | 21       | 432  | 48.2  | 86.61   |
| P0A8J8       | rhlB  | 71       | 19       | 31   | 19       | 421  | 47.1  | 112.92  |
| P0AD05       | yecA  | 57       | 8        | 30   | 8        | 221  | 25    | 87.53   |
| POABQO       | coaB  | 53       | 16       | 27   | 16       | 406  | 43.4  | 72.32   |
| P77398       | rnA   | 33       | 19       | 26   | 19       | 660  | 74.2  | 66.02   |
| P06987       | hisB  | 50       | 15       | 24   | 15       | 355  | 40.3  | 67.63   |
| P0AG30       | rho   | 45       | 18       | 24   | 18       | 419  | 47    | 60.39   |
| P25552       | gppA  | 42       | 14       | 23   | 14       | 494  | 54.8  | 65.06   |
| P06720       | melA  | 36       | 12       | 21   | 12       | 451  | 50.6  | 43.56   |
| P03023       | lacI  | 57       | 14       | 21   | 14       | 360  | 38.6  | 62.9    |
| P36929       | rsmB  | 50       | 13       | 21   | 13       | 429  | 48.3  | 47.71   |
| POAAZ4       | rarA  | 51       | 17       | 21   | 17       | 447  | 49.6  | 56.35   |
| P21513       | rne   | 23       | 18       | 20   | 18       | 1061 | 118.1 | 47.92   |
| POABH7       | oltA  | 50       | 13       | 20   | 13       | 427  | 48    | 52.1    |
| P0A9P0       | IndA  | 39       | 14       | 20   | 14       | 474  | 50.7  | 71.67   |
| P76273       | rsmF  | 35       | 12       | 20   | 12       | 479  | 53.2  | 55.01   |
| P24182       | accC  | 35       | 12       | 20   | 12       | 449  | 49.3  | 63.66   |
| A0A1V1IFM5   | gsk-4 | 49       | 14       | 18   | 14       | 434  | 48.4  | 44.29   |
| 057261       | truD  | 60       | 15       | 17   | 15       | 349  | 39.1  | 37.93   |
| P0A9J8       | pheA  | 37       | 11       | 16   | 11       | 386  | 43.1  | 39.69   |
| POAFL6       | pneri | 32       | 13       | 16   | 13       | 513  | 58.1  | 37.73   |
| P06961       | cca   | 40       | 13       | 15   | 13       | 412  | 46.4  | 36.94   |
| P25539       | ribD  | 41       | 12       | 14   | 12       | 367  | 40.3  | 29.85   |
| P32131       | hemN  | 33       | 12       | 13   | 12       | 457  | 52.7  | 33.33   |
| P0A9P6       | deaD  | 23       | 11       | 12   | 11       | 629  | 70.5  | 30.18   |
| P31806       | nnr   | 28       | 10       | 12   | 10       | 515  | 54.6  | 33.24   |
| P75863       | vchX  | 33       | 9        | 12   | 9        | 369  | 40.6  | 31.53   |
| POACP7       | purR  | 35       | 11       | 12   | 11       | 341  | 38.2  | 26.77   |
| POABBO       | atnA  | 28       | 11       | 11   | 11       | 513  | 55.2  | 29.9    |
| P77434       | alaC  | 38       | 11       | 11   | 11       | 412  | 46.2  | 28.31   |
| P30871       | vøiF  | 26       | 9        | 11   | 9        | 433  | 48.4  | 19.27   |
| P06710       | dnaX  | 14       | 7        | 10   | 7        | 643  | 71.1  | 18.44   |
| P23845       | cvsN  | 23       | 9        | 10   | 9        | 475  | 52.5  | 23.82   |
| P33643       | rluD  | 43       | 8        | 10   | 8        | 326  | 37.1  | 32.24   |
| P0AFG6       | sucB  | 20       | 7        | 10   | 7        | 405  | 44    | 32.36   |
| P02943       | lamB  | 39       | 10       | 10   | 10       | 446  | 49.9  | 29.24   |
| P66948       | bepA  | 22       | 8        | 9    | 8        | 487  | 53.9  | 25.86   |
| P0AC41       | sdhA  | 17       | 8        | 9    | 8        | 588  | 64.4  | 18.95   |
| P76403       | trhP  | 25       | 8        | 9    | 8        | 453  | 51.2  | 19.5    |
| P39099       | degO  | 32       | 9        | 9    | 9        | 455  | 47.2  | 26.21   |
| P0A6P9       | eno   | 20       | 7        | 8    | 7        | 432  | 45.6  | 17.66   |
| P22188       | murE  | 19       | 6        | 8    | 6        | 495  | 53.3  | 15.71   |
| P11880       | murF  | 18       | 6        | 8    | 6        | 452  | 47.4  | 24.09   |
| P0A705       | infR  | 9        | 7        | 8    | 7        | 890  | 97.3  | 11.54   |
| P0AFI4       | rimO  | 23       | 7        | 8    | 7        | 441  | 49.6  | 25.57   |
| P0A6A6       | lenC  | 28       | 8        | 8    | 8        | 466  | 49.9  | 16.6    |
| POACIO       | roh   | 35       | 7        | 8    | 7        | 289  | 33.1  | 5.34    |
| P60906       | hisS  | 23       | 7        | 8    | 7        | 424  | 47    | 17.33   |
| P38051       | menF  | 23       | 7        | 7    | 7        | 431  | 48 7  | 9.68    |
| P0A774       | rnoA  | 26       | 7        | 7    | 7        | 329  | 36 5  | 11.34   |
| P23830       | pssA  | 18       | 6        | 6    | 6        | 451  | 52.8  | 8.02    |

### Table 8 - Mass spectrometry results from Section 5.2.4 - W13Bpa 42-65 kDa

| P0A6F3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glpK                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 502                                                                                                                                                                                                                                                                                                                                                                                                  | 56.2                                                                                                                                                                                                                                                                                                                                                                                     | 12.95                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P21151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fadA                                                                                                                                                                                                                                                   | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 387                                                                                                                                                                                                                                                                                                                                                                                                  | 40.9                                                                                                                                                                                                                                                                                                                                                                                     | 19.44                                                                                                                                                                                                                                                                                                                                                                                                 |
| P0AFU4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glrR                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 444                                                                                                                                                                                                                                                                                                                                                                                                  | 49.1                                                                                                                                                                                                                                                                                                                                                                                     | 10.94                                                                                                                                                                                                                                                                                                                                                                                                 |
| POABB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atpD                                                                                                                                                                                                                                                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 460                                                                                                                                                                                                                                                                                                                                                                                                  | 50.3                                                                                                                                                                                                                                                                                                                                                                                     | 16.86                                                                                                                                                                                                                                                                                                                                                                                                 |
| P0A6C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | argA                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 443                                                                                                                                                                                                                                                                                                                                                                                                  | 49.2                                                                                                                                                                                                                                                                                                                                                                                     | 5.74                                                                                                                                                                                                                                                                                                                                                                                                  |
| P08660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lys                                                                                                                                                                                                                                                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 449                                                                                                                                                                                                                                                                                                                                                                                                  | 48.5                                                                                                                                                                                                                                                                                                                                                                                     | 12.45                                                                                                                                                                                                                                                                                                                                                                                                 |
| P33599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nuoC                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 596                                                                                                                                                                                                                                                                                                                                                                                                  | 68.2                                                                                                                                                                                                                                                                                                                                                                                     | 6.96                                                                                                                                                                                                                                                                                                                                                                                                  |
| POA6U8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glgA                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 477                                                                                                                                                                                                                                                                                                                                                                                                  | 52.8                                                                                                                                                                                                                                                                                                                                                                                     | 14.17                                                                                                                                                                                                                                                                                                                                                                                                 |
| P0A8M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thrS                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 642                                                                                                                                                                                                                                                                                                                                                                                                  | 74                                                                                                                                                                                                                                                                                                                                                                                       | 8.09                                                                                                                                                                                                                                                                                                                                                                                                  |
| P0A6T5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | folE                                                                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 222                                                                                                                                                                                                                                                                                                                                                                                                  | 24.8                                                                                                                                                                                                                                                                                                                                                                                     | 6.74                                                                                                                                                                                                                                                                                                                                                                                                  |
| P00887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aroH                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 348                                                                                                                                                                                                                                                                                                                                                                                                  | 38.7                                                                                                                                                                                                                                                                                                                                                                                     | 9.07                                                                                                                                                                                                                                                                                                                                                                                                  |
| P30177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ybiB                                                                                                                                                                                                                                                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 320                                                                                                                                                                                                                                                                                                                                                                                                  | 35                                                                                                                                                                                                                                                                                                                                                                                       | 7.41                                                                                                                                                                                                                                                                                                                                                                                                  |
| P04036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dapB                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 273                                                                                                                                                                                                                                                                                                                                                                                                  | 28.7                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                    |
| P75876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rlmI                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 396                                                                                                                                                                                                                                                                                                                                                                                                  | 44.3                                                                                                                                                                                                                                                                                                                                                                                     | 9.64                                                                                                                                                                                                                                                                                                                                                                                                  |
| P00914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | phrB                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 472                                                                                                                                                                                                                                                                                                                                                                                                  | 53.6                                                                                                                                                                                                                                                                                                                                                                                     | 2.4                                                                                                                                                                                                                                                                                                                                                                                                   |
| P0AES6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gyrB                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 804                                                                                                                                                                                                                                                                                                                                                                                                  | 89.9                                                                                                                                                                                                                                                                                                                                                                                     | 7.74                                                                                                                                                                                                                                                                                                                                                                                                  |
| P0A749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | murA                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 419                                                                                                                                                                                                                                                                                                                                                                                                  | 44.8                                                                                                                                                                                                                                                                                                                                                                                     | 3.55                                                                                                                                                                                                                                                                                                                                                                                                  |
| P0C0V0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degP                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 474                                                                                                                                                                                                                                                                                                                                                                                                  | 49.3                                                                                                                                                                                                                                                                                                                                                                                     | 2.05                                                                                                                                                                                                                                                                                                                                                                                                  |
| P05042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fumC                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 467                                                                                                                                                                                                                                                                                                                                                                                                  | 50.5                                                                                                                                                                                                                                                                                                                                                                                     | 3.71                                                                                                                                                                                                                                                                                                                                                                                                  |
| P17315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cirA                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 663                                                                                                                                                                                                                                                                                                                                                                                                  | 73.9                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                     |
| P07639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aroB                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 362                                                                                                                                                                                                                                                                                                                                                                                                  | 38.9                                                                                                                                                                                                                                                                                                                                                                                     | 9.73                                                                                                                                                                                                                                                                                                                                                                                                  |
| P0C8J8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gatZ                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 420                                                                                                                                                                                                                                                                                                                                                                                                  | 47.1                                                                                                                                                                                                                                                                                                                                                                                     | 3.19                                                                                                                                                                                                                                                                                                                                                                                                  |
| P37675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yiaN                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 425                                                                                                                                                                                                                                                                                                                                                                                                  | 45.3                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                     |
| P39286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rsgA                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 350                                                                                                                                                                                                                                                                                                                                                                                                  | 39.2                                                                                                                                                                                                                                                                                                                                                                                     | 4.84                                                                                                                                                                                                                                                                                                                                                                                                  |
| P33360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yehX                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 308                                                                                                                                                                                                                                                                                                                                                                                                  | 34.4                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                     |
| POA8N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lysS                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 505                                                                                                                                                                                                                                                                                                                                                                                                  | 57.6                                                                                                                                                                                                                                                                                                                                                                                     | 1.74                                                                                                                                                                                                                                                                                                                                                                                                  |
| P37631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yhiN                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400                                                                                                                                                                                                                                                                                                                                                                                                  | 43.7                                                                                                                                                                                                                                                                                                                                                                                     | 7.81                                                                                                                                                                                                                                                                                                                                                                                                  |
| P37051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | purU                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 280                                                                                                                                                                                                                                                                                                                                                                                                  | 31.9                                                                                                                                                                                                                                                                                                                                                                                     | 6.15                                                                                                                                                                                                                                                                                                                                                                                                  |
| P12295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ung                                                                                                                                                                                                                                                    | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 229                                                                                                                                                                                                                                                                                                                                                                                                  | 25.7                                                                                                                                                                                                                                                                                                                                                                                     | 4.72                                                                                                                                                                                                                                                                                                                                                                                                  |
| P52097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tilS                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 432                                                                                                                                                                                                                                                                                                                                                                                                  | 48.2                                                                                                                                                                                                                                                                                                                                                                                     | 10.45                                                                                                                                                                                                                                                                                                                                                                                                 |
| P45577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | proQ                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 232                                                                                                                                                                                                                                                                                                                                                                                                  | 25.9                                                                                                                                                                                                                                                                                                                                                                                     | 5.02                                                                                                                                                                                                                                                                                                                                                                                                  |
| POA8E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ycfP                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180                                                                                                                                                                                                                                                                                                                                                                                                  | 21.2                                                                                                                                                                                                                                                                                                                                                                                     | 5.52                                                                                                                                                                                                                                                                                                                                                                                                  |
| P76046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ycjX                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 465                                                                                                                                                                                                                                                                                                                                                                                                  | 52.6                                                                                                                                                                                                                                                                                                                                                                                     | 2.91                                                                                                                                                                                                                                                                                                                                                                                                  |
| POABC7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hflK                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 419                                                                                                                                                                                                                                                                                                                                                                                                  | 45.5                                                                                                                                                                                                                                                                                                                                                                                     | 6.15                                                                                                                                                                                                                                                                                                                                                                                                  |
| P04335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | frsA                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111                                                                                                                                                                                                                                                                                                                                                                                                  | 47                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 414                                                                                                                                                                                                                                                                                                                                                                                                  | 77                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                     |
| P0A722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lpxA                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 262                                                                                                                                                                                                                                                                                                                                                                                                  | 28.1                                                                                                                                                                                                                                                                                                                                                                                     | 7.52                                                                                                                                                                                                                                                                                                                                                                                                  |
| P0A722<br>P08200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lpxA<br>icd                                                                                                                                                                                                                                            | 13<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                               | 3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 262<br>416                                                                                                                                                                                                                                                                                                                                                                                           | 28.1<br>45.7                                                                                                                                                                                                                                                                                                                                                                             | 0<br>7.52<br>0                                                                                                                                                                                                                                                                                                                                                                                        |
| P0A722<br>P08200<br>P31979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lpxA<br>icd<br>nuoF                                                                                                                                                                                                                                    | 13<br>9<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>3<br>3                                                                                                     | 3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 262<br>416<br>445                                                                                                                                                                                                                                                                                                                                                                                    | 28.1<br>45.7<br>49.3                                                                                                                                                                                                                                                                                                                                                                     | 7.52<br>0<br>5.55                                                                                                                                                                                                                                                                                                                                                                                     |
| P0A722<br>P08200<br>P31979<br>P42641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lpxA<br>icd<br>nuoF<br>obgE                                                                                                                                                                                                                            | 13<br>9<br>7<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3<br>3<br>3<br>3                                                                                                | 3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 262<br>416<br>445<br>390                                                                                                                                                                                                                                                                                                                                                                             | 28.1<br>45.7<br>49.3<br>43.3                                                                                                                                                                                                                                                                                                                                                             | 7.52<br>0<br>5.55<br>7.21                                                                                                                                                                                                                                                                                                                                                                             |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB                                                                                                                                                                                                                    | 13<br>9<br>7<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>3<br>3<br>3<br>3<br>3                                                                                      | 3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 262<br>416<br>445<br>390<br>323                                                                                                                                                                                                                                                                                                                                                                      | 28.1<br>45.7<br>49.3<br>43.3<br>37                                                                                                                                                                                                                                                                                                                                                       | 7.52<br>0<br>5.55<br>7.21<br>3.02                                                                                                                                                                                                                                                                                                                                                                     |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC                                                                                                                                                                                                            | 13<br>9<br>7<br>11<br>11<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                 | 3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 262<br>416<br>445<br>390<br>323<br>406                                                                                                                                                                                                                                                                                                                                                               | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6                                                                                                                                                                                                                                                                                                                                               | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25                                                                                                                                                                                                                                                                                                                                                             |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD                                                                                                                                                                                                    | 13<br>9<br>7<br>11<br>11<br>8<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                  | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 262<br>416<br>445<br>390<br>323<br>406<br>266                                                                                                                                                                                                                                                                                                                                                        | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6                                                                                                                                                                                                                                                                                                                                       | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7                                                                                                                                                                                                                                                                                                                                                      |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs                                                                                                                                                                                             | 13<br>9<br>7<br>11<br>11<br>8<br>16<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                        | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 262<br>416<br>445<br>390<br>323<br>406<br>266<br>315                                                                                                                                                                                                                                                                                                                                                 | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2                                                                                                                                                                                                                                                                                                                               | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89                                                                                                                                                                                                                                                                                                                                              |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF                                                                                                                                                                                     | 13<br>9<br>7<br>11<br>11<br>8<br>16<br>14<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                        | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 414         262         416         445         390         323         406         266         315         521                                                                                                                                                                                                                                                                                      | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1                                                                                                                                                                                                                                                                                                                       | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58                                                                                                                                                                                                                                                                                                                                      |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD                                                                                                                                                                             | 13<br>9<br>7<br>11<br>11<br>8<br>16<br>14<br>9<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                   | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 414<br>262<br>416<br>445<br>390<br>323<br>406<br>266<br>315<br>521<br>433                                                                                                                                                                                                                                                                                                                            | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48                                                                                                                                                                                                                                                                                                                 | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58<br>5.02                                                                                                                                                                                                                                                                                                                              |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC                                                                                                                                                                     | 13<br>9<br>7<br>11<br>11<br>8<br>16<br>14<br>9<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                    | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 414<br>262<br>416<br>445<br>390<br>323<br>406<br>266<br>315<br>521<br>433<br>422                                                                                                                                                                                                                                                                                                                     | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4                                                                                                                                                                                                                                                                                                         | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58<br>5.02<br>4.14                                                                                                                                                                                                                                                                                                                      |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr                                                                                                                                                              | 13<br>9<br>7<br>11<br>11<br>11<br>8<br>16<br>14<br>9<br>7<br>8<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 414<br>262<br>416<br>445<br>390<br>323<br>406<br>266<br>315<br>521<br>433<br>422<br>346                                                                                                                                                                                                                                                                                                              | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8                                                                                                                                                                                                                                                                                                 | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58<br>5.02<br>4.14<br>4.03                                                                                                                                                                                                                                                                                                              |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF                                                                                                                                                      | 13<br>9<br>7<br>11<br>11<br>11<br>8<br>16<br>14<br>9<br>7<br>8<br>12<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 414<br>262<br>416<br>445<br>390<br>323<br>406<br>266<br>315<br>521<br>433<br>422<br>346<br>630                                                                                                                                                                                                                                                                                                       | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1                                                                                                                                                                                                                                                                                         | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58<br>5.02<br>4.14<br>4.03<br>5.12                                                                                                                                                                                                                                                                                                      |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB                                                                                                                                              | 13<br>9<br>7<br>11<br>11<br>8<br>16<br>14<br>9<br>7<br>8<br>12<br>5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486                                                                                                                                                                                                                         | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2                                                                                                                                                                                                                                                                                | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58<br>5.02<br>4.14<br>4.03<br>5.12<br>0                                                                                                                                                                                                                                                                                                 |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD                                                                                                                                      | 13<br>9<br>7<br>11<br>11<br>11<br>8<br>16<br>14<br>9<br>7<br>8<br>12<br>5<br>2<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472                                                                                                                                                                                                             | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52                                                                                                                                                                                                                                                                          | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58<br>5.02<br>4.14<br>4.03<br>5.12<br>0<br>6.2                                                                                                                                                                                                                                                                                          |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD                                                                                                                              | 13         9         7         11         11         8         16         14         9         7         8         12         5         2         10         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613                                                                                                                                                                                                 | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2                                                                                                                                                                                                                                                                  | 7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83                                                                                                                                                                                                       |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P0A910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA                                                                                                                       | 13<br>9<br>7<br>11<br>11<br>8<br>16<br>14<br>9<br>7<br>8<br>12<br>5<br>2<br>10<br>3<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346                                                                                                                                                                                     | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2                                                                                                                                                                                                                                                          | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58<br>5.02<br>4.14<br>4.03<br>5.12<br>0<br>6.2<br>4.83<br>3.28                                                                                                                                                                                                                                                                          |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P0A910<br>P0ABJ9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA                                                                                                               | 13         9         7         11         11         8         16         14         9         7         8         12         5         2         10         3         9         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2                | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522                                                                                                                                                                         | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2                                                                                                                                                                                                                                                  | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58<br>5.02<br>4.14<br>4.03<br>5.12<br>0<br>6.2<br>4.83<br>3.28<br>2.3                                                                                                                                                                                                                                                                   |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P09832<br>P00579<br>P0A910<br>P0ABJ9<br>P0AE18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map                                                                                                        | 13         9         7         11         11         8         16         14         9         7         8         12         5         2         10         3         9         4         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2           | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264                                                                                                                                                             | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3                                                                                                                                                                                                                                          | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58<br>5.02<br>4.14<br>4.03<br>5.12<br>0<br>6.2<br>4.83<br>3.28<br>2.3<br>1.97                                                                                                                                                                                                                                                           |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P09832<br>P00579<br>P0A910<br>P0ABJ9<br>P0AE18<br>P00490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP                                                                                                | 13         9         7         11         11         14         9         7         8         12         5         2         10         3         9         4         7         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797                                                                                                                                                 | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5                                                                                                                                                                                                                                  | 7.52<br>0<br>5.55<br>7.21<br>3.02<br>6.25<br>6.7<br>4.89<br>2.58<br>5.02<br>4.14<br>4.03<br>5.12<br>0<br>6.2<br>4.83<br>3.28<br>2.3<br>1.97<br>0                                                                                                                                                                                                                                                      |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P09832<br>P00579<br>P0A910<br>P0A910<br>P0ABJ9<br>P0AE18<br>P00490<br>P0A955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA                                                                                        | 13         9         7         11         11         14         9         7         8         12         5         2         10         3         9         4         7         2         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367                                                                                                                                     | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5<br>38.7                                                                                                                                                                                                                          | 7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0         0                                                                                                                                   |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P09831<br>P09832<br>P00579<br>P0A910<br>P0A910<br>P0ABJ9<br>P0AE18<br>P00490<br>P0A955<br>P0A7V8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD                                                                                | 13         9         7         11         11         8         16         14         9         7         8         12         5         2         10         3         9         4         7         2         8         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206                                                                                                                         | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5<br>38.7<br>23.5                                                                                                                                                                                                                  | 7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0         2.57                                                                                                                                |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P09831<br>P09832<br>P00579<br>P0A910<br>P0A910<br>P0A910<br>P0A819<br>P0A818<br>P00490<br>P0A955<br>P0A7V8<br>P0A6H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD<br>clpX                                                                        | 13         9         7         11         11         11         11         11         11         12         5         2         10         3         9         4         7         2         8         11         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424                                                                                                             | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5<br>38.7<br>23.5<br>46.3                                                                                                                                                                                                          | 0         7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0.257         5.23                                                                                                                  |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P09831<br>P09832<br>P00579<br>P0A910<br>P0A910<br>P0ABJ9<br>P0A518<br>P00490<br>P0A955<br>P0A7V8<br>P0A6H1<br>P0A6U5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD<br>clpX<br>rsmG                                                                | 13         9         7         11         11         11         12         5         2         10         3         9         4         7         2         8         11         5         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207                                                                                                 | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5<br>38.7<br>23.5<br>46.3<br>23.4                                                                                                                                                                                                  | 7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.23         1.97         0         0         2.57         5.23         2.47                                                                                                                                           |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P00831<br>P09832<br>P00579<br>P0A910<br>P0A8J9<br>P0A8J9<br>P0A8J9<br>P0A8J9<br>P0A8J9<br>P0A8J9<br>P0A8J9<br>P0A8J9<br>P0A8J9<br>P0A8J9<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A90<br>P0A00<br>P0A00 | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD<br>clpX<br>rsmG<br>adhE                                                        | 13         9         7         11         11         14         9         7         8         12         5         2         10         3         9         4         7         2         8         11         5         10         3         9         4         7         2         8         11         5         10         2         10         2         10         2         10         2         10         2         10         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891                                                                                     | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5<br>38.7<br>23.5<br>46.3<br>23.4<br>96.1                                                                                                                                                                                          | 7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0         2.57         5.23         2.47         1.99                                                                                         |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P0A910<br>P0A819<br>P0A819<br>P0A818<br>P00490<br>P0A818<br>P00490<br>P0A955<br>P0A7V8<br>P0A6H1<br>P0A6U5<br>P0A9Q7<br>P0A6E4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD<br>clpX<br>rsmG<br>adhE<br>argG                                                | 13         9         7         11         11         14         9         7         8         12         5         2         10         3         9         4         7         2         8         11         5         10         2         8         11         5         10         2         8         11         5         10         2         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447                                                                         | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5<br>38.7<br>23.5<br>46.3<br>23.4<br>96.1<br>49.9                                                                                                                                                                                  | 7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0.2         5.72         5.23         2.47         1.99         1.92                                                                          |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P0A819<br>P0A819<br>P0A819<br>P0A819<br>P0A818<br>P00490<br>P0A819<br>P0A818<br>P00490<br>P0A818<br>P00490<br>P0A818<br>P00490<br>P0A907<br>P0A604<br>P0A907<br>P0A604<br>P0A907<br>P0A604<br>P0A0V5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD<br>clpX<br>rsmG<br>adhE<br>argG<br>yhbW                                        | 13         9         7         11         11         14         9         7         8         12         5         2         10         3         9         4         7         2         8         11         5         10         2         4         9         4         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335                                                             | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5<br>38.7<br>23.5<br>46.3<br>23.4<br>96.1<br>49.9<br>37.1                                                                                                                                                                          | 0         7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0         2.57         5.23         2.47         1.99         1.92         0                                                        |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P0A819<br>P0A819<br>P0A819<br>P0A490<br>P0A910<br>P0A819<br>P0A490<br>P0A910<br>P0A641<br>P0A905<br>P0A7V8<br>P0A6H1<br>P0A6U5<br>P0A9Q7<br>P0A6E4<br>P0ADV5<br>P0AG67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD<br>clpX<br>rsmG<br>adhE<br>argG<br>yhbW<br>rpsA                                | 13         9         7         11         11         8         16         14         9         7         8         12         5         2         10         3         9         4         7         2         8         11         5         10         2         4         9         5         10         2         4         9         5         5         10         2         4         9         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335         557                                                 | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5<br>38.7<br>23.5<br>46.3<br>23.4<br>96.1<br>49.9<br>37.1<br>61.1                                                                                                                                                                  | 7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0         2.57         5.23         2.47         1.99         1.92         0         2.6                                                      |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P0A910<br>P0A8J9<br>P0A910<br>P0A8J9<br>P0A910<br>P0A8J9<br>P0A55<br>P0A7V8<br>P0A6H1<br>P0A6U5<br>P0A9Q7<br>P0A6E4<br>P0ADV5<br>P0AG67<br>P77690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD<br>clpX<br>rsmG<br>adhE<br>argG<br>yhbW<br>rpsA<br>arnB                        | 13         9         7         11         11         14         9         7         8         12         5         2         10         3         9         4         7         2         8         11         5         10         2         4         9         5         10         2         4         9         5         9         5         9         5         9         5         9          5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335         557         385                                     | 28.1         45.7         49.3         43.6         28.6         34.2         56.1         48         45.4         38.8         66.1         163.2         52         70.2         37.2         58.2         29.3         90.5         38.7         23.5         46.3         23.4         96.1         49.9         37.1         61.1         42.2                                      | 0         7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         2.57         5.23         2.47         1.99         1.92         0         2.6         3.85                                         |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P0A910<br>P0A910<br>P0A819<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A910<br>P0A907<br>P0A64<br>P0ADV5<br>P0A667<br>P77690<br>P02930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD<br>clpX<br>rsmG<br>adhE<br>argG<br>yhbW<br>rpsA<br>arnB<br>tolC                | 13         9         7         11         11         14         9         7         8         12         5         2         10         3         9         4         7         2         8         11         5         10         2         8         11         5         10         2         4         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3         3         3         3         3         3         2         3         3         2         3         3         3         3         3         3         3         3         3         3         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <td< td=""><td>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3</td><td>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>2<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3</td><td>414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335         557         385         493</td><td>28.1<br/>45.7<br/>49.3<br/>43.3<br/>37<br/>43.6<br/>28.6<br/>34.2<br/>56.1<br/>48<br/>45.4<br/>38.8<br/>66.1<br/>163.2<br/>52<br/>70.2<br/>37.2<br/>58.2<br/>29.3<br/>90.5<br/>38.7<br/>23.5<br/>46.3<br/>23.4<br/>96.1<br/>49.9<br/>37.1<br/>61.1<br/>42.2<br/>53.7</td><td>7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0         2.57         5.23         2.47         1.99         1.92         0         2.6         3.85         2.01</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335         557         385         493                         | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5<br>38.7<br>23.5<br>46.3<br>23.4<br>96.1<br>49.9<br>37.1<br>61.1<br>42.2<br>53.7                                                                                                                                                  | 7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0         2.57         5.23         2.47         1.99         1.92         0         2.6         3.85         2.01                            |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P06959<br>P09831<br>P09832<br>P00579<br>P0A910<br>P0A819<br>P0A910<br>P0A819<br>P0A910<br>P0A819<br>P0A55<br>P0A7V8<br>P0A6H1<br>P0A6U5<br>P0A9Q7<br>P0A6C5<br>P0A9Q7<br>P0A664<br>P0ADV5<br>P0AG67<br>P77690<br>P02930<br>P0A989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD<br>clpX<br>rsmG<br>adhE<br>argG<br>yhbW<br>rpsA<br>arnB<br>tolC<br>slyD        | 13         9         7         11         11         14         9         7         8         12         5         2         10         3         9         4         7         2         8         11         5         10         2         8         11         5         10         2         4         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         3         3         3         3         3         2         3         3         2         3         3         3         3         3         3         3         3         3         3         3         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <td< td=""><td>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3</td><td>3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         <td< td=""><td>414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335         557         385         493         196</td><td>28.1<br/>45.7<br/>49.3<br/>43.3<br/>37<br/>43.6<br/>28.6<br/>34.2<br/>56.1<br/>48<br/>45.4<br/>38.8<br/>66.1<br/>163.2<br/>52<br/>70.2<br/>37.2<br/>58.2<br/>29.3<br/>90.5<br/>38.7<br/>23.5<br/>46.3<br/>23.4<br/>96.1<br/>49.9<br/>37.1<br/>61.1<br/>42.2<br/>53.7<br/>20.8</td><td>7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         2.57         5.23         2.47         1.99         1.92         0         2.66         3.85         2.01         2.65</td></td<></td></td<> | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td< td=""><td>414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335         557         385         493         196</td><td>28.1<br/>45.7<br/>49.3<br/>43.3<br/>37<br/>43.6<br/>28.6<br/>34.2<br/>56.1<br/>48<br/>45.4<br/>38.8<br/>66.1<br/>163.2<br/>52<br/>70.2<br/>37.2<br/>58.2<br/>29.3<br/>90.5<br/>38.7<br/>23.5<br/>46.3<br/>23.4<br/>96.1<br/>49.9<br/>37.1<br/>61.1<br/>42.2<br/>53.7<br/>20.8</td><td>7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         2.57         5.23         2.47         1.99         1.92         0         2.66         3.85         2.01         2.65</td></td<>                                                                                                                                               | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335         557         385         493         196             | 28.1<br>45.7<br>49.3<br>43.3<br>37<br>43.6<br>28.6<br>34.2<br>56.1<br>48<br>45.4<br>38.8<br>66.1<br>163.2<br>52<br>70.2<br>37.2<br>58.2<br>29.3<br>90.5<br>38.7<br>23.5<br>46.3<br>23.4<br>96.1<br>49.9<br>37.1<br>61.1<br>42.2<br>53.7<br>20.8                                                                                                                                          | 7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         2.57         5.23         2.47         1.99         1.92         0         2.66         3.85         2.01         2.65                        |
| P0A722<br>P08200<br>P31979<br>P42641<br>P76291<br>P77581<br>P76422<br>P0A717<br>P35340<br>P55135<br>P08192<br>Q46851<br>P08959<br>P09831<br>P09832<br>P00579<br>P0A910<br>P0A819<br>P0A910<br>P0A819<br>P0A55<br>P0A7V8<br>P0A641<br>P0A905<br>P0A907<br>P0A641<br>P0A605<br>P0A9Q7<br>P0A664<br>P0A907<br>P0A664<br>P0A905<br>P0A907<br>P0A667<br>P77690<br>P02930<br>P0A989<br>P0A989<br>P0A989<br>P0A989<br>P0A989<br>P0A989<br>P0A989<br>P0A907<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A999<br>P0A972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lpxA<br>icd<br>nuoF<br>obgE<br>cmoB<br>astC<br>thiD<br>prs<br>ahpF<br>rlmD<br>folC<br>gpr<br>aceF<br>gltB<br>gltD<br>rpoD<br>mpA<br>cydA<br>map<br>malP<br>gldA<br>rpsD<br>clpX<br>rsmG<br>adhE<br>argG<br>yhbW<br>rpsA<br>arnB<br>tolC<br>slyD<br>uup | 13         9         7         11         11         14         9         7         8         12         5         2         10         3         9         4         7         8         11         5         10         2         8         11         5         10         2         8         11         5         9         4         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         9         5         12         5 <td>3         3         3         3         3         3         2         3         3         2         3         3         3         3         3         3         3         3         3         3         3         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2      2</td> <td>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3<br/>3</td> <td>3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         <td< td=""><td>414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335         557         385         493         196         635</td><td>28.1         45.7         49.3         43.6         28.6         34.2         56.1         48         45.4         38.8         66.1         163.2         52         70.2         37.2         58.2         29.3         90.5         38.7         23.5         46.3         23.4         96.1         49.9         37.1         61.1         42.2         53.7         20.8         72</td><td>7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0         2.57         5.23         2.47         1.99         1.92         0         2.66         3.85         2.01         2.65         3.96</td></td<></td> | 3         3         3         3         3         3         2         3         3         2         3         3         3         3         3         3         3         3         3         3         3         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2      2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td< td=""><td>414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335         557         385         493         196         635</td><td>28.1         45.7         49.3         43.6         28.6         34.2         56.1         48         45.4         38.8         66.1         163.2         52         70.2         37.2         58.2         29.3         90.5         38.7         23.5         46.3         23.4         96.1         49.9         37.1         61.1         42.2         53.7         20.8         72</td><td>7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0         2.57         5.23         2.47         1.99         1.92         0         2.66         3.85         2.01         2.65         3.96</td></td<> | 414         262         416         445         390         323         406         266         315         521         433         422         346         630         1486         472         613         346         522         264         797         367         206         424         207         891         447         335         557         385         493         196         635 | 28.1         45.7         49.3         43.6         28.6         34.2         56.1         48         45.4         38.8         66.1         163.2         52         70.2         37.2         58.2         29.3         90.5         38.7         23.5         46.3         23.4         96.1         49.9         37.1         61.1         42.2         53.7         20.8         72 | 7.52         0         5.55         7.21         3.02         6.25         6.7         4.89         2.58         5.02         4.14         4.03         5.12         0         6.2         4.83         3.28         2.3         1.97         0         0         2.57         5.23         2.47         1.99         1.92         0         2.66         3.85         2.01         2.65         3.96 |

| P71242                               | wcaK                                | 4                     | 2                     | 2                     | 2                     | 426                             | 47.3                                             | 1.86             |
|--------------------------------------|-------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------|
| POAEX9                               | malE                                | 3                     | 1                     | 1                     | 1                     | 396                             | 43.4                                             | 0                |
| P12008                               | aroC                                | 4                     | 1                     | 1                     | 1                     | 361                             | 39.1                                             | 2.55             |
| P0A9W9                               | vrdA                                | 8                     | 1                     | 1                     | 1                     | 184                             | 20.2                                             | 0                |
| P30958                               | mfd                                 | 1                     | 1                     | 1                     | 1                     | 1148                            | 129.9                                            | 2 58             |
| P23893                               | hemI                                | 2                     | 1                     | 1                     | 1                     | 426                             | 45.3                                             | 0                |
| P0/005                               | sheB                                | 2                     | 1                     | 1                     | 1                     | 420                             | 45.5                                             | 0                |
| P04333                               | holP                                | 3                     | 1                     | 1                     | 1                     | 475                             | 26.0                                             | 0                |
| P20031                               | IIOID                               | 3                     | 1                     | 1                     | 1                     | 334                             | 30.9                                             | 0                |
| P/03/3                               | uga                                 | 2                     | 1                     | 1                     | 1                     | 388                             | 43.6                                             | 2.07             |
| PUA9BZ                               | gapA                                | 5                     | 1                     | 1                     | 1                     | 331                             | 35.5                                             | 0                |
| POAFG8                               | aceE                                | 1                     | 1                     | 1                     | 1                     | 887                             | 99.6                                             | 2.84             |
| P0A7B1                               | ppk                                 | 1                     | 1                     | 1                     | 1                     | 688                             | 80.4                                             | 0                |
| POAB89                               | purB                                | 2                     | 1                     | 1                     | 1                     | 456                             | 51.5                                             | 0                |
| P10902                               | nadB                                | 2                     | 1                     | 1                     | 1                     | 540                             | 60.3                                             | 1.94             |
| P75780                               | fiu                                 | 3                     | 1                     | 1                     | 1                     | 760                             | 81.9                                             | 0                |
| P30845                               | eptA                                | 1                     | 1                     | 1                     | 1                     | 547                             | 61.6                                             | 1.88             |
| P04994                               | xseA                                | 3                     | 1                     | 1                     | 1                     | 456                             | 51.8                                             | 2.82             |
| P30748                               | moaD                                | 26                    | 1                     | 1                     | 1                     | 81                              | 8.8                                              | 5.36             |
| P0A6V1                               | glgC                                | 4                     | 1                     | 1                     | 1                     | 431                             | 48.7                                             | 0                |
| POACR4                               | yeiE                                | 5                     | 1                     | 1                     | 1                     | 293                             | 32.7                                             | 0                |
| POAEI1                               | miaB                                | 5                     | 1                     | 1                     | 1                     | 474                             | 53.6                                             | 0                |
| P24228                               | dacB                                | 3                     | 1                     | 1                     | 1                     | 477                             | 51.8                                             | 0                |
| P64588                               | vaiI                                | 4                     | 1                     | 1                     | 1                     | 207                             | 23.4                                             | 1.99             |
| P31677                               | otsA                                | 5                     | 1                     | 1                     | 1                     | 474                             | 53.6                                             | 0                |
| P37773                               | mpl                                 | 2                     | 1                     | 1                     | 1                     | 457                             | 49.8                                             | 2 16             |
| P0A8\/2                              | rpoB                                | 1                     | 1                     | 1                     | 1                     | 13/2                            | 150 5                                            | 0                |
| P60200                               | remH                                | 1                     | 1                     | 1                     | 1                     | 212                             | 24.0                                             | 1 61             |
| P00590                               | 15IIIII<br>tro.V                    | 4                     | 1                     | 1                     | 1                     | 171                             | 19 6                                             | 1.01             |
| P41009                               | uav                                 | 4                     | 1                     | 1                     | 1                     | 1/1                             | 18.0                                             | 0                |
| P2/431                               | TOXA                                | 3                     | 1                     | 1                     | 1                     | 3/3                             | 42.6                                             | 0                |
| PUA6J5                               | dadA                                | 4                     | 1                     | 1                     | 1                     | 432                             | 47.6                                             | 2.06             |
| PODMC5                               | rcsC                                | 1                     | 1                     | 1                     | 1                     | 949                             | 106.4                                            | 1.66             |
| POAG40                               | ribF                                | 5                     | 1                     | 1                     | 1                     | 313                             | 34.7                                             | 0                |
| P0A817                               | metK                                | 2                     | 1                     | 1                     | 1                     | 384                             | 41.9                                             | 1.63             |
| P23865                               | prc                                 | 1                     | 1                     | 1                     | 1                     | 682                             | 76.6                                             | 2.3              |
| P23003                               | trmA                                | 2                     | 1                     | 1                     | 1                     | 366                             | 41.9                                             | 0                |
| P75906                               | pgaB                                | 1                     | 1                     | 1                     | 1                     | 672                             | 77.4                                             | 0                |
| POABH9                               | clpA                                | 3                     | 1                     | 1                     | 1                     | 758                             | 84.2                                             | 0                |
| P09127                               | hemX                                | 3                     | 1                     | 1                     | 1                     | 393                             | 42.9                                             | 2.79             |
| P33136                               | mdoG                                | 3                     | 1                     | 1                     | 1                     | 511                             | 57.9                                             | 2.57             |
| POA7E5                               | pyrG                                | 3                     | 1                     | 1                     | 1                     | 545                             | 60.3                                             | 1.73             |
| POABD5                               | accA                                | 4                     | 1                     | 1                     | 1                     | 319                             | 35.2                                             | 2.16             |
| POCG19                               | rph                                 | 5                     | 1                     | 1                     | 1                     | 228                             | 24.4                                             | 2.24             |
| P0A9A9                               | fur                                 | 9                     | 1                     | 1                     | 1                     | 148                             | 16.8                                             | 3.66             |
| P06612                               | topA                                | 1                     | 1                     | 1                     | 1                     | 865                             | 97.3                                             | 0                |
| P05041                               | nabB                                | 3                     | 1                     | 1                     | 1                     | 453                             | 50.9                                             | 0                |
| P77173                               | zinA                                | 2                     | 1                     | 1                     | 1                     | 328                             | 36.5                                             | 0                |
| P39410                               | viiI                                | 3                     | 1                     | 1                     | 1                     | 443                             | 49.7                                             | 2.04             |
| POAFA8                               | STIP<br>CVSC                        | 1                     | 1                     | 1                     | 1                     | 457                             | 19.7                                             | 2.01             |
| D22009                               | orgE                                | 2                     | 1                     | 1                     | 1                     | 202                             | 43.3                                             | 0                |
| P 23500                              | argE                                | 2                     | 1                     | 1                     | 1                     | 221                             | 42.5                                             | 1 65             |
|                                      | guiQ                                | 2                     | 1                     | 1                     | 1                     | 321                             | 24                                               | 1.05             |
| PUAB91                               | alog                                | 3                     | 1                     | 1                     | 1                     | 350                             | 30                                               | 0                |
| P13009                               | metH                                | 2                     | 1                     | 1                     | 1                     | 1227                            | 135.9                                            | 1.69             |
| PUAG63                               | rpsQ                                | 10                    | 1                     | 1                     | 1                     | 84                              | 9.7                                              | 1.68             |
| P0A6U3                               | mnmG                                | 1                     | 1                     | 1                     | 1                     | 629                             | 69.5                                             | 0                |
| P06992                               |                                     |                       |                       | -                     |                       | 272                             | 20.4                                             | 2 24             |
| 100552                               | rsmA                                | 4                     | 1                     | 1                     | 1                     | 2/3                             | 30.4                                             | 2.24             |
| P0ADG4                               | rsmA<br>suhB                        | 4<br>5                | 1<br>1                | 1<br>1                | 1<br>1                | 273                             | 30.4<br>29.2                                     | 0                |
| P0ADG4<br>P00393                     | rsmA<br>suhB<br>ndh                 | 4<br>5<br>3           | 1<br>1<br>1           | 1<br>1<br>1           | 1<br>1<br>1           | 273<br>267<br>434               | 29.2<br>47.3                                     | 0<br>0           |
| P0ADG4<br>P00393<br>P75817           | rsmA<br>suhB<br>ndh<br>rlmC         | 4<br>5<br>3<br>6      | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 273<br>267<br>434<br>375        | 30.4<br>29.2<br>47.3<br>41.9                     | 0<br>0<br>0      |
| POADG4<br>PO0393<br>P75817<br>P19934 | rsmA<br>suhB<br>ndh<br>rlmC<br>tolA | 4<br>5<br>3<br>6<br>3 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1 | 273<br>267<br>434<br>375<br>421 | 30.4       29.2       47.3       41.9       43.1 | 0<br>0<br>0<br>0 |

| UniProt<br>Accession<br>ID | Gene<br>Name  | Coverage<br>[%] | Peptides | PSMs | Unique<br>Peptides | AAs        | MW [kDa]     | Score<br>Sequest |
|----------------------------|---------------|-----------------|----------|------|--------------------|------------|--------------|------------------|
| P00490                     | malP          | 56              | 33       | 55   | 33                 | 797        | 90.5         | 123.53           |
| P77398                     | arnA          | 57              | 29       | 47   | 29                 | 660        | 74.2         | 132.33           |
| P0AFG8                     | aceE          | 48              | 34       | 46   | 34                 | 887        | 99.6         | 97.56            |
| P06612                     | topA          | 49              | 32       | 42   | 32                 | 865        | 97.3         | 109.49           |
| P23865                     | prc           | 50              | 27       | 33   | 27                 | 682        | 76.6         | 67.5             |
| P0A8M3                     | thrS          | 50              | 27       | 33   | 27                 | 642        | 74           | 70.72            |
| P06959                     | aceF          | 51              | 23       | 28   | 23                 | 630        | 66.1         | 67.31            |
| P0AES4                     | gyrA          | 29              | 22       | 27   | 22                 | 875        | 96.9         | 72               |
| P09831                     | gltB          | 20              | 22       | 25   | 22                 | 1486       | 163.2        | 52.46            |
| P0CE47                     | tufA          | 60              | 17       | 23   | 17                 | 394        | 43.3         | 36.89            |
| P0AES6                     | gyrB          | 36              | 21       | 23   | 21                 | 804        | 89.9         | 54.36            |
| P0A9Q7                     | adhE          | 27              | 19       | 23   | 19                 | 891        | 96.1         | 61.73            |
| POAFG3                     | sucA          | 25              | 17       | 22   | 17                 | 933        | 105          | 36.42            |
| P30958                     | mfd           | 19              | 20       | 21   | 20                 | 1148       | 129.9        | 41.55            |
| P0AC41                     | sdhA          | 35              | 16       | 19   | 16                 | 588        | 64.4         | 43.2             |
| P30850                     | rnb           | 34              | 17       | 19   | 1/                 | 644        | /2.4         | 41.69            |
| P33002                     | nuog          | 22              | 15       | 17   | 15                 | 908        | 100.2        | 38.4             |
| P0A/05                     | 101B          | 24              | 14       | 10   | 14                 | 890        | 97.5         | 19.07            |
| P00562                     | metL          | 21              | 14       | 15   | 14                 | 810        | 88.8         | 30.43            |
| P00432                     | alvA          | 40              | 14       | 14   | 14                 | /01        | 45.3         | 23.09            |
| P00370                     | glyA<br>gdh A | 38              | 12       | 13   | 12                 | 417        | 43.5         | 34.07            |
| POARHQ                     | clnA          | 20              | 12       | 13   | 12                 | 758        | 84.2         | 20.28            |
| P0A6B7                     | iscS          | 36              | 12       | 12   | 12                 | 404        | 45.1         | 25.74            |
| POAC53                     | zwf           | 27              | 12       | 12   | 12                 | 491        | 55.7         | 22.52            |
| P0A9M8                     | pta           | 22              | 11       | 11   | 11                 | 714        | 77.1         | 22.29            |
| P0ADG7                     | guaB          | 35              | 9        | 10   | 9                  | 488        | 52           | 15.62            |
| P00579                     | rpoD          | 22              | 10       | 10   | 10                 | 613        | 70.2         | 17.23            |
| P0AD05                     | vecA          | 28              | 4        | 10   | 4                  | 221        | 25           | 24.45            |
| P0A698                     | uvrA          | 13              | 10       | 10   | 10                 | 940        | 103.8        | 15.52            |
| P0ADR8                     | ppnN          | 24              | 10       | 10   | 10                 | 454        | 50.9         | 22.26            |
| P0A6U3                     | mnmG          | 19              | 9        | 9    | 9                  | 629        | 69.5         | 12.89            |
| P27249                     | glnD          | 11              | 8        | 8    | 8                  | 890        | 102.3        | 12.9             |
| P0A8V2                     | rpoB          | 5               | 7        | 7    | 7                  | 1342       | 150.5        | 10.7             |
| P76562                     | tmcA          | 11              | 6        | 6    | 6                  | 671        | 74.8         | 6.31             |
| P23909                     | mutS          | 9               | 6        | 6    | 6                  | 853        | 95.2         | 6.84             |
| P04036                     | dapB          | 21              | 4        | 6    | 4                  | 273        | 28.7         | 18.55            |
| P09546                     | putA          | 5               | 5        | 6    | 5                  | 1320       | 143.7        | 2.36             |
| P15977                     | malQ          | 13              | 6        | 6    | 6                  | 694        | 78.5         | 6.7              |
| P02931                     | ompF          | 16              | 6        | 6    | 6                  | 362        | 39.3         | 15.24            |
| P//182                     | mnmC          | 13              | 5        | 5    | 5                  | 001        | /4.4         | 6.29             |
| P10408                     | secA          | 8               | 5        | 5    | 5                  | 901        | 02.4         | /.58             |
| P30083<br>P06087           | hisB          | 0               | 5        | 5    | 5                  | 355        | 95.4<br>40.3 | 3.1<br>8.15      |
| P08660                     | lysC          | 12              | 3        | 5    | 3                  | 333<br>449 | 40.3         | 10.16            |
| P00582                     | polA          | 0               | 4        | 5    | 4                  | 928        | 103.1        | 0                |
| P21599                     | polA<br>pvkA  | 11              | 4        | 4    | 4                  | 480        | 51.3         | 3 75             |
| P76422                     | thiD          | 19              | 3        | 4    | 3                  | 266        | 28.6         | 9.26             |
| P60785                     | lenA          | 10              | 4        | 4    | 4                  | 599        | 66.5         | 2.68             |
| P0A6Y8                     | dnaK          | 9               | 4        | 4    | 4                  | 638        | 69.1         | 5.46             |
| 057261                     | truD          | 14              | 4        | 4    | 4                  | 349        | 39.1         | 4.34             |
| P33599                     | nuoC          | 7               | 4        | 4    | 4                  | 596        | 68.2         | 1.66             |
| P27306                     | sthA          | 17              | 4        | 4    | 4                  | 466        | 51.5         | 2.44             |
| P30870                     | glnE          | 5               | 3        | 3    | 3                  | 946        | 108.4        | 3.99             |
| P0A9A9                     | fur           | 30              | 3        | 3    | 3                  | 148        | 16.8         | 6.33             |
| P0A850                     | tig           | 11              | 3        | 3    | 3                  | 432        | 48.2         | 3.34             |
| P0A9P0                     | lpdA          | 9               | 3        | 3    | 3                  | 474        | 50.7         | 4.38             |
| P05055                     | pnp           | 5               | 3        | 3    | 3                  | 711        | 77.1         | 2.08             |
| P25539                     | ribD          | 10              | 3        | 3    | 3                  | 367        | 40.3         | 0                |
| P0A9J8                     | pheA          | 5               | 2        | 2    | 2                  | 386        | 43.1         | 1.65             |
| P17169                     | glmS          | 4               | 2        | 2    | 2                  | 609        | 66.9         | 4.51             |

### Table 9 - Mass spectrometry results from Section 5.2.4 – W13Bpa 65-100 kDa

|   | P0A9C5 | glnA  | 4  | 1 | 2 | 1 | 469  | 51.9  | 0    |
|---|--------|-------|----|---|---|---|------|-------|------|
|   | P07639 | aroB  | 9  | 2 | 2 | 2 | 362  | 38.9  | 0    |
|   | P00957 | alaS  | 3  | 2 | 2 | 2 | 876  | 96    | 1.75 |
|   | P0AEI4 | rimO  | 8  | 2 | 2 | 2 | 441  | 49.6  | 2.88 |
|   | P0ABQ0 | coaBC | 8  | 2 | 2 | 2 | 406  | 43.4  | 0    |
| I | P0A6M8 | fusA  | 3  | 2 | 2 | 2 | 704  | 77.5  | 3.78 |
|   | P03018 | uvrD  | 3  | 2 | 2 | 2 | 720  | 81.9  | 0    |
| I | P0A9K9 | slyD  | 10 | 2 | 2 | 2 | 196  | 20.8  | 4.43 |
| Î | P28903 | nrdD  | 5  | 2 | 2 | 2 | 712  | 80    | 0    |
|   | P21189 | polB  | 3  | 2 | 2 | 2 | 783  | 90    | 4.37 |
|   | P0A847 | tgt   | 5  | 1 | 1 | 1 | 375  | 42.6  | 0    |
|   | B8LFD5 | lacI  | 4  | 1 | 1 | 1 | 363  | 38.9  | 2.04 |
| Î | P06710 | dnaX  | 2  | 1 | 1 | 1 | 643  | 71.1  | 0    |
|   | P0AG30 | rho   | 5  | 1 | 1 | 1 | 419  | 47    | 2.18 |
|   | P25907 | ydbD  | 2  | 1 | 1 | 1 | 768  | 86.7  | 0    |
|   | P18775 | dmsA  | 1  | 1 | 1 | 1 | 814  | 90.3  | 0    |
|   | P0AAI3 | ftsH  | 3  | 1 | 1 | 1 | 644  | 70.7  | 0    |
|   | P0A8N3 | lysS  | 2  | 1 | 1 | 1 | 505  | 57.6  | 0    |
|   | P21177 | fadB  | 2  | 1 | 1 | 1 | 729  | 79.5  | 0    |
|   | P45577 | proQ  | 4  | 1 | 1 | 1 | 232  | 25.9  | 2.38 |
|   | P42907 | agaS  | 4  | 1 | 1 | 1 | 384  | 41.8  | 0    |
|   | P24182 | accC  | 3  | 1 | 1 | 1 | 449  | 49.3  | 2.5  |
|   | P52126 | abpB  | 2  | 1 | 1 | 1 | 729  | 83    | 0    |
|   | P76273 | rsmF  | 4  | 1 | 1 | 1 | 479  | 53.2  | 0    |
|   | P11880 | murF  | 5  | 1 | 1 | 1 | 452  | 47.4  | 0    |
|   | P00887 | aroH  | 4  | 1 | 1 | 1 | 348  | 38.7  | 0    |
|   | P15286 | flk   | 10 | 1 | 1 | 1 | 331  | 36.6  | 0    |
|   | P0A8E1 | ycfP  | 7  | 1 | 1 | 1 | 180  | 21.2  | 2.48 |
|   | P39385 | yjiN  | 7  | 1 | 1 | 1 | 426  | 48.2  | 0    |
| ļ | P69776 | lpp   | 18 | 1 | 1 | 1 | 78   | 8.3   | 0    |
|   | P42632 | tdcE  | 4  | 1 | 1 | 1 | 764  | 85.9  | 0    |
|   | P76578 | yfhM  | 1  | 1 | 1 | 1 | 1653 | 181.5 | 0    |
|   | P0A8J8 | rhlB  | 2  | 1 | 1 | 1 | 421  | 47.1  | 0    |
|   | P30748 | moaD  | 26 | 1 | 1 | 1 | 81   | 8.8   | 4.06 |
|   | P0A910 | ompA  | 4  | 1 | 1 | 1 | 346  | 37.2  | 2.78 |
| l | P32176 | fdoG  | 2  | 1 | 1 | 1 | 1016 | 112.5 | 0    |
|   | P35340 | ahpF  | 4  | 1 | 1 | 1 | 521  | 56.1  | 3.13 |
| l | P21179 | katE  | 1  | 1 | 1 | 1 | 753  | 84.1  | 0    |
|   | P0AG20 | relA  | 3  | 1 | 1 | 1 | 744  | 83.8  | 0    |
|   | P21645 | lpxD  | 2  | 1 | 1 | 1 | 341  | 36    | 1.95 |

| UniProt Accession | Gene     | Coverage | Pentides   | PSMs    | Unique   | ΔΔς  | MW         | Score          |
|-------------------|----------|----------|------------|---------|----------|------|------------|----------------|
| ID                | Name     | [%]      | 1 epilites | 1 51415 | Peptides | ААЗ  | [kDa]      | Sequest        |
| P0CE47            | tufA     | 90       | 32         | 263     | 32       | 394  | 43.3       | 522.06         |
| P0A6B7            | iscS     | 60       | 21         | 56      | 21       | 404  | 45.1       | 178.08         |
| P77581            | astC     | 64       | 18         | 34      | 18       | 406  | 43.6       | 128.47         |
| P06987            | hisB     | 50       | 17         | 33      | 17       | 355  | 40.3       | 117.32         |
| P21151            | fadA     | 55       | 13         | 31      | 13       | 387  | 40.9       | 106.51         |
| P0A9J8            | pheA     | 48       | 16         | 30      | 16       | 386  | 43.1       | 93.04          |
| P02931            | ompF     | 53       | 15         | 29      | 15       | 362  | 39.3       | 78.17          |
| P69797            | manX     | 56       | 16         | 28      | 16       | 323  | 35         | 89.34          |
| P75876            | rlmI     | 53       | 17         | 25      | 17       | 396  | 44.3       | 71.65          |
| P75863            | ycbX     | 73       | 19         | 24      | 19       | 369  | 40.6       | 84.68          |
| P23908            | argE     | 61       | 12         | 23      | 12       | 383  | 42.3       | 89.85          |
| P25539            | ribD     | 56       | 15         | 22      | 15       | 367  | 40.3       | 75.02          |
| P0A847            | tgt      | 61       | 17         | 22      | 17       | 375  | 42.6       | 65.55          |
| P03023            | lacI     | 53       | 13         | 21      | 13       | 360  | 38.6       | 73.41          |
| Q57261            | truD     | 66       | 16         | 21      | 16       | 349  | 39.1       | 62.22          |
| P0ABH7            | gltA     | 51       | 12         | 21      | 12       | 427  | 48         | 68.3           |
| P33030            | veiR     | 53       | 14         | 20      | 14       | 328  | 36.1       | 57.4           |
| P17169            | glmS     | 35       | 14         | 20      | 14       | 609  | 66.9       | 55.56          |
| P0ACP7            | purR     | 45       | 13         | 19      | 13       | 341  | 38.2       | 61.68          |
| A0A1V1IFM5        | gsk-4    | 43       | 13         | 18      | 13       | 434  | 48.4       | 51.62          |
| P66948            | benA     | 32       | 10         | 17      | 10       | 487  | 53.9       | 49.5           |
| P0A855            | tolB     | 39       | 11         | 17      | 11       | 430  | 45.9       | 50.61          |
| P0A774            | rpoA     | 57       | 14         | 17      | 14       | 329  | 36.5       | 34.06          |
| P29680            | hemE     | 47       | 13         | 16      | 13       | 354  | 39.2       | 35.69          |
| P0AB91            | aroG     | 58       | 12         | 15      | 12       | 350  | 38         | 56.05          |
| POCOVO            | degP     | 36       | 11         | 15      | 12       | 474  | /0 3       | 13 32          |
| P0A010            | omnA     | 13       | 10         | 15      | 10       | 346  | 37.2       | 56.84          |
| DOADV5            | whhW     | 45       | 0          | 13      | 0        | 225  | 27.1       | 42.50          |
| P20177            | yhD W    | 12       | 9          | 13      | 9        | 335  | 25         | 42.39          |
|                   | youBC    | 4.5      | 0          | 13      | 0        | 406  | 12.4       | 42.75<br>50.74 |
| P76201            | coabe    | 32       | 9          | 13      | 9        | 222  | 27         | JU.74          |
| P04C20            | rho      | 22       | 10         | 13      | 10       | 410  | 17         | 41.00          |
| P0A030            | 1110     | 24       | 12         | 13      | 12       | 419  | 4/         | 26.41          |
| P//390            | anna     | 24       | 12         | 13      | 12       | 454  | 74.2<br>50 | 20.41          |
| P23000            | rinE<br> | 55       | 10         | 13      | 10       | 434  | 27.1       | 40.01          |
| P33043<br>D20451  | nuD      | 32       | 0          | 13      | 0        | 320  | 25.4       | 41.21          |
| P 39431           | adiiP    | 30       | 0          | 13      | 0        | 207  | 42.2       | 20.19          |
| PUAEUo            | acrA     | 42       | 11         | 12      | 11       | 397  | 42.2       | 29.18          |
| POACIO            | rod      | 39       | 9          | 12      | 9        | 289  | 33.1<br>20 | 20.0           |
| PUA/Go            | recA     | 28       | 8          | 12      | 8        | 353  | 38         | 37.56          |
| P/6116            | yncE     | 32       | 9          | 12      | 9        | 353  | 38.6       | 36.71          |
| P00490            | maiP     | 18       | 12         | 12      | 12       | 197  | 90.5       | 26.05          |
| P28631            | holB     | 45       | 9          | 12      | 9        | 334  | 36.9       | 40.46          |
| P35340            | ahpF     | 28       | 10         | 11      | 10       | 521  | 56.1       | 31.94          |
| P39286            | rsgA     | 33       | 8          | 11      | 8        | 350  | 39.2       | 32.46          |
| P0A825            | glyA     | 31       | 9          | 11      | 9        | 417  | 45.3       | 26.13          |
| P02943            | lamB     | 35       | 9          | 11      | 9        | 446  | 49.9       | 39.31          |
| P0A9P0            | lpdA     | 32       | 10         | 11      | 10       | 474  | 50.7       | 37.09          |
| P22188            | murE     | 28       | 9          | 11      | 9        | 495  | 53.3       | 31.82          |
| P0A9B2            | gapA     | 39       | 9          | 10      | 9        | 331  | 35.5       | 20.77          |
| P24188            | trhO     | 32       | 10         | 10      | 10       | 350  | 39.8       | 15.41          |
| P13033            | glpB     | 22       | 7          | 10      | 7        | 419  | 45.3       | 26.86          |
| P0ADG7            | guaB     | 20       | 5          | 10      | 5        | 488  | 52         | 18.7           |
| P67910            | hldD     | 27       | 8          | 9       | 8        | 310  | 34.9       | 17.93          |
| P67660            | yhaJ     | 27       | 7          | 9       | 7        | 298  | 33.2       | 26.37          |
| P0A9S3            | gatD     | 19       | 8          | 8       | 8        | 346  | 37.4       | 24             |
| P21599            | pykA     | 22       | 8          | 8       | 8        | 480  | 51.3       | 23.59          |
| P60716            | lipA     | 27       | 6          | 8       | 6        | 321  | 36         | 25.25          |
| P77690            | arnB     | 24       | 6          | 7       | 6        | 385  | 42.2       | 24.59          |
| P0A786            | pyrB     | 30       | 6          | 7       | 6        | 311  | 34.4       | 16.25          |
| P09831            | gltB     | 5        | 6          | 7       | 6        | 1486 | 163.2      | 14.66          |

### Table 10 - Mass spectrometry results from Section 5.2.4– N91Bpa 34-43 kDa

| P13039              | fes            | 26 | 7 | 7 | 7 | 400  | 45.6         | 17.25  |
|---------------------|----------------|----|---|---|---|------|--------------|--------|
| P39099              | degO           | 25 | 6 | 7 | 6 | 455  | 47.2         | 9.87   |
| P77434              | alaC           | 26 | 7 | 7 | 7 | 412  | 46.2         | 16.28  |
| P0A9A6              | ftsZ           | 31 | 7 | 7 | 7 | 383  | 40.3         | 13.7   |
| POAD05              | vecA           | 42 | 5 | 6 | 5 | 221  | 25           | 17.55  |
| P37661              | entB           | 11 | 4 | 6 | 4 | 563  | 63.8         | 14.23  |
| P0 4 F08            | mrn            | 18 | 1 | 6 | 4 | 369  | 30.0         | 1/1.29 |
| P00063              | asnA           | 25 | - | 6 | 6 | 330  | 36.6         | 19.26  |
| P046F1              | corA           | 25 | 6 | 6 | 6 | 382  | 41.4         | 21.50  |
| DOAGV8              | dnoV           | 14 | 6 | 6 | 6 | 629  | 41.4<br>60.1 | 15.22  |
| P0A010              | ullan          | 14 | 5 | 6 | 5 | 227  | 26.2         | 12.52  |
| P00390              | usg            | 20 | 3 | 0 | 3 | 207  | 25.0         | 13.33  |
| P20304              | qorA<br>fb. A  | 23 | 4 | 0 | 4 | 250  | 33.2         | 12.95  |
| PUAB/I<br>DOA002    | IDaA<br>hamC   | 20 | 0 | 0 | 0 | 244  | 39.1         | 14.//  |
| PUA905              | Dallic         | 23 | 0 | 0 | 0 | 344  | 30.8         | 17.78  |
| PUAGIS<br>DOA CIVIO | nsiO           | 21 | 4 | 5 | 4 | 292  | 32.5         | 12.07  |
| PUA6WU              | glsA2          | 16 | 4 | 5 | 4 | 308  | 33.5         | 10.63  |
| POAEI4              | rimO           | 17 | 5 | 5 | 5 | 441  | 49.6         | 10.75  |
| P76035              | yc1W           | 15 | 5 | 5 | 5 | 375  | 42.2         | 15.24  |
| P0A6A3              | ackA           | 16 | 4 | 5 | 4 | 400  | 43.3         | 14.34  |
| P0ACP1              | cra            | 17 | 5 | 5 | 5 | 334  | 38           | 10.89  |
| P42596              | rlmG           | 13 | 4 | 4 | 4 | 378  | 42.3         | 10.3   |
| P0AFG3              | sucA           | 6  | 4 | 4 | 4 | 933  | 105          | 6.85   |
| P37692              | rfaF           | 17 | 4 | 4 | 4 | 348  | 39           | 8.06   |
| P63883              | amiC           | 11 | 3 | 4 | 3 | 417  | 45.6         | 6.22   |
| P0AF20              | nagC           | 11 | 4 | 4 | 4 | 406  | 44.5         | 8.18   |
| P0A850              | tig            | 12 | 4 | 4 | 4 | 432  | 48.2         | 7.75   |
| P64588              | yqjI           | 18 | 4 | 4 | 4 | 207  | 23.4         | 8.84   |
| P0ABH0              | ftsA           | 17 | 3 | 4 | 3 | 420  | 45.3         | 2.45   |
| P0A9X4              | mreB           | 14 | 4 | 4 | 4 | 347  | 36.9         | 8.21   |
| P0AC41              | sdhA           | 9  | 4 | 4 | 4 | 588  | 64.4         | 11.27  |
| P0ABD5              | accA           | 19 | 4 | 4 | 4 | 319  | 35.2         | 10.04  |
| P23524              | garK           | 10 | 1 | 4 | 1 | 381  | 39.1         | 0      |
| P17115              | gutQ           | 19 | 4 | 4 | 4 | 321  | 34           | 7.26   |
| P0AEB2              | dacA           | 12 | 4 | 4 | 4 | 403  | 44.4         | 8.29   |
| P0ABK5              | cysK           | 20 | 4 | 4 | 4 | 323  | 34.5         | 12.79  |
| P0A796              | pfkA           | 11 | 4 | 4 | 4 | 320  | 34.8         | 8.17   |
| P0A9B6              | epd            | 14 | 4 | 4 | 4 | 339  | 37.3         | 8.61   |
| P76373              | ugd            | 16 | 4 | 4 | 4 | 388  | 43.6         | 7.52   |
| P13009              | metH           | 5  | 4 | 4 | 4 | 1227 | 135.9        | 6.69   |
| P27306              | sthA           | 15 | 4 | 4 | 4 | 466  | 51.5         | 14.4   |
| P0A9F3              | cysB           | 14 | 4 | 4 | 4 | 324  | 36.1         | 7.03   |
| P0AFG6              | sucB           | 15 | 4 | 4 | 4 | 405  | 44           | 12.13  |
| POAEX9              | malE           | 14 | 4 | 4 | 4 | 396  | 43.4         | 5.38   |
| P0ABC3              | hflC           | 8  | 3 | 3 | 3 | 334  | 37.6         | 4.22   |
| P0A817              | metK           | 10 | 3 | 3 | 3 | 384  | 41.9         | 4.34   |
| P27305              | gluO           | 10 | 2 | 3 | 2 | 308  | 34.8         | 6      |
| P23003              | trmA           | 13 | 3 | 3 | 3 | 366  | 41.9         | 7.96   |
| P21179              | katE           | 5  | 3 | 3 | 3 | 753  | 84.1         | 7.64   |
| P37906              | puuB           | 7  | 3 | 3 | 3 | 426  | 47.1         | 5.76   |
| P0A705              | infB           | 3  | 3 | 3 | 3 | 890  | 97.3         | 4 24   |
| P0A9K9              | slvD           | 22 | 3 | 3 | 3 | 196  | 20.8         | 9 34   |
| P77774              | bamB           | 12 | 3 | 3 | 3 | 392  | 41.9         | 9.6    |
| POAE18              | man            | 13 | 3 | 3 | 3 | 264  | 29.3         | 8.87   |
| P39298              | vifP           | 6  | 1 | 3 | 1 | 249  | 27.6         | 0      |
| P23893              | hemI           | 8  | 3 | 3 | 3 | 426  | 45.3         | 7 64   |
| P17952              | murC           | 11 | 3 | 3 | 3 | 491  | 53.6         | 7.04   |
| P37651              | hcs7           | 9  | 3 | 3 | 3 | 368  | 417          | 3 74   |
| POAEP3              | galU           | 11 | 3 | 3 | 3 | 302  | 32.9         | 8.42   |
| POATVO              | rnsR           | 15 | 3 | 3 | 3 | 241  | 267          | 61     |
| P76422              | thiD           | 16 | 2 | 3 | 2 | 241  | 28.6         | 9.95   |
| P68187              | malK           | 11 | 2 | 3 | 2 | 371  | 41           | 6.85   |
| P16456              | selD           | 7  | 2 | 3 | 2 | 347  | 367          | 3.24   |
| P75949              | nag7           | 11 | 3 | 3 | 3 | 341  | 37.6         | 61     |
| P00887              | aroH           | 0  | 2 | 3 | 2 | 3/18 | 38.7         | 6.32   |
|                     | atoD           | 5  | 2 | 2 | 2 | 460  | 50.3         | 5.1    |
| P76103              | - atpD<br>vnhG | 8  | 2 | 2 | 2 | 400  | 36.1         | 1.64   |
| D2/182              | ymild          | 5  | 2 | 2 | 2 | 440  | 40.2         | 1.04   |
| F 24102             | acce           | 5  | 2 | 2 | 2 | 449  | 49.5         | 4.29   |

| P0AAI3           | ftsH          | 6  | 2 | 2 | 2 | 644  | 70.7        | 2.26 |
|------------------|---------------|----|---|---|---|------|-------------|------|
| P0ABZ6           | surA          | 6  | 2 | 2 | 2 | 428  | 47.3        | 5.36 |
| P06961           | cca           | 6  | 2 | 2 | 2 | 412  | 46.4        | 0    |
| P0ADY3           | rplN          | 21 | 2 | 2 | 2 | 123  | 13.5        | 2.34 |
| P0A7B5           | proB          | 11 | 2 | 2 | 2 | 367  | 39          | 0    |
| P36929           | rsmB          | 3  | 1 | 2 | 1 | 429  | 48.3        | 0    |
| P0ABH9           | clpA          | 5  | 2 | 2 | 2 | 758  | 84.2        | 5.41 |
| P77735           | vajO          | 11 | 2 | 2 | 2 | 324  | 36.4        | 6.09 |
| P0ACB7           | hemY          | 8  | 2 | 2 | 2 | 398  | 45.2        | 3.96 |
| P0C8J8           | gatZ          | 5  | 2 | 2 | 2 | 420  | 47.1        | 4.59 |
| P0A749           | murA          | 5  | 2 | 2 | 2 | 419  | 44.8        | 3.94 |
| P0A862           | tpx           | 11 | 1 | 2 | 1 | 168  | 17.8        | 0    |
| P04395           | alkA          | 11 | 1 | 2 | 1 | 282  | 31.4        | 0    |
| P64612           | zapE          | 5  | 2 | 2 | 2 | 375  | 43          | 1.75 |
| P21645           | lpxD          | 6  | 2 | 2 | 2 | 341  | 36          | 4.89 |
| P76177           | vdgH          | 11 | 2 | 2 | 2 | 314  | 33.9        | 6.41 |
| P0AE08           | ahpC          | 18 | 2 | 2 | 2 | 187  | 20.7        | 3.61 |
| P0A8E1           | vcfP          | 14 | 2 | 2 | 2 | 180  | 21.2        | 5.22 |
| P08200           | icd           | 8  | 2 | 2 | 2 | 416  | 45.7        | 5.68 |
| P00370           | odhA          | 6  | 1 | 2 | 1 | 447  | 48.6        | 2.44 |
| P0A879           | trpB          | 7  | 2 | 2 | 2 | 397  | 43          | 5.89 |
| P21513           | rne           | 3  | 2 | 2 | 2 | 1061 | 118.1       | 2 33 |
| P09155           | rnd           | 6  | 2 | 2 | 2 | 375  | 42.7        | 4 93 |
| P03004           | dnaA          | 3  | 1 | 2 | 1 | 467  | 52.5        | 0    |
| P45395           | kdsD          | 10 | 2 | 2 | 2 | 328  | 35.2        | 616  |
| P0A7B3           | nadK          | 5  | 1 | 1 | 1 | 292  | 32.5        | 3.01 |
| 046939           | vaeE          | 7  | 1 | 1 | 1 | 393  | 41          | 0    |
| P04985           | gldA          | 5  | 1 | 1 | 1 | 367  | 38.7        | 2 72 |
| P25535           | ubil          | 3  | 1 | 1 | 1 | 400  | <i>AA</i> 2 | 1.67 |
| P37773           | mpl           | 2  | 1 | 1 | 1 | 400  | 44.2        | 1.07 |
| P69874           | nipi<br>pot A | 4  | 1 | 1 | 1 | 378  | 43          | 0    |
| D32131           | hemN          | 4  | 1 | 1 | 1 | 457  | 527         | 0    |
| D0AGA2           | secV          | 4  | 1 | 1 | 1 | 437  | 18 5        | 0    |
| P21156           | oveD          | 6  | 1 | 1 | 1 | 302  | 35.2        | 0    |
| P21130<br>D0AE27 | cysD          | 2  | 1 | 1 | 1 | 244  | 29.4        | 2.10 |
| POALS7           | dnaN          | 5  | 1 | 1 | 1 | 266  | 40.6        | 2.19 |
| P26672           | tunal         | 2  | 1 | 1 | 1 | 472  | 40.0        | 0    |
| P30072<br>D00202 | ndh           | 3  | 1 | 1 | 1 | 475  | JI<br>47.2  | 0    |
| P00393           | nun<br>viid A | 3  | 1 | 1 | 1 | 454  | 47.5        | 2.43 |
| PUA9W9           | yrdA          | 8  | 1 | 1 | 1 | 184  | 20.2        | 2.40 |
| P0/08/           | rsmi          | 0  | 1 | 1 | 1 | 280  | 31.3        | 2.05 |
| PUACIN4          | allK          | 14 | 1 | 1 | 1 | 2/1  | 29.3        | 0    |
| P09053           | avtA          | 2  | 1 | 1 | 1 | 41/  | 46.7        | 0    |
| PUA/14           | pric          | 2  | 1 | 1 | 1 | 529  | 59.5        | 0    |
| PUA6A8           | acpP          | 12 | 1 | 1 | 1 | /8   | 8.6         | 0    |
| P0A6P9           | eno           | 4  | 1 | 1 | 1 | 432  | 45.6        | 0    |
| P68/6/           | рерА          | 2  | 1 | 1 | 1 | 503  | 54.8        | 0    |
| P//808           | угач          | 4  | 1 | 1 | 1 | 400  | 44.2        | 1.78 |
| POCOL7           | proP          | 3  | 1 | 1 | 1 | 500  | 54.8        | 2.10 |
| P/5804           | ylil          | 5  | 1 | 1 | 1 | 5/1  | 41          | 2.61 |
| P0AC53           | ZWI           | 2  | 1 | 1 | 1 | 491  | 55./        | 2.17 |
| P30/48           | moaD          | 26 | 1 | 1 | 1 | 81   | 8.8         | 4.42 |
| P0A8N3           | lysS          | 2  | 1 | 1 | 1 | 505  | 57.6        | 0    |
| POACR4           | yeiE          | 3  | 1 | 1 | 1 | 293  | 32.7        | 0    |
| P38051           | menF          | 3  | 1 | 1 | 1 | 431  | 48.7        | 0    |
| P07913           | tdh           | 2  | 1 | 1 | 1 | 341  | 37.2        | 2.5  |
| P08178           | purM          | 4  | 1 | 1 | 1 | 345  | 36.8        | 3.25 |
| P//35/           | abgA          | 5  | 1 | 1 | 1 | 436  | 46.6        | 3.57 |
| P12295           | ung           | 6  | 1 | 1 | 1 | 229  | 25.7        | 3.06 |
| P02916           | malF          | 4  | 1 | 1 | 1 | 514  | 57          | 0    |
| P0A6K6           | deoB          | 3  | 1 | 1 | 1 | 407  | 44.3        | 1.69 |
| P0A836           | sucC          | 3  | 1 | 1 | 1 | 388  | 41.4        | 0    |
| P0AED7           | dapE          | 3  | 1 | 1 | 1 | 375  | 41.2        | 0    |
| P33937           | napA          | 3  | 1 | 1 | 1 | 828  | 93          | 0    |
| P0A6I3           | coaA          | 3  | 1 | 1 | 1 | 316  | 36.3        | 1.65 |
| P0AB74           | kbaY          | 3  | 1 | 1 | 1 | 286  | 31.3        | 1.85 |
| P30843           | basR          | 5  | 1 | 1 | 1 | 222  | 25          | 2.09 |
| P77757           | arnC          | 4  | 1 | 1 | 1 | 322  | 36.3        | 0    |

| I | P07117 | putP | 3  | 1 | 1 | 1 | 502 | 54.3 | 0    |
|---|--------|------|----|---|---|---|-----|------|------|
|   | P0A717 | prs  | 4  | 1 | 1 | 1 | 315 | 34.2 | 0    |
|   | P0ADR8 | ppnN | 3  | 1 | 1 | 1 | 454 | 50.9 | 0    |
|   | P11880 | murF | 2  | 1 | 1 | 1 | 452 | 47.4 | 2.71 |
|   | Q46925 | csdA | 3  | 1 | 1 | 1 | 401 | 43.2 | 1.72 |
|   | P0AAE0 | cycA | 3  | 1 | 1 | 1 | 470 | 51.6 | 3.05 |
|   | Q47679 | yafV | 3  | 1 | 1 | 1 | 256 | 28.9 | 0    |
|   | P36659 | cbpA | 5  | 1 | 1 | 1 | 306 | 34.4 | 3.49 |
|   | P36979 | rlmN | 4  | 1 | 1 | 1 | 384 | 43.1 | 0    |
|   | P0ADR6 | rlmM | 3  | 1 | 1 | 1 | 366 | 41.9 | 0    |
| I | P0A7M2 | rpmB | 13 | 1 | 1 | 1 | 78  | 9    | 1.98 |
|   | P37610 | tauD | 4  | 1 | 1 | 1 | 283 | 32.4 | 2.87 |
|   | P0A6E4 | argG | 2  | 1 | 1 | 1 | 447 | 49.9 | 2.15 |
|   | P08192 | folC | 2  | 1 | 1 | 1 | 422 | 45.4 | 2.02 |
| I | P0ACJ8 | crp  | 6  | 1 | 1 | 1 | 210 | 23.6 | 2.48 |
|   | P0ADA3 | nlpD | 3  | 1 | 1 | 1 | 379 | 40.1 | 2.47 |
|   | P61889 | mdh  | 4  | 1 | 1 | 1 | 312 | 32.3 | 2.36 |
|   | P62623 | ispH | 6  | 1 | 1 | 1 | 316 | 34.8 | 1.62 |
|   | P0AB80 | ilvE | 6  | 1 | 1 | 1 | 309 | 34.1 | 2.57 |
|   | P0A7J3 | rplJ | 7  | 1 | 1 | 1 | 165 | 17.7 | 0    |
| I | P0ABC7 | hflK | 3  | 1 | 1 | 1 | 419 | 45.5 | 3.43 |
|   | P77374 | ynfE | 3  | 1 | 1 | 1 | 808 | 89.7 | 0    |
| I | P75913 | ghrA | 4  | 1 | 1 | 1 | 312 | 35.3 | 2.29 |
|   | P0ADQ2 | fabY | 5  | 1 | 1 | 1 | 329 | 37.1 | 1.77 |
| I | P37180 | hybB | 4  | 1 | 1 | 1 | 392 | 43.6 | 0    |
| Î | P75728 | ubiF | 4  | 1 | 1 | 1 | 391 | 42.9 | 1.99 |
| I | P0AGJ5 | yfiF | 7  | 1 | 1 | 1 | 345 | 37.8 | 0    |
|   | P40874 | solA | 5  | 1 | 1 | 1 | 372 | 40.9 | 3.05 |
| I | P24202 | mrr  | 6  | 1 | 1 | 1 | 304 | 33.5 | 3.17 |
|   | P76102 | insQ | 4  | 1 | 1 | 1 | 382 | 43.3 | 0    |
| I | P76273 | rsmF | 4  | 1 | 1 | 1 | 479 | 53.2 | 0    |
| Î | P41069 | traV | 4  | 1 | 1 | 1 | 171 | 18.6 | 1.61 |
| I | P16688 | phnJ | 7  | 1 | 1 | 1 | 281 | 31.8 | 0    |

### Table 11 - Mass spectrometry results from Section 5.2.4 – N91Bpa 43-65 kDa

| UniProt      | Gene | Coverage | Peptides | PSMs | Unique   | AAs | MW    | Score   |
|--------------|------|----------|----------|------|----------|-----|-------|---------|
| Accession ID | Name | [%]      |          |      | Peptides |     | [kDa] | Sequest |
| P0CE47       | tufA | 84       | 26       | 109  | 26       | 394 | 43.3  | 309.19  |
| P0ADG7       | guaB | 73       | 24       | 75   | 24       | 488 | 52    | 248.97  |
| P21599       | pykA | 81       | 29       | 74   | 29       | 480 | 51.3  | 249.16  |
| P0A825       | glyA | 63       | 19       | 61   | 19       | 417 | 45.3  | 205.75  |
| P0AG30       | rho  | 68       | 27       | 61   | 27       | 419 | 47    | 183.57  |
| P0A850       | tig  | 65       | 29       | 58   | 29       | 432 | 48.2  | 164.14  |
| P22188       | murE | 63       | 24       | 56   | 24       | 495 | 53.3  | 175.97  |
| P35340       | ahpF | 67       | 26       | 53   | 26       | 521 | 56.1  | 174.72  |
| P0A9P0       | lpdA | 58       | 24       | 49   | 24       | 474 | 50.7  | 161.8   |
| P27306       | sthA | 72       | 24       | 47   | 24       | 466 | 51.5  | 151.54  |
| P0ABZ6       | surA | 56       | 19       | 44   | 19       | 428 | 47.3  | 145.65  |
| P0A6F3       | glpK | 61       | 26       | 42   | 26       | 502 | 56.2  | 104.55  |
| P08192                                                                                 | folC                                                                               | 65                                                                   | 18                                                                    | 41                                                                   | 18                                                              | 422                                                                       | 45.4                                                                                                                              | 141.16                                                                                         |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| P0ABB0                                                                                 | atpA                                                                               | 68                                                                   | 26                                                                    | 39                                                                   | 26                                                              | 513                                                                       | 55.2                                                                                                                              | 116.91                                                                                         |
| P17169                                                                                 | glmS                                                                               | 59                                                                   | 26                                                                    | 38                                                                   | 26                                                              | 609                                                                       | 66.9                                                                                                                              | 128.94                                                                                         |
| P0AFG6                                                                                 | sucB                                                                               | 60                                                                   | 18                                                                    | 36                                                                   | 18                                                              | 405                                                                       | 44                                                                                                                                | 107.7                                                                                          |
| P24182                                                                                 | accC                                                                               | 56                                                                   | 20                                                                    | 35                                                                   | 20                                                              | 449                                                                       | 49.3                                                                                                                              | 109.79                                                                                         |
| P76403                                                                                 | trhP                                                                               | 54                                                                   | 17                                                                    | 34                                                                   | 17                                                              | 453                                                                       | 51.2                                                                                                                              | 122.24                                                                                         |
| P0ABH7                                                                                 | gltA                                                                               | 63                                                                   | 18                                                                    | 33                                                                   | 18                                                              | 427                                                                       | 48                                                                                                                                | 86.33                                                                                          |
| P0A7I4                                                                                 | prfC                                                                               | 50                                                                   | 20                                                                    | 33                                                                   | 20                                                              | 529                                                                       | 59.5                                                                                                                              | 100.63                                                                                         |
| P0ADR8                                                                                 | ppnN                                                                               | 59                                                                   | 22                                                                    | 31                                                                   | 22                                                              | 454                                                                       | 50.9                                                                                                                              | 75.98                                                                                          |
| P0AEI4                                                                                 | rimO                                                                               | 58                                                                   | 18                                                                    | 31                                                                   | 18                                                              | 441                                                                       | 49.6                                                                                                                              | 99.14                                                                                          |
| P77581                                                                                 | astC                                                                               | 64                                                                   | 17                                                                    | 28                                                                   | 17                                                              | 406                                                                       | 43.6                                                                                                                              | 86.68                                                                                          |
| P0AAZ4                                                                                 | rarA                                                                               | 65                                                                   | 21                                                                    | 28                                                                   | 21                                                              | 447                                                                       | 49.6                                                                                                                              | 81.43                                                                                          |
| P0A6B7                                                                                 | iscS                                                                               | 50                                                                   | 18                                                                    | 27                                                                   | 18                                                              | 404                                                                       | 45.1                                                                                                                              | 72.12                                                                                          |
| P0AC53                                                                                 | zwf                                                                                | 53                                                                   | 21                                                                    | 27                                                                   | 21                                                              | 491                                                                       | 55.7                                                                                                                              | 68.96                                                                                          |
| P0ABB4                                                                                 | atpD                                                                               | 70                                                                   | 19                                                                    | 26                                                                   | 19                                                              | 460                                                                       | 50.3                                                                                                                              | 67.3                                                                                           |
| P76273                                                                                 | rsmF                                                                               | 41                                                                   | 15                                                                    | 25                                                                   | 15                                                              | 479                                                                       | 53.2                                                                                                                              | 79.67                                                                                          |
| P25552                                                                                 | gppA                                                                               | 48                                                                   | 16                                                                    | 25                                                                   | 16                                                              | 494                                                                       | 54.8                                                                                                                              | 73.67                                                                                          |
| P39099                                                                                 | degQ                                                                               | 49                                                                   | 17                                                                    | 23                                                                   | 17                                                              | 455                                                                       | 47.2                                                                                                                              | 83.82                                                                                          |
| P11880                                                                                 | murF                                                                               | 39                                                                   | 11                                                                    | 23                                                                   | 11                                                              | 452                                                                       | 47.4                                                                                                                              | 65.59                                                                                          |
| P77357                                                                                 | abgA                                                                               | 48                                                                   | 14                                                                    | 22                                                                   | 14                                                              | 436                                                                       | 46.6                                                                                                                              | 54.05                                                                                          |
| P37773                                                                                 | mpl                                                                                | 37                                                                   | 10                                                                    | 21                                                                   | 10                                                              | 457                                                                       | 49.8                                                                                                                              | 64.73                                                                                          |
| P77398                                                                                 | arnA                                                                               | 33                                                                   | 18                                                                    | 21                                                                   | 18                                                              | 660                                                                       | 74.2                                                                                                                              | 48.2                                                                                           |
| P05042                                                                                 | fumC                                                                               | 58                                                                   | 16                                                                    | 21                                                                   | 16                                                              | 467                                                                       | 50.5                                                                                                                              | 49.2                                                                                           |
| Q47622                                                                                 | sapA                                                                               | 42                                                                   | 17                                                                    | 20                                                                   | 17                                                              | 547                                                                       | 61.5                                                                                                                              | 50.59                                                                                          |
| P23845                                                                                 | cysN                                                                               | 50                                                                   | 17                                                                    | 20                                                                   | 17                                                              | 475                                                                       | 52.5                                                                                                                              | 44.52                                                                                          |
| P0C0V0                                                                                 | degP                                                                               | 43                                                                   | 15                                                                    | 20                                                                   | 15                                                              | 474                                                                       | 49.3                                                                                                                              | 56.34                                                                                          |
| P31979                                                                                 | nuoF                                                                               | 52                                                                   | 17                                                                    | 19                                                                   | 17                                                              | 445                                                                       | 49.3                                                                                                                              | 55.74                                                                                          |
| P0AG67                                                                                 | rpsA                                                                               | 32                                                                   | 14                                                                    | 19                                                                   | 14                                                              | 557                                                                       | 61.1                                                                                                                              | 39.82                                                                                          |
| P66948                                                                                 | bepA                                                                               | 42                                                                   | 13                                                                    | 18                                                                   | 13                                                              | 487                                                                       | 53.9                                                                                                                              | 56.32                                                                                          |
| P21151                                                                                 | fadA                                                                               | 35                                                                   | 9                                                                     | 18                                                                   | 9                                                               | 387                                                                       | 40.9                                                                                                                              | 46.82                                                                                          |
| P0A6Y8                                                                                 | dnaK                                                                               | 31                                                                   | 15                                                                    | 18                                                                   | 15                                                              | 638                                                                       | 69.1                                                                                                                              | 49.68                                                                                          |
| P06987                                                                                 | hisB                                                                               | 43                                                                   | 13                                                                    | 17                                                                   | 13                                                              | 355                                                                       | 40.3                                                                                                                              | 38.36                                                                                          |
| P00861                                                                                 | lysA                                                                               | 50                                                                   | 10                                                                    | 17                                                                   | 10                                                              | 420                                                                       | 46.1                                                                                                                              | 68.92                                                                                          |
| P17952                                                                                 | murC                                                                               | 37                                                                   | 13                                                                    | 16                                                                   | 13                                                              | 491                                                                       | 53.6                                                                                                                              | 48.46                                                                                          |
| P0AEI1                                                                                 | miaB                                                                               | 45                                                                   | 13                                                                    | 16                                                                   | 13                                                              | 474                                                                       | 53.6                                                                                                                              | 45.07                                                                                          |
| A0A1V1IFM5                                                                             | gsk-4                                                                              | 44                                                                   | 11                                                                    | 16                                                                   | 11                                                              | 434                                                                       | 48.4                                                                                                                              | 34.53                                                                                          |
| P0A9J8                                                                                 | pheA                                                                               | 37                                                                   | 12                                                                    | 16                                                                   | 12                                                              | 386                                                                       | 43.1                                                                                                                              | 44.65                                                                                          |
| P00490                                                                                 | malP                                                                               | 19                                                                   | 12                                                                    | 15                                                                   | 12                                                              | 797                                                                       | 90.5                                                                                                                              | 17.02                                                                                          |
| P0AC41                                                                                 | sdhA                                                                               | 28                                                                   | 13                                                                    | 15                                                                   | 13                                                              | 588                                                                       | 64.4                                                                                                                              | 35.4                                                                                           |
| P21513                                                                                 | rne                                                                                | 17                                                                   | 13                                                                    | 15                                                                   | 13                                                              | 1061                                                                      | 118.1                                                                                                                             | 39.2                                                                                           |
| P0ABQ0                                                                                 | coaBC                                                                              | 44                                                                   | 11                                                                    | 15                                                                   | 11                                                              | 406                                                                       | 43.4                                                                                                                              | 40.51                                                                                          |
| P77434                                                                                 | alaC                                                                               | 39                                                                   | 12                                                                    | 14                                                                   | 12                                                              | 412                                                                       | 46.2                                                                                                                              | 42.26                                                                                          |
| P32131                                                                                 | hemN                                                                               | 31                                                                   | 11                                                                    | 14                                                                   | 11                                                              | 457                                                                       | 52.7                                                                                                                              | 41.27                                                                                          |
| P40874                                                                                 | solA                                                                               | 41                                                                   | 11                                                                    | 13                                                                   | 11                                                              | 372                                                                       | 40.9                                                                                                                              | 21.7                                                                                           |
| P0A8J8                                                                                 | rhlB                                                                               | 37                                                                   | 12                                                                    | 13                                                                   | 12                                                              | 421                                                                       | 47.1                                                                                                                              | 35.84                                                                                          |
| P77804                                                                                 | ydgA                                                                               | 34                                                                   | 12                                                                    | 13                                                                   | 12                                                              | 502                                                                       | 54.7                                                                                                                              | 26.84                                                                                          |
| P0AFU4                                                                                 | glrR                                                                               | 31                                                                   | 11                                                                    | 13                                                                   | 11                                                              | 444                                                                       | 49.1                                                                                                                              | 32.41                                                                                          |
| P0AD61                                                                                 | pykF                                                                               | 33                                                                   | 12                                                                    | 12                                                                   | 12                                                              | 470                                                                       | 50.7                                                                                                                              | 30                                                                                             |
| P0A9P6                                                                                 | deaD                                                                               | 24                                                                   | 12                                                                    | 12                                                                   | 12                                                              | 629                                                                       | 70.5                                                                                                                              | 23.37                                                                                          |
| P02930                                                                                 | tolC                                                                               | 27                                                                   | 10                                                                    | 12                                                                   | 10                                                              | 493                                                                       | 53.7                                                                                                                              | 27.07                                                                                          |
| P02943                                                                                 | lamB                                                                               | 42                                                                   | 11                                                                    | 11                                                                   | 11                                                              | 446                                                                       | 49.9                                                                                                                              | 25.8                                                                                           |
| P31806                                                                                 | nnr                                                                                | 29                                                                   | 10                                                                    | 11                                                                   | 10                                                              | 515                                                                       | 54.6                                                                                                                              | 36.94                                                                                          |
| P33602                                                                                 | nuoG                                                                               | 18                                                                   | 11                                                                    | 11                                                                   | 11                                                              | 908                                                                       | 100.2                                                                                                                             | 28                                                                                             |
| P04079                                                                                 | guaA                                                                               | 29                                                                   | 10                                                                    | 11                                                                   | 10                                                              | 525                                                                       | 58.6                                                                                                                              | 33.59                                                                                          |
| P0A749                                                                                 | murA                                                                               | 26                                                                   | 10                                                                    | 11                                                                   | 10                                                              | 419                                                                       | 44.8                                                                                                                              | 21.12                                                                                          |
| P03023                                                                                 |                                                                                    | 20                                                                   | 10                                                                    |                                                                      | 10                                                              |                                                                           |                                                                                                                                   | 21.12                                                                                          |
| P0A6H5                                                                                 | lacI                                                                               | 44                                                                   | 10                                                                    | 11                                                                   | 10                                                              | 360                                                                       | 38.6                                                                                                                              | 23.38                                                                                          |
|                                                                                        | lacI<br>hslU                                                                       | 44<br>27                                                             | 10<br>10<br>8                                                         | 11<br>11                                                             | 10<br>10<br>8                                                   | 360<br>443                                                                | 38.6<br>49.6                                                                                                                      | 23.38<br>17.14                                                                                 |
| P0ACC7                                                                                 | lacI<br>hslU<br>glmU                                                               | 20<br>44<br>27<br>24                                                 | 10<br>10<br>8<br>7                                                    | 11<br>11<br>11<br>10                                                 | 10<br>10<br>8<br>7                                              | 360<br>443<br>456                                                         | 38.6<br>49.6<br>49.2                                                                                                              | 23.38<br>17.14<br>22.7                                                                         |
| P0ACC7<br>P23003                                                                       | lacI<br>hslU<br>glmU<br>trmA                                                       | 20<br>44<br>27<br>24<br>34                                           | 10<br>10<br>8<br>7<br>8                                               | 11<br>11<br>11<br>10<br>10                                           | 10<br>8<br>7<br>8                                               | 360<br>443<br>456<br>366                                                  | 38.6<br>49.6<br>49.2<br>41.9                                                                                                      | 23.38<br>17.14<br>22.7<br>21.93                                                                |
| P0ACC7<br>P23003<br>P0A7V0                                                             | lacI<br>hslU<br>glmU<br>trmA<br>rpsB                                               | 20<br>44<br>27<br>24<br>34<br>51                                     | 10<br>10<br>8<br>7<br>8<br>8<br>8                                     | 11<br>11<br>10<br>10<br>10                                           | 10<br>10<br>8<br>7<br>8<br>8<br>8                               | 360<br>443<br>456<br>366<br>241                                           | 38.6<br>49.6<br>49.2<br>41.9<br>26.7                                                                                              | 23.38<br>17.14<br>22.7<br>21.93<br>23.82                                                       |
| P0ACC7<br>P23003<br>P0A7V0<br>P33029                                                   | lacI<br>hslU<br>glmU<br>trmA<br>rpsB<br>yeiQ                                       | 20<br>44<br>27<br>24<br>34<br>51<br>25                               | 10<br>10<br>8<br>7<br>8<br>8<br>8<br>10                               | 11<br>11<br>10<br>10<br>10<br>10                                     | 10<br>8<br>7<br>8<br>8<br>8<br>10                               | 360<br>443<br>456<br>366<br>241<br>488                                    | 38.6<br>49.6<br>49.2<br>41.9<br>26.7<br>54                                                                                        | 23.38<br>17.14<br>22.7<br>21.93<br>23.82<br>27.74                                              |
| P0ACC7<br>P23003<br>P0A7V0<br>P33029<br>P0AD05                                         | lacI<br>hslU<br>glmU<br>trmA<br>rpsB<br>yeiQ<br>yecA                               | 20<br>44<br>27<br>24<br>34<br>51<br>25<br>50                         | 10<br>10<br>8<br>7<br>8<br>8<br>10<br>6                               | 11<br>11<br>10<br>10<br>10<br>10<br>10<br>10                         | 10<br>10<br>8<br>7<br>8<br>8<br>10<br>6                         | 360<br>443<br>456<br>366<br>241<br>488<br>221                             | 38.6<br>49.6<br>49.2<br>41.9<br>26.7<br>54<br>25                                                                                  | 23.38<br>17.14<br>22.7<br>21.93<br>23.82<br>27.74<br>28.85                                     |
| P0ACC7<br>P23003<br>P0A7V0<br>P33029<br>P0AD05<br>P06961                               | lacI<br>hslU<br>glmU<br>trmA<br>rpsB<br>yeiQ<br>yecA<br>cca                        | 24<br>27<br>24<br>34<br>51<br>25<br>50<br>24                         | 10<br>10<br>8<br>7<br>8<br>8<br>10<br>6<br>9                          | 11<br>11<br>10<br>10<br>10<br>10<br>10<br>9                          | 10<br>10<br>8<br>7<br>8<br>8<br>10<br>6<br>9                    | 360<br>443<br>456<br>366<br>241<br>488<br>221<br>412                      | 38.6<br>49.6<br>49.2<br>41.9<br>26.7<br>54<br>25<br>46.4                                                                          | 23.38<br>17.14<br>22.7<br>21.93<br>23.82<br>27.74<br>28.85<br>16.61                            |
| P0ACC7<br>P23003<br>P0A7V0<br>P33029<br>P0AD05<br>P06961<br>P0AFG3                     | lacI<br>hslU<br>glmU<br>trmA<br>rpsB<br>yeiQ<br>yecA<br>cca<br>sucA                | 24<br>27<br>24<br>34<br>51<br>25<br>50<br>24<br>14                   | 10<br>8<br>7<br>8<br>8<br>10<br>6<br>9<br>9<br>9                      | 11<br>11<br>10<br>10<br>10<br>10<br>10<br>9<br>9<br>9                | 10<br>8<br>7<br>8<br>8<br>10<br>6<br>9<br>9<br>9                | 360<br>443<br>456<br>366<br>241<br>488<br>221<br>412<br>933               | 38.6<br>49.6<br>49.2<br>41.9<br>26.7<br>54<br>25<br>46.4<br>105                                                                   | 23.38<br>17.14<br>22.7<br>21.93<br>23.82<br>27.74<br>28.85<br>16.61<br>13.86                   |
| P0ACC7<br>P23003<br>P0A7V0<br>P33029<br>P0AD05<br>P06961<br>P0AFG3<br>P68767           | lacI<br>hslU<br>glmU<br>trmA<br>rpsB<br>yeiQ<br>yecA<br>cca<br>sucA<br>pepA        | 24<br>27<br>24<br>34<br>51<br>25<br>50<br>24<br>14<br>22             | 10<br>10<br>8<br>7<br>8<br>8<br>10<br>6<br>9<br>9<br>9<br>9           | 11<br>11<br>10<br>10<br>10<br>10<br>10<br>9<br>9<br>9<br>9           | 10<br>8<br>7<br>8<br>8<br>10<br>6<br>9<br>9<br>9<br>9           | 360<br>443<br>456<br>366<br>241<br>488<br>221<br>412<br>933<br>503        | 38.6         49.6         49.2         41.9         26.7         54         25         46.4         105         54.8              | 23.38<br>17.14<br>22.7<br>21.93<br>23.82<br>27.74<br>28.85<br>16.61<br>13.86<br>20.81          |
| P0ACC7<br>P23003<br>P0A7V0<br>P33029<br>P0AD05<br>P06961<br>P0AFG3<br>P68767<br>P0A847 | lacI<br>hslU<br>glmU<br>trmA<br>rpsB<br>yeiQ<br>yecA<br>cca<br>sucA<br>pepA<br>tgt | 20<br>44<br>27<br>24<br>34<br>51<br>25<br>50<br>24<br>14<br>22<br>25 | 10<br>10<br>8<br>7<br>8<br>8<br>10<br>6<br>9<br>9<br>9<br>9<br>9<br>7 | 11<br>11<br>10<br>10<br>10<br>10<br>10<br>9<br>9<br>9<br>9<br>9<br>9 | 10<br>8<br>7<br>8<br>8<br>10<br>6<br>9<br>9<br>9<br>9<br>9<br>7 | 360<br>443<br>456<br>366<br>241<br>488<br>221<br>412<br>933<br>503<br>375 | 38.6         49.6         49.2         41.9         26.7         54         25         46.4         105         54.8         42.6 | 23.38<br>17.14<br>22.7<br>21.93<br>23.82<br>27.74<br>28.85<br>16.61<br>13.86<br>20.81<br>18.64 |

| P0A6A6     | leuC        | 24 | 7 | 8 | 7 | 466  | 49.9  | 26.09 |
|------------|-------------|----|---|---|---|------|-------|-------|
| P0AAG8     | mglA        | 17 | 7 | 8 | 7 | 506  | 56.4  | 15.94 |
| P04805     | gltX        | 20 | 8 | 8 | 8 | 471  | 53.8  | 18.4  |
| P0A6P9     | eno         | 19 | 6 | 8 | 6 | 432  | 45.6  | 17.21 |
| P09831     | gltB        | 5  | 7 | 7 | 7 | 1486 | 163.2 | 5.98  |
| P0A8N3     | lysS        | 15 | 6 | 7 | 6 | 505  | 57.6  | 1.9   |
| P0A6C5     | argA        | 21 | 7 | 7 | 7 | 443  | 49.2  | 9.38  |
| P0A6E4     | argG        | 16 | 5 | 7 | 5 | 447  | 49.9  | 11.2  |
| P08660     | lysC        | 17 | 6 | 7 | 6 | 449  | 48.5  | 16.14 |
| P0C8J8     | gatZ        | 12 | 5 | 6 | 5 | 420  | 47.1  | 12.5  |
| P33599     | nuoC        | 12 | 6 | 6 | 6 | 596  | 68.2  | 8.4   |
| P75876     | rlmI        | 17 | 5 | 6 | 5 | 396  | 44.3  | 16.38 |
| P30871     | ygiF        | 13 | 5 | 5 | 5 | 433  | 48.4  | 9.64  |
| P09127     | hemX        | 13 | 5 | 5 | 5 | 393  | 42.9  | 7.15  |
| P06720     | melA        | 15 | 5 | 5 | 5 | 451  | 50.6  | 7.48  |
| P21179     | katE        | 8  | 5 | 5 | 5 | 753  | 84.1  | 11.48 |
| P55135     | rlmD        | 16 | 4 | 5 | 4 | 433  | 48    | 13.2  |
| P23830     | pssA        | 18 | 5 | 5 | 5 | 451  | 52.8  | 11.93 |
| P33940     | mqo         | 10 | 5 | 5 | 5 | 548  | 60.2  | 10.95 |
| P0A6U8     | glgA        | 12 | 4 | 4 | 4 | 477  | 52.8  | 11.29 |
| P0A9K9     | slvD        | 17 | 3 | 4 | 3 | 196  | 20.8  | 11.09 |
| P0ABC7     | hflK        | 11 | 4 | 4 | 4 | 419  | 45.5  | 10.03 |
| P00370     | gdhA        | 16 | 4 | 4 | 4 | 447  | 48.6  | 5.7   |
| P10902     | nadB        | 7  | 4 | 4 | 4 | 540  | 60.3  | 6.6   |
| P24228     | dacB        | 10 | 3 | 4 | 3 | 477  | 51.8  | 4.67  |
| P27434     | rodZ        | 20 | 4 | 4 | 4 | 337  | 36.2  | 14.7  |
| P36649     | cueO        | 16 | 4 | 4 | 4 | 516  | 56.5  | 8 69  |
| P06710     | dnaX        | 7  | 4 | 4 | 4 | 643  | 71.1  | 12 31 |
| P0DP90     | ilvG        | 14 | 4 | 4 | 4 | 548  | 59.2  | 5.22  |
| P0A705     | infB        | 5  | 4 | 4 | 4 | 890  | 97.3  | 8.13  |
| P07012     | prfB        | 8  | 3 | 3 | 3 | 365  | 41.2  | 3.7   |
| P04413     | ftsH        | 5  | 2 | 3 | 2 | 644  | 70.7  | 0     |
| P15034     | nenP        | 7  | 3 | 3 | 3 | 441  | 49.8  | 51    |
| P07639     | aroB        | 8  | 3 | 3 | 3 | 362  | 38.9  | 1.03  |
| P336/3     | rluD        | 17 | 3 | 3 | 3 | 326  | 37.1  | 8.26  |
| P60422     | rnlB        | 14 | 3 | 3 | 3 | 273  | 29.8  | 4 47  |
| P23908     | araE        | 7  | 2 | 3 | 2 | 383  | 12.0  | 4.51  |
| P76422     | thiD        | 16 | 2 | 3 | 2 | 266  | 28.6  | 9.15  |
| DOA A 53   | ameA        | 13 | 1 | 3 | 1 | 305  | 20.0  | 0     |
| POAEL6     | nny         | 3  | 1 | 2 | 1 | 513  | 58.1  | 2 34  |
| DOAFAS     | ppx<br>cvsG | 7  | 2 | 2 | 2 | 157  | /0.0  | 2.54  |
| P12000     | motH        | 2  | 2 | 2 | 2 | 1227 | 125.0 | 2.30  |
| P13009     | ind         | 6  | 2 | 2 | 2 | 1227 | 155.9 | 2.7   |
| P60006     | hias        | 0  | 2 | 2 | 2 | 410  | 43.7  | 2.04  |
| P00900     | man         | 12 | 2 | 2 | 2 | 424  | 47    | 0.57  |
| PUAEIO     | map         | 15 | 2 | 2 | 2 | 204  | 29.3  | 4.13  |
| PUADJ9     | cydA        | 4  | 2 | 2 | 2 | 322  | 38.2  | 3.0   |
| P/3803     | ycdX        | 10 | 2 | 2 | 2 | 309  | 40.0  | 2.39  |
| P23883     | guuc        | 1  | 2 | 2 | 2 | 495  | 55.4  | 0.47  |
| P0AGD7     | ffn<br>G    | 6  | 2 | 2 | 2 | 453  | 49.8  | 1.78  |
| POABHO     | ItsA        | 1  | 2 | 2 | 2 | 420  | 45.3  | 0     |
| P30850     | rnb         | 4  | 2 | 2 | 2 | 644  | 72.4  | 4.02  |
| POA9JO     | rng         | /  | 2 | 2 | 2 | 489  | 55.3  | 4.17  |
| P23524     | garK        | 10 | 1 | 2 | 1 | 381  | 39.1  | 0     |
| P25539     | ribD        | 6  | 2 | 2 | 2 | 367  | 40.3  | 3.42  |
| P09832     | gltD        | 5  | 2 | 2 | 2 | 472  | 52    | 4.33  |
| Q57261     | truD        | 8  | 2 | 2 | 2 | 349  | 39.1  | 2.68  |
| POA9M8     | pta         | 3  | 2 | 2 | 2 | 714  | 77.1  | 3.67  |
| P0A6M8     | fusA        | 2  | 1 | 1 | 1 | 704  | 77.5  | 2.48  |
| P07001     | pntA        | 2  | 1 | 1 | 1 | 510  | 54.6  | 1.7   |
| P62399     | rplE        | 6  | 1 | 1 | 1 | 179  | 20.3  | 0     |
| P10384     | fadL        | 3  | 1 | 1 | 1 | 446  | 48.5  | 0     |
| P28631     | holB        | 3  | 1 | 1 | 1 | 334  | 36.9  | 0     |
| P64588     | yqjI        | 4  | 1 | 1 | 1 | 207  | 23.4  | 1.89  |
| P00934     | thrC        | 4  | 1 | 1 | 1 | 428  | 47.1  | 2.55  |
| P31473     | ravA        | 3  | 1 | 1 | 1 | 498  | 56.4  | 2.18  |
| P0A8M3     | thrS        | 2  | 1 | 1 | 1 | 642  | 74    | 0     |
| A0A0G3HHZ6 | puuA        | 4  | 1 | 1 | 1 | 472  | 53.1  | 1.98  |

|   | P25519 | hflX  | 3  | 1 | 1 | 1 | 426  | 48.3  | 1.93 |
|---|--------|-------|----|---|---|---|------|-------|------|
| Î | P0AB91 | aroG  | 3  | 1 | 1 | 1 | 350  | 38    | 1.66 |
|   | P0A8E1 | ycfP  | 7  | 1 | 1 | 1 | 180  | 21.2  | 2.95 |
|   | P04036 | dapB  | 7  | 1 | 1 | 1 | 273  | 28.7  | 0    |
|   | P03960 | kdpB  | 2  | 1 | 1 | 1 | 682  | 72.2  | 0    |
|   | Q00037 | tnpA  | 1  | 1 | 1 | 1 | 1002 | 113.7 | 0    |
|   | P00963 | asnA  | 4  | 1 | 1 | 1 | 330  | 36.6  | 1.67 |
|   | P05055 | pnp   | 2  | 1 | 1 | 1 | 711  | 77.1  | 0    |
|   | P00914 | phrB  | 2  | 1 | 1 | 1 | 472  | 53.6  | 1.9  |
|   | P07604 | tyrR  | 2  | 1 | 1 | 1 | 513  | 57.6  | 0    |
| I | P0AES6 | gyrB  | 1  | 1 | 1 | 1 | 804  | 89.9  | 0    |
|   | P0AB89 | purB  | 2  | 1 | 1 | 1 | 456  | 51.5  | 1.69 |
|   | P24174 | manC  | 2  | 1 | 1 | 1 | 478  | 53    | 1.92 |
|   | P0A7D4 | purA  | 3  | 1 | 1 | 1 | 432  | 47.3  | 2.54 |
| I | P77488 | dxs   | 1  | 1 | 1 | 1 | 620  | 67.6  | 1.65 |
|   | P30845 | eptA  | 1  | 1 | 1 | 1 | 547  | 61.6  | 2.57 |
|   | P77718 | thiI  | 3  | 1 | 1 | 1 | 482  | 54.9  | 0    |
|   | P60438 | rplC  | 10 | 1 | 1 | 1 | 209  | 22.2  | 0    |
|   | P0A786 | pyrB  | 4  | 1 | 1 | 1 | 311  | 34.4  | 0    |
|   | P06959 | aceF  | 2  | 1 | 1 | 1 | 630  | 66.1  | 0    |
|   | P28904 | treC  | 3  | 1 | 1 | 1 | 551  | 63.8  | 2.09 |
|   | P15288 | pepD  | 3  | 1 | 1 | 1 | 485  | 52.9  | 2.16 |
|   | P15639 | purH  | 2  | 1 | 1 | 1 | 529  | 57.3  | 2.3  |
|   | P13029 | katG  | 2  | 1 | 1 | 1 | 726  | 80    | 0    |
|   | P30748 | moaD  | 26 | 1 | 1 | 1 | 81   | 8.8   | 3.95 |
|   | P0A9C5 | glnA  | 2  | 1 | 1 | 1 | 469  | 51.9  | 0    |
|   | P0A6V1 | glgC  | 4  | 1 | 1 | 1 | 431  | 48.7  | 0    |
|   | P0AGI8 | trkA  | 4  | 1 | 1 | 1 | 458  | 50.3  | 2.55 |
|   | P30843 | basR  | 5  | 1 | 1 | 1 | 222  | 25    | 1.69 |
|   | P76046 | ycjX  | 3  | 1 | 1 | 1 | 465  | 52.6  | 1.72 |
|   | P75958 | lolE  | 6  | 1 | 1 | 1 | 414  | 45.3  | 0    |
|   | P13039 | fes   | 5  | 1 | 1 | 1 | 400  | 45.6  | 0    |
|   | P60293 | mukF  | 3  | 1 | 1 | 1 | 440  | 50.5  | 0    |
|   | P00393 | ndh   | 3  | 1 | 1 | 1 | 434  | 47.3  | 0    |
|   | P17802 | mutY  | 6  | 1 | 1 | 1 | 350  | 39.1  | 2.98 |
|   | P36680 | zapD  | 4  | 1 | 1 | 1 | 247  | 28.3  | 0    |
|   | P77649 | selO  | 2  | 1 | 1 | 1 | 478  | 54.3  | 0    |
|   | P42641 | obgE  | 5  | 1 | 1 | 1 | 390  | 43.3  | 2.78 |
|   | P0A6F5 | groEL | 2  | 1 | 1 | 1 | 548  | 57.3  | 1.81 |
|   | P23865 | prc   | 1  | 1 | 1 | 1 | 682  | 76.6  | 2.63 |

Table 12 - Mass spectrometry results from Section 5.2.4 – N91Bpa 65-100 kDa

| UniProt | Gene | Coverage | Peptides | PSMs | Unique | AAs | MW    | Score  |
|---------|------|----------|----------|------|--------|-----|-------|--------|
| P17169  | glmS | 81       | 47       | 158  | 47     | 609 | 66.9  | 579.02 |
| P00490  | malP | 74       | 49       | 124  | 49     | 797 | 90.5  | 411.64 |
| P0A6Y8  | dnaK | 74       | 50       | 95   | 50     | 638 | 69.1  | 327.66 |
| P77398  | arnA | 73       | 39       | 91   | 39     | 660 | 74.2  | 324.3  |
| P0AFG3  | sucA | 51       | 33       | 65   | 33     | 933 | 105   | 183.68 |
| P0AC41  | sdhA | 75       | 32       | 62   | 32     | 588 | 64.4  | 197.31 |
| P0AFG8  | aceE | 59       | 42       | 58   | 42     | 887 | 99.6  | 161.58 |
| P33602  | nuoG | 56       | 37       | 56   | 37     | 908 | 100.2 | 193.52 |
| P0A8N3  | lysS | 71       | 34       | 52   | 24     | 505 | 57.6  | 161.31 |
| P05055  | pnp  | 52       | 30       | 51   | 30     | 711 | 77.1  | 164.11 |

| P21179             | katE      | 51 | 34 | 50 | 34 | 753  | 84.1  | 168.71 |
|--------------------|-----------|----|----|----|----|------|-------|--------|
| P0CE47             | tufA      | 84 | 24 | 50 | 24 | 394  | 43.3  | 150.93 |
| P09831             | øltB      | 33 | 37 | 45 | 37 | 1486 | 163.2 | 120.39 |
| P0AG67             | rnsA      | 55 | 30 | 45 | 30 | 557  | 61.1  | 159.12 |
| P0A705             | infR      | 14 | 20 | 44 | 20 | 800  | 07.3  | 135.6  |
| D0A714             | nrfC      | 50 | 22 | 42 | 22 | 520  | 50.5  | 121.52 |
| P0//14             | pric<br>E | 50 | 23 | 42 | 23 | 529  | J9.J  | 121.55 |
| P06959             | aceF      | 56 | 29 | 41 | 29 | 630  | 66.1  | 132.18 |
| P30850             | rnb       | 53 | 28 | 37 | 28 | 644  | 72.4  | 105.33 |
| P23865             | prc       | 50 | 26 | 34 | 26 | 682  | 76.6  | 86.05  |
| P0A6F5             | groEL     | 59 | 24 | 33 | 24 | 548  | 57.3  | 83.11  |
| P0ADG7             | guaB      | 72 | 21 | 30 | 21 | 488  | 52    | 95.29  |
| P0A9M8             | pta       | 46 | 22 | 28 | 22 | 714  | 77.1  | 92.17  |
| P0AES6             | gyrB      | 35 | 21 | 28 | 21 | 804  | 89.9  | 68.85  |
| P00957             | alaS      | 36 | 24 | 25 | 24 | 876  | 96    | 59.01  |
| P33195             | gcvP      | 33 | 19 | 25 | 19 | 957  | 104.3 | 63.99  |
| P0A9P6             | deaD      | 40 | 18 | 23 | 18 | 629  | 70.5  | 58.04  |
| P27302             | tkt A     | 44 | 10 | 23 | 10 | 663  | 70.5  | 62.79  |
| D17052             |           | 44 | 12 | 23 | 12 | 401  | 52.6  | 72.46  |
| P1/952             | inuic     | 40 | 15 | 25 | 15 | 491  | 55.0  | 75.40  |
| POADYI             | ppiD      | 43 | 21 | 22 | 21 | 623  | 68.1  | 59.44  |
| P33599             | nuoC      | 30 | 16 | 21 | 16 | 596  | 68.2  | 42.71  |
| P35340             | ahpF      | 46 | 18 | 21 | 18 | 521  | 56.1  | 60.92  |
| P21599             | pykA      | 49 | 17 | 20 | 17 | 480  | 51.3  | 61.96  |
| P09373             | pflB      | 30 | 16 | 19 | 16 | 760  | 85.3  | 49.35  |
| P22188             | murE      | 34 | 13 | 19 | 13 | 495  | 53.3  | 52.83  |
| P0A8N5             | lysU      | 33 | 17 | 19 | 7  | 505  | 57.8  | 38.75  |
| P0A9P0             | lpdA      | 39 | 14 | 18 | 14 | 474  | 50.7  | 56.09  |
| P0A9W3             | ettA      | 42 | 16 | 17 | 16 | 555  | 62.4  | 43.02  |
| P00579             | rnoD      | 26 | 13 | 17 | 13 | 613  | 70.2  | 36.98  |
| D0 A 8M3           | thrS      | 25 | 14 | 16 | 14 | 642  | 74    | 33.02  |
| PUAGINIS<br>DODRO2 |           | 23 | 14 | 16 | 14 | 574  | 62.0  | 21.26  |
| P00893             | 11V1      | 32 | 12 | 10 | 12 | 374  | 02.9  | 20.55  |
| P00562             | metL      | 22 | 14 | 15 | 14 | 810  | 88.8  | 39.55  |
| P/6104             | rlhA      | 25 | 13 | 15 | 13 | 653  | 72.7  | 41.26  |
| P0A6P5             | der       | 32 | 11 | 14 | 11 | 490  | 55    | 28.21  |
| P10902             | nadB      | 24 | 10 | 14 | 10 | 540  | 60.3  | 26.48  |
| P0A6Z3             | htpG      | 28 | 14 | 14 | 14 | 624  | 71.4  | 36.49  |
| P13009             | metH      | 12 | 13 | 13 | 13 | 1227 | 135.9 | 28.68  |
| P0AES4             | gyrA      | 15 | 12 | 13 | 12 | 875  | 96.9  | 29.13  |
| P21170             | speA      | 18 | 11 | 13 | 11 | 658  | 73.9  | 37.92  |
| P0AC33             | fumA      | 31 | 12 | 13 | 12 | 548  | 60.3  | 35.66  |
| P09546             | putA      | 11 | 10 | 12 | 10 | 1320 | 143.7 | 20.7   |
| POAC53             | zwf       | 28 | 12 | 12 | 12 | 491  | 55.7  | 33.85  |
| P77182             | mnmC      | 28 | 11 | 12 | 11 | 668  | 74.4  | 22.83  |
| P0.4.6M8           | fueA      | 20 | 11 | 12 | 11 | 704  | 77.5  | 34.41  |
| D10408             | iusA      | 19 | 11 | 12 | 11 | 704  | 102   | 22.01  |
| P10408             | secA      | 18 | 11 | 12 | 11 | 901  | 102   | 32.01  |
| P28903             | nrdD      | 18 | 9  | 12 | 9  | /12  | 80    | 21.91  |
| P0A9J8             | pheA      | 29 | 10 | 12 | 10 | 386  | 43.1  | 24.13  |
| P0AAI3             | ftsH      | 22 | 11 | 12 | 11 | 644  | 70.7  | 32.24  |
| P43672             | uup       | 22 | 11 | 12 | 11 | 635  | 72    | 19.68  |
| P21513             | rne       | 16 | 11 | 11 | 11 | 1061 | 118.1 | 25.17  |
| P0A7E5             | pyrG      | 21 | 10 | 11 | 10 | 545  | 60.3  | 24.97  |
| P0A9Q7             | adhE      | 14 | 10 | 11 | 10 | 891  | 96.1  | 29.03  |
| P15977             | malQ      | 22 | 11 | 11 | 11 | 694  | 78.5  | 26.77  |
| P00452             | nrdA      | 17 | 10 | 11 | 10 | 761  | 85.7  | 22.1   |
| P21151             | fadA      | 26 | 7  | 10 | 7  | 387  | 40.9  | 28.04  |
| P08102             | folC      | 36 | 10 | 10 | 10 | 422  | 45.4  | 32.74  |
| D22176             | fdoG      | 14 | 8  | 0  | 8  | 422  | 4.5.4 | 0.56   |
| F 32170            | Tuot      | 14 | 0  | 9  | 0  | 1010 | 52.2  | 9.30   |
| P/02/3             | rsmF      | 27 | 1  | 9  | /  | 479  | 55.2  | 14.17  |
| P0A940             | bamA      | 14 | 9  | 9  | 9  | 810  | 90.5  | 24.11  |
| P05825             | fepA      | 14 | 8  | 8  | 8  | 746  | 82.1  | 17.47  |
| P08660             | lysC      | 17 | 6  | 8  | 6  | 449  | 48.5  | 16.68  |
| P27249             | glnD      | 10 | 7  | 8  | 7  | 890  | 102.3 | 6.24   |
| P27306             | sthA      | 20 | 8  | 8  | 8  | 466  | 51.5  | 23.23  |
| P0CB39             | eptC      | 17 | 8  | 8  | 8  | 577  | 66.6  | 17.34  |
| P28904             | treC      | 16 | 8  | 8  | 8  | 551  | 63.8  | 22.02  |
| P23538             | ppsA      | 12 | 8  | 8  | 8  | 792  | 87.4  | 10.1   |
| P0AD05             | vecA      | 50 | 6  | 8  | 6  | 221  | 25    | 27.55  |
| DOARDOS            | clnA      | 16 | 7  | 8  | 7  | 758  | 84.2  | 9.64   |
| PUADH9             | cipA      | 10 | 1  | 0  | 1  | 130  | 04.2  | 9.04   |

| P07762 | glgB         | 12 | 8 | 8 | 8 | 728  | 84.3  | 13.85 |
|--------|--------------|----|---|---|---|------|-------|-------|
| P0ABB0 | atpA         | 20 | 8 | 8 | 8 | 513  | 55.2  | 21.41 |
| P37024 | hrpB         | 13 | 8 | 8 | 8 | 809  | 89.1  | 14.77 |
| P75864 | rlmL         | 11 | 6 | 7 | 6 | 702  | 78.8  | 13.05 |
| P0AGC3 | slt          | 10 | 6 | 7 | 6 | 645  | 73.3  | 9.86  |
| P0A6B7 | iscS         | 19 | 7 | 7 | 7 | 404  | 45.1  | 16.56 |
| P24182 | accC         | 20 | 7 | 7 | 7 | 449  | 49.3  | 14.36 |
| P06987 | hisB         | 21 | 6 | 7 | 6 | 355  | 40.3  | 13.54 |
| P0ABH7 | gltA         | 22 | 6 | 7 | 6 | 427  | 48    | 13.36 |
| P06149 | dld          | 14 | 7 | 7 | 7 | 571  | 64.6  | 11.33 |
| P30958 | mfd          | 9  | 7 | 7 | 7 | 1148 | 129.9 | 16.96 |
| P15639 | purH         | 13 | 6 | 6 | 6 | 529  | 57.3  | 12.49 |
| P0AFF6 | nusA         | 18 | 6 | 6 | 6 | 495  | 54.8  | 12.46 |
| P76403 | trhP         | 19 | 5 | 6 | 5 | 453  | 51.2  | 18.01 |
| P14081 | selB         | 11 | 6 | 6 | 6 | 614  | 68.8  | 8.82  |
| P77581 | astC         | 20 | 5 | 6 | 5 | 406  | 43.6  | 15.31 |
| P77488 | dxs          | 11 | 6 | 6 | 6 | 620  | 67.6  | 7.41  |
| P0A850 | tig          | 17 | 6 | 6 | 6 | 432  | 48.2  | 11.34 |
| P0A825 | glyA         | 19 | 6 | 6 | 6 | 417  | 45.3  | 13.31 |
| P11557 | damX         | 9  | 3 | 5 | 3 | 428  | 46.1  | 7.19  |
| P23367 | mutL         | 14 | 5 | 5 | 5 | 615  | 67.9  | 4.91  |
| P0A6F3 | glpK         | 13 | 5 | 5 | 5 | 502  | 56.2  | 8.78  |
| P23003 | trmA         | 18 | 5 | 5 | 5 | 366  | 41.9  | 13.16 |
| P04036 | danB         | 21 | 4 | 5 | 4 | 273  | 28.7  | 18.65 |
| P0A8T7 | rnoC         | 4  | 5 | 5 | 5 | 1407 | 155.1 | 6.14  |
| POAEI4 | rimQ         | 20 | 5 | 5 | 5 | 441  | 49.6  | 17.58 |
| P36683 | acnB         | 7  | 4 | 5 | 4 | 865  | 93.4  | 10.13 |
| P39401 | mdoB         | 4  | 3 | 5 | 3 | 763  | 85.4  | 66    |
| P11880 | murF         | 16 | 5 | 5 | 5 | 452  | 47.4  | 13.84 |
| P33919 | radD         | 9  | 4 | 4 | 4 | 586  | 66.4  | 8 97  |
| P60785 | lenA         | 8  | 4 | 4 | 4 | 599  | 66.5  | 5.06  |
| POAEG6 | sucB         | 14 | 4 | 4 | 4 | 405  | 44    | 9.81  |
| P0A9K9 | slyD         | 36 | 4 | 4 | 4 | 196  | 20.8  | 6.77  |
| P21889 | aspS         | 6  | 4 | 4 | 4 | 590  | 65.9  | 7.6   |
| P048V2 | rnoB         | 3  | 4 | 4 | 4 | 1342 | 150.5 | 1.88  |
| P11071 | aceK         | 9  | 4 | 4 | 4 | 578  | 67.7  | 10.84 |
| P75876 | rlmI         | 9  | 3 | 4 | 3 | 396  | 44.3  | 2.07  |
| P13029 | katG         | 9  | 4 | 4 | 4 | 726  | 80    | 0     |
| P0AG30 | rho          | 10 | 4 | 4 | 4 | /10  | 47    | 8 69  |
| P07604 | tyrP         | 8  | 4 | 4 | 4 | 513  | 57.6  | 7.55  |
| P23908 | aroF         | 10 | 3 | 4 | 3 | 383  | 42.3  | 1.61  |
| P31449 | vidI         | 8  | 1 | 4 | 1 | 297  | 33.9  | 0     |
| 047622 | sanA         | 10 | 4 | 4 | 4 | 547  | 61.5  | 4.06  |
| P0DP00 | ilvG         | 12 | 4 | 4 | 4 | 548  | 59.2  | 7.64  |
| P77748 | vdiI         | 5  | 3 | 4 | 3 | 1018 | 113.2 | 1.04  |
| P04G90 | secD         | 8  | 4 | 4 | 4 | 615  | 66.6  | 11.01 |
| P04079 | guaA         | 12 | 3 | 4 | 3 | 525  | 58.6  | 11.01 |
| POACEO | hybC         | 11 | 4 | 4 | 4 | 567  | 62.5  | 8 68  |
| P25552 | gnnA         | 9  | 4 | 4 | 4 | 494  | 54.8  | 10.79 |
| P04671 | hscA         | 12 | 4 | 4 | 4 | 616  | 65.6  | 6.84  |
| P22525 | vchB         | 9  | 3 | 3 | 3 | 615  | 67.8  | 8.08  |
| P33136 | mdoG         | 7  | 3 | 3 | 3 | 511  | 57.9  | 6.39  |
| P37773 | mpl          | 12 | 3 | 3 | 3 | 457  | 49.8  | 4 76  |
| P046G7 | clpP         | 11 | 1 | 3 | 1 | 207  |       | 0     |
| P45464 | InoA         | 5  | 3 | 3 | 3 | 678  | 72.8  | 3.0   |
|        | ubiD         | 8  | 3 | 3 | 3 | 497  | 55.6  | 6.26  |
| P07639 | aroB         | 9  | 2 | 3 | 2 | 362  | 38.9  | 1.99  |
| P17444 | het A        | 7  | 3 | 3 | 3 | 556  | 61.8  | 6.18  |
| P77567 | nhoA         | 18 | 3 | 3 | 3 | 281  | 32.3  | 8.75  |
| P15877 | acd          | 10 | 1 | 3 | 1 | 796  | 867   | 0.75  |
| P00363 | frdA         | 7  | 3 | 3 | 3 | 602  | 65.9  | 10.28 |
| P17846 | cvsI         | 8  | 3 | 3 | 3 | 570  | 64    | 4 64  |
| P76422 | thiD         | 16 | 2 | 3 | 2 | 266  | 28.6  | 12.1  |
| P049C5 | dln A        | 0  | 2 | 2 | 2 | 469  | 51.0  | 0     |
| PODTTO | bin A        | 4  | 2 | 2 | 2 | 607  | 67.3  | 5.01  |
| P05791 | UIPA<br>UID  | -+ | 2 | 2 | 2 | 616  | 65.5  | 1.67  |
|        | 1 V )        | 4  |   |   | / | 010  |       | 411/  |
| P03018 | 1lVD<br>uvrD | 4  | 2 | 2 | 2 | 720  | 81.9  | 4.07  |

| P0AD61     | pykF         | 4  | 2 | 2 | 2 | 470  | 50.7  | 0    |
|------------|--------------|----|---|---|---|------|-------|------|
| P0ACD4     | iscU         | 16 | 2 | 2 | 2 | 128  | 13.8  | 2.55 |
| B8LFD5     | lacI         | 6  | 2 | 2 | 2 | 363  | 38.9  | 4.9  |
| P0A6U3     | mnmG         | 4  | 2 | 2 | 2 | 629  | 69.5  | 4.28 |
| P00722     | lacZ         | 3  | 2 | 2 | 2 | 1024 | 116.4 | 2.32 |
| P00968     | carB         | 3  | 2 | 2 | 2 | 1073 | 117.8 | 3.7  |
| P69451     | fadD         | 5  | 2 | 2 | 2 | 561  | 62.3  | 2 38 |
| P60716     | linA         | 10 | 2 | 2 | 2 | 321  | 36    | 5.98 |
| P33016     | veiE         | 2  | 1 | 2 | 1 | 529  | 587   | 0    |
| D0A7V0     | rpgP         | 2  | 2 | 2 | 2 | 241  | 267   | 5 12 |
| D75967     | Ipsb<br>usb7 | 7  | 2 | 2 | 2 | 596  | 20.7  | 1.92 |
| F / J607   | ycuz         | 7  | 2 | 2 | 2 | 029  | 102.1 | 1.65 |
| P00582     | polA         | 5  | 2 | 2 | 2 | 928  | 103.1 | 2.66 |
| P2/298     | priC         | 3  | 2 | 2 | 2 | 680  | //.1  | 1.76 |
| P00864     | ppc          | 3  | 2 | 2 | 2 | 883  | 99    | 1.97 |
| P0AG20     | relA         | 3  | 1 | 2 | 1 | 744  | 83.8  | 3.57 |
| P27550     | acs          | 4  | 2 | 2 | 2 | 652  | 72    | 4.94 |
| P09323     | nagE         | 4  | 2 | 2 | 2 | 648  | 68.3  | 0    |
| P76578     | yfhM         | 2  | 2 | 2 | 2 | 1653 | 181.5 | 0    |
| P37127     | aegA         | 5  | 2 | 2 | 2 | 659  | 71.8  | 1.78 |
| P76562     | tmcA         | 2  | 2 | 2 | 2 | 671  | 74.8  | 2.04 |
| P77718     | thiI         | 5  | 2 | 2 | 2 | 482  | 54.9  | 3.21 |
| P23845     | cysN         | 6  | 2 | 2 | 2 | 475  | 52.5  | 4.46 |
| P25714     | yidC         | 7  | 2 | 2 | 2 | 548  | 61.5  | 5.02 |
| P0AEI1     | miaB         | 7  | 2 | 2 | 2 | 474  | 53.6  | 4.41 |
| P00861     | lvsA         | 7  | 2 | 2 | 2 | 420  | 46.1  | 4.76 |
| P25539     | ribD         | 3  | 1 | 1 | 1 | 367  | 40.3  | 0    |
| P25718     | malS         | 3  | 1 | 1 | 1 | 676  | 75.7  | 0    |
| P67087     | rsmI         | 6  | 1 | 1 | 1 | 286  | 31.3  | 2.5  |
| P048F1     | vcfP         | 7  | 1 | 1 | 1 | 180  | 21.2  | 2.5  |
| DOAR01     | aroG         | 3  | 1 | 1 | 1 | 350  | 38    | 0    |
|            | hte          | 3  | 1 | 1 | 1 | 561  | 62.1  | 0    |
| P000001    | -10          | 4  | 1 | 1 | 1 | 501  | 02.1  | 0    |
| P00961     | giys         | 2  | 1 | 1 | 1 | 089  | /0.8  | 0    |
| POAFV4     | meps         | 5  | 1 | 1 | 1 | 188  | 21    | 0    |
| P00962     | ginS         | 2  | 1 | 1 | 1 | 554  | 63.4  | 0    |
| P77334     | pdeR         | 3  | l | 1 | l | 661  | 74.6  | 0    |
| P0ADR8     | ppnN         | 2  | 1 | 1 | 1 | 454  | 50.9  | 1.67 |
| P60422     | rplB         | 6  | 1 | 1 | 1 | 273  | 29.8  | 0    |
| P22523     | mukB         | 0  | 1 | 1 | 1 | 1486 | 170.1 | 1.77 |
| P63389     | yheS         | 1  | 1 | 1 | 1 | 637  | 71.8  | 0    |
| P08839     | ptsI         | 2  | 1 | 1 | 1 | 575  | 63.5  | 0    |
| P16659     | proS         | 2  | 1 | 1 | 1 | 572  | 63.7  | 0    |
| P0ADY3     | rplN         | 7  | 1 | 1 | 1 | 123  | 13.5  | 0    |
| P63284     | clpB         | 2  | 1 | 1 | 1 | 857  | 95.5  | 3.26 |
| P31554     | lptD         | 2  | 1 | 1 | 1 | 784  | 89.6  | 1.77 |
| P37051     | purU         | 9  | 1 | 1 | 1 | 280  | 31.9  | 0    |
| P20099     | bisC         | 2  | 1 | 1 | 1 | 777  | 85.8  | 0    |
| P77732     | rhmR         | 4  | 1 | 1 | 1 | 260  | 28.9  | 0    |
| P0A7Z4     | rpoA         | 4  | 1 | 1 | 1 | 329  | 36.5  | 0    |
| P30748     | moaD         | 26 | 1 | 1 | 1 | 81   | 8.8   | 4.54 |
| P04F18     | man          | 3  | 1 | 1 | 1 | 264  | 29.3  | 1.63 |
| P050/1     | nabB         | 2  | 1 | 1 | 1 | 453  | 50.9  | 0    |
| POABOO     | coaBC        | 2  | 1 | 1 | 1 | 406  | 13.1  | 0    |
| P0A740     | murA         | 3  | 1 | 1 | 1 | 410  | 44.8  | 0    |
| DC/500     | uail         | 3  | 1 | 1 | 1 | 419  | 22.4  | 2.4  |
| P04388     | yqji         | 4  | 1 | 1 | 1 | 207  | 25.4  | 2.4  |
| PUABI8     | суов         | 4  | 1 | 1 | 1 | 663  | 74.3  | 0    |
| A0A1VIIFM5 | gsk-4        | 5  | 1 | 1 | 1 | 434  | 48.4  | 0    |
| P06710     | dnaX         | 2  | l | 1 | l | 643  | /1.1  | 0    |
| P60752     | msbA         | 3  | 1 | I | 1 | 582  | 64.4  | 0    |
| P0A853     | tnaA         | 2  | 1 | 1 | 1 | 471  | 52.7  | 0    |
| P38038     | cysJ         | 4  | 1 | 1 | 1 | 599  | 66.2  | 0    |
| P60566     | fixA         | 12 | 1 | 1 | 1 | 256  | 27.1  | 0    |
| Q46820     | uacF         | 3  | 1 | 1 | 1 | 639  | 69    | 0    |
| P46923     | torZ         | 1  | 1 | 1 | 1 | 809  | 88.9  | 2.04 |
| P0DM85     | crfC         | 2  | 1 | 1 | 1 | 742  | 84.3  | 0    |
| P13036     | fecA         | 1  | 1 | 1 | 1 | 774  | 85.3  | 0    |
| P06612     | topA         | 2  | 1 | 1 | 1 | 865  | 97.3  | 0    |
| P0AAN3     | hypB         | 4  | 1 | 1 | 1 | 290  | 31.5  | 1.95 |

| P0ABB8 | mgtA | 1  | 1 | 1 | 1 | 898 | 99.4 | 0    |
|--------|------|----|---|---|---|-----|------|------|
| P33937 | napA | 2  | 1 | 1 | 1 | 828 | 93   | 2.28 |
| P23524 | garK | 10 | 1 | 1 | 1 | 381 | 39.1 | 3.47 |

## Table 13 – Mass spectrometry results of proteins in $N91^{Bpa}$ 45 kDa band, from Section

### 5.2.5

| Accession  | Protein<br>Name                            | Coverage<br>[%] | Peptides | PSMs | Unique<br>Peptides | AAs | MW<br>[kDa] | Score<br>Sequest |
|------------|--------------------------------------------|-----------------|----------|------|--------------------|-----|-------------|------------------|
| A0A140N953 | SecH                                       | 39              | 6        | 15   | 6                  | 221 | 25          | 48.77            |
| A0A140N6W0 | Elongation<br>factor Tu                    | 5               | 2        | 2    | 2                  | 394 | 43.3        | 5.52             |
| A0A140N9D5 | Cysteine<br>desulfurase                    | 6               | 2        | 2    | 2                  | 404 | 45.1        | 4.37             |
| A0A140N784 | 3-<br>dehydroquina<br>te synthase          | 3               | 1        | 1    | 1                  | 362 | 38.8        | 2.27             |
| A0A140NF01 | Transcription<br>termination<br>factor Rho | 2               | 1        | 1    | 1                  | 419 | 47          | 1.94             |

# Table 14 - Mass spectrometry results of proteins in $N91^{Bpa}$ 100 kDa band, from Section

## 5.2.5

| Accession  | Protein<br>Name                                                   | Coverage<br>[%] | Peptides | PSMs | Unique<br>Peptides | AAs | MW<br>[kDa] | Score<br>Sequest |  |
|------------|-------------------------------------------------------------------|-----------------|----------|------|--------------------|-----|-------------|------------------|--|
| A0A140N953 | SecH                                                              | 27              | 4        | 18   | 4                  | 221 | 25          | 56.69            |  |
| A0A140NF74 | Bifunctional<br>aspartokinase/<br>homoserine<br>dehydrogenas<br>e | 3               | 2        | 2    | 2                  | 810 | 88.9        | 4.24             |  |
| A0A140N783 | Glyceraldehy<br>de-3-<br>phosphate<br>dehydrogenas<br>e           | 4               | 1        | 1    | 1                  | 331 | 35.5        | 2.35             |  |

# Table 15 - Mass spectrometry results of proteins in N91<sup>Bpa</sup> 150 kDa band, from Section5.2.5

| Accession      | Protein<br>Name   | Coverage [%] | Peptides | PSMs | Unique<br>Peptides | AA<br>s | MW<br>[kDa] | Score<br>Sequest |   |
|----------------|-------------------|--------------|----------|------|--------------------|---------|-------------|------------------|---|
| A0A140N953     | SecH              | 27           | 4        | 13   | 4                  | 221     | 25          | 38.48            | 1 |
| A0A140NEC<br>0 | Aspartoki<br>nase | 3            | 1        | 1    | 1                  | 449     | 48.5        | 2.26             |   |

## Table 16 - Mass spectrometry results of proteins in N91<sup>Bpa</sup> 200 kDa band, from Section

#### 5.2.5

| Accession      | Protein<br>Name         | Coverage<br>[%] | Peptides | PSMs | Unique<br>Peptides | AAs | MW<br>[kDa] | Score<br>Sequest |
|----------------|-------------------------|-----------------|----------|------|--------------------|-----|-------------|------------------|
| A0A140N953     | SecH                    | 27              | 4        | 6    | 4                  | 221 | 25          | 18.17            |
| A0A140N6W<br>0 | Elongation<br>Factor Tu | 7               | 2        | 2    | 2                  | 394 | 43.3        | 4.6              |

### Table 17 – Mass spectrometry results from Section 5.2.6– WT SecH

| UniProt      | Gene | Coverage | Pentides  | PSMs    | Unique   | AAs   | MW    | Score   |
|--------------|------|----------|-----------|---------|----------|-------|-------|---------|
| Accession ID | Name | [%]      | 1 optimes | 1 01/10 | Peptides | 11110 | [kDa] | Sequest |
| P0AD05       | yecA | 65       | 8         | 130     | 8        | 221   | 25    | 472.55  |
| P02931       | ompF | 93       | 22        | 77      | 22       | 362   | 39.3  | 274.53  |
| P0CE47       | tufA | 76       | 21        | 78      | 21       | 394   | 43.3  | 252.05  |
| P03023       | lacI | 55       | 14        | 46      | 14       | 360   | 38.6  | 166.31  |
| P10408       | secA | 59       | 36        | 48      | 36       | 901   | 102   | 165.55  |
| P0A6Y8       | dnaK | 58       | 29        | 42      | 29       | 638   | 69.1  | 160.77  |
| P0AG67       | rpsA | 42       | 19        | 35      | 19       | 557   | 61.1  | 124.29  |
| P0A850       | tig  | 47       | 17        | 37      | 17       | 432   | 48.2  | 124.16  |
| P0A705       | infB | 44       | 26        | 35      | 26       | 890   | 97.3  | 114.93  |

| P00462     gppA     57     11     28     11     31     33.3     10       P00560     lysC     25     8     24     30     24     624     71.4     92       P08660     lysC     25     8     28     8     449     48.5     90       P0A6075     groEL     41     16     24     16     548     37.3     77       P0A608     fusA     38     18     22     18     704     77.5     75       P36683     acnB     32     19     23     19     865     93.4     69       P02BK5     cysK     59     13     16     13     323     34.5     57       P77398     arnA     30     16     19     16     660     74.2     55       P04036     dapB     25     5     13     5     273     28.7     51       P0A6W4     atpD     39     5     16     5     187     20.7     51       P0A6W4     atpD     40     12     15     12     460     50.3     49       P0A724     rpoA     53     12     16     12     329     36.5     49       P0A                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0A623         httpG         48         24         30         24         624         71.4         929           P0A660         otypA         61         14         24         14         346         37.2         90           P0A618         groEL         41         16         24         16         548         57.3         77           P0A6M8         fusA         38         18         22         18         704         77.5         75           P62399         prBE         61         11         19         11         779         20.3         60           P0A6M5         cysK         59         13         16         13         323         34.5         57           P03738         arnA         30         16         19         16         660         74.2         55           P03340         ahpf         37         13         16         13         521         56.1         5           P0A036         dapB         25         5         13         5         273         28.7         51           P0A610         clpX         50         14         16         14         424         46.  |
| P08600lysC25828844948.590P0A010ompA6114241434637.290P0A6F5groEL4116241654857.377P0A6M8fusA3818221870477.575P3663acnB3219231986595.466P0ABC5cysK5913161332334.557P77398arnA3016191666074.255P0373pflB2712161276085.352P0408C5ahpF3713161352156.152P04036dapB25513527328.751P0A608ahpC39516518720.751P0A608ahpC395161232936.546P0A724rpoA5312161232936.544P0A724rpoA5310141134638.644P0A73ugd391214151484344P0A74rpoA5310141028330.444P0A753lepA261113115966.537.6P0A75lepA261113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| P0A6F5         groEL         41         16         24         16         548         57.3         77           P0A6M8         fusA         38         18         22         18         704         77.5         75           P36683         acnB         32         19         23         19         865         95.4         69           P0ABK5         cysK         59         13         16         13         323         345         57           P77398         arnA         30         16         19         16         660         74.2         55           P03540         ahpF         37         13         16         13         521         56.1         52           P04364         ahpD         40         12         15         12         460         50.3         59           P0A508         ahpC         33         12         16         12         329         36.5         49           P0A724         rpoA         53         12         16         12         323         26         46           P0A73         rpsC         46         8         11         14         11         348        |
| DOAMBBINL110241037037.575P36633acnB3219231986593.4669P62399rplE611111191117920.3600P0ABK5cysK5913161332334.557P7398arnA3016191666074.255P0373pflB2712161276085.352P04036dapB25513527328.751P0A6H1clpX5014161442446.350P0A6H1clpX5014161232936.549P12996bioB5611141134638.646P0A724rpoA5312161232936.549P12996bioB5611141134638.646P0A737rpsC46812823330.444P0373ugd3912141028330.444P0374rpsA30912141028330.444P0375ugd3912141134138.242P2365pnp271113113950.551.637P3637ugd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| POA0015IIISA381622187077.375P36683acnB3219231986595.466POABK5cysK5913161332334.557P77398arnA3016191666074.255P03737pflB2712161276088.352P35340ahpF3713161352156.152P040508ahpD25513527328.751P0A608ahpD4012151246050.349P0A724rpoA5312161232935.549P0A724rpoA5312161232936.549P0A724rpoA531216123232646P0A724rpoA5314151481088.845P0A737rpsC4681282332646P0A737ugd3912141028330.444P60785lepA2611131159966.544P0A74sig30912141238843.642P0A609puppup7711131143245.640P0A733ugd3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P36683       acnB       32       19       23       19       865       93.4       69         P62399       rplE       61       11       19       11       179       20.3       60         P0ABK5       cysk       59       13       16       13       323       34.5       57         P77398       arnA       30       16       19       16       660       74.2       55         P9373       pfB       27       12       16       13       521       56.1       52         P94036       dapE       25       5       13       16       13       521       56.1       52         P04046       dapE       25       5       16       5       187       20.7       51         P0A6H1       clpX       50       14       16       14       424       46.3       50         P0A774       rpoA       53       12       16       12       329       36.5       49         P12996       bioB       56       11       14       11       34       88.6       45         P0A671       tsf       43       10       14       16                                                                                                         |
| P62399       rplE       61       11       19       11       179       20.3       60         P0ABKS       cysk       59       13       16       19       16       660       74.2       55         P77398       arnA       30       16       19       16       12       760       85.3       52         P04305       dapp       25       5       13       5       273       28.7       51         P0A608       ahpC       39       5       16       5       187       20.7       51         P0A614       ctpX       50       14       16       14       424       46.3       50         P0A724       rpoA       53       12       16       12       329       36.5       49         P0A724       rpoA       53       12       16       12       329       36.5       46         P0A724       rpoA       53       10       14       10       283       30.4       44         P0A725       rpeA       26       11       13       11       59       66.5       44         P0A753       ugd       39       12       14                                                                                                        |
| POABK5cysk5913161323334.557P77398arnA3016191666074.255P0373pflB2712161352156.152P35340ahpF3713161352156.152P04036dapB25513527328.751P0A6H1clpX5014161442446.350P0ABH4atpD4012151246050.349P0A774rpoA5312161232936.549P12996bioB5611141134638.646P0A7V3rpsC4681282332646P0A671tsf4310141028330.444P0A785lepA261113115966.544P06785lepA2611131134138.242P0A797purR4411141134138.242P0A797purR4411141134138.242P0A599eno3711131143245.640P0A59eno3711131143245.640P0A59eno371113 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| POA6H1clpX5014161442446.350POA6H1clpX5014161442446.350.349POA724rpoA5312161232936.549P12996bioB5611141134638.646P0A7V3rpsC4681282332646P0A671tsf4310141028330.444P60785lepA2611131159966.544P60785lepA2611131134138.242P0A672purk4411141134138.242P23843oppA30912954360.941P0A679eno3711131143245.640P0A77purk4411141134138.242P23843oppA30912954360.941P0A679eno3711131143245.640P0A77prpQ35611623225.934P0A767proQ35611623225.934P0A767prpQ35611623225.934P0A767prpQ337<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| POAGHIclpX5014161442446.350POABB4atpD4012151246050.349PDATZ4rpoA5312161232936.549PDA7Z4rpoA5312161232936.549PDA7D3rpsC4681282332646PO0562metL2314151481088.845POA7S3legA2611131159966.544P60785lepA2611131159966.544P60785lepA2611131134138.242P23843oppA30912954360.941P05055pnp2712131271177.140P05055pnp2711131143245.640P0A789eno3711131143245.640P0A799eno3711121160767.338P0A803lysS341213950557.637P45577proQ35611623225.934P0A615hslU3010101044349.633P0A651hslU301010<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| POABB4atpD4012151246050.349POA7Z4rpoA5312161232936.549P12996bioB5611141134638.646P0A7V3rpsC4681282332646P0A6P1tsf4310141028330.444P60785lepA2611131159966.544P60785lepA2611131138443.642P0ACP7purk4411141134138.242P23843oppA30912954.360.941P0A557pnp2711131143245.640P0DTT0bipA2711121160767.338P0A8N3lysS341213950557.637P45577proQ35611623225.934P0A6F9nuck33910949554.834P0AF9nuck3379738741.132P0A565metE1812121275384.634P0A6F3glpK2310111050256.233P0A655metE181212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P12996bio5611141134638.646P0A7V3rpsC4681282332646P0A502metL2314151481088.845P0A6P1tsf4310141028330.444P60785lepA2611131159966.544P60785lepA2611131138843.642P0ACP7purk4411141134138.242P23843oppA30912954360.941P0A6P9eno3711131143245.640P0A6P9eno3711121160767.338P0A6P9eno3711121160767.338P0A8N3lysS341213950557.637P45577proQ35611623225.934P0A6P6nusA33910941645.734P0A6H5hslU3010101044349.633P0A6H5hslU3010101044349.633P0A6H5nglpK2310111050256.233P0A799pgk3379<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| P00502metL2314151481088.843P0A6P1tsf4310141028330.444P60785lepA2611131159966.544P76373ugd3912141238843.642P0ACP7purR4411141134138.242P23843oppA30912954360.941P05055pnp2712131271177.140P0A6P9eno3711131143245.640P0A170bipA2711121160767.338P0A8N3lysS341213950557.637P45577proQ35611623225.934P0260icd29912941645.734P0565metE1812121275384.634P0A6H5hslU301010949554.834P0A6F6nusA3391097381741.132P0A6F3glpK2310111050256.233P0A799pgk3379731935.232P0A895netQ4679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| POAGP1tsf4310141028330.444P60785lepA2611131159966.544P76373ugd3912141238843.642P0ACP7purR4411141134138.242P23843oppA30912954360.941P05055pnp2712131271177.140P0A6P9eno3711131143245.640P0DTT0bipA2711121160767.338P0A8N3lysS341213950557.637P45577proQ35611623225.934P0A6F6nusA33910949554.834P0A6F6nusA33910949554.834P0A6F5glpK2310111050256.233P0A6F3glpK2310111050256.233P0A799pgk3379731935.232P0A805metQ4679731935.232P0A900lpdA29910947450.732P0A901metQ46797 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| P60785lepA2611131159966.544P76373ugd3912141238843.642P0ACP7purR4411141134138.242P23843oppA30912954360.941P05055pnp2712131271177.140P06TT0bipA2711131143245.640P0DTT0bipA2711121160767.338P088N3lysS341213950557.637P45577proQ35611623225.934P08200icd29912941645.734P25665metE1812121275384.634P0A6H5hslU3010101044349.633P0A6F3glpK2310111050256.233P0A799pgk3379727129.432P0A839ptsI25910947450.732P0A809lpdA29910947450.732P0A901lpdA29910917718.932P0A55rplF679109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P0ACP7purk4411141134138.242P23843oppA30912954360.941P05055pnp2712131271177.140P0A6P9eno3711131143245.640P0DTT0bipA2711121160767.338P0A8N3lysS341213950557.637P45577proQ35611623225.934P0A6P0icd299122941645.734P25665metE1812121275384.634P0A6H5hslU301010949554.834P0A6H5hslU3010111050256.233P0A673glpK2310111050256.233P0A799pgk3379738741.132P0A839ptsI25910947450.732P0A805accA3179731935.232P0A90lpdA29910947450.732P0A90lpdA29910917718.932P0A90lpdA29910<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P1381p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p11p111p11p11p111p111p111p111p111p111p111p111p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Posobsppp271212121411311143245.640POA6P9eno3711131143245.640PODTT0bipA2711121160767.338POA8N3lysS341213950557.637P45577proQ35611623225.934P08200icd29912941645.734P25665metE1812121275384.634P0A6F6nusA33910949554.834P0A6F3glpK2310111050256.233P0A799pgk3379738741.132P08839ptsl25910957563.532P0A9P0lpdA29910947450.732P0A9D0lpdA29910917718.932P0A55rplF67910917718.932P0A55rplF67910937240.731P0A55rplF67910937240.731P0A55rplF67910938841.431P0A759rpsM60 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P0.66P9eno371111131143245.640P0.70bipA271111131143245.640P0DTT0bipA2711121160767.338P0A8N3lysS341213950557.637P45577proQ35611623225.934P08200icd29912941645.734P25665metE1812121275384.634P0AFF6nusA33910949554.834P0A6H5hslU3010101044349.633P0A6F3glpK2310111050256.233P0A799pgk3379738741.132P08839ptsI25910957563.532P0A9P0lpdA29910947450.732P0A9D5accA3179731935.232P0A55rplF67910917718.932P0A561thrA20910982089.131P3602nuoG159119908100.231P0A759rpsM607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P0A6P9eno $37$ 111311 $432$ $45.6$ $40$ P0DTT0bipA $27$ 111211 $607$ $67.3$ $38$ P0A8N3lysS $34$ 1213 $9$ $505$ $57.6$ $37$ P45577proQ $35$ $6$ 11 $6$ $232$ $25.9$ $34$ P08200icd $29$ $9$ $12$ $9$ $416$ $45.7$ $34$ P25665metE18 $12$ $12$ $12$ $753$ $84.6$ $34$ P0AFF6nusA $33$ $9$ $10$ $9$ $495$ $54.8$ $34$ P0A6H5hslU $30$ $10$ $10$ $10$ $443$ $49.6$ $33$ P0A6F3glpK $23$ $10$ $11$ $10$ $502$ $56.2$ $33$ P0A799pgk $33$ $7$ $9$ $7$ $387$ $41.1$ $32$ P0839ptsl $25$ $9$ $10$ $9$ $575$ $63.5$ $32$ P28635metQ $46$ $7$ $9$ $7$ $271$ $29.4$ $32$ P0A9P0lpdA $29$ $9$ $10$ $9$ $474$ $50.7$ $32$ P0A9D5accA $31$ $7$ $9$ $7$ $319$ $35.2$ $32$ P0A55rplF $67$ $9$ $10$ $9$ $977$ $118$ $13.1$ $31$ P03602nuoG $15$ $9$ $11$ $9$ $908$ $100.$                                                                                                                                                                                                                                                                                                                                                               |
| PODTTO         bipA         27         11         12         11         607         67.3         38           P0A8N3         lysS         34         12         13         9         505         57.6         37           P45577         proQ         35         6         11         6         232         25.9         34           P08200         icd         29         9         12         9         416         45.7         34           P25665         metE         18         12         12         12         753         84.6         34           P0A6H5         hslU         30         10         10         9         495         54.8         34           P0A6H5         hslU         30         10         11         10         502         56.2         33           P0A6F3         glpK         23         10         11         10         502         56.2         33           P0A799         pgk         33         7         9         7         387         41.1         32           P0839         ptsl         25         9         10         9         474         50.7                |
| P0A8N3lysS $34$ $12$ $13$ $9$ $505$ $57.6$ $37$ P45577proQ $35$ $6$ $11$ $6$ $232$ $25.9$ $34$ P08200icd $29$ $9$ $12$ $9$ $416$ $45.7$ $34$ P25665metE $18$ $12$ $12$ $12$ $753$ $84.6$ $34$ P0AFF6nusA $33$ $9$ $10$ $9$ $495$ $54.8$ $34$ P0A6H5hslU $30$ $10$ $10$ $10$ $443$ $49.6$ $33$ P0A6F3glpK $23$ $10$ $11$ $10$ $502$ $56.2$ $33$ P0A6F3glpK $23$ $10$ $11$ $10$ $502$ $56.2$ $33$ P0A799pgk $33$ $7$ $9$ $7$ $387$ $41.1$ $32$ P0839ptsl $25$ $9$ $10$ $9$ $575$ $63.5$ $32$ P0A8D5accA $31$ $7$ $9$ $7$ $271$ $29.4$ $32$ P0ABD5accA $31$ $7$ $9$ $7$ $319$ $35.2$ $32$ P0A655rplF $67$ $9$ $10$ $9$ $177$ $18.9$ $32$ P0A759rpsM $60$ $7$ $9$ $7$ $118$ $13.1$ $31$ P0A789rpsM $60$ $7$ $9$ $7$ $218$ $33.1$ $31$ P0A78rpsD $34$ $7$ $10$ $7$ $206$ $2$                                                                                                                                                                                                                                                                                                                                                 |
| P45577proQ $35$ $6$ $11$ $6$ $232$ $25.9$ $34$ P08200icd $29$ $9$ $12$ $9$ $416$ $45.7$ $34$ P25665metE $18$ $12$ $12$ $12$ $753$ $84.6$ $34$ P0AFF6nusA $33$ $9$ $10$ $9$ $495$ $54.8$ $34$ P0A6H5hslU $30$ $10$ $10$ $10$ $443$ $49.6$ $33$ P0A6F3glpK $23$ $10$ $11$ $10$ $502$ $56.2$ $33$ P0A6F3glpK $23$ $10$ $11$ $10$ $502$ $56.2$ $33$ P0A6F3glpK $23$ $10$ $11$ $10$ $502$ $56.2$ $33$ P0A799pgk $33$ $7$ $9$ $7$ $387$ $41.1$ $32$ P0839ptsI $25$ $9$ $10$ $9$ $575$ $63.5$ $32$ P28635metQ $46$ $7$ $9$ $7$ $271$ $29.4$ $32$ P0A9P0lpdA $29$ $9$ $10$ $9$ $177$ $18.9$ $32$ P0AG55rplF $67$ $9$ $10$ $9$ $177$ $18.9$ $32$ P0A615ucd $32$ $10$ $11$ $9$ $908$ $100.2$ $31$ P0A759rpsM $60$ $7$ $9$ $7$ $118$ $13.1$ $31$ P0A836sucC $32$ $10$ $11$ $10$ $388$                                                                                                                                                                                                                                                                                                                                              |
| P08200         icd         29         9         12         9         416         45.7         34           P25665         metE         18         12         12         12         753         84.6         34           P0AFF6         nusA         33         9         10         9         495         54.8         34           P0A6H5         hslU         30         10         10         10         443         49.6         33           P0A6F3         glpK         23         10         11         10         502         56.2         33           P0A799         pgk         33         7         9         7         387         41.1         32           P0839         ptsI         25         9         10         9         575         63.5         32           P0839         ptsI         25         9         10         9         474         50.7         32           P0A9P0         lpdA         29         9         10         9         177         18.9         32           P0A55         rplF         67         9         10         9         177         18.9         32           |
| P25665         metE         18         12         12         12         753         84.6         34           P0AFF6         nusA         33         9         10         9         495         54.8         34           P0A6F5         hslU         30         10         10         10         443         49.6         33           P0A6F3         glpK         23         10         11         10         502         56.2         33           P0A799         pgk         33         7         9         7         387         41.1         32           P08839         ptsI         25         9         10         9         575         63.5         32           P0A9P0         lpdA         29         9         10         9         474         50.7         32           P0A9P0         lpdA         29         9         10         9         177         18.9         32           P0AG55         rpIF         67         9         10         9         820         89.1         31           P0A7S9         rpsM         60         7         9         7         118         13.1 <td< td=""></td<> |
| POAFF6       nusA       33       9       10       9       495       54.8       34         POAFF6       nusA       33       9       10       10       9       495       54.8       34         POAFF6       nusA       33       9       10       10       10       443       49.6       33         POA6F5       glpK       23       10       11       10       502       56.2       33         POA799       pgk       33       7       9       7       387       41.1       32         P08839       ptsI       25       9       10       9       575       63.5       32         P08839       ptsI       25       9       10       9       77       271       29.4       32         P0A9P0       lpdA       29       9       10       9       474       50.7       32         P0AG55       rplF       67       9       10       9       177       18.9       32         P0A651       thrA       20       9       10       9       820       89.1       31         P3602       nuoG       15       9       11 </td                                                                                                         |
| POAFPG       Inski       33       9       10       9       493       34,8       34         POA6H5       hslU       30       10       10       10       10       443       49,6       33         POA6F3       glpK       23       10       11       10       502       56,2       33         POA799       pgk       33       7       9       7       387       41,1       32         P0839       ptsl       25       9       10       9       575       63,5       32         P08839       mtsl       25       9       10       9       474       50,7       32         P0A9P0       lpdA       29       9       10       9       474       50,7       32         P0ABD5       accA       31       7       9       7       319       35,2       32         P0AG55       rplF       67       9       10       9       177       18,9       32         P0AG51       thrA       20       9       10       9       820       89,1       31         P3602       nuoG       15       9       11       9       908 </td                                                                                                         |
| P0A6H5hslU301010101044349.633P0A6F3glpK2310111050256.233P0A799pgk3379738741.132P08839ptsI25910957563.532P28635metQ4679727129.432P0A9P0lpdA29910947450.732P0ABD5accA3179731935.232P0A655rplF67910917718.932P0A655rplF67910982089.131P3602nuoG159119908100.231P0A7S9rpsM6079711813.131P0A836sucC3210111038841.431P62620ispG32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P0A6B7iscS3310101040445.130P0A6B7iscS3310101040445.130P0A6B7iscS331010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P0A6F3glpK2310111050256.233P0A799pgk3379738741.132P08839ptsl25910957563.532P28635metQ4679727129.432P0A9P0lpdA29910947450.732P0ABD5accA3179731935.232P0AG55rplF67910917718.932P0361thrA20910982089.131P3602nuoG159119908100.231P0A7S9rpsM6079711813.131P0A836sucC3210111038841.431P0A836sucC32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P0A6B7arols3310101040445.130P0A6B7arols3113715.52929P0A6B7arols323330303030P0A6B7bits4969613715.529<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P0A799pgk3379738741.132P08839ptsI25910957563.532P28635metQ4679727129.432P0A9P0lpdA29910947450.732P0ABD5accA3179731935.232P0AG55rplF67910917718.932P0561thrA20910982089.131P3602nuoG159119908100.231P0A7S9rpsM6079711813.131P0A836sucC3210111038841.431P62620ispG32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P0A6P3aroB2148436238.930P0ACF8hns4969613715.529P0ACF8hns2500051355.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| P08839ptsl25910957563.532P28635metQ4679727129.432P0A9P0lpdA29910947450.732P0ABD5accA3179731935.232P0AG55rplF67910917718.932P0561thrA20910982089.131P3602nuoG159119908100.231P0A7S9rpsM6079711813.131P0A836sucC3210111038841.431P62620ispG32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P0A6B7iscS3309613715.529P0ACF8hns4969613715.529P0ACF8hns2500051355.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P28635metQ4679727129.432P0A9P0lpdA29910947450.732P0ABD5accA3179731935.232P0AG55rplF67910917718.932P00561thrA20910982089.131P3602nuoG159119908100.231P0A7S9rpsM6079711813.131P0A836sucC3210111038841.431P62620ispG32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P0A6P8hns4969613715.529P0ACF8hns4969651355.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P0A9P0lpdA29910947450.732P0ABD5accA3179731935.232P0AG55rplF67910917718.932P00561thrA20910982089.131P33602nuoG159119908100.231P0A7S9rpsM6079711813.131P0A836sucC3210111038841.431P62620ispG32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P0ACF8hns4969613715.529P0ACF8hns4969613715.529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P0ABD5       accA       31       7       9       7       319       35.2       32         P0ABD5       accA       31       7       9       7       319       35.2       32         P0AG55       rplF       67       9       10       9       177       18.9       32         P00561       thrA       20       9       10       9       820       89.1       31         P3602       nuoG       15       9       11       9       908       100.2       31         P0A7S9       rpsM       60       7       9       7       118       13.1       31         P0A836       sucC       32       10       11       10       388       41.4       31         P62620       ispG       32       9       10       9       372       40.7       31         P0A7V8       rpsD       34       7       10       7       206       23.5       31         P0A6B7       iscS       33       10       10       10       404       45.1       30         P0A6B7       aroB       21       4       8       4       362       38.9                                                                                                            |
| POABDSaccA5179751955.252P0AG55rplF67910917718.932P00561thrA20910982089.131P33602nuoG159119908100.231P0A7S9rpsM6079711813.131P0A836sucC3210111038841.431P62620ispG32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P07639aroB2148436238.930P0ACF8hns4969613715.529P0AD0stath25000951355.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| P0AC55rpiF67910917718.932P00561thrA20910982089.131P33602nuoG159119908100.231P0A7S9rpsM6079711813.131P0A836sucC3210111038841.431P62620ispG32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P0639aroB2148436238.930P0ACF8hns4969613715.529P0ACF8nt2500051355.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P00561thrA20910982089.131P33602nuoG159119908100.231P0A7S9rpsM6079711813.131P0A836sucC3210111038841.431P62620ispG32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P07639aroB2148436238.930P0ACF8hns4969613715.529P0AD0strat2500051355.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P33602       nuoG       15       9       11       9       908       100.2       31         P0A7S9       rpsM       60       7       9       7       118       13.1       31         P0A836       sucC       32       10       11       10       388       41.4       31         P62620       ispG       32       9       10       9       372       40.7       31         P0A7V8       rpsD       34       7       10       7       206       23.5       31         P0A6B7       iscS       33       10       10       10       404       45.1       30         P0A6B7       aroB       21       4       8       4       362       38.9       30         P0ACF8       hns       49       6       9       6       137       15.5       29         P0ACF8       hns       25       0       0       0       0       513       55.2       29                                                                                                                                                                                                                                                                                |
| P0A7S9rpsM6079711813.131P0A836sucC3210111038841.431P62620ispG32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P07639aroB2148436238.930P0ACF8hns4969613715.529P0ADD0state2500051355.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P0A836         sucC         32         10         11         10         388         41.4         31           P62620         ispG         32         9         10         9         372         40.7         31           P0A7V8         rpsD         34         7         10         7         206         23.5         31           P0A6B7         iscS         33         10         10         10         404         45.1         30           P07639         aroB         21         4         8         4         362         38.9         30           P0ACF8         hns         49         6         9         6         137         15.5         29           P0AADP0         stat         25         0         0         0         513         55.2         20                                                                                                                                                                                                                                                                                                                                              |
| P62620ispG32910937240.731P0A7V8rpsD34710720623.531P0A6B7iscS3310101040445.130P07639aroB2148436238.930P0ACF8hns4969613715.529P0ACF8nrta2500051355.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P0A7V8         rpsD         34         7         10         7         206         23.5         31           P0A6B7         iscS         33         10         10         10         404         45.1         30           P07639         aroB         21         4         8         4         362         38.9         30           P0ACF8         hns         49         6         9         6         137         15.5         29           P0ACF8         nrs         25         0         0         0         513         55.2         29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| POA/P8       IpsD       34       7       10       7       200       25.5       31         POA6B7       iscS       33       10       10       10       404       45.1       30         P07639       aroB       21       4       8       4       362       38.9       30         P0ACF8       hns       49       6       9       6       137       15.5       29         P0ACF8       ista       25       0       0       9       513       55.2       29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| POADB7         iscs         55         10         10         10         404         45.1         50           P07639         aroB         21         4         8         4         362         38.9         30           P0ACF8         hns         49         6         9         6         137         15.5         29           P0ACF8         ins         49         6         9         6         137         15.5         29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P0/639         aroB         21         4         8         4         362         38.9         30           P0ACF8         hns         49         6         9         6         137         15.5         29           P0ACF8         ns         49         6         9         6         137         15.5         29           P0ACF8         ns         25         0         0         9         513         55.2         29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| POACF8         hns         49         6         9         6         137         15.5         29           DOADDO         atria         25         0         0         0         513         55.2         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D(A,D,D) = atmA = 25 = 0 = 0 = 0 = 513 = 552 = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| POABBO atpA 25 9 9 9 7 515 55.2 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P00350 gnd 30 9 10 9 468 51.4 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P63284 clpB 14 8 9 8 857 95.5 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P0A6F4 arcG 38 10 10 10 447 499 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P0A2M0 cons 26 0 0 0 466 525 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P049D8 dapD 29 / 8 / 2/4 29.9 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PUAGD3 sodB 52 6 9 6 193 21.3 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P0A9P6 deaD 21 8 9 8 629 70.5 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P0A9P6         deaD         21         8         9         8         629         70.5         26           P0AC41         sdhA         19         8         8         8         588         64.4         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P0A9P6         deaD         21         8         9         8         629         70.5         26           P0AC41         sdhA         19         8         8         8         588         64.4         26           P00579         rpoD         19         9         9         9         613         70.2         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| P0A9P6         deaD         21         8         9         8         629         70.5         26           P0AC41         sdhA         19         8         8         8         588         64.4         26           P00579         rpoD         19         9         9         9         613         70.2         26           P0ACF0         hupA         61         5         8         5         90         95         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P0A9P6         deaD         21         8         9         8         629         70.5         26           P0AC41         sdhA         19         8         8         8         588         64.4         26           P00579         rpoD         19         9         9         9         613         70.2         26           P0ACF0         hupA         61         5         8         5         90         9.5         26           P0ACF0         hupA         61         5         7         5         238         27.3         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P0A9P6         deaD         21         8         9         8         629         70.5         26           P0AC41         sdhA         19         8         8         8         588         64.4         26           P00579         rpoD         19         9         9         9         613         70.2         26           P0ACF0         hupA         61         5         8         5         90         9.5         26           P0AQ01         arcA         32         5         7         5         238         27.3         26           P60422         maR         31         6         0         6         272         20.2         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P0A9P6         deaD         21         8         9         8         629         70.5         26           P0AC41         sdhA         19         8         8         8         588         64.4         26           P00579         rpoD         19         9         9         9         613         70.2         26           P0ACF0         hupA         61         5         8         5         90         9.5         26           P0A9Q1         arcA         32         5         7         5         238         27.3         26           P60422         rplB         31         6         9         6         273         29.8         25           P00427         plB         31         6         9         6         273         29.8         25                                                                                                                                                                                                                                                                                                                                                         |
| P0A9P6deaD2189862970.526P0AC41sdhA1988858864.426P00579rpoD1999961370.226P0ACF0hupA61585909.526P0A9Q1arcA3257523827.326P60422rplB3169627329.825P00957alaS128988769625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P0A9P6deaD2189862970.526P0AC41sdhA1988858864.426P00579rpoD1999961370.226P0ACF0hupA61585909.526P0A9Q1arcA3257523827.326P60422rplB3169627329.825P00957alaS128988769625P0AAI3ftsH1678764470.725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| P0A9P6         deaD         21         8         9         8         629         70.5         26           P0AC41         sdhA         19         8         8         8         588         64.4         26           P00579         rpoD         19         9         9         9         613         70.2         26           P0ACF0         hupA         61         5         8         5         90         9.5         26           P0AQ01         arcA         32         5         7         5         238         27.3         26           P60422         rplB         31         6         9         6         273         29.8         25           P00957         alaS         12         8         9         8         876         96         25           P0AAI3         ftsH         16         7         8         7         644         70.7         25           P0AFG6         sucB         25         7         7         7         405         44         24                                                                                                                                      |

| P0A7D4   | purA         | 23 | 7 | 8 | 7  | 432  | 47.3  | 23.96 |
|----------|--------------|----|---|---|----|------|-------|-------|
| P02925   | rbsB         | 26 | 6 | 7 | 6  | 296  | 30.9  | 23.76 |
| P13009   | metH         | 8  | 8 | 8 | 8  | 1227 | 135.9 | 23.75 |
| P0C818   | gatZ         | 30 | 7 | 8 | 7  | 420  | 47.1  | 23.74 |
| P00509   | asnC         | 25 | 7 | 7 | 7  | 396  | 43.5  | 23.69 |
| P30843   | basP         | 32 | 5 | 8 | 5  | 222  | 25    | 23.67 |
| F 30643  | Dask         | 32 | 5 | 0 | 5  | 222  | 25    | 23.07 |
| POAEZ3   | minD         | 38 | 8 | 8 | 8  | 270  | 29.6  | 23.67 |
| P0A707   | infC         | 37 | 4 | 6 | 4  | 180  | 20.6  | 23.37 |
| P0A7L0   | rplA         | 37 | 8 | 8 | 8  | 234  | 24.7  | 23.12 |
| P60438   | rplC         | 23 | 3 | 6 | 3  | 209  | 22.2  | 22.8  |
| P23538   | ppsA         | 12 | 7 | 7 | 7  | 792  | 87.4  | 22.77 |
| P0A7G6   | recA         | 29 | 7 | 7 | 7  | 353  | 38    | 22.62 |
| P76422   | thiD         | 20 | 3 | 6 | 3  | 266  | 28.6  | 22.62 |
| D61880   | mdh          | 31 | 7 | 8 | 7  | 312  | 32.3  | 22.40 |
| D01009   | hant         | 21 | 7 | 8 | 7  | 12   | 15.2  | 22.52 |
| P23893   | nemL         | 31 | 8 | 8 | 8  | 420  | 45.5  | 22.15 |
| P0AG30   | rho          | 20 | 7 | 8 | .7 | 419  | 47    | 21.84 |
| P0A7V0   | rpsB         | 46 | 6 | 7 | 6  | 241  | 26.7  | 21.8  |
| P30748   | moaD         | 26 | 1 | 5 | 1  | 81   | 8.8   | 21.7  |
| P0A917   | ompX         | 44 | 6 | 6 | 6  | 171  | 18.6  | 21.52 |
| P0ADY1   | ppiD         | 16 | 7 | 7 | 7  | 623  | 68.1  | 21.29 |
| P0A7W1   | rnsE         | 47 | 5 | 6 | 5  | 167  | 17.6  | 21.2  |
| D33500   | nuoC         | 17 | 8 | 8 | 8  | 506  | 68.2  | 21.10 |
| DOA 0149 | nuoc         | 17 | 6 | 7 | 6  | 714  | 77.1  | 21.19 |
| PUA9M8   | pta          | 12 | 0 | / | 0  | /14  | //.1  | 21.11 |
| POAAI5   | fabF         | 23 | 5 | 5 | 5  | 413  | 43    | 20.91 |
| P0A993   | fbp          | 27 | 6 | 7 | 6  | 332  | 36.8  | 20.7  |
| P0A940   | bamA         | 14 | 7 | 7 | 7  | 810  | 90.5  | 20.6  |
| P61175   | rplV         | 48 | 5 | 6 | 5  | 110  | 12.2  | 20.51 |
| P0ABC7   | hflK         | 21 | 7 | 7 | 7  | 419  | 45.5  | 20.34 |
| P04983   | rbsA         | 21 | 7 | 7 | 7  | 501  | 55    | 20.26 |
| P0AGE9   | sucD         | 27 | 5 | 6 | 5  | 289  | 29.8  | 20.09 |
| DOAE88   | onvP         | 10 | 3 | 6 | 3  | 20)  | 25.0  | 10.02 |
| FUAL00   | срак         | 19 | 3 | 0 | 3  | 232  | 20.3  | 19.93 |
| P0A9Q5   | accD         | 21 | 4 | 2 | 4  | 304  | 33.3  | 19.15 |
| P23909   | mutS         | 11 | 7 | 7 | 7  | 853  | 95.2  | 18.98 |
| P60757   | hisG         | 30 | 5 | 6 | 5  | 299  | 33.3  | 18.91 |
| P62707   | gpmA         | 30 | 6 | 7 | 6  | 250  | 28.5  | 18.83 |
| P0A749   | murA         | 21 | 6 | 7 | 6  | 419  | 44.8  | 18.82 |
| P0AB91   | aroG         | 23 | 6 | 6 | 6  | 350  | 38    | 18.5  |
| P76658   | hldE         | 20 | 7 | 7 | 7  | 477  | 51    | 17.7  |
| P04870   | talB         | 20 | 5 | 6 | 5  | 317  | 35.2  | 17.61 |
|          | taiD<br>wahE | 23 | 5 | 6 | 5  | 262  | 20.6  | 17.01 |
| PUADU2   | yclir        | 21 | 0 | 0 | 0  | 505  | 59.0  | 17.34 |
| PUA/K6   | rpis         | 43 | 4 | 6 | 4  | 115  | 13.1  | 17.48 |
| P0A8L1   | serS         | 18 | 6 | 6 | 6  | 430  | 48.4  | 17.31 |
| P0A817   | metK         | 17 | 4 | 5 | 4  | 384  | 41.9  | 17.02 |
| P0A9W3   | ettA         | 15 | 6 | 6 | 6  | 555  | 62.4  | 16.84 |
| P30850   | rnb          | 10 | 5 | 6 | 5  | 644  | 72.4  | 16.78 |
| P31979   | nuoF         | 14 | 4 | 5 | 4  | 445  | 49.3  | 16.66 |
| P0A8V2   | rpoB         | 6  | 6 | 6 | 6  | 1342 | 150.5 | 16.41 |
| P0A8M3   | thrS         | 10 | 6 | 6 | 6  | 642  | 74    | 16.41 |
| POAGYO   | cenA         | 53 | 3 | 5 | 2  | 70   | 7.4   | 16.11 |
| 10A9A9   | L SPA        | 33 | 5 | 5 | 2  | 70   | 7.4   | 10.21 |
| P23830   | pnoP         | 29 | 5 | 5 | 5  | 223  | 25.5  | 16.18 |
| P0A9X4   | mreB         | 24 | 6 | 6 | 6  | 347  | 36.9  | 16.13 |
| P0A9V1   | lptB         | 28 | 4 | 5 | 4  | 241  | 26.8  | 15.94 |
| P06959   | aceF         | 11 | 5 | 5 | 5  | 630  | 66.1  | 15.82 |
| P02413   | rplO         | 42 | 5 | 5 | 5  | 144  | 15    | 15.55 |
| P05791   | ilvD         | 11 | 5 | 5 | 5  | 616  | 65.5  | 15.47 |
| P0AEX9   | malE         | 20 | 6 | 6 | 6  | 396  | 43.4  | 15.1  |
| POAGI9   | tyrS         | 12 | 4 | 5 | 4  | 424  | 47.5  | 14.95 |
| P04 4 10 | rnlM         | 46 | 5 | 5 | 5  | 142  | 16    | 14.87 |
| DO40C9   | ilu A        | 14 | 5 | 5 | 5  | 514  | 56.2  | 14.59 |
| P04968   | livA         | 14 | 3 | 5 | 5  | 514  | 56.2  | 14.58 |
| P0A8F0   | upp          | 30 | 4 | 5 | 4  | 208  | 22.5  | 14.51 |
| P0AG44   | rplQ         | 27 | 4 | 5 | 4  | 127  | 14.4  | 14.31 |
| P69783   | crr          | 35 | 3 | 4 | 3  | 169  | 18.2  | 14.24 |
| P10121   | ftsY         | 16 | 5 | 5 | 5  | 497  | 54.5  | 14.23 |
| P0AFG8   | aceE         | 8  | 5 | 5 | 5  | 887  | 99.6  | 14.19 |
| P0CB39   | eptC         | 11 | 4 | 5 | 4  | 577  | 66.6  | 14.1  |
| P00934   | thrC         | 19 | 5 | 5 | 5  | 428  | 47.1  | 13.84 |
| P04912   | nal          | 24 | 3 | 5 | 3  | 173  | 18.8  | 13.57 |
| 10/1912  | pai          | 24 | 5 | 5 | 5  | 175  | 10.0  | 13.57 |

| D0 A 7D 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rolI                                                                                                                                                                                                                                 | 34                                                                                                                                                                                                                                  | 5                                                                                                          | 5                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                               | 1/0                                                                                                                                                                                    | 15.8                                                                                                                                                                                                                 | 13 53                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOATIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ipii<br>mil/                                                                                                                                                                                                                         | 22                                                                                                                                                                                                                                  | 3                                                                                                          | 5                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                               | 142                                                                                                                                                                                    | 14.0                                                                                                                                                                                                                 | 12.5                                                                                                                                                                                                                                            |
| FUA/J/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | трік                                                                                                                                                                                                                                 | 33                                                                                                                                                                                                                                  | 4                                                                                                          | 5                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 142                                                                                                                                                                                    | 14.9                                                                                                                                                                                                                 | 13.3                                                                                                                                                                                                                                            |
| POAG63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rpsQ                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                  | 2                                                                                                          | 4                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                               | 84                                                                                                                                                                                     | 9.7                                                                                                                                                                                                                  | 13.49                                                                                                                                                                                                                                           |
| P69441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | adk                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                  | 4                                                                                                          | 5                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 214                                                                                                                                                                                    | 23.6                                                                                                                                                                                                                 | 13.41                                                                                                                                                                                                                                           |
| P0A862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tpx                                                                                                                                                                                                                                  | 38                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 168                                                                                                                                                                                    | 17.8                                                                                                                                                                                                                 | 13.34                                                                                                                                                                                                                                           |
| P0AF08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mrp                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                  | 3                                                                                                          | 5                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                               | 369                                                                                                                                                                                    | 39.9                                                                                                                                                                                                                 | 13.3                                                                                                                                                                                                                                            |
| P0A7J3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rplJ                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 165                                                                                                                                                                                    | 17.7                                                                                                                                                                                                                 | 13.27                                                                                                                                                                                                                                           |
| P21599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pykA                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                  | 5                                                                                                          | 5                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                               | 480                                                                                                                                                                                    | 51.3                                                                                                                                                                                                                 | 13                                                                                                                                                                                                                                              |
| P0A6R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fabH                                                                                                                                                                                                                                 | 19                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 317                                                                                                                                                                                    | 33.5                                                                                                                                                                                                                 | 12.78                                                                                                                                                                                                                                           |
| DOAD76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aurA                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 128                                                                                                                                                                                    | 17.2                                                                                                                                                                                                                 | 12.70                                                                                                                                                                                                                                           |
| POADZO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SulA                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 420                                                                                                                                                                                    | 47.5                                                                                                                                                                                                                 | 12.00                                                                                                                                                                                                                                           |
| POAFGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nusG                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 181                                                                                                                                                                                    | 20.5                                                                                                                                                                                                                 | 12.54                                                                                                                                                                                                                                           |
| P24182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | accC                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                  | 5                                                                                                          | 5                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                               | 449                                                                                                                                                                                    | 49.3                                                                                                                                                                                                                 | 12.52                                                                                                                                                                                                                                           |
| P00961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glyS                                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                                   | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 689                                                                                                                                                                                    | 76.8                                                                                                                                                                                                                 | 12.46                                                                                                                                                                                                                                           |
| P16659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | proS                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 572                                                                                                                                                                                    | 63.7                                                                                                                                                                                                                 | 12.27                                                                                                                                                                                                                                           |
| P0ABH9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | clpA                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                  | 5                                                                                                          | 5                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                               | 758                                                                                                                                                                                    | 84.2                                                                                                                                                                                                                 | 12.22                                                                                                                                                                                                                                           |
| P0A909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | asd                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 367                                                                                                                                                                                    | 40                                                                                                                                                                                                                   | 12.14                                                                                                                                                                                                                                           |
| P04671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hscA                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                  | 1                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 616                                                                                                                                                                                    | 65.6                                                                                                                                                                                                                 | 12.11                                                                                                                                                                                                                                           |
| D60722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mlD                                                                                                                                                                                                                                  | 26                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 201                                                                                                                                                                                    | 22.1                                                                                                                                                                                                                 | 11.01                                                                                                                                                                                                                                           |
| P00725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TPID                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 201                                                                                                                                                                                    | 22.1                                                                                                                                                                                                                 | 11.01                                                                                                                                                                                                                                           |
| P0AE06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | acrA                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 397                                                                                                                                                                                    | 42.2                                                                                                                                                                                                                 | 11.78                                                                                                                                                                                                                                           |
| P0C0S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mscS                                                                                                                                                                                                                                 | 22                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 286                                                                                                                                                                                    | 30.9                                                                                                                                                                                                                 | 11.69                                                                                                                                                                                                                                           |
| P45523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fkpA                                                                                                                                                                                                                                 | 24                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 270                                                                                                                                                                                    | 28.9                                                                                                                                                                                                                 | 11.55                                                                                                                                                                                                                                           |
| P0AES6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gyrB                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                   | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 804                                                                                                                                                                                    | 89.9                                                                                                                                                                                                                 | 11.54                                                                                                                                                                                                                                           |
| P0AEK2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fabG                                                                                                                                                                                                                                 | 24                                                                                                                                                                                                                                  | 3                                                                                                          | 3                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                               | 244                                                                                                                                                                                    | 25.5                                                                                                                                                                                                                 | 11.35                                                                                                                                                                                                                                           |
| POA7M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rnmB                                                                                                                                                                                                                                 | 23                                                                                                                                                                                                                                  | 2                                                                                                          | 5                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                               | 78                                                                                                                                                                                     | 9                                                                                                                                                                                                                    | 11 33                                                                                                                                                                                                                                           |
| D0A0A6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ftoZ                                                                                                                                                                                                                                 | 17                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                               | 282                                                                                                                                                                                    | 40.2                                                                                                                                                                                                                 | 11.35                                                                                                                                                                                                                                           |
| F0A9A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1 4                                                                                                                                                                                                                                 | 17                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 365                                                                                                                                                                                    | 40.3                                                                                                                                                                                                                 | 11.20                                                                                                                                                                                                                                           |
| P0A825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | giyA                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 417                                                                                                                                                                                    | 45.3                                                                                                                                                                                                                 | 11.04                                                                                                                                                                                                                                           |
| P00888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aroF                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                  | 3                                                                                                          | 3                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                               | 356                                                                                                                                                                                    | 38.8                                                                                                                                                                                                                 | 10.83                                                                                                                                                                                                                                           |
| P68919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rplY                                                                                                                                                                                                                                 | 43                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 94                                                                                                                                                                                     | 10.7                                                                                                                                                                                                                 | 10.73                                                                                                                                                                                                                                           |
| P02930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tolC                                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                                   | 3                                                                                                          | 3                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                               | 493                                                                                                                                                                                    | 53.7                                                                                                                                                                                                                 | 10.61                                                                                                                                                                                                                                           |
| P08390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | usg                                                                                                                                                                                                                                  | 23                                                                                                                                                                                                                                  | 3                                                                                                          | 3                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                               | 337                                                                                                                                                                                    | 36.3                                                                                                                                                                                                                 | 10.45                                                                                                                                                                                                                                           |
| P0A7T3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rpsP                                                                                                                                                                                                                                 | 37                                                                                                                                                                                                                                  | 2                                                                                                          | 3                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                               | 82                                                                                                                                                                                     | 9.2                                                                                                                                                                                                                  | 10.25                                                                                                                                                                                                                                           |
| P00370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | odh A                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                  | 3                                                                                                          | 3                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                               | 447                                                                                                                                                                                    | 48.6                                                                                                                                                                                                                 | 10.21                                                                                                                                                                                                                                           |
| P60624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rolV                                                                                                                                                                                                                                 | 27                                                                                                                                                                                                                                  | 2                                                                                                          | 2                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                               | 104                                                                                                                                                                                    | 11.2                                                                                                                                                                                                                 | 0.87                                                                                                                                                                                                                                            |
| P00024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | прід                                                                                                                                                                                                                                 | 57                                                                                                                                                                                                                                  | 3                                                                                                          | 3                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                               | 104                                                                                                                                                                                    | 11.5                                                                                                                                                                                                                 | 9.07                                                                                                                                                                                                                                            |
| P00968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | carB                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                   | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 1073                                                                                                                                                                                   | 117.8                                                                                                                                                                                                                | 9.85                                                                                                                                                                                                                                            |
| P07014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sdhB                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                  | 3                                                                                                          | 3                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                               | 238                                                                                                                                                                                    | 26.8                                                                                                                                                                                                                 | 9.81                                                                                                                                                                                                                                            |
| P62623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ispH                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                  | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 316                                                                                                                                                                                    | 34.8                                                                                                                                                                                                                 | 9.7                                                                                                                                                                                                                                             |
| P0A8N5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lysU                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                   | 4                                                                                                          | 4                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                               | 505                                                                                                                                                                                    | 57.8                                                                                                                                                                                                                 | 9.7                                                                                                                                                                                                                                             |
| P0A8T7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rpoC                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                   | 4                                                                                                          | 4                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                               | 1407                                                                                                                                                                                   | 155.1                                                                                                                                                                                                                | 9.68                                                                                                                                                                                                                                            |
| DO A 71.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                            | 4                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                               | 118                                                                                                                                                                                    | 13.5                                                                                                                                                                                                                 | 9.59                                                                                                                                                                                                                                            |
| PUA/L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rplT                                                                                                                                                                                                                                 | 23                                                                                                                                                                                                                                  | 3                                                                                                          | 4                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |
| PUA/L3<br>P27306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rplT<br>sthA                                                                                                                                                                                                                         | 23                                                                                                                                                                                                                                  | 3                                                                                                          | 4                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                               | 466                                                                                                                                                                                    | 51.5                                                                                                                                                                                                                 | 9.42                                                                                                                                                                                                                                            |
| P0A7L3<br>P27306<br>P0A955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rplT<br>sthA                                                                                                                                                                                                                         | 23<br>10<br>34                                                                                                                                                                                                                      | 3 2 3                                                                                                      | 4<br>2<br>3                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                               | 466                                                                                                                                                                                    | 51.5<br>22.3                                                                                                                                                                                                         | 9.42                                                                                                                                                                                                                                            |
| P0A7L3<br>P27306<br>P0A955<br>P0A053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rplT<br>sthA<br>eda                                                                                                                                                                                                                  | 23<br>10<br>34                                                                                                                                                                                                                      | 3<br>2<br>3                                                                                                | 4<br>2<br>3<br>2                                                                                                                                                                           | 2 3 2                                                                                                                                                                                                                                                                           | 466<br>213<br>406                                                                                                                                                                      | 51.5<br>22.3                                                                                                                                                                                                         | 9.42<br>9.23                                                                                                                                                                                                                                    |
| P0A/L3<br>P27306<br>P0A955<br>P0A953<br>P0A 4 V0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rplT<br>sthA<br>eda<br>fabB                                                                                                                                                                                                          | 23<br>10<br>34<br>12                                                                                                                                                                                                                | 3<br>2<br>3<br>3                                                                                           | 4<br>2<br>3<br>3                                                                                                                                                                           | 2<br>3<br>3                                                                                                                                                                                                                                                                     | 466<br>213<br>406                                                                                                                                                                      | 51.5<br>22.3<br>42.6                                                                                                                                                                                                 | 9.42<br>9.23<br>9.21                                                                                                                                                                                                                            |
| POA7L3<br>P27306<br>P0A955<br>P0A953<br>P0AAX8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rplT<br>sthA<br>eda<br>fabB<br>ybiS                                                                                                                                                                                                  | 23<br>10<br>34<br>12<br>21                                                                                                                                                                                                          | 3<br>2<br>3<br>3<br>3                                                                                      | 4<br>2<br>3<br>3<br>3<br>3                                                                                                                                                                 | 2<br>3<br>3<br>3                                                                                                                                                                                                                                                                | 466<br>213<br>406<br>306                                                                                                                                                               | 51.5<br>22.3<br>42.6<br>33.3                                                                                                                                                                                         | 9.42<br>9.23<br>9.21<br>9.13                                                                                                                                                                                                                    |
| P0A7L3<br>P27306<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiS                                                                                                                                                                                          | 23<br>10<br>34<br>12<br>21<br>12                                                                                                                                                                                                    | 3<br>2<br>3<br>3<br>3<br>3<br>3                                                                            | 4<br>2<br>3<br>3<br>3<br>3<br>3                                                                                                                                                            | 2<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                      | 466<br>213<br>406<br>306<br>530                                                                                                                                                        | 51.5<br>22.3<br>42.6<br>33.3<br>59.8                                                                                                                                                                                 | 9.42<br>9.23<br>9.21<br>9.13<br>9.11                                                                                                                                                                                                            |
| P0A7L3<br>P27306<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3<br>P27302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA                                                                                                                                                                                  | 23<br>10<br>34<br>12<br>21<br>12<br>7                                                                                                                                                                                               | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                  | 4<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                  | 2<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                            | 466<br>213<br>406<br>306<br>530<br>663                                                                                                                                                 | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2                                                                                                                                                                         | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.1                                                                                                                                                                                                     |
| P0A7L3<br>P27306<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3<br>P27302<br>P13029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG                                                                                                                                                                          | 23<br>10<br>34<br>12<br>21<br>12<br>7<br>7<br>7                                                                                                                                                                                     | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>4                                                                  | 4<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>4                                                                                                                                                  | 2<br>3<br>3<br>3<br>3<br>3<br>3<br>4                                                                                                                                                                                                                                            | 466<br>213<br>406<br>306<br>530<br>663<br>726                                                                                                                                          | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80                                                                                                                                                                   | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.1<br>9.09                                                                                                                                                                                             |
| P0A7L3<br>P27306<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3<br>P27302<br>P13029<br>P21889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS                                                                                                                                                                  | 23<br>10<br>34<br>12<br>21<br>12<br>7<br>7<br>7<br>7                                                                                                                                                                                | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>3                                                             | 4<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3                                                                                                                                                  | 2<br>3<br>3<br>3<br>3<br>3<br>4<br>3                                                                                                                                                                                                                                            | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590                                                                                                                                   | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9                                                                                                                                                           | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.1<br>9.09<br>9                                                                                                                                                                                        |
| P0A7L3<br>P27306<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3<br>P27302<br>P13029<br>P21889<br>P0A7B5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB                                                                                                                                                          | 23<br>10<br>34<br>12<br>21<br>12<br>7<br>7<br>7<br>7<br>13                                                                                                                                                                          | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4                                                   | 4<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4                                                                                                                                   | 2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4                                                                                                                                                                                                                             | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367                                                                                                                            | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39                                                                                                                                                     | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.1<br>9.09<br>9<br>8.97                                                                                                                                                                                |
| P0A7L3<br>P27306<br>P0A955<br>P0A953<br>P0A953<br>P0A9U3<br>P27302<br>P13029<br>P21889<br>P0A7B5<br>P0A7E5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pvrG                                                                                                                                                  | 23<br>10<br>34<br>12<br>21<br>12<br>7<br>7<br>7<br>7<br>13<br>7                                                                                                                                                                     | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>3                                    | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>3                                                                                                                         | 2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3                                                                                                                                                                                                                        | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545                                                                                                                     | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3                                                                                                                                             | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.1<br>9.09<br>9<br>8.97<br>8.95                                                                                                                                                                        |
| P0A7L3<br>P27306<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3<br>P27302<br>P13029<br>P21889<br>P0A7B5<br>P0A7E5<br>P00832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>alD                                                                                                                                           | 23<br>10<br>34<br>12<br>21<br>12<br>7<br>7<br>7<br>13<br>7<br>12                                                                                                                                                                    | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3                                         | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3                                                                                                                         | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3                                                                                                                                                                                                                   | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472                                                                                                              | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52                                                                                                                                       | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.1<br>9.09<br>9<br>8.97<br>8.95<br>8.93                                                                                                                                                                |
| P0A7L3<br>P27306<br>P0A955<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3<br>P27302<br>P13029<br>P21889<br>P0A7B5<br>P0A7E5<br>P09832<br>P77600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD                                                                                                                                          | 23<br>10<br>34<br>12<br>21<br>12<br>7<br>7<br>7<br>7<br>13<br>7<br>13<br>7<br>12                                                                                                                                                    | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>2                                    | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>2                                                                                                                         | 2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>2                                                                                                                                                                                                                        | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>285                                                                                                       | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2                                                                                                                               | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.93                                                                                                                                                               |
| P0A7L3<br>P27306<br>P0A955<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3<br>P27302<br>P13029<br>P21889<br>P0A7B5<br>P0A7E5<br>P09832<br>P77690<br>P0A90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB                                                                                                                                  | 23<br>10<br>34<br>12<br>21<br>12<br>7<br>7<br>7<br>13<br>7<br>13<br>7<br>12<br>12                                                                                                                                                   | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>2                               | 4<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>2                                                                                                          | 2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>2                                                                                                                                                                                                              | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>200                                                                                                | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>24.1                                                                                                                       | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83                                                                                                                                                       |
| P0A7L3<br>P27306<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3<br>P27302<br>P13029<br>P21889<br>P0A7B5<br>P0A7E5<br>P09832<br>P77690<br>P0A880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE                                                                                                                          | 23<br>10<br>34<br>12<br>21<br>12<br>7<br>7<br>7<br>7<br>13<br>7<br>13<br>7<br>12<br>12<br>12<br>13                                                                                                                                  | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3                          | 4<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                     | 2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                    | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309                                                                                                | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1                                                                                                                       | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81                                                                                                                                               |
| P0A7L3<br>P27306<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3<br>P27302<br>P13029<br>P21889<br>P0A7B5<br>P0A7E5<br>P09832<br>P77690<br>P0AB80<br>P06612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA                                                                                                                  | $\begin{array}{c} 23 \\ 10 \\ 34 \\ 12 \\ 21 \\ 12 \\ 7 \\ 7 \\ 7 \\ 13 \\ 7 \\ 12 \\ 12 \\ 12 \\ 13 \\ 5 \end{array}$                                                                                                              | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4                               | 4<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>4                                                                                                          | 2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4                                                                                                                                                                                                         | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865                                                                                         | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3                                                                                                               | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77                                                                                                                                       |
| P0A7L3<br>P27306<br>P0A955<br>P0A953<br>P0AAX8<br>P0A9U3<br>P27302<br>P13029<br>P21889<br>P0A7B5<br>P0A7E5<br>P09832<br>P77690<br>P0AB80<br>P06612<br>P0A7M6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC                                                                                                          | $\begin{array}{c} 23 \\ 10 \\ 34 \\ 12 \\ 21 \\ 12 \\ 7 \\ 7 \\ 7 \\ 13 \\ 7 \\ 12 \\ 12 \\ 12 \\ 13 \\ 5 \\ 46 \end{array}$                                                                                                        | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>2                | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3                                                                                           | 2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>2                                                                                                                                                                                                    | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63                                                                                   | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3                                                                                                        | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77<br>8.7                                                                                                                                |
| P0A7L3         P27306         P0A955         P0A953         P0A4X8         P0A9U3         P27302         P13029         P21889         P0A7B5         P047B5         P09832         P77690         P0AB80         P06612         P0A7M6         P0AA16                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR                                                                                                  | $ \begin{array}{c} 23\\ 10\\ 34\\ 12\\ 21\\ 12\\ 7\\ 7\\ 13\\ 7\\ 12\\ 12\\ 13\\ 5\\ 46\\ 21\\ \end{array} $                                                                                                                        | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>2<br>3                     | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3                                                                                           | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>2<br>3                                                                                                                                                                                                    | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239                                                                            | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3                                                                                                | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.81<br>8.77<br>8.7<br>8.7                                                                                                                                 |
| P0A7L3         P27306         P0A955         P0A953         P0A903         P27302         P13029         P21889         P0A7B5         P0A7E5         P09832         P7690         P0AB80         P06612         P0A7M6         P0A7L5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI                                                                                          | $\begin{array}{c} 23 \\ 10 \\ 34 \\ 12 \\ 21 \\ 12 \\ 7 \\ 7 \\ 13 \\ 7 \\ 12 \\ 12 \\ 13 \\ 5 \\ 46 \\ 21 \\ 25 \end{array}$                                                                                                       | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3           | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130                                                                     | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8                                                                                        | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77<br>8.7<br>8.7<br>8.7<br>8.67<br>8.59                                                                                                  |
| P0A/L3         P27306         P0A955         P0A953         P0A903         P27302         P13029         P21889         P0A7B5         P0A7E5         P09832         P77690         P0AB80         P06612         P0A7M6         P0AA16         P0A7X3         P0ADR8                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN                                                                                  | $\begin{array}{c} 23 \\ 10 \\ 34 \\ 12 \\ 21 \\ 12 \\ 7 \\ 7 \\ 7 \\ 13 \\ 7 \\ 12 \\ 12 \\ 13 \\ 5 \\ 46 \\ 21 \\ 25 \\ 8 \end{array}$                                                                                             | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3 | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454                                                              | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9                                                                                | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77<br>8.7<br>8.7<br>8.7<br>8.67<br>8.59<br>8.52                                                                                          |
| P0A7L3         P27306         P0A955         P0A953         P0A903         P27302         P13029         P21889         P0A7B5         P0A7E5         P09832         P77690         P0AB80         P06612         P0A7M6         P0A7A16         P0A7B8         P0A7A8                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA                                                                          | 23<br>10<br>34<br>12<br>21<br>12<br>7<br>7<br>7<br>7<br>13<br>7<br>12<br>12<br>13<br>5<br>46<br>21<br>25<br>8<br>25                                                                                                                 | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3<br>3<br>3           | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3                                                                                           | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133                                                       | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15 1                                                                        | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77<br>8.7<br>8.7<br>8.67<br>8.59<br>8.52<br>8.46                                                                                         |
| P0A/L3         P27306         P0A955         P0A953         P0A9403         P27302         P13029         P21889         P0A7B5         P0A7E5         P09832         P77690         P0AB80         P06612         P0A7M6         P0A7A16         P0A7A3         P0AAB8                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA<br>fabI                                                                  | 23<br>10<br>34<br>12<br>21<br>12<br>7<br>7<br>7<br>7<br>13<br>7<br>12<br>12<br>13<br>5<br>46<br>21<br>25<br>8<br>25<br>15                                                                                                           | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                           | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133<br>262                                                | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15.1<br>27.8                                                         | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77<br>8.7<br>8.7<br>8.67<br>8.59<br>8.52<br>8.46<br>8.44                                                                                 |
| P0A7L3         P27306         P0A955         P0A953         P0A9U3         P27302         P13029         P21889         P0A7B5         P0A7E5         P09832         P77690         P0A880         P06612         P0A7M6         P0A7X3         P0APK4         P0A7G2         P0AEK4                                                                                                                                                                                                                                                                                                                                                                                                                                       | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA<br>fabI                                                                  | $\begin{array}{c} 23 \\ 10 \\ 34 \\ 12 \\ 21 \\ 12 \\ 7 \\ 7 \\ 7 \\ 13 \\ 7 \\ 12 \\ 12 \\ 13 \\ 5 \\ 46 \\ 21 \\ 25 \\ 8 \\ 25 \\ 15 \\ 2 \\ 15 \\ 2 \\ 15 \\ 2 \\ 15 \\ 2 \\ 15 \\ 2 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $ | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3                                                                                           | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133<br>262<br>72                                          | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15.1<br>27.8                                                                | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77<br>8.7<br>8.67<br>8.59<br>8.52<br>8.46<br>8.44<br>8.44                                                                                |
| P0A7L3         P27306         P0A955         P0A953         P0A9X3         P0A9U3         P27302         P13029         P21889         P0A7B5         P0A7B8         P0A7M6         P0A7M6         P0A7X3         P0ADR8         P0A7G2         P0AEK4         P0A978                                                                                                                                                                                                                                                                  | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA<br>fabI<br>cspG                                                          | $\begin{array}{c} 23 \\ 10 \\ 34 \\ 12 \\ 21 \\ 12 \\ 7 \\ 7 \\ 13 \\ 7 \\ 12 \\ 12 \\ 13 \\ 5 \\ 46 \\ 21 \\ 25 \\ 8 \\ 25 \\ 15 \\ 31 \\ 12 \\ 13 \\ 15 \\ 15 \\ 31 \\ 11 \\ 11 \\ 11 \\ 11$                                      | 3<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3           | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                           | 2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133<br>262<br>70                                          | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15.1<br>27.8<br>7.8                                                         | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77<br>8.7<br>8.67<br>8.59<br>8.52<br>8.46<br>8.44<br>8.44<br>8.32                                                                        |
| P0A/L3         P27306         P0A955         P0A953         P0A4X8         P0A9U3         P27302         P13029         P21889         P0A7B5         P0A7B8         P0A7M6         P0A7M6         P0A7K3         P0APCA16         P0A7G2         P0AEK4         P0A978         P0A6F9                                                                                                                                                                                                                                  | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA<br>fabI<br>cspG<br>groES                                                 | $\begin{array}{c} 23 \\ 10 \\ 34 \\ 12 \\ 21 \\ 12 \\ 7 \\ 7 \\ 13 \\ 7 \\ 12 \\ 12 \\ 13 \\ 5 \\ 46 \\ 21 \\ 25 \\ 8 \\ 25 \\ 15 \\ 31 \\ 42 \\ \end{array}$                                                                       | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3      | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                 | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                           | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133<br>262<br>70<br>97                                    | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15.1<br>27.8<br>7.8<br>10.4                                                 | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.81<br>8.77<br>8.7<br>8.67<br>8.59<br>8.52<br>8.46<br>8.44<br>8.44<br>8.32<br>8.31                                                                        |
| P0A/L3         P27306         P0A955         P0A953         P0A933         P0A903         P27302         P13029         P21889         P0A7B5         P0A7B5         P0A7E5         P09832         P7690         P0AB80         P06612         P0A7M6         P0A7K3         P0A7R8         P0A7R8         P0A7R8         P0A7R8         P0A7R8         P0A953                                                                                                                                                                                                                                                                                                                                                             | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA<br>fabI<br>cspG<br>groES<br>gatD                                         | $\begin{array}{c} 23 \\ 10 \\ 34 \\ 12 \\ 21 \\ 12 \\ 7 \\ 7 \\ 13 \\ 7 \\ 12 \\ 12 \\ 13 \\ 5 \\ 46 \\ 21 \\ 25 \\ 8 \\ 25 \\ 15 \\ 31 \\ 42 \\ 9 \end{array}$                                                                     | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                           | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                           | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133<br>262<br>70<br>97<br>346                             | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15.1<br>27.8<br>7.8<br>10.4<br>37.4                                         | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.81<br>8.77<br>8.7<br>8.67<br>8.59<br>8.52<br>8.46<br>8.44<br>8.32<br>8.31<br>8.24                                                                        |
| P0A/L3         P27306         P0A955         P0A953         P0A9483         P0A903         P27302         P13029         P21889         P0A7B5         P0A7B80         P06612         P0A7M6         P0A7G2         P0AEK4         P0A978         P0A983         P0A7R5 | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA<br>fabI<br>cspG<br>groES<br>gatD<br>rpsJ                                 | $\begin{array}{c} 23\\ 10\\ 34\\ 12\\ 21\\ 12\\ 7\\ 7\\ 7\\ 13\\ 7\\ 12\\ 12\\ 13\\ 5\\ 46\\ 21\\ 25\\ 8\\ 25\\ 15\\ 31\\ 42\\ 9\\ 34 \end{array}$                                                                                  | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           | 4<br>2<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                        | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3<br>4<br>5<br>5<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133<br>262<br>70<br>97<br>346<br>103                      | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15.1<br>27.8<br>7.8<br>10.4<br>37.4<br>11.7                                 | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.81<br>8.77<br>8.7<br>8.67<br>8.59<br>8.52<br>8.52<br>8.52<br>8.46<br>8.44<br>8.32<br>8.31<br>8.24<br>8.23                                                |
| P0A/L3         P27306         P0A955         P0A953         P0A9483         P0A903         P27302         P13029         P21889         P0A7B5         P0A7E5         P09832         P77690         P0AB80         P06612         P0A7M6         P0A7M6         P0A7R5         P0A7R8         P0A7R5         P0A7R6         P0A7R5         P0A7R5                                                                                                                                                                                                                                                                                                                                                                          | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA<br>fabI<br>cspG<br>groES<br>gatD<br>rpsJ<br>cnoX                         | $\begin{array}{c} 23\\ 10\\ 34\\ 12\\ 21\\ 12\\ 7\\ 7\\ 7\\ 13\\ 7\\ 12\\ 12\\ 12\\ 13\\ 5\\ 46\\ 21\\ 25\\ 8\\ 25\\ 15\\ 31\\ 42\\ 9\\ 34\\ 12 \end{array}$                                                                        | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           | 4<br>2<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                        | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                           | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133<br>262<br>70<br>97<br>346<br>103<br>284               | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15.1<br>27.8<br>7.8<br>10.4<br>37.4<br>11.7<br>31.8                         | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77<br>8.7<br>8.7<br>8.67<br>8.59<br>8.52<br>8.46<br>8.44<br>8.32<br>8.31<br>8.24<br>8.23<br>8.16                                         |
| P0A/L3         P27306         P0A955         P0A953         P0A903         P27302         P13029         P21889         P0A7B5         P0A7E5         P09832         P77690         P0A880         P06612         P0A7M6         P0A7X3         P0ADR8         P0A7G2         P0AEK4         P0A978         P0A6F9         P0A983         P0A7R5                                                                                                                                                                                                                                                                                                                                                                           | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA<br>fabI<br>cspG<br>groES<br>gatD<br>rpsJ<br>cnoX<br>rpsH                 | $\begin{array}{c} 23 \\ 10 \\ 34 \\ 12 \\ 21 \\ 12 \\ 7 \\ 7 \\ 7 \\ 13 \\ 7 \\ 12 \\ 12 \\ 13 \\ 5 \\ 46 \\ 21 \\ 25 \\ 8 \\ 25 \\ 15 \\ 31 \\ 42 \\ 9 \\ 34 \\ 12 \\ 33 \end{array}$                                              | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                       | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                           | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133<br>262<br>70<br>97<br>346<br>103<br>284<br>130        | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15.1<br>27.8<br>7.8<br>10.4<br>37.4<br>11.7<br>31.8<br>14.1                 | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77<br>8.7<br>8.7<br>8.67<br>8.59<br>8.52<br>8.46<br>8.44<br>8.32<br>8.31<br>8.24<br>8.23<br>8.16<br>8.16                                 |
| P0A7L3         P27306         P0A955         P0A953         P0A913         P27302         P13029         P21889         P0A7B5         P0A7E5         P09832         P77690         P0A880         P06612         P0A7M6         P0A7K3         P0A7C2         P0A7G2         P0A6F9         P0A783         P0A785         P0A785         P0A785         P0A762         P0A7739         P0A7739         P0A7739         P0A7739         P0A7739         P0A77395         P0A7W7         P27248                                                                                                                                                                                                                             | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA<br>fabI<br>cspG<br>groES<br>gatD<br>rpsJ<br>cnoX<br>rpsH<br>gcvT         | $\begin{array}{c} 23 \\ 10 \\ 34 \\ 12 \\ 21 \\ 12 \\ 7 \\ 7 \\ 7 \\ 13 \\ 7 \\ 12 \\ 12 \\ 12 \\ 13 \\ 5 \\ 46 \\ 21 \\ 25 \\ 8 \\ 25 \\ 15 \\ 31 \\ 42 \\ 9 \\ 34 \\ 12 \\ 33 \\ 7 \end{array}$                                   | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                       | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                 | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133<br>262<br>70<br>97<br>346<br>103<br>284<br>130<br>364 | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15.1<br>27.8<br>7.8<br>10.4<br>37.4<br>11.7<br>31.8<br>14.1<br>40 1         | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.1<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.83<br>8.81<br>8.77<br>8.7<br>8.67<br>8.59<br>8.52<br>8.46<br>8.59<br>8.52<br>8.46<br>8.44<br>8.32<br>8.31<br>8.24<br>8.23<br>8.16<br>8.16<br>8.15 |
| P0A7L3         P27306         P0A955         P0A955         P0A933         P0A9U3         P27302         P13029         P21889         P0A7B5         P0A7M6         P0A7M6         P0A7M6         P0A7R3         P0A7R4         P0A7R5         P0A78         P0A6F9         P0A983         P0A7R5         P77395         P0A7W7         P27248         P7248                                                                                                                                                                                                                       | rplT<br>sthA<br>eda<br>fabB<br>ybiS<br>ybiT<br>tktA<br>katG<br>aspS<br>proB<br>pyrG<br>gltD<br>arnB<br>ilvE<br>topA<br>rpmC<br>ompR<br>rpsI<br>ppnN<br>rbfA<br>fabI<br>cspG<br>groES<br>gatD<br>rpsJ<br>cnoX<br>rpsH<br>gcvT<br>arnD | $\begin{array}{c} 23\\ 10\\ 34\\ 12\\ 21\\ 12\\ 7\\ 7\\ 7\\ 13\\ 7\\ 12\\ 12\\ 13\\ 5\\ 46\\ 21\\ 25\\ 8\\ 25\\ 15\\ 31\\ 42\\ 9\\ 34\\ 12\\ 33\\ 7\\ 11 \end{array}$                                                               | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>2<br>3<br>3<br>3<br>3      | 4<br>2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                 | 2<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                           | 466<br>213<br>406<br>306<br>530<br>663<br>726<br>590<br>367<br>545<br>472<br>385<br>309<br>865<br>63<br>239<br>130<br>454<br>133<br>262<br>70<br>97<br>346<br>103<br>284<br>130<br>364 | 51.5<br>22.3<br>42.6<br>33.3<br>59.8<br>72.2<br>80<br>65.9<br>39<br>60.3<br>52<br>42.2<br>34.1<br>97.3<br>7.3<br>27.3<br>14.8<br>50.9<br>15.1<br>27.8<br>7.8<br>10.4<br>37.4<br>11.7<br>31.8<br>14.1<br>40.1<br>33.1 | 9.42<br>9.23<br>9.21<br>9.13<br>9.11<br>9.09<br>9<br>8.97<br>8.95<br>8.93<br>8.83<br>8.81<br>8.77<br>8.7<br>8.67<br>8.59<br>8.52<br>8.46<br>8.44<br>8.32<br>8.31<br>8.24<br>8.23<br>8.16<br>8.15<br>8.14                                        |

|   | P0ABH7   | gltA     | 7       | 2 | 2 | 2 | 427  | 48     | 8.1  |
|---|----------|----------|---------|---|---|---|------|--------|------|
|   | P0AAA1   | yagU     | 13      | 2 | 3 | 2 | 204  | 23     | 8.1  |
|   | P0AEO3   | glnH     | 13      | 2 | 3 | 2 | 248  | 27.2   | 8.03 |
| 1 | P00864   | ppc      | 6       | 3 | 3 | 3 | 883  | 99     | 8    |
|   | P00546   | put A    | 4       | 3 | 3 | 3 | 1320 | 1/13 7 | 8    |
|   | P37440   | ucnA     | 14      | 3 | 3 | 3 | 263  | 27.8   | 7.89 |
|   | D75000   | hluE     | 0       | 2 | 2 | 2 | 402  | 45.2   | 7.85 |
|   | P/3990   | DIUF     | 0       | 3 | 3 | 3 | 405  | 43.5   | 7.80 |
| - | POAGD/   | IIn      | 9       | 3 | 3 | 3 | 453  | 49.8   | /.8  |
|   | POCOVO   | degP     | 7       | 2 | 2 | 2 | 474  | 49.3   | 7.79 |
| _ | P00959   | metG     | 6       | 3 | 3 | 3 | 677  | 76.2   | 7.76 |
|   | P60716   | lipA     | 12      | 2 | 2 | 2 | 321  | 36     | 7.68 |
|   | P0AAB6   | galF     | 14      | 3 | 3 | 3 | 297  | 32.8   | 7.39 |
|   | P0A7U7   | rpsT     | 36      | 3 | 3 | 3 | 87   | 9.7    | 7.16 |
|   | P06992   | rsmA     | 12      | 2 | 2 | 2 | 273  | 30.4   | 7.09 |
|   | P14175   | proV     | 8       | 2 | 3 | 2 | 400  | 44.1   | 7.08 |
| 1 | P0A7M9   | romE     | 41      | 2 | 2 | 2 | 70   | 7.9    | 7.05 |
|   | POAEP3   | galU     | 11      | 3 | 3 | 3 | 302  | 32.9   | 7.04 |
|   | POADV3   | rplN     | 30      | 2 | 2 | 2 | 123  | 13.5   | 6.92 |
|   | D0A783   | rpel     | 18      | 2 | 3 | 2 | 123  | 13.5   | 6.84 |
|   | DOADC2   | 1psL     | 0       | 2 | 2 | 2 | 224  | 13.7   | 0.04 |
| - | POABC3   | nfiC     | 8       | 3 | 3 | 3 | 334  | 37.6   | 6.78 |
|   | P3/902   | gltI     | 9       | 2 | 2 | 2 | 302  | 33.4   | 6./  |
| _ | P23830   | pssA     | 7       | 2 | 2 | 2 | 451  | 52.8   | 6.67 |
|   | P0AFG3   | sucA     | 5       | 3 | 3 | 3 | 933  | 105    | 6.62 |
|   | P0AG90   | secD     | 5       | 2 | 2 | 2 | 615  | 66.6   | 6.58 |
|   | P0ACF4   | hupB     | 16      | 1 | 2 | 1 | 90   | 9.2    | 6.55 |
| _ | P0AGG8   | tldD     | 7       | 2 | 2 | 2 | 481  | 51.3   | 6.4  |
|   | P0A6S0   | flgH     | 12      | 2 | 2 | 2 | 232  | 24.6   | 6.34 |
| 7 | P06149   | dld      | 7       | 2 | 2 | 2 | 571  | 64.6   | 6.33 |
|   | POADG4   | suhB     | 11      | 2 | 2 | 2 | 267  | 29.2   | 6.27 |
|   | P25553   | aldA     | 7       | 3 | 3 | 2 | 179  | 52.2   | 6.26 |
|   | D0 A 905 | fre      | 16      | 2 | 2 | 2 | 195  | 20.6   | 6.20 |
|   |          | III<br>  | 10      | 2 | 2 | 2 | 105  | 20.0   | 0.22 |
|   | PUAEII   | тав      | 0       | 2 | 2 | 2 | 4/4  | 55.0   | 0.22 |
|   | P33218   | yebE     | 17      | 2 | 2 | 2 | 219  | 23.7   | 6.15 |
| _ | P0AFU8   | ribC     | 11      | 2 | 2 | 2 | 213  | 23.4   | 6.13 |
|   | P0ADY7   | rplP     | 22      | 2 | 2 | 2 | 136  | 15.3   | 6.07 |
|   | P69776   | lpp      | 33      | 2 | 2 | 2 | 78   | 8.3    | 6.03 |
|   | P0A6Y5   | hslO     | 10      | 2 | 2 | 2 | 292  | 32.5   | 6.02 |
|   | P21170   | speA     | 4       | 2 | 2 | 2 | 658  | 73.9   | 5.91 |
|   | P07012   | prfB     | 8       | 2 | 2 | 2 | 365  | 41.2   | 5.88 |
| 1 | P77774   | bamB     | 6       | 2 | 2 | 2 | 392  | 41.9   | 5.87 |
|   | P06616   | era      | 8       | 2 | 2 | 2 | 301  | 33.8   | 5.83 |
| 1 | P0A959   | alaA     | 6       | 1 | 2 | 1 | 405  | 45.5   | 5.82 |
|   | P23845   | cvsN     | 7       | 2 | 2 | 2 | 475  | 52.5   | 5.82 |
|   | P25437   | frm A    | ,<br>Q  | 2 | 2 | 2 | 360  | 30.3   | 5.02 |
|   | D0 A 955 | tolP     | 10      | 2 | 2 | 2 | 420  | 45.0   | 5.69 |
|   | P(0200   |          | 10      | 2 | 2 | 2 | 430  | 43.9   | 5.62 |
|   | P00390   |          | 7       | 2 | 2 | 2 | 515  | 54.9   | 5.05 |
|   | PUA6FI   | carA     | 1       | 2 | 2 | 2 | 382  | 41.4   | 5.6  |
| _ | P0AC69   | grxD     | 28      | 2 | 2 | 2 | 115  | 12.9   | 5.59 |
|   | P0AEI4   | rimO     | 6       | 2 | 2 | 2 | 441  | 49.6   | 5.59 |
| _ | P22259   | pckA     | 6       | 2 | 2 | 2 | 540  | 59.6   | 5.58 |
|   | P0ABJ1   | cyoA     | 13      | 2 | 2 | 2 | 315  | 34.9   | 5.56 |
|   | P62768   | yaeH     | 17      | 2 | 2 | 2 | 128  | 15.1   | 5.55 |
|   | P0AB71   | fbaA     | 8       | 2 | 2 | 2 | 359  | 39.1   | 5.54 |
|   | P09127   | hemX     | 7       | 2 | 2 | 2 | 393  | 42.9   | 5.51 |
|   | P77737   | oppF     | 13      | 2 | 2 | 2 | 334  | 37.2   | 5 46 |
|   | P32176   | fdoG     | 3       | 2 | 2 | 2 | 1016 | 112.5  | 5.40 |
|   |          | hybC     | 8       | 2 | 2 | 2 | 567  | 62.5   | 5 30 |
|   | DOA 7T7  | myDC myD | 20      | 2 | 2 | 2 | 75   | 02.5   | 5.20 |
|   |          | ipsic    | 27<br>0 | 2 | 2 | 2 | 15   | 7      | 5.37 |
|   | PUAB24   | ereo     | 9       | 2 | 2 | 2 | 3/5  | 41.1   | 5.38 |
|   | P60906   | hisS     | 7       | 2 | 2 | 2 | 424  | 47     | 5.36 |
|   | P0A7K2   | rplL     | 17      | 2 | 2 | 2 | 121  | 12.3   | 5.35 |
|   | P0ACA3   | sspA     | 12      | 2 | 2 | 2 | 212  | 24.3   | 5.33 |
|   | P0ACP5   | gntR     | 6       | 1 | 2 | 1 | 331  | 36.4   | 5.19 |
| - | P00909   | trpC     | 5       | 2 | 2 | 2 | 453  | 49.5   | 5.18 |
|   | P64588   | vqjI     | 10      | 2 | 2 | 2 | 207  | 23.4   | 5.18 |
|   | P25519   | hflX     | 5       | 2 | 2 | 2 | 426  | 48.3   | 5.16 |
|   | P39342   | vigR     | 6       | 2 | 2 | 2 | 500  | 54.3   | 5.11 |
|   |          | JJ8      | ~       | _ | _ | _ |      |        |      |

| P0A9K9   | slvD          | 10 | 2        | 2 | 2 | 196        | 20.8  | 5.01 |
|----------|---------------|----|----------|---|---|------------|-------|------|
| P0A6P5   | der           | 6  | 2        | 2 | 2 | 490        | 55    | 5.01 |
| P60505   | higH          | 11 | 2        | 2 | 2 | 106        | 21.6  | 4.05 |
| D04EC7   | nuoP          | 10 | 2        | 2 | 2 | 220        | 21.0  | 4.95 |
| FUAPC7   | пиов          | 10 | <u>2</u> | 2 | 2 | 420        | 25    | 4.91 |
| P39835   | gnt I         | 5  | 1        | 2 | 1 | 438        | 45.9  | 4.80 |
| P0C018   | rpIR          | 15 | 2        | 2 | 2 | 11/        | 12.8  | 4.81 |
| P0A9Q7   | adhE          | 3  | 2        | 2 | 2 | 891        | 96.1  | 4.78 |
| P30011   | nadC          | 7  | 2        | 2 | 2 | 297        | 32.7  | 4.73 |
| P0AAC8   | iscA          | 24 | 2        | 2 | 2 | 107        | 11.5  | 4.7  |
| P0A9J6   | rbsK          | 7  | 1        | 2 | 1 | 309        | 32.3  | 4.63 |
| P77804   | ydgA          | 4  | 2        | 2 | 2 | 502        | 54.7  | 4.63 |
| P07604   | tyrR          | 4  | 2        | 2 | 2 | 513        | 57.6  | 4.62 |
| P0ACC3   | erpA          | 18 | 2        | 2 | 2 | 114        | 12.1  | 4.55 |
| P0AES4   | gyrA          | 3  | 2        | 2 | 2 | 875        | 96.9  | 4.53 |
| P16456   | selD          | 5  | 2        | 2 | 2 | 347        | 36.7  | 4 49 |
| P0DP89   | ilvG          | 6  | 1        | 1 | 1 | 327        | 34.5  | 4 48 |
| D0A734   | minE          | 25 | 2        | 2 | 2 | 88         | 10.2  | 4.46 |
| F0A754   | mmE           | 25 | 2        | 1 | 2 | 00<br>57   | 6.4   | 4.40 |
| PUA/IN4  | Tpilir<br>( D | 20 | 1        | 1 | 1 | 37         | 0.4   | 4.45 |
| P0A9P4   | trxB          | 8  | 2        | 2 | 2 | 321        | 34.0  | 4.35 |
| P0A6Q3   | fabA          | 11 | 2        | 2 | 2 | 172        | 19    | 4.24 |
| P39831   | ydfG          | 7  | 1        | 1 | 1 | 248        | 27.2  | 4.15 |
| P37665   | yiaD          | 8  | 1        | 1 | 1 | 219        | 22.2  | 4.09 |
| P33916   | yejF          | 3  | 1        | 1 | 1 | 529        | 58.7  | 3.99 |
| P0ADZ4   | rpsO          | 34 | 1        | 1 | 1 | 89         | 10.3  | 3.97 |
| P30744   | sdaB          | 4  | 2        | 2 | 2 | 455        | 48.7  | 3.94 |
| P10371   | hisA          | 7  | 1        | 1 | 1 | 245        | 26    | 3.81 |
| P0A9A9   | fur           | 9  | 1        | 1 | 1 | 148        | 16.8  | 3.7  |
| P31224   | acrB          | 1  | 1        | 1 | 1 | 1049       | 113.5 | 3.69 |
| P00803   | lenB          | 1  | 1        | 1 | 1 | 324        | 35.9  | 3.69 |
| P76024   | rep <b>D</b>  | 7  | 1        | 1 | 1 | 240        | 27.6  | 3.63 |
| P / 0034 | yerr<br>wibE  | 12 | 1        | 1 | 1 | 249        | 27.0  | 2.61 |
| P01/14   | TIDE          | 12 | 1        | 1 | 1 | 130        | 10.1  | 5.01 |
| P23847   | dppA          | 2  | 1        | 1 | 1 | 535        | 60.3  | 3.6  |
| P0A8M6   | yeeX          | 15 | 1        | 1 | 1 | 109        | 12.8  | 3.59 |
| P0A937   | bamE          | 18 | 1        | 1 | 1 | 113        | 12.3  | 3.59 |
| P25714   | yidC          | 3  | 1        | 1 | 1 | 548        | 61.5  | 3.54 |
| P0A9T0   | serA          | 6  | 1        | 1 | 1 | 410        | 44.1  | 3.51 |
| P61517   | can           | 6  | 1        | 1 | 1 | 220        | 25.1  | 3.48 |
| P0AA25   | trxA          | 11 | 1        | 1 | 1 | 109        | 11.8  | 3.47 |
| P56262   | ysgA          | 7  | 1        | 1 | 1 | 271        | 29.4  | 3.43 |
| P0AEQ1   | glcG          | 16 | 1        | 1 | 1 | 134        | 13.7  | 3.41 |
| P0A6A3   | ackA          | 6  | 1        | 1 | 1 | 400        | 43.3  | 3.41 |
| P17169   | olmS          | 3  | 1        | 1 | 1 | 609        | 66.9  | 3 39 |
| P37689   | gnmI          | 3  | 1        | 1 | 1 | 514        | 56.2  | 3 36 |
| D33363   | balY          | 2  | 1        | 1 | 1 | 765        | 83.4  | 3.36 |
| D09142   | iluD          | 2  | 1        | 1 | 1 | 562        | 60.4  | 2.24 |
| P08142   |               | 4  | 1        | 1 | 1 | 214        | 00.4  | 3.34 |
| P/01//   | yagH          | 5  | 1        | 1 | 1 | 314        | 33.9  | 3.33 |
| P3/051   | purU          | 9  | l        | I | I | 280        | 31.9  | 3.32 |
| P36672   | treB          | 5  | 1        | 1 | 1 | 473        | 51    | 3.27 |
| P14081   | selB          | 3  | 1        | 1 | 1 | 614        | 68.8  | 3.24 |
| P21888   | cysS          | 2  | 1        | 1 | 1 | 461        | 52.2  | 3.2  |
| P0A7Z0   | rpiA          | 7  | 1        | 1 | 1 | 219        | 22.8  | 3.18 |
| P0A877   | trpA          | 7  | 1        | 1 | 1 | 268        | 28.7  | 3.16 |
| P0A8F8   | uvrB          | 3  | 1        | 1 | 1 | 673        | 76.2  | 3.15 |
| P0A887   | ubiE          | 5  | 1        | 1 | 1 | 251        | 28.1  | 3.14 |
| P77529   | tevP          | 3  | - 1      | 1 | 1 | 463        | 48.6  | 3.14 |
| P64624   | vheO          | 5  | 1        | 1 | 1 | 240        | 26.8  | 3.14 |
| D08205   | snn A         | 2  | 1        | 1 | 1 | 240<br>619 | 20.8  | 2.12 |
|          | sppA          | 5  | 1        | 1 | 1 | 206        | 22.2  | 3.10 |
| P00052   | yeio          |    | 1        | 1 | 1 | 200        | 23.2  | 3.12 |
| P09053   | avtA          | 3  | 1        | 1 | 1 | 41/        | 46.7  | 3.08 |
| P37188   | gatB          | 20 | 1        | 1 | 1 | 94         | 10.2  | 3.04 |
| P0A6G7   | clpP          | 10 | 1        | 1 | 1 | 207        | 23.2  | 3.03 |
| P0A6D7   | aroK          | 8  | 1        | 1 | 1 | 173        | 19.5  | 3.03 |
| P0A7N9   | rpmG          | 27 | 1        | 1 | 1 | 55         | 6.4   | 3.03 |
| P09372   | grpE          | 7  | 1        | 1 | 1 | 197        | 21.8  | 3.03 |
| P17846   | cysI          | 3  | 1        | 1 | 1 | 570        | 64    | 3.02 |
| P0AC33   | fumA          | 3  | 1        | 1 | 1 | 548        | 60.3  | 3.02 |
| P0A8E7   | yajQ          | 10 | 1        | 1 | 1 | 163        | 18.3  | 3.01 |
| - /      | ~ · · ·       | -  |          |   |   |            |       | -    |

| P0A9Y6              | cspC   | 22 | 1 | 1 | 1 | 69  | 7.4  | 2.99 |
|---------------------|--------|----|---|---|---|-----|------|------|
| POADC1              | IntE   | 9  | 1 | 1 | 1 | 103 | 21.3 | 2.00 |
| D05702              | iluC   | 2  | 1 | 1 | 1 | 401 | 54   | 2.07 |
| P05/95              | live   | 3  | 1 | 1 | 1 | 491 | 54   | 2.97 |
| P0AG93              | secF   | 4  | 1 | 1 | 1 | 323 | 35.4 | 2.96 |
| P0C0L7              | proP   | 3  | 1 | 1 | 1 | 500 | 54.8 | 2.96 |
| P02943              | lamB   | 3  | 1 | 1 | 1 | 446 | 49.9 | 2.95 |
| P0AFM6              | nsnA   | 7  | 1 | 1 | 1 | 222 | 25.5 | 2.94 |
| POAGK8              | iscP   | 0  | 1 | 1 | 1 | 162 | 17.3 | 2.94 |
| DOADL2              | fLID   | 6  | 1 | 1 | 1 | 206 | 22.2 | 2.07 |
| PUA9L3              | IKIB   | 0  | 1 | 1 | 1 | 206 | 22.2 | 2.92 |
| P0A6A8              | acpP   | 21 | 1 | 1 | 1 | 78  | 8.6  | 2.91 |
| P0A9D4              | cysE   | 8  | 1 | 1 | 1 | 273 | 29.3 | 2.9  |
| P38489              | nfsB   | 5  | 1 | 1 | 1 | 217 | 23.9 | 2.89 |
| P45565              | ais    | 11 | 1 | 1 | 1 | 200 | 22.2 | 2.87 |
| P77211              | ans    | 2  | 1 | 1 | 1 | 457 | 50.2 | 2.07 |
| D(0222              | cuse : | 17 | 1 | 1 | 1 | 437 | 30.2 | 2.80 |
| P69222              | INIA   | 1/ | I | 1 | I | 12  | 8.2  | 2.84 |
| P0A9L5              | ppiC   | 11 | 1 | 1 | 1 | 93  | 10.2 | 2.84 |
| P75937              | flgE   | 4  | 1 | 1 | 1 | 402 | 42   | 2.83 |
| P0AF93              | ridA   | 10 | 1 | 1 | 1 | 128 | 13.6 | 2.83 |
| POAACO              | usnF   | 6  | 1 | 1 | 1 | 316 | 35.7 | 2.83 |
| DOAAEO              | aveA   | 2  | 1 | 1 | 1 | 470 | 51.6 | 2.05 |
| POAAE0              | CYCA   | 3  | 1 | 1 | 1 | 470 | 51.0 | 2.85 |
| P0AEB2              | dacA   | 4  | 1 | 1 | 1 | 403 | 44.4 | 2.82 |
| P16700              | cysP   | 3  | 1 | 1 | 1 | 338 | 37.6 | 2.8  |
| P27298              | prlC   | 2  | 1 | 1 | 1 | 680 | 77.1 | 2.79 |
| P69054              | sdhC   | 9  | 1 | 1 | 1 | 129 | 14.3 | 2 77 |
| D016U5              | romG   | 5  | 1 | 1 | 1 | 207 | 22.4 | 2.77 |
| POACUJ              | ISHIO  | 5  | 1 | 1 | 1 | 207 | 23.4 | 2.70 |
| P00954              | trpS   | 1  | 1 | 1 | 1 | 334 | 37.4 | 2.76 |
| P36879              | yadG   | 4  | 1 | 1 | 1 | 308 | 34.6 | 2.75 |
| P60340              | truB   | 4  | 1 | 1 | 1 | 314 | 35.1 | 2.73 |
| P27833              | wecE   | 4  | 1 | 1 | 1 | 376 | 41.9 | 2.71 |
| P22333              | bbe    | 9  | 1 | 1 | 1 | 333 | 36.4 | 2 71 |
| D0 A D N1           | dala   | 0  | 1 | 1 | 1 | 122 | 12.2 | 2.71 |
| PUADINI             | ugkA   | 9  | 1 | 1 | 1 | 122 | 15.2 | 2.71 |
| P0A8I3              | yaaA   | 7  | 1 | 1 | 1 | 258 | 29.6 | 2.7  |
| P0ABJ9              | cydA   | 3  | 1 | 1 | 1 | 522 | 58.2 | 2.69 |
| P0ADK0              | yiaF   | 6  | 1 | 1 | 1 | 236 | 25.6 | 2.67 |
| P07862              | ddlB   | 5  | 1 | 1 | 1 | 306 | 32.8 | 2.66 |
| P0A9G6              | aceA   | 3  | 1 | 1 | 1 | 434 | 47.5 | 2.66 |
| D27744              | ucci i | 4  | 1 | 1 | 1 | 202 | 20.7 | 2.00 |
| P3//44              | TIDA   | 4  | 1 | 1 | 1 | 295 | 32.7 | 2.03 |
| P68679              | rpsU   | 14 | 1 | 1 | 1 | 71  | 8.5  | 2.63 |
| P0AF28              | narL   | 5  | 1 | 1 | 1 | 216 | 23.9 | 2.63 |
| P0A9K3              | ybeZ   | 4  | 1 | 1 | 1 | 346 | 39   | 2.63 |
| P75913              | ghrA   | 4  | 1 | 1 | 1 | 312 | 35.3 | 2.63 |
| P046T5              | folE   | 5  | 1 | 1 | 1 | 222 | 24.8 | 2.62 |
| D0 4 009            | TOIL . | 5  | 1 | 1 | 1 | 249 | 27.0 | 2.02 |
| P0A908              | mipA   | 0  | 1 | 1 | 1 | 248 | 27.8 | 2.62 |
| P0ABA0              | atpF   | 8  | 1 | 1 | 1 | 156 | 17.3 | 2.62 |
| P50465              | nei    | 5  | 1 | 1 | 1 | 263 | 29.8 | 2.6  |
| P23721              | serC   | 4  | 1 | 1 | 1 | 362 | 39.8 | 2.59 |
| P06983              | hemC   | 4  | 1 | 1 | 1 | 313 | 33.8 | 2 57 |
| P32131              | hemN   | 3  | 1 | 1 | 1 | 157 | 52.7 | 2.56 |
| 1 32131<br>D0 4 919 |        | 3  | 1 | 1 | 1 | 401 | 54.1 | 2.50 |
| PUA8J8              | rnIB   | 3  | 1 | 1 | 1 | 421 | 47.1 | 2.56 |
| P07001              | pntA   | 4  | 1 | 1 | 1 | 510 | 54.6 | 2.54 |
| P69503              | apt    | 11 | 1 | 1 | 1 | 183 | 19.8 | 2.52 |
| P28904              | treC   | 3  | 1 | 1 | 1 | 551 | 63.8 | 2.52 |
| P69828              | gatA   | 13 | 1 | 1 | 1 | 150 | 16.9 | 2.51 |
| DUVBDO              | accP   | 13 | 1 | 1 | 1 | 156 | 16.7 | 2.51 |
| PUADDo              | accB   | 15 | 1 | 1 | 1 | 150 | 10.7 | 2.3  |
| P36979              | rlmN   | 2  | 1 | 1 | 1 | 384 | 43.1 | 2.5  |
| P0AAI9              | fabD   | 6  | 1 | 1 | 1 | 309 | 32.4 | 2.49 |
| P31120              | glmM   | 3  | 1 | 1 | 1 | 445 | 47.5 | 2.49 |
| POAEU0              | hisJ   | 7  | 1 | 1 | 1 | 260 | 28.5 | 2.48 |
| POAGIO              | cmb    | 12 | 1 | 1 | 1 | 200 | 24.7 | 2 47 |
| 1 0A010             |        | 12 | 1 | 1 | 1 | 221 | 24.7 | 2.47 |
| P7/488              | dxs    | 1  | 1 | 1 | I | 620 | 67.6 | 2.44 |
| P0A6J8              | ddlA   | 4  | 1 | 1 | 1 | 364 | 39.3 | 2.44 |
| P0AC53              | zwf    | 2  | 1 | 1 | 1 | 491 | 55.7 | 2.43 |
| P00894              | ilvH   | 7  | 1 | 1 | 1 | 163 | 18   | 2.43 |
| P42641              | obgE   | 6  | 1 | 1 | 1 | 300 | 43.3 | 2 42 |
| D00007              | orge   | 4  | 1 | 1 | 1 | 240 | 20.7 | 2.42 |
| P00887              | aroH   | 4  | 1 | 1 | 1 | 348 | 38./ | 2.42 |
| P36938              | pgm    | 3  | 1 | 1 | 1 | 546 | 58.3 | 2.42 |
| P0AG48              | rplU   | 12 | 1 | 1 | 1 | 103 | 11.6 | 2.41 |

|         | ~      | _  |     |     | _ |     |              |      |
|---------|--------|----|-----|-----|---|-----|--------------|------|
| P0ACC1  | prmC   | 5  | 1   | 1   | 1 | 277 | 31           | 2.41 |
| P0AF24  | nagD   | 4  | 1   | 1   | 1 | 250 | 27.1         | 2.4  |
| P37095  | nenB   | 3  | 1   | 1   | 1 | 427 | 46.2         | 2 39 |
| P15042  | ligA   | 2  | 1   | 1   | 1 | 671 | 73.6         | 2.39 |
| F13042  | ngA    | 2  | 1   | 1   | 1 | 0/1 | 73.0         | 2.30 |
| P28248  | dcd    | 6  | 1   | 1   | 1 | 193 | 21.2         | 2.38 |
| P0A9W9  | yrdA   | 11 | 1   | 1   | 1 | 184 | 20.2         | 2.38 |
| P28903  | nrdD   | 2  | 1   | 1   | 1 | 712 | 80           | 2.38 |
| P69831  | gatC   | 2  | 1   | 1   | 1 | 451 | 48.3         | 2.34 |
| POAGEO  | seh    | 6  | 1   | 1   | 1 | 178 | 10           | 2 33 |
| DOACY7  | :1-6 4 | 10 | 1   | 1   | 1 | 00  | 11.2         | 2.33 |
| PUA0A/  | IIIIA  | 10 | 1   | 1   | 1 | 99  | 11.5         | 2.52 |
| POADZO  | rpIW   | 12 | 1   | 1   | 1 | 100 | 11.2         | 2.3  |
| P08622  | dnaJ   | 3  | 1   | 1   | 1 | 376 | 41.1         | 2.3  |
| P30845  | eptA   | 1  | 1   | 1   | 1 | 547 | 61.6         | 2.28 |
| P03024  | galR   | 6  | 1   | 1   | 1 | 343 | 37.1         | 2.28 |
| P76268  | kdoR   | 6  | 1   | 1   | 1 | 263 | 30           | 2.28 |
| P52108  | ret A  | 4  | 1   | 1   | 1 | 205 | 267          | 2.20 |
| 1 J2108 | 151/4  | 4  | 1   | 1   | 1 | 239 | 20.7         | 2.27 |
| P30/50  | metin  | 4  | 1   | 1   | l | 343 | 37.8         | 2.27 |
| P16095  | sdaA   | 2  | 1   | 1   | 1 | 454 | 48.9         | 2.24 |
| P33232  | lldD   | 3  | 1   | 1   | 1 | 396 | 42.7         | 2.24 |
| P69228  | baeR   | 7  | 1   | 1   | 1 | 240 | 27.6         | 2.23 |
| P17952  | murC   | 2  | 1   | 1   | 1 | 491 | 53.6         | 2.23 |
| POADG7  | guaB   |    | - 1 | - 1 | 1 | 188 | 52           | 2.22 |
| D26646  | guub   | 5  | 1   | 1   | 1 | 224 | 247          | 2.23 |
| F20040  | acui   | 5  | 1   | 1   | 1 | 524 | 54.7         | 2.23 |
| P00550  | mtlA   | 2  | 1   | 1   | 1 | 637 | 67.9         | 2.22 |
| P0A8A0  | yebC   | 3  | 1   | 1   | 1 | 246 | 26.4         | 2.21 |
| P0ABP8  | deoD   | 5  | 1   | 1   | 1 | 239 | 25.9         | 2.2  |
| P0A800  | rpoZ   | 10 | 1   | 1   | 1 | 91  | 10.2         | 2.2  |
| P0ABI8  | cyoB   | 3  | 1   | 1   | 1 | 663 | 74.3         | 2.2  |
| POAFC3  | nuoA   | 7  | 1   | 1   | 1 | 147 | 16.4         | 2 15 |
| P68699  | atnE   | 11 | 1   | 1   | 1 | 79  | 83           | 2.13 |
| D0ACV1  | aipE   | 6  | 1   | 1   | 1 | 19  | 20           | 2.15 |
| POACTI  | yujA   | 0  | 1   | 1   | 1 | 165 | 20           | 2.11 |
| P0AGB6  | rpoE   | 4  | 1   | 1   | 1 | 191 | 21.7         | 2.09 |
| P0A7Q1  | rpmI   | 20 | 1   | 1   | 1 | 65  | 7.3          | 2.07 |
| P77757  | arnC   | 4  | 1   | 1   | 1 | 322 | 36.3         | 2.06 |
| P16703  | cysM   | 4  | 1   | 1   | 1 | 303 | 32.6         | 2.06 |
| P24232  | hmp    | 3  | 1   | 1   | 1 | 396 | 43.8         | 2.05 |
| P30178  | hexB   | 3  | 1   | 1   | 1 | 361 | 38.9         | 2.04 |
| D04852  | troA   | 2  | 1   | 1   | 1 | 471 | 50.7         | 2.04 |
| 1 0A055 |        | 5  | 1   | 1   | 1 | 4/1 | 52.7         | 2.04 |
| P04951  | KasB   | 4  | 1   | 1   | l | 248 | 27.6         | 2.03 |
| P0AGA2  | sec Y  | 4  | 1   | 1   | 1 | 443 | 48.5         | 2.01 |
| P03004  | dnaA   | 2  | 1   | 1   | 1 | 467 | 52.5         | 2    |
| P0AG99  | secG   | 16 | 1   | 1   | 1 | 110 | 11.4         | 2    |
| P0ADI7  | yecD   | 5  | 1   | 1   | 1 | 188 | 20.4         | 2    |
| P14176  | proW   | 5  | 1   | 1   | 1 | 354 | 37.6         | 2    |
| P0A794  | ndx I  | 5  | 1   | 1   | 1 | 243 | 26.4         | 2    |
| D08312  | phas   | 3  | 1   | 1   | 1 | 327 | 36.8         | 1 00 |
| D00062  | -luS   | 5  | 1   | 1   | 1 | 521 | 50.0<br>(2.4 | 1.00 |
| P00962  | gins   | 5  | 1   | 1   | 1 | 554 | 03.4         | 1.99 |
| POAB38  | IpoB   | 6  | 1   | 1   | 1 | 213 | 22.5         | 1.98 |
| P0ACE7  | hinT   | 11 | 1   | 1   | 1 | 119 | 13.2         | 1.98 |
| P64596  | dolP   | 8  | 1   | 1   | 1 | 191 | 20           | 1.97 |
| P40874  | solA   | 3  | 1   | 1   | 1 | 372 | 40.9         | 1.97 |
| P31433  | vicH   | 2  | 1   | 1   | 1 | 569 | 62.2         | 1.96 |
| P45578  | huxS   | 6  | 1   | 1   | 1 | 171 | 19.4         | 1.95 |
| D19942  | nodE   | 4  | 1   | 1   | 1 | 275 | 20.6         | 1.95 |
| F 10043 | naue   | 4  | 1   | 1   | 1 | 213 | 30.0         | 1.95 |
| PUAFX9  | rseB   | 4  | l   | 1   | 1 | 318 | 35.7         | 1.95 |
| P0A7R9  | rpsK   | 6  | 1   | 1   | 1 | 129 | 13.8         | 1.93 |
| P02358  | rpsF   | 6  | 1   | 1   | 1 | 135 | 15.7         | 1.91 |
| P0A905  | slyB   | 6  | 1   | 1   | 1 | 155 | 15.6         | 1.91 |
| P25746  | hflD   | 7  | 1   | 1   | 1 | 213 | 22.9         | 1.91 |

# Table 18 - Mass spectrometry results from Section 5.2.6– SecHN91<sup>Bpa</sup>

| UniProt   | Gene         | Coverage | Peptides | PSMs | Unique   | AA   | MW [kDa] | Score   |
|-----------|--------------|----------|----------|------|----------|------|----------|---------|
| Accession | Name         | [%]      |          |      | Peptides |      |          | Sequest |
| P0CE47    | tufA         | 75       | 20       | 102  | 20       | 394  | 43.3     | 339.04  |
| P0A6Y8    | dnaK         | 68       | 42       | 84   | 42       | 638  | 69.1     | 312.1   |
| P0AD05    | yecA         | 65       | 8        | 84   | 8        | 221  | 25       | 301.3   |
| P10408    | secA         | 62       | 42       | 63   | 42       | 901  | 102      | 217.63  |
| P0A6F5    | groEL        | 72       | 25       | 63   | 25       | 548  | 57.3     | 213.26  |
| P0A850    | tig          | 54       | 21       | 68   | 21       | 432  | 48.2     | 211.41  |
| P0A9B2    | gapA         | 63       | 15       | 53   | 15       | 331  | 35.5     | 188.3   |
| P0A6M8    | fusA         | 57       | 25       | 52   | 25       | 704  | 77.5     | 185.03  |
| P02931    | ompF         | 79       | 18       | 52   | 18       | 362  | 39.3     | 183.57  |
| P36683    | acnB         | 60       | 32       | 50   | 32       | 865  | 93.4     | 162.58  |
| P0AG67    | rpsA         | 55       | 22       | 43   | 22       | 557  | 61.1     | 158.72  |
| P0A6Z3    | htpG         | 68       | 33       | 48   | 33       | 624  | 71.4     | 157.01  |
| P03023    | lacI         | 55       | 14       | 39   | 14       | 360  | 38.6     | 143.4   |
| P0A910    | ompA         | 66       | 17       | 34   | 17       | 346  | 37.2     | 123.95  |
| P10121    | ftsY         | 60       | 21       | 31   | 21       | 497  | 54.5     | 111.57  |
| P09373    | pf1B         | 46       | 22       | 29   | 22       | 760  | 85.3     | 96.53   |
| P0ABK5    | cysK         | 78       | 16       | 26   | 16       | 323  | 34.5     | 92.53   |
| P0AC41    | sdhA         | 52       | 19       | 26   | 19       | 588  | 64.4     | 86.04   |
| P0ABD5    | accA         | 55       | 14       | 24   | 14       | 319  | 35.2     | 85.95   |
| P05055    | pnp          | 41       | 20       | 26   | 20       | 711  | 77.1     | 84.5    |
| P33602    | nuoG         | 35       | 21       | 25   | 21       | 908  | 100.2    | 84.42   |
| P0A705    | infB         | 37       | 23       | 28   | 23       | 890  | 97.3     | 84.33   |
| P63284    | clpB         | 35       | 21       | 26   | 21       | 857  | 95.5     | 81.55   |
| P61889    | mdh          | 87       | 17       | 23   | 17       | 312  | 32.3     | 78.29   |
| P0A7Z4    | rpoA         | 58       | 14       | 24   | 14       | 329  | 36.5     | 71.12   |
| P0ACP7    | purR         | 49       | 13       | 21   | 13       | 341  | 38.2     | 69.37   |
| P02925    | rbsB         | 52       | 12       | 19   | 12       | 296  | 30.9     | 67.13   |
| P0AAI5    | fabF         | 50       | 11       | 18   | 11       | 413  | 43       | 66.71   |
| P0A6E4    | argG         | 49       | 13       | 20   | 13       | 447  | 49.9     | 64.8    |
| P0A8M0    | asnS         | 43       | 15       | 21   | 15       | 466  | 52.5     | 64.69   |
| POAAI3    | ftsH         | 38       | 18       | 20   | 18       | 644  | 70.7     | 64.6    |
| POAGE9    | sucD         | 65       | 13       | 20   | 13       | 289  | 29.8     | 62.01   |
| POAEX9    | malE         | 48       | 13       | 19   | 13       | 396  | 43.4     | 61.08   |
| P00509    | aspC         | 47       | 14       | 19   | 14       | 396  | 43.5     | 58.79   |
| P0AFF6    | nusA         | 45       | 14       | 17   | 14       | 495  | 54.8     | 57.78   |
| P0ABB4    | atpD         | 46       | 13       | 17   | 13       | 460  | 50.3     | 56.6    |
| P00961    | glyS         | 2.7      | 14       | 17   | 14       | 689  | 76.8     | 56.05   |
| P0C818    | gatZ.        | 53       | 12       | 18   | 12       | 420  | 47.1     | 55.18   |
| P0A8V2    | rnoB         | 20       | 19       | 19   | 19       | 1342 | 150.5    | 54.88   |
| P0AFG6    | sucB         | 34       | 11       | 17   | 11       | 405  | 44       | 53.62   |
| P08200    | icd          | 43       | 13       | 18   | 13       | 416  | 45.7     | 52 52   |
| P0A6H5    | hslU         | 25       | 8        | 14   | 8        | 443  | 49.6     | 51.72   |
| POA8N3    | lysS         | 30       | 13       | 17   | 13       | 505  | 57.6     | 51.67   |
| P0A6P1    | tsf          | 59       | 12       | 17   | 12       | 283  | 30.4     | 50.93   |
| POAEG3    | suc A        | 24       | 15       | 17   | 15       | 933  | 105      | 50.95   |
| P06959    | aceE         | 36       | 13       | 16   | 13       | 630  | 66.1     | 50.83   |
| P04 F08   | abnC         | 45       | 6        | 15   | 6        | 187  | 20.7     | 50.05   |
| P04836    | sucC         | 41       | 13       | 17   | 13       | 388  | 41.4     | 19 7A   |
| POA0PO    | IndA         | 38       | 12       | 15   | 12       | 174  | 50.7     | 49.74   |
| POARRO    | atnA         | 34       | 12       | 14   | 12       | 513  | 55.2     | 49.22   |
| D0A970    | tol <b>B</b> | 51       | 12       | 14   | 12       | 315  | 35.2     | 49.01   |
| P00350    | and          | 34       | 12       | 15   | 12       | 168  | 51.4     | 48.25   |
| D22250    | pok A        | 30       | 12       | 15   | 11       | 540  | 50.6     | 47.05   |
| P22239    | рскА         | 50       | 11       | 15   | 11       | 540  | 39.0     | 47.95   |

| P0A7V3                                                                                                                                                                                                                                                                                                                                                                                                                                          | rpoD                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 613                                                                                                                                                                                      | 70.2                                                                                                                                                                                                                             | 47.79                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IUAIVS                                                                                                                                                                                                                                                                                                                                                                                                                                          | rpsC                                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 233                                                                                                                                                                                      | 26                                                                                                                                                                                                                               | 47.25                                                                                                                                                                                                                                                 |
| P08660                                                                                                                                                                                                                                                                                                                                                                                                                                          | lvsC                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 449                                                                                                                                                                                      | 48.5                                                                                                                                                                                                                             | 46.09                                                                                                                                                                                                                                                 |
| P0A6P9                                                                                                                                                                                                                                                                                                                                                                                                                                          | eno                                                                                                                                                                                                                        | 35                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 432                                                                                                                                                                                      | 45.6                                                                                                                                                                                                                             | 45.9                                                                                                                                                                                                                                                  |
| P31979                                                                                                                                                                                                                                                                                                                                                                                                                                          | nuoF                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 445                                                                                                                                                                                      | 49.3                                                                                                                                                                                                                             | 44 71                                                                                                                                                                                                                                                 |
| P04983                                                                                                                                                                                                                                                                                                                                                                                                                                          | rhsA                                                                                                                                                                                                                       | 29                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 501                                                                                                                                                                                      | 55                                                                                                                                                                                                                               | 43.62                                                                                                                                                                                                                                                 |
| P0A7D4                                                                                                                                                                                                                                                                                                                                                                                                                                          | purA                                                                                                                                                                                                                       | 42                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 432                                                                                                                                                                                      | 47.3                                                                                                                                                                                                                             | 43.5                                                                                                                                                                                                                                                  |
| P77308                                                                                                                                                                                                                                                                                                                                                                                                                                          | arnA                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 660                                                                                                                                                                                      | 74.2                                                                                                                                                                                                                             | 41.98                                                                                                                                                                                                                                                 |
| D0 A 700                                                                                                                                                                                                                                                                                                                                                                                                                                        | ngk                                                                                                                                                                                                                        | 42                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 387                                                                                                                                                                                      | 41.1                                                                                                                                                                                                                             | 41.68                                                                                                                                                                                                                                                 |
| D0A7V0                                                                                                                                                                                                                                                                                                                                                                                                                                          | rpgK                                                                                                                                                                                                                       | 50                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 241                                                                                                                                                                                      | 41.1                                                                                                                                                                                                                             | 40.52                                                                                                                                                                                                                                                 |
| P0A/V0                                                                                                                                                                                                                                                                                                                                                                                                                                          | TPSB<br>motO                                                                                                                                                                                                               | 18                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 241                                                                                                                                                                                      | 20.7                                                                                                                                                                                                                             | 20.02                                                                                                                                                                                                                                                 |
| D046D7                                                                                                                                                                                                                                                                                                                                                                                                                                          | inetQ                                                                                                                                                                                                                      | 40                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 404                                                                                                                                                                                      | 45.1                                                                                                                                                                                                                             | 29.75                                                                                                                                                                                                                                                 |
| P04026                                                                                                                                                                                                                                                                                                                                                                                                                                          | depP                                                                                                                                                                                                                       | 23                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 404                                                                                                                                                                                      | 43.1                                                                                                                                                                                                                             | 28.54                                                                                                                                                                                                                                                 |
| P62620                                                                                                                                                                                                                                                                                                                                                                                                                                          | ianC                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 273                                                                                                                                                                                      | 20.7                                                                                                                                                                                                                             | 20.29                                                                                                                                                                                                                                                 |
| P62020                                                                                                                                                                                                                                                                                                                                                                                                                                          | IspO<br>mlE                                                                                                                                                                                                                | 39                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170                                                                                                                                                                                      | 40.7                                                                                                                                                                                                                             | 20.20                                                                                                                                                                                                                                                 |
| P02399                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                            | 49                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 542                                                                                                                                                                                      | 20.5                                                                                                                                                                                                                             | 29.15                                                                                                                                                                                                                                                 |
| P23643                                                                                                                                                                                                                                                                                                                                                                                                                                          | oppA                                                                                                                                                                                                                       | 31                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 545                                                                                                                                                                                      | 60.9                                                                                                                                                                                                                             | 28.02                                                                                                                                                                                                                                                 |
| P10059                                                                                                                                                                                                                                                                                                                                                                                                                                          | pros                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 572                                                                                                                                                                                      | 03.7                                                                                                                                                                                                                             | 38.03                                                                                                                                                                                                                                                 |
| P23003                                                                                                                                                                                                                                                                                                                                                                                                                                          | mete                                                                                                                                                                                                                       | 22                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /55                                                                                                                                                                                      | 84.0                                                                                                                                                                                                                             | 37.99                                                                                                                                                                                                                                                 |
| PUACE8                                                                                                                                                                                                                                                                                                                                                                                                                                          | nns                                                                                                                                                                                                                        | 49                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 137                                                                                                                                                                                      | 15.5                                                                                                                                                                                                                             | 37.89                                                                                                                                                                                                                                                 |
| P0A9Q5                                                                                                                                                                                                                                                                                                                                                                                                                                          | accD                                                                                                                                                                                                                       | 39                                                                                                                                                                                                                                                                                                          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 304                                                                                                                                                                                      | 33.3                                                                                                                                                                                                                             | 37.38                                                                                                                                                                                                                                                 |
| POAFG8                                                                                                                                                                                                                                                                                                                                                                                                                                          | aceE                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 887                                                                                                                                                                                      | 99.6                                                                                                                                                                                                                             | 37.37                                                                                                                                                                                                                                                 |
| P0A825                                                                                                                                                                                                                                                                                                                                                                                                                                          | glyA                                                                                                                                                                                                                       | 35                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 417                                                                                                                                                                                      | 45.3                                                                                                                                                                                                                             | 37.16                                                                                                                                                                                                                                                 |
| POABC/                                                                                                                                                                                                                                                                                                                                                                                                                                          | hflK                                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 419                                                                                                                                                                                      | 45.5                                                                                                                                                                                                                             | 36.4                                                                                                                                                                                                                                                  |
| P02943                                                                                                                                                                                                                                                                                                                                                                                                                                          | lamB                                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 446                                                                                                                                                                                      | 49.9                                                                                                                                                                                                                             | 36.37                                                                                                                                                                                                                                                 |
| P0AGD3                                                                                                                                                                                                                                                                                                                                                                                                                                          | sodB                                                                                                                                                                                                                       | 53                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 193                                                                                                                                                                                      | 21.3                                                                                                                                                                                                                             | 35.93                                                                                                                                                                                                                                                 |
| P27302                                                                                                                                                                                                                                                                                                                                                                                                                                          | tktA                                                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 663                                                                                                                                                                                      | 72.2                                                                                                                                                                                                                             | 34.54                                                                                                                                                                                                                                                 |
| POAEK4                                                                                                                                                                                                                                                                                                                                                                                                                                          | fabl                                                                                                                                                                                                                       | 43                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 262                                                                                                                                                                                      | 27.8                                                                                                                                                                                                                             | 34.44                                                                                                                                                                                                                                                 |
| P00957                                                                                                                                                                                                                                                                                                                                                                                                                                          | alaS                                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 876                                                                                                                                                                                      | 96                                                                                                                                                                                                                               | 34                                                                                                                                                                                                                                                    |
| PODTTO                                                                                                                                                                                                                                                                                                                                                                                                                                          | bipA                                                                                                                                                                                                                       | 23                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 607                                                                                                                                                                                      | 67.3                                                                                                                                                                                                                             | 33.79                                                                                                                                                                                                                                                 |
| P06612                                                                                                                                                                                                                                                                                                                                                                                                                                          | topA                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 865                                                                                                                                                                                      | 97.3                                                                                                                                                                                                                             | 33.42                                                                                                                                                                                                                                                 |
| P0A6F3                                                                                                                                                                                                                                                                                                                                                                                                                                          | glpK                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 502                                                                                                                                                                                      | 56.2                                                                                                                                                                                                                             | 33.33                                                                                                                                                                                                                                                 |
| P60/85                                                                                                                                                                                                                                                                                                                                                                                                                                          | lepA                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 599                                                                                                                                                                                      | 66.5                                                                                                                                                                                                                             | 33.11                                                                                                                                                                                                                                                 |
| POAEK2                                                                                                                                                                                                                                                                                                                                                                                                                                          | TabG                                                                                                                                                                                                                       | 45                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 244                                                                                                                                                                                      | 25.5                                                                                                                                                                                                                             | 32.96                                                                                                                                                                                                                                                 |
| P33599                                                                                                                                                                                                                                                                                                                                                                                                                                          | nuoC                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 596                                                                                                                                                                                      | 68.2                                                                                                                                                                                                                             | 32.61                                                                                                                                                                                                                                                 |
| P0A9K3                                                                                                                                                                                                                                                                                                                                                                                                                                          | ybeZ                                                                                                                                                                                                                       | 40                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 346                                                                                                                                                                                      | 39                                                                                                                                                                                                                               | 32.07                                                                                                                                                                                                                                                 |
| P23538                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppsA                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 192                                                                                                                                                                                      | 87.4                                                                                                                                                                                                                             | 31.7                                                                                                                                                                                                                                                  |
| P00562                                                                                                                                                                                                                                                                                                                                                                                                                                          | h and A                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 810                                                                                                                                                                                      | 88.8                                                                                                                                                                                                                             | 31.07                                                                                                                                                                                                                                                 |
| P0A940                                                                                                                                                                                                                                                                                                                                                                                                                                          | bamA                                                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 810                                                                                                                                                                                      | 90.5                                                                                                                                                                                                                             | 31.02                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 222                                                                                                                                                                                      | 25.5                                                                                                                                                                                                                             | 31.11                                                                                                                                                                                                                                                 |
| POAFM6                                                                                                                                                                                                                                                                                                                                                                                                                                          | pspA<br>6-7                                                                                                                                                                                                                | 33                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • , ( ) • ,                                                                                                                                                                              | 40.5                                                                                                                                                                                                                             | 31.11                                                                                                                                                                                                                                                 |
| P0AFM6<br>P0A9A6<br>P25240                                                                                                                                                                                                                                                                                                                                                                                                                      | ftsZ                                                                                                                                                                                                                       | 42                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 383                                                                                                                                                                                      | 561                                                                                                                                                                                                                              | 20.04                                                                                                                                                                                                                                                 |
| P0AFM6<br>P0A9A6<br>P35340                                                                                                                                                                                                                                                                                                                                                                                                                      | ftsZ<br>ahpF                                                                                                                                                                                                               | 33<br>42<br>30                                                                                                                                                                                                                                                                                              | 10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 383<br>521                                                                                                                                                                               | 56.1                                                                                                                                                                                                                             | 30.04                                                                                                                                                                                                                                                 |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AC30                                                                                                                                                                                                                                                                                                                                                                                                  | ftsZ<br>ahpF<br>ppiD                                                                                                                                                                                                       | 33<br>42<br>30<br>22<br>21                                                                                                                                                                                                                                                                                  | 10<br>10<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>10<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 383<br>521<br>623<br>410                                                                                                                                                                 | 56.1<br>68.1                                                                                                                                                                                                                     | 30.04<br>30.04<br>20.77                                                                                                                                                                                                                               |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0                                                                                                                                                                                                                                                                                                                                                                                        | ftsZ<br>ahpF<br>ppiD<br>rho                                                                                                                                                                                                | 33<br>42<br>30<br>22<br>21<br>42                                                                                                                                                                                                                                                                            | 10<br>10<br>9<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>10<br>9<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 383<br>521<br>623<br>419<br>234                                                                                                                                                          | 56.1<br>68.1<br>47<br>24.7                                                                                                                                                                                                       | 30.04<br>30.04<br>29.77<br>20.73                                                                                                                                                                                                                      |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9                                                                                                                                                                                                                                                                                                                                                                              | ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA                                                                                                                                                                                        | 33<br>42<br>30<br>22<br>21<br>42<br>53                                                                                                                                                                                                                                                                      | 10<br>10<br>9<br>8<br>9<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>10<br>10<br>10<br>10<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>10<br>9<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 383<br>521<br>623<br>419<br>234                                                                                                                                                          | 56.1<br>68.1<br>47<br>24.7                                                                                                                                                                                                       | 30.04<br>30.04<br>29.77<br>29.73<br>29.57                                                                                                                                                                                                             |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P0A7S9<br>P03893                                                                                                                                                                                                                                                                                                                                                          | ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemI                                                                                                                                                                        | 33<br>42<br>30<br>22<br>21<br>42<br>53<br>30                                                                                                                                                                                                                                                                | 10<br>10<br>9<br>8<br>9<br>5<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10<br>10<br>10<br>10<br>10<br>8<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>10<br>9<br>8<br>9<br>5<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 383<br>521<br>623<br>419<br>234<br>118<br>426                                                                                                                                            | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3                                                                                                                                                                                       | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44                                                                                                                                                                                                    |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523                                                                                                                                                                                                                                                                                                                                                          | ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA                                                                                                                                                                | 33<br>42<br>30<br>22<br>21<br>42<br>53<br>30<br>38                                                                                                                                                                                                                                                          | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>10<br>10<br>10<br>8<br>10<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270                                                                                                                                     | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9                                                                                                                                                                               | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96                                                                                                                                                                                           |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A759<br>P23893<br>P45523<br>P0A713                                                                                                                                                                                                                                                                                                                                                | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplI                                                                                                                                                | 33<br>42<br>30<br>22<br>21<br>42<br>53<br>30<br>38<br>52                                                                                                                                                                                                                                                    | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>10<br>10<br>10<br>8<br>10<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165                                                                                                                              | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17 7                                                                                                                                                                       | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86                                                                                                                                                                                  |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACE0                                                                                                                                                                                                                                                                                                                                      | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA                                                                                                                                        | 33           42           30           22           21           42           53           30           38           52                                                                                                                                                                                     | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>10<br>10<br>10<br>8<br>10<br>8<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90                                                                                                                        | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5                                                                                                                                                                | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74                                                                                                                                                                         |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P0A7S9<br>P0A753<br>P0A7J3<br>P0ACF0<br>P08839                                                                                                                                                                                                                                                                                                                            | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI                                                                                                                                | 33         42         30         22         21         42         53         30         38         52         61         20                                                                                                                                                                                 | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>10<br>10<br>10<br>8<br>10<br>8<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575                                                                                                                 | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5                                                                                                                                                        | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65                                                                                                                                                                |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P08839<br>P0A671                                                                                                                                                                                                                                                                                                                  | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>bscA                                                                                                                        | 33         42         30         22         21         42         53         30         38         52         61         20         18                                                                                                                                                                      | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>10<br>10<br>10<br>8<br>10<br>8<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616                                                                                                          | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>65.6                                                                                                                                                | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13                                                                                                                                                       |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A6Z1<br>P77690                                                                                                                                                                                                                                                                                                                  | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB                                                                                                                | 33         42         30         22         21         42         53         30         38         52         61         20         18         28                                                                                                                                                           | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>10<br>10<br>10<br>8<br>10<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385                                                                                                   | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>63.5<br>65.6<br>42.2                                                                                                                                | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13<br>28.09                                                                                                                                              |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A839<br>P0A6Z1<br>P77690<br>P0A9W3                                                                                                                                                                                                                                                                                              | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA                                                                                                        | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25                                                                                                                                                | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>10<br>10<br>10<br>8<br>10<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>8<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555                                                                                            | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>65.6<br>42.2<br>62.4                                                                                                                                | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13<br>28.09<br>28.07                                                                                                                                     |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A839<br>P0A6Z1<br>P77690<br>P0A9W3<br>P69707                                                                                                                                                                                                                                                                                    | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>spmA                                                                                                | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39                                                                                                                                     | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>10<br>10<br>10<br>8<br>10<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250                                                                                     | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>65.6<br>42.2<br>62.4<br>28.5                                                                                                                        | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13<br>28.09<br>28.07<br>27.9                                                                                                                             |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A839<br>P0A6Z1<br>P77690<br>P0A9W3<br>P62707<br>P0AG55                                                                                                                                                                                                                                                                          | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF                                                                                        | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47                                                                                                                          | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>10<br>10<br>10<br>8<br>10<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>9<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177                                                                              | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>65.6<br>42.2<br>62.4<br>28.5<br>18.9                                                                                                                | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13<br>28.09<br>28.07<br>27.9<br>27.67                                                                                                                    |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A839<br>P0A6Z1<br>P77690<br>P0A9W3<br>P62707<br>P0AG55<br>P60422                                                                                                                                                                                                                                                                | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rnB                                                                                 | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32                                                                                                               | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 8\\ 10\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 8\\ 10\\ 10\\ 9\\ 10\\ 10\\ 9\\ 10\\ 10\\ 9\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273                                                                       | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>65.6<br>42.2<br>62.4<br>28.5<br>18.9<br>29.8                                                                                                        | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13<br>28.09<br>28.07<br>27.9<br>27.67<br>27.63                                                                                                           |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A839<br>P0A6Z1<br>P77690<br>P0A9W3<br>P62707<br>P0AG55<br>P60422<br>P45577                                                                                                                                                                                                                                                      | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rplB<br>proO                                                                        | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32         31                                                                                                    | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 8\\ 10\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 8\\ 10\\ 10\\ 9\\ 10\\ 8\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273<br>232                                                                | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>65.6<br>42.2<br>62.4<br>28.5<br>18.9<br>29.8<br>25.9                                                                                                | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13<br>28.09<br>28.07<br>27.9<br>27.67<br>27.63<br>27.59                                                                                                  |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A839<br>P0A6Z1<br>P77690<br>P0A9W3<br>P62707<br>P0AG55<br>P60422<br>P45577<br>P0A9D8                                                                                                                                                                                                                                            | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rplB<br>proQ<br>dapD                                                                | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32         31         39                                                                                         | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>5<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 8\\ 10\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 8\\ 10\\ 10\\ 9\\ 10\\ 8\\ 9\\ 9\\ 10\\ 8\\ 9\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 8\\ 9\\ 10\\ 10\\ 8\\ 9\\ 10\\ 10\\ 8\\ 9\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>5<br>5<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273<br>232<br>274                                                         | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>65.6<br>42.2<br>62.4<br>28.5<br>18.9<br>29.8<br>25.9<br>29.9                                                                                        | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13<br>28.09<br>28.07<br>27.9<br>27.67<br>27.63<br>27.59<br>27.24                                                                                         |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A839<br>P0A6Z1<br>P77690<br>P0A9W3<br>P62707<br>P0AG55<br>P60422<br>P45577<br>P0A9D8<br>P0A901                                                                                                                                                                                                                                  | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rplB<br>proQ<br>dapD<br>arcA                                                        | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32         31         39         26                                                                              | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>7<br>9<br>8<br>8<br>7<br>5<br>8<br>8<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 8\\ 10\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 8\\ 10\\ 10\\ 9\\ 10\\ 8\\ 9\\ 7\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>5<br>5<br>8<br>8<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273<br>232<br>274<br>238                                                  | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>65.6<br>42.2<br>62.4<br>28.5<br>18.9<br>29.8<br>25.9<br>29.9<br>27.3                                                                                | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13<br>28.09<br>28.07<br>27.9<br>27.67<br>27.63<br>27.59<br>27.24<br>26.82                                                                                |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A839<br>P0A6Z1<br>P77690<br>P0A9W3<br>P62707<br>P0AG55<br>P60422<br>P45577<br>P0A9D8<br>P0A9Q1<br>P0A6H1                                                                                                                                                                                                                        | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rplB<br>proQ<br>dapD<br>arcA<br>clpX                                                | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32         31         39         26         33                                                                   | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>5<br>8<br>8<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 8\\ 10\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 8\\ 10\\ 10\\ 9\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 8\\ 9\\ 7\\ 10\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>5<br>8<br>8<br>4<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273<br>232<br>274<br>238<br>424                                           | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>65.6<br>42.2<br>62.4<br>28.5<br>18.9<br>29.8<br>25.9<br>29.9<br>27.3<br>46.3                                                                        | 30.04<br>30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13<br>28.09<br>28.07<br>27.9<br>27.67<br>27.63<br>27.59<br>27.24<br>26.82<br>26.65                                                              |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A839<br>P0A6Z1<br>P77690<br>P0A9W3<br>P62707<br>P0AG55<br>P60422<br>P45577<br>P0A9D8<br>P0A9Q1<br>P0A6H1<br>P0A6H1<br>P0A707                                                                                                                                                                                                    | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rplB<br>proQ<br>dapD<br>arcA<br>clpX<br>infC                                        | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32         31         39         26         33         42                                                        | $ \begin{array}{c} 10\\ 10\\ 9\\ 8\\ 9\\ 5\\ 9\\ 6\\ 6\\ 6\\ 6\\ 8\\ 8\\ 7\\ 9\\ 8\\ 8\\ 7\\ 5\\ 8\\ 4\\ 10\\ 5\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 8\\ 10\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 8\\ 10\\ 10\\ 9\\ 10\\ 8\\ 9\\ 7\\ 10\\ 7\\ 10\\ 7\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>6<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>5<br>8<br>8<br>4<br>10<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273<br>232<br>274<br>238<br>424<br>180                                    | 56.1 $68.1$ $47$ $24.7$ $13.1$ $45.3$ $28.9$ $17.7$ $9.5$ $63.5$ $65.6$ $42.2$ $62.4$ $28.5$ $18.9$ $29.8$ $25.9$ $29.8$ $25.9$ $29.9$ $27.3$ $46.3$ $20.6$                                                                      | 30.04<br>30.04<br>29.77<br>29.73<br>29.57<br>29.44<br>28.96<br>28.86<br>28.74<br>28.65<br>28.13<br>28.09<br>28.07<br>27.9<br>27.67<br>27.63<br>27.59<br>27.24<br>26.82<br>26.65<br>26.45                                                              |
| P0AFM6<br>P0A9A6<br>P35340<br>P0ADY1<br>P0AG30<br>P0A7L0<br>P0A7S9<br>P23893<br>P45523<br>P0A7J3<br>P0ACF0<br>P0A839<br>P0A6Z1<br>P77690<br>P0A6Z1<br>P77690<br>P0A9W3<br>P62707<br>P0AG55<br>P60422<br>P45577<br>P0A9D8<br>P0A9Q1<br>P0A6H1<br>P0A707<br>P0CB39                                                                                                                                                                                | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rplB<br>proQ<br>dapD<br>arcA<br>clpX<br>infC<br>eptC                                | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32         31         39         26         33         42         12                                             | $ \begin{array}{c} 10\\ 10\\ 9\\ 8\\ 9\\ 5\\ 9\\ 6\\ 6\\ 6\\ 8\\ 8\\ 7\\ 9\\ 8\\ 8\\ 7\\ 5\\ 8\\ 4\\ 10\\ 5\\ 7\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 8\\ 10\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 8\\ 10\\ 10\\ 9\\ 10\\ 8\\ 9\\ 7\\ 10\\ 7\\ 9\\ 9\\ 7\\ 10\\ 7\\ 9\\ 9\\ 9\\ 9\\ 7\\ 10\\ 7\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 7\\ 10\\ 7\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>6<br>8<br>8<br>7<br>9<br>8<br>8<br>7<br>9<br>8<br>8<br>7<br>5<br>8<br>4<br>10<br>5<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273<br>232<br>274<br>238<br>424<br>180<br>577                             | $\begin{array}{c} 56.1 \\ 68.1 \\ 47 \\ 24.7 \\ 13.1 \\ 45.3 \\ 28.9 \\ 17.7 \\ 9.5 \\ 63.5 \\ 65.6 \\ 42.2 \\ 62.4 \\ 28.5 \\ 18.9 \\ 29.8 \\ 25.9 \\ 29.8 \\ 25.9 \\ 29.9 \\ 27.3 \\ 46.3 \\ 20.6 \\ 66.6 \end{array}$         | 30.04 $30.04$ $30.04$ $29.77$ $29.73$ $29.57$ $29.44$ $28.96$ $28.86$ $28.74$ $28.65$ $28.13$ $28.09$ $28.07$ $27.9$ $27.67$ $27.63$ $27.59$ $27.24$ $26.82$ $26.65$ $26.45$ $26.43$                                                                  |
| POAFM6           POA9A6           P35340           POADY1           POAG30           POATL0           POA759           P23893           P45523           POA713           POACF0           P08839           P0A6Z1           P77690           P0A9W3           P62707           P0AG55           P60422           P45577           P0A9D8           P0A9Q1           P0A6H1           P0A707           P0A817                                   | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rplB<br>proQ<br>dapD<br>arcA<br>clpX<br>infC<br>eptC<br>metK                        | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32         31         39         26         33         42         12         22                                  | $ \begin{array}{c} 10\\ 10\\ 9\\ 8\\ 9\\ 5\\ 9\\ 6\\ 6\\ 6\\ 8\\ 8\\ 7\\ 9\\ 8\\ 8\\ 7\\ 9\\ 8\\ 8\\ 7\\ 5\\ 8\\ 4\\ 10\\ 5\\ 7\\ 6\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 8\\ 10\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 8\\ 10\\ 10\\ 9\\ 10\\ 8\\ 9\\ 7\\ 10\\ 7\\ 10\\ 7\\ 9\\ 8\\ 9\\ 7\\ 10\\ 7\\ 9\\ 8\\ 8\\ 9\\ 7\\ 10\\ 7\\ 9\\ 8\\ 8\\ 9\\ 7\\ 10\\ 7\\ 9\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} 10\\ 10\\ 9\\ 8\\ 9\\ 5\\ 9\\ 6\\ 6\\ 6\\ 8\\ 8\\ 7\\ 9\\ 8\\ 8\\ 7\\ 9\\ 8\\ 8\\ 7\\ 5\\ 8\\ 4\\ 10\\ 5\\ 7\\ 6\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273<br>232<br>274<br>238<br>424<br>180<br>577<br>384                      | $\begin{array}{c} 56.1 \\ 68.1 \\ 47 \\ 24.7 \\ 13.1 \\ 45.3 \\ 28.9 \\ 17.7 \\ 9.5 \\ 63.5 \\ 65.6 \\ 42.2 \\ 62.4 \\ 28.5 \\ 18.9 \\ 29.8 \\ 25.9 \\ 29.8 \\ 25.9 \\ 29.9 \\ 27.3 \\ 46.3 \\ 20.6 \\ 66.6 \\ 41.9 \end{array}$ | 30.04 $30.04$ $29.77$ $29.73$ $29.57$ $29.44$ $28.96$ $28.86$ $28.74$ $28.65$ $28.13$ $28.09$ $28.07$ $27.9$ $27.67$ $27.63$ $27.59$ $27.24$ $26.82$ $26.65$ $26.45$ $26.43$ $26.36$                                                                  |
| P0AFM6         P0A9A6         P35340         P0ADY1         P0AG30         P0ATL0         P0A759         P23893         P45523         P0A7J3         P0ACF0         P08839         P0A6Z1         P77690         P0A9W3         P62707         P0AG55         P60422         P45577         P0A9D8         P0A9Q1         P0A6H1         P0A707         P0A817                                                                                 | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rplB<br>proQ<br>dapD<br>arcA<br>clpX<br>infC<br>eptC<br>metK<br>hflC                | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32         31         39         26         33         42         12         22         29                       | $ \begin{array}{c} 10\\ 10\\ 9\\ 8\\ 9\\ 5\\ 9\\ 6\\ 6\\ 6\\ 8\\ 8\\ 7\\ 9\\ 8\\ 8\\ 7\\ 9\\ 8\\ 8\\ 7\\ 5\\ 8\\ 4\\ 10\\ 5\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\$                                                                                                | $ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 8\\ 10\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 8\\ 10\\ 10\\ 10\\ 9\\ 10\\ 8\\ 9\\ 7\\ 10\\ 7\\ 9\\ 8\\ 9\\ 7\\ 10\\ 7\\ 9\\ 8\\ 9\\ 7\\ 10\\ 7\\ 9\\ 8\\ 9\\ 7\\ 10\\ 7\\ 9\\ 8\\ 9\\ 9\\ 9\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273<br>232<br>274<br>238<br>424<br>180<br>577<br>384<br>334               | $\begin{array}{c} 56.1 \\ 68.1 \\ 47 \\ 24.7 \\ 13.1 \\ 45.3 \\ 28.9 \\ 17.7 \\ 9.5 \\ 63.5 \\ 65.6 \\ 42.2 \\ 62.4 \\ 28.5 \\ 18.9 \\ 29.8 \\ 25.9 \\ 29.9 \\ 27.3 \\ 46.3 \\ 20.6 \\ 66.6 \\ 41.9 \\ 37.6 \end{array}$         | 30.04 $30.04$ $29.77$ $29.73$ $29.57$ $29.44$ $28.96$ $28.86$ $28.74$ $28.65$ $28.13$ $28.09$ $28.07$ $27.9$ $27.67$ $27.63$ $27.59$ $27.24$ $26.82$ $26.65$ $26.45$ $26.43$ $26.36$ $26.25$                                                          |
| POAFM6           POA9A6           P35340           POADY1           POAG30           POATL0           POA759           P23893           P45523           POA713           POACF0           P08839           P0A6Z1           P77690           P0A9W3           P62707           P0AG55           P60422           P45577           P0A9D8           P0A9Q1           P0A6H1           P0A707           P0A817           P0A8C3           P0A707 | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rplB<br>proQ<br>dapD<br>arcA<br>clpX<br>infC<br>eptC<br>metK<br>hflC<br>rpsD        | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32         31         39         26         33         42         12         22         29         38            | $     \begin{array}{r}       10 \\       10 \\       9 \\       8 \\       9 \\       5 \\       9 \\       5 \\       9 \\       6 \\       6 \\       6 \\       8 \\       7 \\       9 \\       8 \\       7 \\       9 \\       8 \\       7 \\       5 \\       8 \\       4 \\       10 \\       5 \\       7 \\       6 \\       7 \\       8 \\       8 \\       7 \\       5 \\       8 \\       4 \\       10 \\       5 \\       7 \\       6 \\       7 \\       8 \\       8 \\       7 \\       7 \\       6 \\       7 \\       8 \\       8 \\       7 \\       7 \\       6 \\       7 \\       8 \\       8 \\       7 \\       7 \\       6 \\       7 \\       8 \\       8 \\       7 \\       7 \\       6 \\       7 \\       8 \\       8 \\       7 \\       7 \\       6 \\       7 \\       8 \\       8 \\       7 \\       7 \\       6 \\       7 \\       8 \\       8 \\       7 \\       7 \\       6 \\       7 \\       8 \\       8 \\       7 \\       7 \\       6 \\       7 \\       8 \\       8 \\       7 \\       7 \\       6 \\       7 \\       8 \\       7 \\       7 \\       8 \\       7 \\       7 \\       8 \\       7 \\       7 \\       7 \\       8 \\       7 \\       7 \\       7 \\       7 \\       7 \\       6 \\       7 \\       8 \\       7 \\       7 \\       7 \\       8 \\       7 \\       7 \\       7 \\       7 \\       7 \\       8 \\       7 \\       7 \\       7 \\       7 \\       7 \\       8 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\ $ | $ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 8\\ 10\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>8<br>8<br>7<br>9<br>8<br>8<br>7<br>9<br>8<br>8<br>7<br>5<br>8<br>4<br>10<br>5<br>7<br>6<br>7<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273<br>232<br>274<br>238<br>424<br>180<br>577<br>384<br>334<br>206        | $\begin{array}{c} 56.1 \\ 68.1 \\ 47 \\ 24.7 \\ 13.1 \\ 45.3 \\ 28.9 \\ 17.7 \\ 9.5 \\ 63.5 \\ 65.6 \\ 42.2 \\ 62.4 \\ 28.5 \\ 18.9 \\ 29.8 \\ 25.9 \\ 29.9 \\ 27.3 \\ 46.3 \\ 20.6 \\ 66.6 \\ 41.9 \\ 37.6 \\ 23.5 \end{array}$ | 30.04 $30.04$ $29.77$ $29.73$ $29.57$ $29.44$ $28.96$ $28.86$ $28.74$ $28.65$ $28.13$ $28.09$ $28.07$ $27.9$ $27.67$ $27.63$ $27.59$ $27.24$ $26.82$ $26.65$ $26.45$ $26.43$ $26.36$ $26.25$ $26.01$                                                  |
| P0AFM6         P0A9A6         P35340         P0ADY1         P0AG30         P0ATL0         P0A759         P23893         P45523         P0A7J3         P0ACF0         P08839         P0A6Z1         P77690         P0A9W3         P62707         P0AG55         P60422         P45577         P0A9D8         P0A9Q1         P0A6H1         P0A707         P0CB39         P0A8L17         P0A8C3         P0A707                                   | pspA<br>ftsZ<br>ahpF<br>ppiD<br>rho<br>rplA<br>rpsM<br>hemL<br>fkpA<br>rplJ<br>hupA<br>ptsI<br>hscA<br>arnB<br>ettA<br>gpmA<br>rplF<br>rplB<br>proQ<br>dapD<br>arcA<br>clpX<br>infC<br>eptC<br>metK<br>hflC<br>rpsD<br>tpx | 33         42         30         22         21         42         53         30         38         52         61         20         18         28         25         39         47         32         31         39         26         33         42         12         22         29         38         54 | $     \begin{array}{r}       10 \\       10 \\       9 \\       8 \\       9 \\       5 \\       9 \\       5 \\       9 \\       6 \\       6 \\       6 \\       8 \\       7 \\       9 \\       8 \\       7 \\       5 \\       8 \\       4 \\       10 \\       5 \\       7 \\       6 \\       7 \\       8 \\       5 \\       5 \\       8 \\       4 \\       10 \\       5 \\       7 \\       6 \\       7 \\       8 \\       5 \\       5 \\       8 \\       5 \\       5 \\       5 \\       8 \\       5 \\       5 \\       5 \\       8 \\       5 \\       5 \\       5 \\       5 \\       6 \\       7 \\       8 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\ $ | $     \begin{array}{r}       10 \\       10 \\       10 \\       10 \\       8 \\       10 \\       8 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       7 \\       10 \\       7 \\       9 \\       8 \\       9 \\       7 \\       10 \\       7 \\       9 \\       8 \\       9 \\       7 \\       10 \\       7 \\       9 \\       8 \\       9 \\       9 \\       7 \\       10 \\       7 \\       9 \\       8 \\       9 \\       9 \\       7 \\       10 \\       7 \\       9 \\       8 \\       9 \\       9 \\       9 \\       6 \\       6 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\     $ | 10<br>10<br>9<br>8<br>9<br>5<br>9<br>6<br>6<br>6<br>8<br>8<br>7<br>9<br>8<br>8<br>7<br>9<br>8<br>8<br>7<br>5<br>8<br>4<br>10<br>5<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>9<br>8<br>8<br>8<br>7<br>7<br>9<br>8<br>8<br>8<br>7<br>7<br>9<br>8<br>8<br>8<br>7<br>7<br>9<br>8<br>8<br>8<br>7<br>7<br>9<br>8<br>8<br>8<br>7<br>7<br>9<br>8<br>8<br>8<br>7<br>7<br>9<br>8<br>8<br>8<br>7<br>7<br>9<br>8<br>8<br>8<br>7<br>7<br>9<br>8<br>8<br>8<br>7<br>7<br>5<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>5<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>8<br>7<br>7<br>6<br>7<br>6<br>7<br>8<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>5<br>7<br>8<br>8<br>5<br>7<br>8<br>8<br>5<br>7<br>8<br>8<br>5<br>7<br>8<br>8<br>5<br>7<br>8<br>8<br>5<br>7<br>8<br>8<br>5<br>7<br>8<br>5<br>7<br>8<br>5<br>5<br>7<br>8<br>5<br>5<br>7<br>8<br>5<br>5<br>7<br>8<br>5<br>5<br>5<br>7<br>8<br>5<br>5<br>5<br>7<br>8<br>5<br>5<br>5<br>5<br>5<br>7<br>8<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 383<br>521<br>623<br>419<br>234<br>118<br>426<br>270<br>165<br>90<br>575<br>616<br>385<br>555<br>250<br>177<br>273<br>232<br>274<br>238<br>424<br>180<br>577<br>384<br>334<br>206<br>168 | 56.1<br>68.1<br>47<br>24.7<br>13.1<br>45.3<br>28.9<br>17.7<br>9.5<br>63.5<br>65.6<br>42.2<br>62.4<br>28.5<br>18.9<br>29.8<br>25.9<br>29.9<br>27.3<br>46.3<br>20.6<br>66.6<br>41.9<br>37.6<br>23.5<br>17.8                        | $\begin{array}{c} 30.04\\ 30.04\\ 30.04\\ 29.77\\ 29.73\\ 29.57\\ 29.44\\ 28.96\\ 28.86\\ 28.74\\ 28.65\\ 28.13\\ 28.09\\ 28.07\\ 27.9\\ 27.67\\ 27.63\\ 27.59\\ 27.24\\ 26.82\\ 26.65\\ 26.43\\ 26.43\\ 26.36\\ 26.25\\ 26.01\\ 25.71\\ \end{array}$ |

| D04082                               | aatD                                 | 22                        | 0                     | 0                     | 0                     | 216                      | 27 4                         | 25 6                                     |
|--------------------------------------|--------------------------------------|---------------------------|-----------------------|-----------------------|-----------------------|--------------------------|------------------------------|------------------------------------------|
| P0A955                               | gaiD                                 | 25                        | 0                     | 9                     | 0                     | 540                      | 57.4                         | 23.0                                     |
| P37095                               | pepB                                 | 26                        | 8                     | 8                     | 8                     | 427                      | 46.2                         | 25.58                                    |
| P02359                               | rpsG                                 | 42                        | 5                     | 7                     | 5                     | 179                      | 20                           | 25.47                                    |
| DOAE73                               | minD                                 | 40                        | 8                     | 8                     | 8                     | 270                      | 20.6                         | 23.06                                    |
| FUALZS                               |                                      | 40                        | 0                     | 0                     | 0                     | 270                      | 29.0                         | 23.90                                    |
| P30843                               | basR                                 | 35                        | 5                     | 7                     | 5                     | 222                      | 25                           | 23.66                                    |
| P77395                               | cnoX                                 | 41                        | 7                     | 8                     | 7                     | 284                      | 31.8                         | 23.57                                    |
| DOAOKO                               | dyD                                  | 40                        | 5                     | 0                     | 5                     | 106                      | 20.8                         | 22.22                                    |
| PUA9K9                               | siyD                                 | 49                        | 3                     | 0                     | 5                     | 190                      | 20.8                         | 23.22                                    |
| P69783                               | crr                                  | 41                        | 5                     | 7                     | 5                     | 169                      | 18.2                         | 22.9                                     |
| P33195                               | gcvP                                 | 11                        | 6                     | 7                     | 6                     | 957                      | 104.3                        | 22.64                                    |
| DC0429                               |                                      | 22                        | 2                     |                       | 2                     | 200                      | 22.2                         | 22.50                                    |
| P00438                               | rpiC                                 | 23                        | 3                     | 0                     | 3                     | 209                      | 22.2                         | 22.50                                    |
| P00956                               | ileS                                 | 14                        | 8                     | 8                     | 8                     | 938                      | 104.2                        | 22.55                                    |
| P0A8T7                               | rpoC                                 | 8                         | 9                     | 9                     | 9                     | 1407                     | 155.1                        | 22.43                                    |
| $D0 \wedge 7W1$                      | -roo                                 | 27                        | 4                     | 7                     | 4                     | 167                      | 17.6                         | 22.20                                    |
| PUA/W1                               | TPSE                                 | 57                        | 4                     | /                     | 4                     | 107                      | 17.0                         | 22.30                                    |
| P0AFG0                               | nusG                                 | 55                        | 6                     | 7                     | 6                     | 181                      | 20.5                         | 22.3                                     |
| P60723                               | rplD                                 | 32                        | 4                     | 6                     | 4                     | 201                      | 22.1                         | 22.13                                    |
| D24192                               |                                      | 22                        | 0                     | 0                     | 0                     | 440                      | 40.2                         | 21.06                                    |
| F 24102                              | acce                                 | 22                        | 0                     | 0                     | 0                     | 449                      | 49.3                         | 21.90                                    |
| P0ABH7                               | gltA                                 | 19                        | 6                     | 7                     | 6                     | 427                      | 48                           | 21.48                                    |
| P0AAB6                               | galF                                 | 36                        | 6                     | 7                     | 6                     | 297                      | 32.8                         | 20.94                                    |
| D30748                               | monD                                 | 26                        | 1                     | 5                     | 1                     | Q1                       | 88                           | 20.01                                    |
| 1 30740                              | moaD                                 | 20                        | 1                     | 5                     | 1                     | 01                       | 0.0                          | 20.91                                    |
| P0AA10                               | rplM                                 | 51                        | 6                     | 7                     | 6                     | 142                      | 16                           | 20.53                                    |
| P13029                               | katG                                 | 15                        | 7                     | 7                     | 7                     | 726                      | 80                           | 20.48                                    |
| D60624                               | rolV                                 | 56                        | 5                     | 6                     | 5                     | 104                      | 11.2                         | 20.46                                    |
| F00024                               | пріх                                 | 50                        | 5                     | 0                     | 5                     | 104                      | 11.5                         | 20.40                                    |
| P17169                               | glmS                                 | 18                        | 6                     | 6                     | 6                     | 609                      | 66.9                         | 20.3                                     |
| P76658                               | hldE                                 | 22                        | 8                     | 8                     | 8                     | 477                      | 51                           | 20.02                                    |
| D21170                               | cro A                                | 12                        | 6                     | 6                     | 6                     | 659                      | 72.0                         | 10.77                                    |
| F211/0                               | sper                                 | 12                        | 0                     | 0                     | 0                     | 038                      | 13.9                         | 19.//                                    |
| P69441                               | adk                                  | 31                        | 6                     | 7                     | 6                     | 214                      | 23.6                         | 19.57                                    |
| P0A9O9                               | asd                                  | 26                        | 6                     | 7                     | 6                     | 367                      | 40                           | 19.47                                    |
| D0 A 7D 1                            | roll                                 | 13                        | 6                     | 7                     | 6                     | 1/0                      | 15.8                         | 10.31                                    |
| TUA/KI                               | ipii                                 | 45                        | 0                     | 1                     | 0                     | 149                      | 15.8                         | 19.31                                    |
| P23836                               | phoP                                 | 44                        | 6                     | 6                     | 6                     | 223                      | 25.5                         | 19.27                                    |
| P0A9M8                               | pta                                  | 11                        | 6                     | 7                     | 6                     | 714                      | 77.1                         | 19.26                                    |
| POAC38                               | asnA                                 | 15                        | 6                     | 7                     | 6                     | 478                      | 52.3                         | 19.06                                    |
| TOAC50                               | азрл                                 | 15                        | 0                     | 1                     | 0                     | 470                      | 52.5                         | 19.00                                    |
| P0AB18                               | суоВ                                 | 9                         | 4                     | 6                     | 4                     | 663                      | 74.3                         | 18.6                                     |
| P07014                               | sdhB                                 | 26                        | 5                     | 6                     | 5                     | 238                      | 26.8                         | 18.15                                    |
| P76422                               | thiD                                 | 20                        | 3                     | 5                     | 3                     | 266                      | 28.6                         | 18.12                                    |
| 170422<br>D04017                     | unD<br>V                             | 20                        | 5                     | 5                     | 5                     | 200                      | 20.0                         | 10.12                                    |
| P0A917                               | ompX                                 | 36                        | 5                     | 5                     | 5                     | 1/1                      | 18.6                         | 18.1                                     |
| P0AB91                               | aroG                                 | 25                        | 6                     | 6                     | 6                     | 350                      | 38                           | 18.02                                    |
| P04953                               | fahR                                 | 14                        | 3                     | 5                     | 3                     | 406                      | 42.6                         | 17.85                                    |
| DOA D76                              | 1d0D                                 | 15                        | 5                     | 5                     | 5                     | 400                      | 47.0                         | 17.05                                    |
| P0ABZ6                               | surA                                 | 15                        | 5                     | 0                     | 3                     | 428                      | 47.3                         | 17.79                                    |
| P0A8F0                               | upp                                  | 34                        | 5                     | 6                     | 5                     | 208                      | 22.5                         | 17.79                                    |
| P27248                               | gevT                                 | 26                        | 6                     | 6                     | 6                     | 364                      | 40.1                         | 17 73                                    |
| D02020                               | 10                                   | 17                        | 6                     | 6                     | 0                     | 402                      | 40.1<br>52.7                 | 17.75                                    |
| P02930                               | tolC                                 | 1/                        | 0                     | 0                     | 0                     | 493                      | 53.7                         | 1/./1                                    |
| P62768                               | yaeH                                 | 45                        | 6                     | 6                     | 6                     | 128                      | 15.1                         | 17.63                                    |
| P0A8L1                               | serS                                 | 18                        | 6                     | 6                     | 6                     | 430                      | 48.4                         | 17 35                                    |
| D0000C4                              |                                      | 0                         | 7                     | 7                     | 7                     | 002                      | 00                           | 17.20                                    |
| P00804                               | ppc                                  | 9                         | /                     | /                     | 1                     | 883                      | 99                           | 17.32                                    |
| P07639                               | aroB                                 | 21                        | 4                     | 5                     | 4                     | 362                      | 38.9                         | 16.98                                    |
| P0A805                               | frr                                  | 45                        | 6                     | 6                     | 6                     | 185                      | 20.6                         | 16.85                                    |
| D15042                               | ligh                                 | 10                        | 5                     | 6                     | 5                     | 671                      | 72.6                         | 16.91                                    |
| 115042                               | ngA                                  | 10                        | 5                     | 0                     | 5                     | 0/1                      | 75.0                         | 10.01                                    |
| P00959                               | metG                                 | 10                        | 4                     | 5                     | 4                     | 677                      | /6.2                         | 16.62                                    |
| P0AB71                               | fbaA                                 | 18                        | 4                     | 5                     | 4                     | 359                      | 39.1                         | 16.4                                     |
| DOAED2                               | deal                                 | 22                        | 6                     | 6                     | 5                     | 402                      | 44.4                         | 16.17                                    |
| DOOOC 1                              | uach d                               | 23                        | -                     | -                     | 5                     | +05                      | 47.1                         | 10.17                                    |
| P00934                               | thrC                                 | 24                        | 5                     | 5                     | 5                     | 428                      | 47.1                         | 15.86                                    |
| P15288                               | pepD                                 | 16                        | 5                     | 5                     | 5                     | 485                      | 52.9                         | 15.81                                    |
| P05791                               | ilvD                                 | 11                        | 5                     | 5                     | 5                     | 616                      | 65.5                         | 15 52                                    |
| 105771                               | iivD                                 | 11                        | -                     | 5                     | -                     | 510                      | 05.5                         | 15.52                                    |
| POAC33                               | fumA                                 | 14                        | 5                     | 5                     | 5                     | 548                      | 60.3                         | 15.34                                    |
| P0AE88                               | cpxR                                 | 20                        | 3                     | 4                     | 3                     | 232                      | 26.3                         | 15.3                                     |
| P17846                               | cvel                                 | 14                        | 4                     | 4                     | 4                     | 570                      | 64                           | 15.23                                    |
|                                      |                                      | 52                        | 4                     | -                     | 4                     | 07                       | 10.4                         | 14.00                                    |
| PUA6F9                               | groES                                | 53                        | 4                     | 5                     | 4                     | 97                       | 10.4                         | 14.89                                    |
| P00370                               | gdhA                                 | 15                        | 4                     | 4                     | 4                     | 447                      | 48.6                         | 14.88                                    |
| POAEO3                               | olnH                                 | 19                        | 3                     | 4                     | 3                     | 248                      | 27.2                         | 14.84                                    |
|                                      | 5 mil                                | 10                        | 4                     | -                     | 4                     | 500                      | 54.9                         | 14.04                                    |
| PUCUL/                               | proP                                 | 10                        | 4                     | 5                     | 4                     | 500                      | 54.8                         | 14.84                                    |
| P0ABU2                               | ychF                                 | 18                        | 5                     | 5                     | 5                     | 363                      | 39.6                         | 14.7                                     |
| P30845                               |                                      |                           |                       | -                     | 5                     | 547                      | 61.6                         | 14.62                                    |
|                                      | eptA                                 | 11                        | 5                     | 5                     | .)                    | -//                      | (/1.)/                       | 17.04                                    |
| D0 A 7E5                             | eptA                                 | 11                        | 5                     | 5                     | 5                     | 545                      | 60.2                         | 14.61                                    |
| P0A7E5                               | eptA<br>pyrG                         | 11<br>13                  | 5 5                   | 5                     | 5                     | 545                      | 60.3                         | 14.61                                    |
| P0A7E5<br>P0ABA4                     | eptA<br>pyrG<br>atpH                 | 11<br>13<br>30            | 5<br>5<br>3           | 5<br>5<br>4           | 5 3                   | 545<br>177               | 60.3<br>19.3                 | 14.61<br>14.47                           |
| P0A7E5<br>P0ABA4<br>P0A907           | eptA<br>pyrG<br>atpH<br>adhE         | 11<br>13<br>30<br>9       | 5<br>5<br>3<br>6      | 5<br>5<br>4<br>6      | 5<br>3<br>6           | 545<br>177<br>891        | 60.3<br>19.3<br>96.1         | 14.61<br>14.47<br>14.4                   |
| P0A7E5<br>P0ABA4<br>P0A9Q7<br>P0A9C5 | eptA<br>pyrG<br>atpH<br>adhE<br>glpA | 11<br>13<br>30<br>9<br>20 | 5<br>5<br>3<br>6<br>5 | 5<br>5<br>4<br>6<br>5 | 5<br>5<br>3<br>6<br>5 | 545<br>177<br>891<br>469 | 60.3<br>19.3<br>96.1         | 14.62<br>14.61<br>14.47<br>14.4<br>14.25 |
| P0A7E5<br>P0ABA4<br>P0A9Q7<br>P0A9C5 | eptA<br>pyrG<br>atpH<br>adhE<br>glnA | 11<br>13<br>30<br>9<br>20 | 5<br>5<br>3<br>6<br>5 | 5<br>5<br>4<br>6<br>5 | 5<br>3<br>6<br>5      | 545<br>177<br>891<br>469 | 60.3<br>19.3<br>96.1<br>51.9 | 14.61<br>14.47<br>14.4<br>14.25          |

| P02413 | rplO       | 34 | 4 | 5 | 4 | 144  | 15    | 14.11 |
|--------|------------|----|---|---|---|------|-------|-------|
| P21889 | aspS       | 8  | 4 | 5 | 4 | 590  | 65.9  | 14.06 |
| P0A9X9 | cspA       | 53 | 3 | 4 | 3 | 70   | 7.4   | 14.03 |
| P0A717 | rplK       | 33 | 4 | 5 | 4 | 142  | 14.9  | 13.98 |
| P0A7G2 | rbfA       | 38 | 4 | 5 | 4 | 133  | 15.1  | 13.73 |
| P37440 | исрА       | 21 | 5 | 5 | 5 | 263  | 27.8  | 13.63 |
| P0A8M3 | thrS       | 8  | 5 | 5 | 5 | 642  | 74    | 13.58 |
| P00968 | carB       | 6  | 5 | 5 | 5 | 1073 | 117.8 | 13.53 |
| P04993 | fhp        | 24 | 5 | 5 | 5 | 332  | 36.8  | 13.00 |
| P16703 | oveM       | 24 | 1 | 1 | 1 | 303  | 32.6  | 13.47 |
| P10703 | bpt        | 18 | 2 | 4 | 4 | 178  | 20.1  | 13.44 |
| POA9M2 | lin A      | 10 | 2 | 4 | 3 | 221  | 20.1  | 13.41 |
| P00/10 | npA<br>h:T | 14 | 5 | 4 | 5 | 521  | 50 8  | 13.33 |
| P0A905 | ybri       | 10 | 5 | 5 | 5 | 330  | 39.8  | 13.27 |
| P25721 | serc       | 19 | 5 | 5 | 5 | 302  | 39.8  | 13.12 |
| P09546 | putA       | 5  | 5 | 5 | 5 | 1320 | 145./ | 12.97 |
| P2/298 | pric       | 15 | 5 | 5 | 5 | 080  | //.1  | 12.88 |
| P03841 | mailvi     | 31 | 5 | 5 | 5 | 306  | 31.9  | 12.84 |
| POABJI | cyoA       | 26 | 4 | 4 | 4 | 315  | 34.9  | 12.72 |
| P25553 | aldA       | 11 | 4 | 4 | 4 | 479  | 52.2  | 12.65 |
| POA6Y5 | hslO       | 21 | 4 | 4 | 4 | 292  | 32.5  | 12.61 |
| P/6558 | maeB       | 11 | 5 | 5 | 5 | 759  | 82.4  | 12.59 |
| P61714 | ribE       | 40 | 4 | 4 | 4 | 156  | 16.1  | 12.53 |
| P25519 | hflX       | 7  | 2 | 4 | 2 | 426  | 48.3  | 12.42 |
| P0A6G7 | clpP       | 20 | 2 | 3 | 2 | 207  | 23.2  | 12.4  |
| P0A7W7 | rpsH       | 40 | 5 | 5 | 5 | 130  | 14.1  | 12.26 |
| P0A6Q3 | fabA       | 30 | 5 | 5 | 5 | 172  | 19    | 12.26 |
| P39342 | yjgR       | 13 | 4 | 4 | 4 | 500  | 54.3  | 12.03 |
| P0A912 | pal        | 24 | 3 | 4 | 3 | 173  | 18.8  | 11.9  |
| P37665 | yiaD       | 26 | 3 | 3 | 3 | 219  | 22.2  | 11.75 |
| P0AAA1 | yagU       | 26 | 4 | 4 | 4 | 204  | 23    | 11.65 |
| P08312 | pheS       | 12 | 3 | 4 | 3 | 327  | 36.8  | 11.63 |
| P76177 | ydgH       | 21 | 4 | 4 | 4 | 314  | 33.9  | 11.63 |
| P45565 | ais        | 28 | 4 | 4 | 4 | 200  | 22.2  | 11.61 |
| P0A6S0 | flgH       | 21 | 4 | 4 | 4 | 232  | 24.6  | 11.57 |
| P0A6C8 | argB       | 16 | 2 | 4 | 2 | 258  | 27.1  | 11.53 |
| P0C054 | ibpA       | 33 | 4 | 4 | 4 | 137  | 15.8  | 11.53 |
| P0ACP5 | gntR       | 14 | 3 | 4 | 3 | 331  | 36.4  | 11.51 |
| P0AED0 | uspA       | 50 | 3 | 3 | 3 | 144  | 16.1  | 11.25 |
| P04825 | pepN       | 7  | 4 | 4 | 4 | 870  | 98.9  | 11.18 |
| P0AGI1 | rbsC       | 15 | 3 | 4 | 3 | 321  | 33.4  | 11.12 |
| P0AG90 | secD       | 7  | 4 | 4 | 3 | 615  | 66.6  | 11.1  |
| P76472 | arnD       | 22 | 4 | 4 | 4 | 296  | 33.1  | 11.09 |
| P0A715 | kdsA       | 19 | 3 | 3 | 3 | 284  | 30.8  | 10.96 |
| P0A6R0 | fabH       | 21 | 4 | 4 | 4 | 317  | 33.5  | 10.85 |
| P0AGJ9 | tyrS       | 16 | 4 | 4 | 4 | 424  | 47.5  | 10.75 |
| P0C058 | ibpB       | 35 | 4 | 4 | 4 | 142  | 16.1  | 10.73 |
| P0AE06 | acrA       | 16 | 4 | 4 | 4 | 397  | 42.2  | 10.64 |
| P0AAI9 | fabD       | 21 | 3 | 3 | 3 | 309  | 32.4  | 10.64 |
| P0A7T3 | rpsP       | 52 | 3 | 3 | 3 | 82   | 9.2   | 10.63 |
| P30850 | rnb        | 7  | 4 | 4 | 4 | 644  | 72.4  | 10.6  |
| P77804 | ydgA       | 9  | 4 | 4 | 4 | 502  | 54.7  | 10.57 |
| P21599 | pykA       | 10 | 3 | 3 | 3 | 480  | 51.3  | 10.48 |
| P09127 | hemX       | 10 | 3 | 4 | 3 | 393  | 42.9  | 10.37 |
| P0A749 | murA       | 12 | 4 | 4 | 4 | 419  | 44.8  | 10.32 |
| P0A7R5 | rpsJ       | 34 | 3 | 4 | 3 | 103  | 11.7  | 10.29 |
| P76268 | kdgR       | 21 | 4 | 4 | 4 | 263  | 30    | 10.28 |
| P39831 | ydfG       | 18 | 3 | 3 | 3 | 248  | 27.2  | 10.19 |
| P0A7X3 | rpsI       | 25 | 3 | 4 | 3 | 130  | 14.8  | 9.91  |
| P0ADZ4 | rpsO       | 42 | 3 | 3 | 2 | 89   | 10.3  | 9.88  |
| P37188 | gatB       | 47 | 2 | 3 | 2 | 94   | 10.2  | 9.76  |
| P0AGB6 | rpoE       | 16 | 2 | 3 | 2 | 191  | 21.7  | 9.76  |
| P08390 | usg        | 20 | 3 | 3 | 3 | 337  | 36.3  | 9.71  |
| P0A858 | tpiA       | 26 | 3 | 3 | 3 | 255  | 27    | 9.65  |
| P0AF08 | mrp        | 14 | 3 | 3 | 3 | 369  | 39.9  | 9.63  |
| P33218 | yebE       | 12 | 2 | 3 | 2 | 219  | 23.7  | 9.59  |
| P69776 | lpp        | 33 | 2 | 3 | 2 | 78   | 8.3   | 9.58  |
| P07862 | ddlB       | 17 | 4 | 4 | 4 | 306  | 32.8  | 9.56  |

| P0A7L3   | rplT          | 23 | 3 | 4 | 3 | 118        | 13.5  | 9.53 |
|----------|---------------|----|---|---|---|------------|-------|------|
| P0AB80   | ilvE          | 15 | 3 | 3 | 3 | 309        | 34.1  | 9.41 |
| P0A A 16 | omnP          | 21 | 3 | 3 | 3 | 230        | 27.3  | 0.34 |
| D29490   | ompix<br>nfoD | 21 | 2 | 2 | 2 | 237        | 27.5  | 0.22 |
| F 30409  | IIISD         | 16 | 3 | 3 | 3 | 217        | 23.9  | 9.32 |
| P0AF24   | nagD          | 16 | 2 | 3 | 2 | 250        | 27.1  | 9.32 |
| P60906   | hisS          | 10 | 3 | 3 | 3 | 424        | 47    | 9.27 |
| P09372   | grpE          | 24 | 2 | 3 | 2 | 197        | 21.8  | 9.1  |
| P0A7U7   | rpsT          | 36 | 4 | 4 | 4 | 87         | 9.7   | 9.09 |
| P33363   | bglX          | 5  | 3 | 3 | 3 | 765        | 83.4  | 9.05 |
| P0A7B8   | hslV          | 18 | 2 | 3 | 2 | 176        | 19.1  | 9.04 |
| P00448   | sodA          | 17 | 2 | 3 | 2 | 206        | 23.1  | 9.02 |
| POARD8   | accB          | 33 | 3 | 3 | - | 156        | 167   | 9.01 |
| D00561   | the A         | 0  | 3 | 3 | 1 | 820        | 80.1  | 2.00 |
| POUSUI   | LIIA<br>1.:-I | 0  | 4 | 4 | 4 | 820<br>260 | 09.1  | 0.99 |
| POAEUU   | nisj          | 1/ | 3 | 3 | 3 | 260        | 28.5  | 8.95 |
| P37051   | purU          | 20 | 3 | 3 | 3 | 280        | 31.9  | 8.89 |
| P77757   | arnC          | 14 | 3 | 3 | 3 | 322        | 36.3  | 8.89 |
| P0AEI1   | miaB          | 12 | 3 | 3 | 3 | 474        | 53.6  | 8.83 |
| P31224   | acrB          | 4  | 3 | 3 | 3 | 1049       | 113.5 | 8.76 |
| P0A6J8   | ddlA          | 11 | 3 | 3 | 3 | 364        | 39.3  | 8.76 |
| P68919   | rplY          | 30 | 3 | 3 | 3 | 94         | 10.7  | 8.72 |
| P00803   | lenB          | 11 | 3 | 3 | 3 | 324        | 35.9  | 8 72 |
| P0A813   | vaaA          | 22 | 3 | 3 | 3 | 258        | 20.6  | 8.72 |
| DOAEU7   | yaara         | 10 | 1 | 2 | 1 | 161        | 17.7  | 0.71 |
| PUAEU/   | ѕкр           | 10 | 1 | 3 | 1 | 101        | 17.7  | 8.04 |
| P07813   | leuS          | .7 | 3 | 3 | 3 | 860        | 97.2  | 8.59 |
| P0A908   | mipA          | 17 | 3 | 3 | 3 | 248        | 27.8  | 8.46 |
| P17117   | nfsA          | 20 | 3 | 3 | 3 | 240        | 26.8  | 8.46 |
| P76576   | yfgM          | 26 | 3 | 3 | 3 | 206        | 22.2  | 8.45 |
| P07913   | tdh           | 11 | 3 | 3 | 3 | 341        | 37.2  | 8.42 |
| P0ADY7   | rplP          | 22 | 2 | 3 | 2 | 136        | 15.3  | 8.37 |
| P0ABN1   | døkA          | 17 | 2 | 3 | 2 | 122        | 13.2  | 8.33 |
| P77488   | dxs           | 7  | 3 | 3 | 3 | 620        | 67.6  | 8.28 |
| D61517   | 000           | 16 | 2 | 2 | 2 | 220        | 25.1  | 8.20 |
| P01317   |               | 10 | 3 | 3 | 3 | 220        | 23.1  | 0.23 |
| P2/306   | stnA          | 8  | 2 | 2 | 2 | 400        | 51.5  | 8.22 |
| P0A855   | tolB          | 18 | 3 | 3 | 3 | 430        | 45.9  | 8.16 |
| P0ABA0   | atpF          | 24 | 3 | 3 | 3 | 156        | 17.3  | 8.08 |
| P0A7U3   | rpsS          | 21 | 2 | 3 | 2 | 92         | 10.4  | 8.03 |
| P0AEP3   | galU          | 11 | 2 | 3 | 2 | 302        | 32.9  | 7.98 |
| P0A6K3   | def           | 15 | 2 | 3 | 2 | 169        | 19.3  | 7.88 |
| P0AES4   | gyrA          | 3  | 2 | 2 | 2 | 875        | 96.9  | 7.8  |
| P76027   | oppD          | 11 | 2 | 2 | 2 | 337        | 37.2  | 7.8  |
| P0A9I6   | rbsK          | 10 | 2 | 3 | 2 | 309        | 32.3  | 7.66 |
| P40874   | solA          | 12 | 3 | 3 | 3 | 372        | 40.9  | 7 57 |
|          | nuol          | 12 | 3 | 3 | 3 | 180        | 20.5  | 7.56 |
| D27002   | altI          | 14 | 2 | 2 | 2 | 202        | 20.5  | 7.50 |
| P3/902   | giu           | 14 | 3 | 3 | 5 | 302        | 33.4  | 7.33 |
| POA/M2   | rpmB          | 13 | 1 | 3 | 1 | /8         | 9     | 7.49 |
| P0AG63   | rpsQ          | 23 | 1 | 2 | l | 84         | 9.7   | 7.48 |
| P0ADY3   | rplN          | 30 | 2 | 2 | 2 | 123        | 13.5  | 7.42 |
| P0A9Y6   | cspC          | 54 | 3 | 3 | 3 | 69         | 7.4   | 7.36 |
| P05793   | ilvC          | 9  | 3 | 3 | 3 | 491        | 54    | 7.35 |
| P13009   | metH          | 3  | 3 | 3 | 3 | 1227       | 135.9 | 7.32 |
| P0A6F1   | carA          | 10 | 3 | 3 | 3 | 382        | 41.4  | 7.32 |
| P16095   | sdaA          | 8  | 3 | 3 | 3 | 454        | 48.9  | 7.26 |
| P00962   | olnS          | 6  | 2 | 3 | 2 | 554        | 63.4  | 7.25 |
| POAES6   | gyrB          | 5  | 3 | 3 | 3 | 804        | 80.0  | 7.24 |
| DORCOO   | gyiD          | 0  | 2 | 2 | 2 | 276        | 41.1  | 7.24 |
| P08622   | dhaj          | 9  | 3 | 3 | 3 | 3/0        | 41.1  | 7.19 |
| P31120   | glmM          | 9  | 3 | 3 | 3 | 445        | 47.5  | 7.16 |
| P0AEQ1   | glcG          | 16 | 1 | 2 | 1 | 134        | 13.7  | 7.12 |
| P77774   | bamB          | 7  | 2 | 2 | 2 | 392        | 41.9  | 7.12 |
| P0A7M6   | rpmC          | 46 | 2 | 2 | 2 | 63         | 7.3   | 7.09 |
| P0AG27   | yibN          | 20 | 2 | 2 | 2 | 143        | 15.6  | 7.06 |
| P0A7M9   | rpmE          | 41 | 2 | 2 | 2 | 70         | 7.9   | 6.93 |
| P0A8E7   | vajO          | 17 | 2 | 2 | 2 | 163        | 18.3  | 6.91 |
| P0ADG4   | suhB          | 11 | 2 | 2 | 2 | 267        | 29.2  | 6.91 |
| P30011   | nadC          | 12 | 3 | 3 | 3 | 297        | 32.7  | 6.77 |
| D/6927   | whoE          | 12 | 3 | 3 | 3 | 773        | 85.1  | 6.72 |
| P00259   | yiigi.        | 4  | 2 | 2 | 2 | 125        | 05.1  | 6.60 |
| P02358   | rpsr          | 25 | 2 | 2 | 2 | 155        | 15./  | 0.09 |
| P0A9P4   | trxB          | 9  | 2 | 2 | 2 | 321        | 34.6  | 6.66 |

| P0A955           | eda             | 15 | 2 | 2 | 2 | 213 | 22.3       | 6.61 |
|------------------|-----------------|----|---|---|---|-----|------------|------|
| P0AAX8           | vbiS            | 12 | 2 | 2 | 2 | 306 | 33.3       | 6.57 |
| P0A7B5           | proB            | 8  | 2 | 2 | 2 | 367 | 39         | 6.55 |
| P0A6A3           | ackA            | 8  | 2 | 2 | 2 | 400 | 43.3       | 6.54 |
| P75913           | ohrA            | 11 | 2 | 2 | 2 | 312 | 35.3       | 6.51 |
| P27434           | rodZ            | 10 | 2 | 2 | 2 | 337 | 36.2       | 6.37 |
| P63224           | amhA            | 15 | 2 | 2 | 2 | 192 | 20.8       | 6.29 |
| P0A6L4           | giiiiA<br>nan A | 13 | 2 | 2 | 2 | 207 | 32.6       | 6.29 |
| PGAOLA<br>D60200 | namI            | 13 | 2 | 2 | 2 | 297 | 32.0       | 6.27 |
| P00390           | Islin<br>ham C  | 7  | 2 | 2 | 2 | 315 | 34.9       | 6.27 |
| P0A903           | bame            | 17 | 2 | 2 | 2 | 344 | 30.8       | 6.27 |
| P0A6N4           | erp             | 1/ | 2 | 2 | 2 | 188 | 20.6       | 6.24 |
| POA7K6           | rpIS            | 23 | 2 | 2 | 2 | 115 | 13.1       | 6.19 |
| POACA3           | sspA            | 12 | 2 | 2 | 2 | 212 | 24.3       | 6.14 |
| P0A6U5           | rsmG            | 10 | 2 | 2 | 2 | 207 | 23.4       | 6.12 |
| P0AC69           | grxD            | 29 | 2 | 2 | 2 | 115 | 12.9       | 6.07 |
| P0AFC7           | nuoB            | 13 | 2 | 2 | 2 | 220 | 25         | 5.97 |
| P31663           | panC            | 10 | 2 | 2 | 2 | 283 | 31.6       | 5.94 |
| P0A7C2           | lexA            | 11 | 2 | 2 | 2 | 202 | 22.3       | 5.92 |
| P0A9V1           | lptB            | 14 | 2 | 2 | 2 | 241 | 26.8       | 5.86 |
| P0A9L3           | fklB            | 12 | 2 | 2 | 2 | 206 | 22.2       | 5.83 |
| P36680           | zapD            | 8  | 2 | 2 | 2 | 247 | 28.3       | 5.8  |
| P0A763           | ndk             | 26 | 2 | 2 | 2 | 143 | 15.5       | 5.72 |
| P15034           | nenP            | 3  | 1 | 2 | 1 | 441 | 49.8       | 57   |
| P60651           | speB            | 9  | 2 | 2 | 2 | 306 | 33.5       | 5.65 |
| P04051           | kdeB            | 0  | 2 | 2 | 2 | 248 | 27.6       | 5.05 |
| D27612           | nusD            | 20 | 2 | 2 | 2 | 127 | 14.5       | 5.57 |
| P37013           |                 | 20 | 2 | 2 | 2 | 127 | 14.5       | 5.52 |
| P25437           | IrmA            | 9  | 2 | 2 | 2 | 369 | 39.3       | 5.51 |
| POAGG8           | tidD            | 0  | 2 | 2 | 2 | 481 | 51.5       | 5.51 |
| POA/17           | rpsR            | 29 | 2 | 2 | 2 | 75  | 9          | 5.49 |
| P0A6L2           | dapA            | 11 | 2 | 2 | 2 | 292 | 31.3       | 5.49 |
| P22333           | add             | 8  | 2 | 2 | 2 | 333 | 36.4       | 5.47 |
| P0A6I0           | cmk             | 13 | 2 | 2 | 2 | 227 | 24.7       | 5.46 |
| P0A780           | nusB            | 22 | 2 | 2 | 2 | 139 | 15.7       | 5.43 |
| P60757           | hisG            | 9  | 2 | 2 | 2 | 299 | 33.3       | 5.4  |
| P00490           | malP            | 3  | 2 | 2 | 2 | 797 | 90.5       | 5.39 |
| P0A7K2           | rplL            | 17 | 2 | 2 | 2 | 121 | 12.3       | 5.34 |
| P0AG48           | rplU            | 21 | 2 | 2 | 2 | 103 | 11.6       | 5.34 |
| P0ADK0           | yiaF            | 9  | 2 | 2 | 2 | 236 | 25.6       | 5.31 |
| P0A8V6           | fadR            | 15 | 2 | 2 | 2 | 239 | 27         | 5.31 |
| P36672           | treB            | 7  | 2 | 2 | 2 | 473 | 51         | 5.3  |
| P0AGE0           | ssb             | 13 | 2 | 2 | 2 | 178 | 19         | 5.29 |
| P21177           | fadB            | 4  | 2 | 2 | 2 | 729 | 79.5       | 5.28 |
| P32131           | hemN            | 6  | 2 | 2 | 2 | 457 | 52.7       | 5.28 |
| P28904           | treC            | 5  | 2 | 2 | 2 | 551 | 63.8       | 5.27 |
| P00582           | nolA            | 1  | 2 | 2 | 2 | 928 | 103.1      | 5.25 |
| P17854           | CVSH            | 4  | 2 | 2 | 2 | 244 | 28         | 5.25 |
| D00052           | ovtA            | 6  | 2 | 2 | 2 | 417 | 20<br>46 7 | 5.22 |
| D046T1           | aviA            | 5  | 2 | 2 | 2 | 540 | 40.7       | 5.16 |
| DOALO2           | pgi<br>usiD     | 22 | 2 | 2 | 2 | 115 | 12.4       | 5.16 |
| PUAAQ2           | yajD            | 23 | 2 | 2 | 2 | 115 | 15.4       | 5.10 |
| P/63/2           | WZZB            | 6  | 2 | 2 | 2 | 326 | 36.4       | 5.08 |
| P0A/34           | minE            | 34 | 2 | 2 | 2 | 88  | 10.2       | 5.05 |
| P0/118           | valS            | 4  | 2 | 2 | 2 | 951 | 108.1      | 5.01 |
| P0A910           | serA            | 6  | 2 | 2 | 2 | 410 | 44.1       | 4.96 |
| P0AFK0           | pmbA            | 6  | 2 | 2 | 2 | 450 | 48.3       | 4.96 |
| P0AFC3           | nuoA            | 18 | 2 | 2 | 2 | 147 | 16.4       | 4.95 |
| P64624           | yheO            | 8  | 2 | 2 | 2 | 240 | 26.8       | 4.93 |
| P76046           | ycjX            | 7  | 2 | 2 | 2 | 465 | 52.6       | 4.88 |
| P23865           | prc             | 3  | 2 | 2 | 2 | 682 | 76.6       | 4.87 |
| P07395           | pheT            | 4  | 2 | 2 | 2 | 795 | 87.3       | 4.83 |
| P00452           | nrdA            | 4  | 2 | 2 | 2 | 761 | 85.7       | 4.83 |
| P39835           | gntT            | 8  | 2 | 2 | 2 | 438 | 45.9       | 4.82 |
| P0ACG1           | stpA            | 10 | 1 | 2 | 1 | 134 | 15.3       | 4.81 |
| P0ABA6           | atpG            | 8  | 2 | 2 | 2 | 287 | 31.6       | 4.8  |
| P03024           | galR            | 8  | 2 | 2 | 2 | 343 | 37.1       | 4.77 |
| P0A959           | alaA            | 9  | 2 | 2 | 2 | 405 | 45.5       | 4.76 |
| POAC53           | zwf             | 4  | 2 | 2 | 2 | 491 | 55.7       | 4.74 |
| POARIO           | cvdA            | 4  | 2 | 2 | 2 | 522 | 58.2       | 4.74 |
| 1 0/1037         | cyan            | -  | - | - | 4 | 344 | 50.4       |      |

| P0AAC8  | iscA         | 24 | 2        | 2        | 2        | 107 | 11.5 | 4.72 |
|---------|--------------|----|----------|----------|----------|-----|------|------|
| P0A9L5  | ppiC         | 22 | 2        | 2        | 2        | 93  | 10.2 | 4.72 |
| P22524  | mukE         | 18 | 2        | 2        | 2        | 234 | 27   | 1.68 |
| DOC018  | rn1D         | 15 | 2        | 2        | 2        | 117 | 12.8 | 4.67 |
| POCUI8  | rpi <b>k</b> | 13 | 2        | 2        | 2        | 117 | 12.0 | 4.07 |
| PUA6R3  | T1S          | 23 | 1        | 1        | 1        | 98  | 11.2 | 4.65 |
| P0AA25  | trxA         | 19 | 2        | 2        | 2        | 109 | 11.8 | 4.65 |
| P0AFF2  | nupC         | 6  | 1        | 2        | 1        | 400 | 43.4 | 4.61 |
| P11557  | damX         | 5  | 2        | 2        | 2        | 428 | 46.1 | 4.6  |
| P17952  | murC         | 5  | 2        | 2        | 2        | 491 | 53.6 | 4.6  |
| P06992  | rsmA         | 16 | 2        | 2        | 2        | 273 | 30.4 | 4.59 |
| P04968  | ilvA         | 4  | 2        | 2        | 2        | 514 | 56.2 | 4.56 |
| P36938  | ngm          | 6  | 1        | 1        | 1        | 546 | 58.3 | 4 49 |
| P64596  | dolP         | 13 | 2        | 2        | 2        | 191 | 20   | 4.48 |
| D04570  | nonP         | 13 | 1        | 1        | 1        | 74  | 20   | 4.46 |
| DC0024  | pspb<br>     | 22 | 1        | 1        | 1        | 276 | 42 5 | 4.40 |
| P09924  |              | 9  | <u>∠</u> | 2        | <u>ک</u> | 570 | 45.5 | 4.42 |
| POCOVO  | degP         | 0  | 1        | 2        | 1        | 4/4 | 49.3 | 4.41 |
| P52108  | rstA         | 8  | 2        | 2        | 2        | 239 | 26.7 | 4.38 |
| P0A887  | ubiE         | 10 | 2        | 2        | 2        | 251 | 28.1 | 4.38 |
| P0AAG8  | mglA         | 4  | 2        | 2        | 2        | 506 | 56.4 | 4.38 |
| P0AGD7  | ffh          | 6  | 2        | 2        | 2        | 453 | 49.8 | 4.37 |
| P63020  | nfuA         | 16 | 1        | 1        | 1        | 191 | 21   | 4.29 |
| P04425  | gshB         | 8  | 2        | 2        | 2        | 316 | 35.5 | 4.26 |
| P69831  | gatC         | 4  | 2        | 2        | 2        | 451 | 48.3 | 4.25 |
| P31554  | IntD         | 3  | 2        | 2        | 2        | 784 | 89.6 | 4.10 |
| D27750  | rfbD         | 6  | 2        | 2        | 2        | 261 | 40.5 | 4.12 |
| P3//39  |              | 0  | 2        | <u>_</u> | <u>_</u> | 210 | 40.3 | 4.15 |
| POA/Z0  | rpiA         | 7  | 1        | 1        | 1        | 219 | 22.8 | 4.11 |
| P0A8//  | trpA         |    | 1        | 1        | 1        | 268 | 28.7 | 4.08 |
| P0AF28  | narL         | 12 | 1        | 1        | 1        | 216 | 23.9 | 4.03 |
| P0AGA2  | secY         | 7  | 2        | 2        | 2        | 443 | 48.5 | 4.02 |
| P0A937  | bamE         | 18 | 1        | 1        | 1        | 113 | 12.3 | 3.96 |
| P0ACF4  | hupB         | 16 | 1        | 1        | 1        | 90  | 9.2  | 3.87 |
| P16456  | selD         | 9  | 1        | 1        | 1        | 347 | 36.7 | 3.73 |
| P77211  | cusC         | 4  | 1        | 1        | 1        | 457 | 50.2 | 3.73 |
| P76034  | vciT         | 7  | 1        | 1        | 1        | 249 | 27.6 | 3.69 |
| POAFX4  | rsd          | 15 | 1        | 1        | 1        | 158 | 18.2 | 3.69 |
| P26616  | maeA         | 4  | 1        | 1        | 1        | 565 | 63.2 | 3.63 |
| D04E78  | aarC         | -  | 1        | 1        | 1        | 202 | 22.2 | 2.50 |
| D60502  | corc         | 11 | 1        | 1        | 1        | 192 | 10.9 | 2.50 |
| F 09505 | api          | 11 | 1        | 1        | 1        | 165 | 19.0 | 3.39 |
| Q57261  | truD         | 6  | 1        | 1        | 1        | 349 | 39.1 | 3.42 |
| P60752  | msbA         | 3  | 1        | 1        | 1        | 582 | 64.4 | 3.42 |
| P0ADC1  | lptE         | 9  | 1        | 1        | 1        | 193 | 21.3 | 3.37 |
| P0AC02  | bamD         | 5  | 1        | 1        | 1        | 245 | 27.8 | 3.33 |
| P0A9D4  | cysE         | 8  | 1        | 1        | 1        | 273 | 29.3 | 3.33 |
| P0A794  | pdxJ         | 6  | 1        | 1        | 1        | 243 | 26.4 | 3.28 |
| P0A6D7  | aroK         | 8  | 1        | 1        | 1        | 173 | 19.5 | 3.27 |
| P0A6X7  | ihfA         | 10 | 1        | 1        | 1        | 99  | 11.3 | 3.26 |
| P69411  | rcsF         | 10 | 1        | 1        | 1        | 134 | 14.2 | 3 24 |
| POA6T5  | folE         | 5  | 1        | 1        | 1        | 222 | 24.8 | 3 23 |
| DOAD P7 | eenB         | 40 | 1        | 1        | 1        | 18  | 1.8  | 3.23 |
| POADB/  |              | 40 | 1        | 1        | 1        | 40  | 4.0  | 2.00 |
| PUAG59  | rpsiN        | 19 | 1        | 1        | 1        | 101 | 11.0 | 3.22 |
| POAFF0  | nuoN         | 2  | 1        | 1        | 1        | 485 | 52   | 3.2  |
| P0A6K6  | deoB         | 3  | 1        | 1        | 1        | 407 | 44.3 | 3.17 |
| P00894  | ilvH         | 7  | 1        | 1        | 1        | 163 | 18   | 3.17 |
| P62623  | ispH         | 6  | 1        | 1        | 1        | 316 | 34.8 | 3.14 |
| P0ADG7  | guaB         | 4  | 1        | 1        | 1        | 488 | 52   | 3.1  |
| P69054  | sdhC         | 9  | 1        | 1        | 1        | 129 | 14.3 | 3.09 |
| P39173  | yeaD         | 5  | 1        | 1        | 1        | 294 | 32.6 | 3.08 |
| P31802  | narP         | 7  | 1        | 1        | 1        | 215 | 23.6 | 3.07 |
| P0AGK8  | iscR         | 14 | 1        | 1        | 1        | 162 | 17.3 | 3.06 |
| P04088  | dnaN         | 5  | 1        | 1        | 1        | 366 | 40.6 | 3.03 |
| D16700  | oveD         | 3  | 1        | 1        | 1        | 338 | 37.6 | 3.03 |
|         | - CysP       | 0  | 1        | 1        | 1        | 200 | 37.0 | 2.00 |
| PUACA/  | gstB         | 9  | 1        | 1        | 1        | 200 | 23.7 | 2.99 |
| P45955  | сров         | 10 | 1        | 1        | 1        | 263 | 28.2 | 2.99 |
| P77258  | nemA         | 7  | 1        | 1        | 1        | 365 | 39.5 | 2.98 |
| P52643  | ldhA         | 4  | 1        | 1        | 1        | 329 | 36.5 | 2.98 |
| P23839  | yicC         | 4  | 1        | 1        | 1        | 287 | 33.2 | 2.97 |
| P76535  | murQ         | 7  | 1        | 1        | 1        | 298 | 31.2 | 2.96 |

| P68187                                                                                                                                                                                                                                       | malK                                                                                                                                                                                                 | 6                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 371                                                                                                                                                                        | 41                                                                                                                                                                                                                                                                                                                                | 2.95                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0AF93                                                                                                                                                                                                                                       | ridA                                                                                                                                                                                                 | 10                                                                                                                             | 1                                                                                           | 1                                                                                                | 1                                                                                           | 128                                                                                                                                                                        | 13.6                                                                                                                                                                                                                                                                                                                              | 2.93                                                                                                                                                                                                                                        |
| P0AG93                                                                                                                                                                                                                                       | secF                                                                                                                                                                                                 | 4                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 323                                                                                                                                                                        | 35.4                                                                                                                                                                                                                                                                                                                              | 2.92                                                                                                                                                                                                                                        |
| P0ACC3                                                                                                                                                                                                                                       | erpA                                                                                                                                                                                                 | 11                                                                                                                             | 1                                                                                           | 1                                                                                                | 1                                                                                           | 114                                                                                                                                                                        | 12.1                                                                                                                                                                                                                                                                                                                              | 2.92                                                                                                                                                                                                                                        |
| P0AB24                                                                                                                                                                                                                                       | efeO                                                                                                                                                                                                 | 4                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 375                                                                                                                                                                        | 41.1                                                                                                                                                                                                                                                                                                                              | 2.91                                                                                                                                                                                                                                        |
| P07012                                                                                                                                                                                                                                       | prfB                                                                                                                                                                                                 | 4                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 365                                                                                                                                                                        | 41.2                                                                                                                                                                                                                                                                                                                              | 2.91                                                                                                                                                                                                                                        |
| P0AAS0                                                                                                                                                                                                                                       | ylaC                                                                                                                                                                                                 | 10                                                                                                                             | 1                                                                                           | 1                                                                                                | 1                                                                                           | 156                                                                                                                                                                        | 18.3                                                                                                                                                                                                                                                                                                                              | 2.9                                                                                                                                                                                                                                         |
| P75990                                                                                                                                                                                                                                       | bluF                                                                                                                                                                                                 | 3                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 403                                                                                                                                                                        | 45.3                                                                                                                                                                                                                                                                                                                              | 2.87                                                                                                                                                                                                                                        |
| P0A8E1                                                                                                                                                                                                                                       | ycfP                                                                                                                                                                                                 | 7                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 180                                                                                                                                                                        | 21.2                                                                                                                                                                                                                                                                                                                              | 2.87                                                                                                                                                                                                                                        |
| P0ACE0                                                                                                                                                                                                                                       | hybC                                                                                                                                                                                                 | 3                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 567                                                                                                                                                                        | 62.5                                                                                                                                                                                                                                                                                                                              | 2.87                                                                                                                                                                                                                                        |
| P04079                                                                                                                                                                                                                                       | guaA                                                                                                                                                                                                 | 3                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 525                                                                                                                                                                        | 58.6                                                                                                                                                                                                                                                                                                                              | 2.84                                                                                                                                                                                                                                        |
| P07117                                                                                                                                                                                                                                       | putP                                                                                                                                                                                                 | 3                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 502                                                                                                                                                                        | 54.3                                                                                                                                                                                                                                                                                                                              | 2.84                                                                                                                                                                                                                                        |
| P0A9A9                                                                                                                                                                                                                                       | fur                                                                                                                                                                                                  | 8                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 148                                                                                                                                                                        | 16.8                                                                                                                                                                                                                                                                                                                              | 2.83                                                                                                                                                                                                                                        |
| P36879                                                                                                                                                                                                                                       | yadG                                                                                                                                                                                                 | 5                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 308                                                                                                                                                                        | 34.6                                                                                                                                                                                                                                                                                                                              | 2.78                                                                                                                                                                                                                                        |
| P0A6N8                                                                                                                                                                                                                                       | yeiP                                                                                                                                                                                                 | 7                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 190                                                                                                                                                                        | 21.5                                                                                                                                                                                                                                                                                                                              | 2.77                                                                                                                                                                                                                                        |
| P0ACB7                                                                                                                                                                                                                                       | hemY                                                                                                                                                                                                 | 3                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 398                                                                                                                                                                        | 45.2                                                                                                                                                                                                                                                                                                                              | 2.76                                                                                                                                                                                                                                        |
| P23847                                                                                                                                                                                                                                       | dppA                                                                                                                                                                                                 | 5                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 535                                                                                                                                                                        | 60.3                                                                                                                                                                                                                                                                                                                              | 2.76                                                                                                                                                                                                                                        |
| P21888                                                                                                                                                                                                                                       | cysS                                                                                                                                                                                                 | 2                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 461                                                                                                                                                                        | 52.2                                                                                                                                                                                                                                                                                                                              | 2.76                                                                                                                                                                                                                                        |
| P0A7S3                                                                                                                                                                                                                                       | rpsL                                                                                                                                                                                                 | 10                                                                                                                             | 1                                                                                           | 1                                                                                                | 1                                                                                           | 124                                                                                                                                                                        | 13.7                                                                                                                                                                                                                                                                                                                              | 2.74                                                                                                                                                                                                                                        |
| P04982                                                                                                                                                                                                                                       | rbsD                                                                                                                                                                                                 | 10                                                                                                                             | 1                                                                                           | 1                                                                                                | 1                                                                                           | 139                                                                                                                                                                        | 15.3                                                                                                                                                                                                                                                                                                                              | 2.72                                                                                                                                                                                                                                        |
| P0AB38                                                                                                                                                                                                                                       | lpoB                                                                                                                                                                                                 | 7                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 213                                                                                                                                                                        | 22.5                                                                                                                                                                                                                                                                                                                              | 2.72                                                                                                                                                                                                                                        |
| P00954                                                                                                                                                                                                                                       | trpS                                                                                                                                                                                                 | 7                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 334                                                                                                                                                                        | 37.4                                                                                                                                                                                                                                                                                                                              | 2.72                                                                                                                                                                                                                                        |
| P29012                                                                                                                                                                                                                                       | dadX                                                                                                                                                                                                 | 3                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 356                                                                                                                                                                        | 38.8                                                                                                                                                                                                                                                                                                                              | 2.72                                                                                                                                                                                                                                        |
| P0A7N9                                                                                                                                                                                                                                       | rpmG                                                                                                                                                                                                 | 27                                                                                                                             | 1                                                                                           | 1                                                                                                | 1                                                                                           | 55                                                                                                                                                                         | 6.4                                                                                                                                                                                                                                                                                                                               | 2.72                                                                                                                                                                                                                                        |
| P0AFD1                                                                                                                                                                                                                                       | nuoE                                                                                                                                                                                                 | 11                                                                                                                             | 1                                                                                           | 1                                                                                                | 1                                                                                           | 166                                                                                                                                                                        | 18.6                                                                                                                                                                                                                                                                                                                              | 2.71                                                                                                                                                                                                                                        |
| P45578                                                                                                                                                                                                                                       | luxS                                                                                                                                                                                                 | 8                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 171                                                                                                                                                                        | 19.4                                                                                                                                                                                                                                                                                                                              | 2.7                                                                                                                                                                                                                                         |
| P0A8A0                                                                                                                                                                                                                                       | vebC                                                                                                                                                                                                 | 5                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 246                                                                                                                                                                        | 26.4                                                                                                                                                                                                                                                                                                                              | 2.68                                                                                                                                                                                                                                        |
| P06149                                                                                                                                                                                                                                       | dld                                                                                                                                                                                                  | 4                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 571                                                                                                                                                                        | 64.6                                                                                                                                                                                                                                                                                                                              | 2.68                                                                                                                                                                                                                                        |
| P00722                                                                                                                                                                                                                                       | lacZ                                                                                                                                                                                                 | 1                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 1024                                                                                                                                                                       | 116.4                                                                                                                                                                                                                                                                                                                             | 2.66                                                                                                                                                                                                                                        |
| P60340                                                                                                                                                                                                                                       | truB                                                                                                                                                                                                 | 4                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 314                                                                                                                                                                        | 35.1                                                                                                                                                                                                                                                                                                                              | 2.59                                                                                                                                                                                                                                        |
| P43672                                                                                                                                                                                                                                       | uup                                                                                                                                                                                                  | 2                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 635                                                                                                                                                                        | 72                                                                                                                                                                                                                                                                                                                                | 2.55                                                                                                                                                                                                                                        |
| P0A6S3                                                                                                                                                                                                                                       | flgI                                                                                                                                                                                                 | 5                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 365                                                                                                                                                                        | 38.1                                                                                                                                                                                                                                                                                                                              | 2.52                                                                                                                                                                                                                                        |
| P64604                                                                                                                                                                                                                                       | mlaD                                                                                                                                                                                                 | 4                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 183                                                                                                                                                                        | 19.6                                                                                                                                                                                                                                                                                                                              | 2.51                                                                                                                                                                                                                                        |
| P11880                                                                                                                                                                                                                                       | murF                                                                                                                                                                                                 | 2                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 452                                                                                                                                                                        | 47.4                                                                                                                                                                                                                                                                                                                              | 2.51                                                                                                                                                                                                                                        |
| P75849                                                                                                                                                                                                                                       | gloC                                                                                                                                                                                                 | 6                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 215                                                                                                                                                                        | 23.8                                                                                                                                                                                                                                                                                                                              | 2.51                                                                                                                                                                                                                                        |
| P0AD61                                                                                                                                                                                                                                       | pykF                                                                                                                                                                                                 | 3                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 470                                                                                                                                                                        | 50.7                                                                                                                                                                                                                                                                                                                              | 2.5                                                                                                                                                                                                                                         |
| P24251                                                                                                                                                                                                                                       | crl                                                                                                                                                                                                  | 9                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 133                                                                                                                                                                        | 15.6                                                                                                                                                                                                                                                                                                                              | 2.49                                                                                                                                                                                                                                        |
| P25714                                                                                                                                                                                                                                       | vidC                                                                                                                                                                                                 | 3                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 548                                                                                                                                                                        | 61.5                                                                                                                                                                                                                                                                                                                              | 2.48                                                                                                                                                                                                                                        |
| P07001                                                                                                                                                                                                                                       | pntA                                                                                                                                                                                                 | 4                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 510                                                                                                                                                                        | 54.6                                                                                                                                                                                                                                                                                                                              | 2.48                                                                                                                                                                                                                                        |
| P0A9N4                                                                                                                                                                                                                                       | pflA                                                                                                                                                                                                 | 4                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 246                                                                                                                                                                        | 28.2                                                                                                                                                                                                                                                                                                                              | 2.47                                                                                                                                                                                                                                        |
| P04805                                                                                                                                                                                                                                       | gltX                                                                                                                                                                                                 | 3                                                                                                                              | 1                                                                                           | 1                                                                                                |                                                                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                             |
| P0ADA3                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                    |                                                                                                                                |                                                                                             |                                                                                                  | 1                                                                                           | 471                                                                                                                                                                        | 53.8                                                                                                                                                                                                                                                                                                                              | 2.46                                                                                                                                                                                                                                        |
| DC0000                                                                                                                                                                                                                                       | nlpD                                                                                                                                                                                                 | 3                                                                                                                              | 1                                                                                           | 1                                                                                                | 1                                                                                           | 471<br>379                                                                                                                                                                 | 53.8<br>40.1                                                                                                                                                                                                                                                                                                                      | 2.46<br>2.46                                                                                                                                                                                                                                |
| P69829                                                                                                                                                                                                                                       | nlpD<br>ptsN                                                                                                                                                                                         | 3<br>10                                                                                                                        | 1                                                                                           | 1                                                                                                | 1<br>1<br>1                                                                                 | 471<br>379<br>163                                                                                                                                                          | 53.8<br>40.1<br>17.9                                                                                                                                                                                                                                                                                                              | 2.46<br>2.46<br>2.46                                                                                                                                                                                                                        |
| P69829<br>P0AFX9                                                                                                                                                                                                                             | nlpD<br>ptsN<br>rseB                                                                                                                                                                                 | 3<br>10<br>4                                                                                                                   | 1<br>1<br>1                                                                                 | 1<br>1<br>1                                                                                      | 1<br>1<br>1<br>1                                                                            | 471<br>379<br>163<br>318                                                                                                                                                   | 53.8<br>40.1<br>17.9<br>35.7                                                                                                                                                                                                                                                                                                      | 2.46<br>2.46<br>2.46<br>2.46<br>2.46                                                                                                                                                                                                        |
| P0AFX9<br>P0ADE8                                                                                                                                                                                                                             | nlpD<br>ptsN<br>rseB<br>ygfZ                                                                                                                                                                         | 3<br>10<br>4<br>3                                                                                                              | 1<br>1<br>1<br>1                                                                            | 1<br>1<br>1<br>1                                                                                 | 1<br>1<br>1<br>1<br>1                                                                       | 471<br>379<br>163<br>318<br>326                                                                                                                                            | 53.8<br>40.1<br>17.9<br>35.7<br>36.1                                                                                                                                                                                                                                                                                              | 2.46<br>2.46<br>2.46<br>2.46<br>2.46<br>2.45                                                                                                                                                                                                |
| P04FX9<br>P0AFX9<br>P0ADE8<br>P0A9W9                                                                                                                                                                                                         | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA                                                                                                                                                                 | 3<br>10<br>4<br>3<br>7                                                                                                         | 1<br>1<br>1<br>1<br>1                                                                       | 1<br>1<br>1<br>1<br>1                                                                            | 1<br>1<br>1<br>1<br>1<br>1                                                                  | 471<br>379<br>163<br>318<br>326<br>184                                                                                                                                     | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2                                                                                                                                                                                                                                                                                      | 2.46<br>2.46<br>2.46<br>2.46<br>2.46<br>2.45<br>2.41                                                                                                                                                                                        |
| P04FX9<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808                                                                                                                                                                                               | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK                                                                                                                                                         | 3<br>10<br>4<br>3<br>7<br>5                                                                                                    | 1<br>1<br>1<br>1<br>1<br>1                                                                  | -<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | 471<br>379<br>163<br>318<br>326<br>184<br>252                                                                                                                              | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9                                                                                                                                                                                                                                                                              | 2.46<br>2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41                                                                                                                                                                                        |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70                                                                                                                                                                                     | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI                                                                                                                                                 | 3<br>10<br>4<br>3<br>7<br>5<br>16                                                                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                   | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117                                                                                                                       | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9<br>12                                                                                                                                                                                                                                                                        | 2.46<br>2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41                                                                                                                                                                                |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595                                                                                                                                                                           | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH                                                                                                                                         | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5                                                                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                              | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196                                                                                                                | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9<br>12<br>21.6                                                                                                                                                                                                                                                                | 2.46<br>2.46<br>2.46<br>2.45<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4                                                                                                                                                                         |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371                                                                                                                                                                 | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA                                                                                                                                 | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7                                                                                    | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                   |                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245                                                                                                         | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9<br>12<br>21.6<br>26                                                                                                                                                                                                                                                          | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4                                                                                                                                                                          |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6                                                                                                                                                       | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR                                                                                                                         | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>7                                                                          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | -<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201                                                                                                  | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9<br>12<br>21.6<br>26<br>21.9                                                                                                                                                                                                                                                  | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4                                                                                                                                                    |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844                                                                                                                                             | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS                                                                                                                 | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>7<br>4                                                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          |                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363                                                                                           | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9<br>12<br>21.6<br>26<br>21.9<br>41                                                                                                                                                                                                                                            | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38                                                                                                                              |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51                                                                                                                                   | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD                                                                                                         | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>7<br>4<br>24                                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     | -<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59                                                                                     | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9<br>12<br>21.6<br>26<br>21.9<br>41<br>6.5                                                                                                                                                                                                                                     | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37                                                                                                                              |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4                                                                                                                         | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR                                                                                                 | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>7<br>4<br>24<br>4                                                          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271                                                                              | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9<br>12<br>21.6<br>26<br>21.9<br>41<br>6.5<br>29.3                                                                                                                                                                                                                             | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37                                                                                                                     |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529                                                                                                               | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP                                                                                         | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>7<br>4<br>24<br>4<br>3                                                     |                                                                                             |                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463                                                                       | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9<br>12<br>21.6<br>26<br>21.9<br>41<br>6.5<br>29.3<br>48.6                                                                                                                                                                                                                     | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37<br>2.37                                                                                                             |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270                                                                                                     | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC                                                                                 | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>4<br>24<br>4<br>3<br>6                                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          |                                                                                                  |                                                                                             | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165                                                                | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9<br>12<br>21.6<br>26<br>21.9<br>41<br>6.5<br>29.3<br>48.6<br>18.1                                                                                                                                                                                                             | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37<br>2.37<br>2.37                                                                                                      |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270<br>P30744                                                                                           | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC<br>sdaB                                                                         | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>7<br>4<br>24<br>4<br>3<br>6<br>2                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165<br>455                                                         | 53.8<br>40.1<br>17.9<br>35.7<br>36.1<br>20.2<br>27.9<br>12<br>21.6<br>26<br>21.9<br>41<br>6.5<br>29.3<br>48.6<br>18.1<br>48.7                                                                                                                                                                                                     | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37<br>2.37<br>2.37<br>2.36                                                                                              |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270<br>P30744<br>P0ABS1                                                                                 | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC<br>sdaB<br>dksA                                                                 | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>4<br>24<br>4<br>3<br>6<br>2<br>6                                           |                                                                                             |                                                                                                  |                                                                                             | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165<br>455<br>151                                                  | 53.8         40.1         17.9         35.7         36.1         20.2         27.9         12         21.6         26         21.9         41         6.5         29.3         48.6         18.1         48.7         17.5                                                                                                        | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.36<br>2.35                                                                              |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270<br>P30744<br>P0ABS1<br>P0AAG3                                                                       | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC<br>sdaB<br>dksA<br>gltL                                                         | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>4<br>24<br>4<br>3<br>6<br>2<br>6<br>5<br>5                                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          |                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165<br>455<br>151<br>241                                           | 53.8         40.1         17.9         35.7         36.1         20.2         27.9         12         21.6         26         21.9         41         6.5         29.3         48.6         18.1         48.7         17.5         26.6                                                                                           | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.36<br>2.35<br>2.34                                                              |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270<br>P30744<br>P0ABS1<br>P0AAG3<br>P38038                                                             | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC<br>sdaB<br>dksA<br>gltL<br>cysJ                                                 | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>4<br>24<br>4<br>3<br>6<br>2<br>6<br>5<br>2                                 |                                                                                             |                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165<br>455<br>151<br>241<br>599                                    | 53.8         40.1         17.9         35.7         36.1         20.2         27.9         12         21.6         26         21.9         41         6.5         29.3         48.6         18.1         48.7         17.5         26.6         66.2                                                                              | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.36<br>2.35<br>2.34<br>2.33                                                     |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270<br>P30744<br>P0ABS1<br>P0AAG3<br>P38038<br>P0AF12                                                   | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC<br>sdaB<br>dksA<br>gltL<br>cysJ<br>mtnN                                         | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>4<br>24<br>4<br>3<br>6<br>2<br>6<br>5<br>2<br>10                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          |                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165<br>455<br>151<br>241<br>599<br>232                             | 53.8         40.1         17.9         35.7         36.1         20.2         27.9         12         21.6         26         21.9         41         6.5         29.3         48.6         18.1         48.7         17.5         26.6         66.2         24.3                                                                 | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.36<br>2.35<br>2.34<br>2.33<br>2.33                                                     |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270<br>P30744<br>P0ABS1<br>P0AAG3<br>P38038<br>P0AF12<br>P77239                                         | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC<br>sdaB<br>dksA<br>gltL<br>cysJ<br>mtnN<br>cusB                                 | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>4<br>24<br>4<br>3<br>6<br>2<br>2<br>6<br>5<br>2<br>10<br>3                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          |                                                                                                  |                                                                                             | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165<br>455<br>151<br>241<br>599<br>232<br>407                      | 53.8         40.1         17.9         35.7         36.1         20.2         27.9         12         21.6         26         21.9         41         6.5         29.3         48.6         18.1         48.7         17.5         26.6         66.2         24.3         44.3                                                    | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37                                                                      |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270<br>P30744<br>P0ABS1<br>P0AAG3<br>P38038<br>P0AF12<br>P77239<br>P0A8G6           | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC<br>sdaB<br>dksA<br>gltL<br>cysJ<br>mtnN<br>cusB<br>wrbA                         | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>4<br>24<br>4<br>3<br>6<br>2<br>6<br>5<br>2<br>10<br>3<br>9                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          |                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165<br>455<br>151<br>241<br>599<br>232<br>407<br>198               | 53.8         40.1         17.9         35.7         36.1         20.2         27.9         12         21.6         26         21.9         41         6.5         29.3         48.6         18.1         48.7         17.5         26.6         66.2         24.3         44.3         20.8                                       | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.35<br>2.34<br>2.33<br>2.33<br>2.33<br>2.33<br>2.32               |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270<br>P30744<br>P0ABS1<br>P0AAG3<br>P38038<br>P0AF12<br>P77239<br>P0A8G6<br>P25516                     | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC<br>sdaB<br>dksA<br>gltL<br>cysJ<br>mtnN<br>cusB<br>wrbA<br>acnA                 | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>4<br>24<br>4<br>3<br>6<br>2<br>6<br>5<br>2<br>10<br>3<br>9<br>2            |                                                                                             |                                                                                                  |                                                                                             | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165<br>455<br>151<br>241<br>599<br>232<br>407<br>198<br>891        | 53.8         40.1         17.9         35.7         36.1         20.2         27.9         12         21.6         26         21.9         41         6.5         29.3         48.6         18.1         48.7         17.5         26.6         66.2         24.3         44.3         20.8         97.6                          | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.38<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.37<br>2.35<br>2.34<br>2.33<br>2.33<br>2.33<br>2.33<br>2.32<br>2.32 |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270<br>P30744<br>P0ABS1<br>P0AAG3<br>P38038<br>P0AF12<br>P77239<br>P0A8G6<br>P25516<br>P0AFI7           | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC<br>sdaB<br>dksA<br>gltL<br>cysJ<br>mtnN<br>cusB<br>wrbA<br>acnA<br>pdxH         | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>4<br>24<br>4<br>3<br>6<br>2<br>6<br>5<br>2<br>10<br>3<br>9<br>2<br>7       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          |                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165<br>455<br>151<br>241<br>599<br>232<br>407<br>198<br>891<br>218 | 53.8         40.1         17.9         35.7         36.1         20.2         27.9         12         21.6         26         21.9         41         6.5         29.3         48.6         18.1         48.7         17.5         26.6         66.2         24.3         44.3         20.8         97.6         25.5             | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4                                                                                                                  |
| P69829<br>P0AFX9<br>P0ADE8<br>P0A9W9<br>P31808<br>P0AF70<br>P60595<br>P10371<br>P0A7H6<br>P30844<br>P0AG51<br>P0ACN4<br>P77529<br>P76270<br>P30744<br>P0ABS1<br>P0AAG3<br>P38038<br>P0AF12<br>P77239<br>P0A8G6<br>P25516<br>P0AFI7<br>P0A8J4 | nlpD<br>ptsN<br>rseB<br>ygfZ<br>yrdA<br>yciK<br>yjeI<br>hisH<br>hisA<br>recR<br>basS<br>rpmD<br>allR<br>tcyP<br>msrC<br>sdaB<br>dksA<br>gltL<br>cysJ<br>mtnN<br>cusB<br>wrbA<br>acnA<br>pdxH<br>ybeD | 3<br>10<br>4<br>3<br>7<br>5<br>16<br>5<br>7<br>7<br>4<br>24<br>4<br>3<br>6<br>2<br>6<br>5<br>2<br>10<br>3<br>9<br>2<br>7<br>17 |                                                                                             |                                                                                                  |                                                                                             | 471<br>379<br>163<br>318<br>326<br>184<br>252<br>117<br>196<br>245<br>201<br>363<br>59<br>271<br>463<br>165<br>455<br>151<br>241<br>599<br>232<br>407<br>198<br>891<br>218 | 53.8         40.1         17.9         35.7         36.1         20.2         27.9         12         21.6         26         21.9         41         6.5         29.3         48.6         18.1         48.7         17.5         26.6         66.2         24.3         44.3         20.8         97.6         25.5         9.8 | 2.46<br>2.46<br>2.46<br>2.45<br>2.41<br>2.41<br>2.41<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4                                                                                                                  |

| P04846 | nlpA | 5  | 1 | 1 | 1 | 272  | 29.4  | 2.29 |
|--------|------|----|---|---|---|------|-------|------|
| P69222 | infA | 17 | 1 | 1 | 1 | 72   | 8.2   | 2.28 |
| P0AAY6 | ybjN | 8  | 1 | 1 | 1 | 158  | 17.7  | 2.27 |
| P0A8A8 | rimP | 7  | 1 | 1 | 1 | 150  | 16.6  | 2.27 |
| P33136 | mdoG | 2  | 1 | 1 | 1 | 511  | 57.9  | 2.26 |
| P0AED7 | dapE | 2  | 1 | 1 | 1 | 375  | 41.2  | 2.26 |
| P25748 | galS | 3  | 1 | 1 | 1 | 346  | 37.3  | 2.25 |
| P08395 | sppA | 2  | 1 | 1 | 1 | 618  | 67.2  | 2.25 |
| P0AG99 | secG | 16 | 1 | 1 | 1 | 110  | 11.4  | 2.24 |
| P69828 | gatA | 13 | 1 | 1 | 1 | 150  | 16.9  | 2.21 |
| P69797 | manX | 4  | 1 | 1 | 1 | 323  | 35    | 2.21 |
| P05852 | tsaD | 4  | 1 | 1 | 1 | 337  | 36    | 2.19 |
| P09323 | nagE | 3  | 1 | 1 | 1 | 648  | 68.3  | 2.19 |
| P0AE18 | map  | 4  | 1 | 1 | 1 | 264  | 29.3  | 2.17 |
| P30178 | hcxB | 3  | 1 | 1 | 1 | 361  | 38.9  | 2.16 |
| P60546 | gmk  | 8  | 1 | 1 | 1 | 207  | 23.6  | 2.15 |
| P21513 | rne  | 1  | 1 | 1 | 1 | 1061 | 118.1 | 2.13 |
| P0AEG4 | dsbA | 4  | 1 | 1 | 1 | 208  | 23.1  | 2.12 |
| P77202 | dsbG | 6  | 1 | 1 | 1 | 248  | 27.5  | 2.12 |
| P12758 | udp  | 5  | 1 | 1 | 1 | 253  | 27.1  | 2.12 |
| P77330 | borD | 10 | 1 | 1 | 1 | 97   | 10.4  | 2.1  |
| P24224 | acpS | 12 | 1 | 1 | 1 | 126  | 14    | 2.09 |
| P00960 | glyQ | 3  | 1 | 1 | 1 | 303  | 34.8  | 2.09 |
| P29131 | ftsN | 4  | 1 | 1 | 1 | 319  | 35.8  | 2.09 |
| P0ACC1 | prmC | 5  | 1 | 1 | 1 | 277  | 31    | 2.09 |
| P06715 | gor  | 2  | 1 | 1 | 1 | 450  | 48.7  | 2.09 |
| P0A8D3 | yaiI | 10 | 1 | 1 | 1 | 152  | 17    | 2.06 |
| P77737 | oppF | 3  | 1 | 1 | 1 | 334  | 37.2  | 2.06 |
| P0AE01 | trmJ | 4  | 1 | 1 | 1 | 246  | 27    | 2.06 |
| P0A800 | rpoZ | 10 | 1 | 1 | 1 | 91   | 10.2  | 2.04 |
| P68699 | atpE | 11 | 1 | 1 | 1 | 79   | 8.3   | 2.03 |
| P0ACL2 | exuR | 4  | 1 | 1 | 1 | 258  | 29.8  | 2.01 |
| P18843 | nadE | 4  | 1 | 1 | 1 | 275  | 30.6  | 2.01 |
| P0ADI7 | yecD | 5  | 1 | 1 | 1 | 188  | 20.4  | 2.01 |
| P0A9Z1 | glnB | 7  | 1 | 1 | 1 | 112  | 12.4  | 2    |
| P0A6V8 | glk  | 5  | 1 | 1 | 1 | 321  | 34.7  | 2    |
| P0AEE5 | mglB | 6  | 1 | 1 | 1 | 332  | 35.7  | 1.98 |
| P68679 | rpsU | 11 | 1 | 1 | 1 | 71   | 8.5   | 1.98 |
| P0AC44 | sdhD | 9  | 1 | 1 | 1 | 115  | 12.9  | 1.97 |
| P30860 | artJ | 7  | 1 | 1 | 1 | 243  | 26.8  | 1.95 |
| P0AFR4 | yciO | 5  | 1 | 1 | 1 | 206  | 23.2  | 1.95 |
| P0AFH8 | osmY | 6  | 1 | 1 | 1 | 201  | 21.1  | 1.93 |
| P23869 | ppiB | 7  | 1 | 1 | 1 | 164  | 18.1  | 1.93 |
| P05042 | fumC | 2  | 1 | 1 | 1 | 467  | 50.5  | 1.93 |
| P0AE52 | bcp  | 9  | 1 | 1 | 1 | 156  | 17.6  | 1.93 |
| P75838 | ycaO | 3  | 1 | 1 | 1 | 586  | 65.6  | 1.91 |
| P0A8F8 | uvrB | 2  | 1 | 1 | 1 | 673  | 76.2  | 1.9  |

| AccessionName[ $9_{21}$ ]PeptidesSequestPP0A781dmak.67451064563869.1412.33PP0A751goelL732777772754857.3277.14PP0A755goelL7327772754857.3277.14PP0A765mpoL5525632570.477.5224.76PP0A567mpoL4924572455761.1207.49PP0A567mpoL492457245761.1207.49PP0A567mpoL35345134901102187.66PP0A573mpF8820512036239.3122.33PP0A573mpF8820512036239.3122.35PP0A573mpG8530453062.471.4151.84PP0A753mB4227362789097.3124.84PDA3705mB4227362789097.3124.84PDA3705mB4227362789097.3124.84PDA3705mB42222485795.5105.55PDA3705mB42222485795.5105.55PDA3705mB42232485795.2105.55PDA3705mB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UniProt          | Gene        | Coverage | Peptides | PSMs | Unique   | AAs  | MW [kDa]     | Score   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|----------|----------|------|----------|------|--------------|---------|
| PPAGY8         duff         67         45         106         45         638         69.1         412.33           PVADPS         yscA         65         8         87         8         221         25         316.15           PVADPS         yscA         65         8         87         8         221         25         316.15           PVADPS         yscA         65         25         63         25         704         77.5         227.7         12           PVAGPS         rypA         49         24         57         24         57         61.1         207.49           PVAGPS         rigA         53         29         48         29         485         39.3         122.38         176.6           PVAGPS         zapA         63         13         43         13         331         35.5         124.84           PVAGPS         zapA         63         13         43         13         313         35.5         124.89           PVAGPS         zapA         63         33         40         33         1342         150.5         124.89           PVAGPS         zapA         65         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Accession        | Name        | [%]      |          |      | Peptides |      |              | Sequest |
| PMCLT47         tufA         78         21         120         21         394         43.3         400.18           PDADO5         groEL         73         27         77         27         548         57.3         227.14           PDAGM8         fisuA         55         25         63         25         7041         77.5         224.76           PDAGM8         fisuA         55         25         63         25         7041         77.5         224.76           PDAGM8         secA         55         34         51         34         9011         102         187.66           PD0351         ompF         88         20         51         20         362         39.3         172.33           PD0362         appA         63         13         43         13         33         31.35.5         153.19           PDA705         mB         42         27         36         27         890         97.3         124.84           PDA705         mB         42         27         36         27         123.95           PDA705         mB         42         27         30         15         319         35.2 <td>P0A6Y8</td> <td>dnaK</td> <td>67</td> <td>45</td> <td>106</td> <td>45</td> <td>638</td> <td>69.1</td> <td>412.33</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P0A6Y8           | dnaK        | 67       | 45       | 106  | 45       | 638  | 69.1         | 412.33  |
| PVADDS         yeeA         65         8         87         8         21         25         316.15           PVAGFS         groEL         73         27         77         27         2548         57.3         27.74           PVAGKS         rpvA         49         24         57         24         557         61.1         207.74           PVAGKS         rig         54         22         60         22         432         48.2         188.64           PVAGS0         rig         55         34         51         34         901         102         187.66           PVAGS1         sonB         53         29         48         29         365         93.4         160.96           PVAGV3         snB         42         27         36         27         890         97.3         124.84           PVAGV3         snB         42         27         36         27         890         97.3         124.55           PVAGV3         snB         42         32         24         360         38.6         107.69           PVAGV3         ind         55         14         29         14         360 <td< td=""><td>P0CE47</td><td>tufA</td><td>78</td><td>21</td><td>120</td><td>21</td><td>394</td><td>43.3</td><td>400.18</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P0CE47           | tufA        | 78       | 21       | 120  | 21       | 394  | 43.3         | 400.18  |
| PDAMSHS         groli.1.         73         27         77         27         548         57.3         277.14           PDAMSHS         tig         55         25         63         25         704         77.5         224.76           PDAMSUS         tig         54         22         60         22         432         48.2         188.64           PDAMSUS         secA         55         34         51         34         901         102         187.66           PD2931         ompF         88         20         51         20         362         33.3         172.33           PDAMSU         appA         63         13         43         13         313         35.5         153.19           PDAMSU         appA         66         17         33         17         346         37.2         123.95           PDAMUS         acpB         46         17         33         17         346         37.2         123.95           PDAMUS         accA         59         15         30         15         319         35.2         102.06           PDAMSUS         accA         59         15         30         15<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P0AD05           | yecA        | 65       | 8        | 87   | 8        | 221  | 25           | 316.15  |
| PDAG67         TypeA         49         24         57         24         55         21         704         57         61         12         77.9           PDAG67         rpsA         49         24         57         24         557         61.1         20         362         39.3         172.33           PD408         secA         55         34         51         20         362         39.3         172.33           PD4082         spapA         63         13         43         13         331         35.5         153.19           PDAG23         bipG         58         30         45         30         64         31.43         133         314         150.5         124.89           PDAG23         bipG         58         30         45         30         21         124.59           PDAG23         bipG         58         30         45         30         31.3         132         10.55         124.59           PDAG23         bipG         56         17         33         17         346         37.2         123.59           PDA323         bipG         59         15         30         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P0A6F5           | groEL       | 73       | 27       | 77   | 27       | 548  | 57.3         | 277.14  |
| POA650rpsA4924572455761.1207.49POA850tig5422602243248.2188.64P10498secA55345134901102187.66P20291ompF8820512036239.3172.33P20683acnB5329482986593.4160.96P00496gapA631343133335.5153.19P00A705iniB4227362789097.3124.84P0A705iniB4227362789097.3124.84P0A705iniB4227362789097.3124.84P0A705iniB4227363789795.5105.55105.55P0A817inpA6617331734637.2123.95105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55105.55107.97117.71188.39107.05107.188.39107.05107.188.39107.1117.1 <td>P0A6M8</td> <td>fusA</td> <td>55</td> <td>25</td> <td>63</td> <td>25</td> <td>704</td> <td>77.5</td> <td>224.76</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P0A6M8           | fusA        | 55       | 25       | 63   | 25       | 704  | 77.5         | 224.76  |
| P0A80         tig         54         22         60         22         432         482         188.64           P0408         secA         55         34         51         20         362         39.3         172.33           P3663         acnB         53         29         48         29         865         93.4         100.96           P0A9D2         gapA         63         13         43         13         331         35.5         153.19           P0A723         htpG         58         30         45         30         62.0         71.4         151.44           P0A723         htpG         56         13         44         33         134.2         150.3         124.59           P0A910         ompA         66         17         33         17         346         37.2         123.95           P0A303         accA         59         15         30         15         319         35.2         102.06           P0A317         rpG         27         25         30         25         1407         15.1         99.97           P61889         mdh         81         16         26         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P0AG67           | rpsA        | 49       | 24       | 57   | 24       | 557  | 61.1         | 207.49  |
| P10408secA55345134901102187.66P20291ompF8820512036239.3172.33P36683acnB5329482986593.4160.96P0A025hpG5830453062471.4151.84P0A705infB422736278097.3124.84P0A705infB422736278097.3124.84P0A8V2rpoB363340331342150.5124.89P0A805iacl5514291430038.6107.69P03023iacl5514291430038.6107.69P03053iacl55102.661631232.394.89P03054cipB4424322485795.5105.55P03055mdh<81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P0A850           | tig         | 54       | 22       | 60   | 22       | 432  | 48.2         | 188.64  |
| P02931         ompF         88         20         51         20         362         39.3         172.33           P56683         acnB         53         29         48         29         865         93.4         160.96           P0A623         hpG         58         30         45         30         62.4         71.4         151.84           P0A623         hpG         58         30         45         30         63.4         71.4         151.84           P0A8V2         rpoB         36         33         40         33         17         346         37.2         124.59           P0A8V2         rpoB         36         617         33         17         346         37.2         124.95           P0A103         lacl         5.5         14         29         24         867         95.5         105.55           P0A505         accA         59         15         30         15         319         35.2         102.66           P0A877         rpoC         27         25         30         25         1407         154.4         90         23.3         94.89         90.298         P10121         fis7 <t< td=""><td>P10408</td><td>secA</td><td>55</td><td>34</td><td>51</td><td>34</td><td>901</td><td>102</td><td>187.66</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P10408           | secA        | 55       | 34       | 51   | 34       | 901  | 102          | 187.66  |
| <b>P</b> 36683<br>POA9B2<br>POA9B2<br>POA9B2<br>POA9B2 <b>a</b> can<br>B <b>53</b><br>C <b>29</b><br>C <b>48</b><br>C <b>29</b><br>S <b>865</b><br>C <b>914</b><br>C <b>160</b><br>C <b>161</b><br>C <b>161</b><br>C <b>163</b><br>C <b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b><br><b>163</b> <b< td=""><td>P02931</td><td>ompF</td><td>88</td><td>20</td><td>51</td><td>20</td><td>362</td><td>39.3</td><td>172.33</td></b<> | P02931           | ompF        | 88       | 20       | 51   | 20       | 362  | 39.3         | 172.33  |
| P0A02         gap         63         13         43         13         331         355         153.19           P0A705         inff         42         27         36         27         890         97.3         124.84           P0A872         rpoB         36         33         40         33         1342         150.5         124.95           P0A910         ompA         66         17         33         17         346         37.2         123.95           P0A023         lacl         55         14         29         14         360         38.6         107.69           P63284         cipB         44         22         24         857         95.5         105.55           P0A817         mpC         27         25         30         25         1407         155.1         98.97           P01813         mb         81         16         26         16         312         32.3         94.89           P02925         rbsB         62         13         25         15         32.3         34.5         92.38           P02025         pag         37         17         25         17         711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P36683           | acnB        | 53       | 29       | 48   | 29       | 865  | 93.4         | 160.96  |
| PDAC23         infB         42         27         36         27         80         97.3         1124.84           PDAX95         infB         42         27         36         27         80         97.3         124.84           PDAX95         infB         36         33         40         33         1342         150.5         124.89           POA205         lacl         55         14         29         14         360         38.6         107.9           PO3023         lacl         55         14         29         14         360         38.6         107.5         123.95           POABD5         accA         59         15         30         15         319         35.2         102.05         94.89         95.9         102.0         12.02.06         102.09.9         92.98         P10121         fish         64         15         21         12         41.3         43         84.23           P0A105         gap         37         17         25         17         71.1         77.1         88.39           P02121         fish         475         15         22         12         41.3         43         84.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P0A9B2           | gapA        | 63       | 13       | 43   | 13       | 331  | 35.5         | 153.19  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P0A6Z3           | htpG        | 58       | 30       | 45   | 30       | 624  | 71.4         | 151.84  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P0A705           | infB        | 42       | 27       | 36   | 27       | 890  | 97.3         | 124.84  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P0A8V2           | rpoB        | 36       | 33       | 40   | 33       | 1342 | 150.5        | 124.59  |
| P03023lac1514291430038.6107.69P63284clpB4424322485795.5105.55P0ABD5accA5915301531935.2102.06P0ABT7rpoC272530251407155.198.97P61889mdh8116261631232.394.89P0225rbsB6213251329630.992.98P10121fsY5418251849754.592.38P0ABK5cyaK6815251532334.591.17P0AB5fabF501221124134384.23P0AB84atpD5615221546050.381.85P0A69ptB5610241017920.379.71P0A691tsf6216241628330.478.87P0A53ptB3617231776085.378.05P0A724rpcC5291892.332.670.49P0A724rpcA5413231332936.569.53P0A724rpcA5413231332936.569.53P0A724rpcA5415221538841.463.24 <t< td=""><td>P0A910</td><td>ompA</td><td>66</td><td>17</td><td>33</td><td>17</td><td>346</td><td>37.2</td><td>123.95</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P0A910           | ompA        | 66       | 17       | 33   | 17       | 346  | 37.2         | 123.95  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P03023           | lacI        | 55       | 14       | 29   | 14       | 360  | 38.6         | 107.69  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P63284           | clpB        | 44       | 24       | 32   | 24       | 857  | 95.5         | 105.55  |
| POART7         rpoC         27         25         30         25         1407         155.1         98.97           PF(188)         mdh         81         16         26         16         312         32.3         94.89           P10121         ftsY         54         18         25         13         296         30.9         92.98           P10121         ftsY         54         18         25         15         323         34.5         91.17           P005055         pnp         37         17         25         17         711         77.1         88.39           P0ABB4         atpD         56         15         22         15         460         50.3         81.85           P0A6P1         tsf         62         16         24         10         179         20.3         79.71           P0A6P0         tsf         62         16         24         10         179         20.3         78.7           P0A573         pflB         36         17         23         17         760         85.3         78.05           P0A724         rpoA         54         13         23         13 <td< td=""><td>POABD5</td><td>accA</td><td>59</td><td>15</td><td>30</td><td>15</td><td>319</td><td>35.2</td><td>102.06</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | POABD5           | accA        | 59       | 15       | 30   | 15       | 319  | 35.2         | 102.06  |
| Polase       polase       polase       polase       polase       polase       polase         P0121       fisY       54       18       25       13       26       30.9       92.98         P10121       fisY       54       18       25       13       26       30.9       92.98         P10121       fisY       54       18       25       15       32.3       34.5       91.17         P0ABS       cysK       68       15       25       15       32.3       34.5       91.17         P0ABS       fabF       50       12       21       12       413       43       84.23         P0ABB4       apD       56       15       22       15       460       50.3       81.85         P62399       rpBE       56       10       24       16       283       30.4       78.87         P0ASP1       tsf       62       16       24       16       283       30.4       78.87         P0AS9       pDAF03       apB       36       17       23       17       760       85.3       78.05         P0AT24       rpoA       54       13       23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P0A8T7           | rnoC        | 27       | 25       | 30   | 25       | 1407 | 155.1        | 98.97   |
| PO2925         rbsB         62         13         25         13         266         30.9         92.98           PI0121         ftsY         54         18         25         18         497         54.5         92.38           POABK5         cysK         68         15         255         17         711         77.1         88.39           POABK5         cysK         68         15         221         12         413         43         84.23           POABK4         atpD         56         15         22         15         460         50.3         81.85           POASB1         tsf         62         16         24         10         179         20.3         79.71           POASD1         tsf         62         16         24         10         179         20.3         79.71           POASD3         ggad         at6         17         23         17         760         85.3         78.05           POASD3         ggad         at6         13         23         13         329         36.5         69.53           POATV3         rpsC         52         9         18         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P61889           | mdh         | 81       | 16       | 26   | 16       | 312  | 32.3         | 94.89   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P02925           | rheB        | 62       | 13       | 25   | 13       | 296  | 30.9         | 92.05   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P10121           | fteV        | 54       | 18       | 25   | 18       | 407  | 54.5         | 02.38   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POARK5           | cvsK        | 68       | 15       | 25   | 15       | 323  | 34.5         | 92.38   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P05055           | Cysic       | 37       | 17       | 25   | 17       | 711  | 77.1         | 91.17   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DOA A 15         | fabE        | 50       | 12       | 23   | 17       | /11  | /7.1         | 84.32   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POARIS<br>DOADD4 | atrD        | 56       | 12       | 21   | 12       | 413  | 43<br>50.2   | 04.23   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P62200           | anpD<br>m1E | 56       | 10       | 24   | 10       | 170  | 20.2         | 70.71   |
| P0373pflB $36$ $17$ $23$ $17$ $760$ $85.3$ $78.05$ P0AE08ahpC $57$ $8$ $20$ $8$ $187$ $20.7$ $71.47$ P00350gnd $46$ $15$ $21$ $15$ $468$ $51.4$ $70.98$ P0A703rpsC $52$ $9$ $18$ $9$ $233$ $26$ $70.49$ P0A724rpoA $54$ $13$ $23$ $13$ $329$ $36.5$ $69.53$ P02359rpsG $43$ $7$ $17$ $7$ $79$ $20$ $67.45$ P0A703lysS $49$ $17$ $21$ $14$ $505$ $57.6$ $64.73$ P0A8N3lysS $49$ $17$ $21$ $14$ $505$ $57.6$ $64.73$ P0A9P0lpdA $41$ $13$ $18$ $13$ $474$ $50.7$ $64.4$ P0AFD7purR $48$ $12$ $19$ $12$ $341$ $38.2$ $64.22$ P0A836sucC $54$ $15$ $22$ $15$ $388$ $41.4$ $63.24$ P0A764aceE $33$ $19$ $20$ $19$ $87$ $99.6$ $61.46$ P0A764aceE $33$ $19$ $20$ $19$ $87$ $99.6$ $61.46$ P00509aseF $43$ $15$ $18$ $15$ $630$ $66.1$ $60.96$ P0A707rpsB $68$ $11$ $19$ $11$ $241$ $26.7$ $60.62$ P0A615hslU $36$ <td>P02399</td> <td>TPIE</td> <td>50</td> <td>10</td> <td>24</td> <td>10</td> <td>1/9</td> <td>20.5</td> <td>79.71</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P02399           | TPIE        | 50       | 10       | 24   | 10       | 1/9  | 20.5         | 79.71   |
| POAE08ahpC5782081770063.378.03POAE08ahpC57820818720.771.47P00350gnd4615211546851.470.98P0A7V3rpsC5291892332670.49P0A724rpoA5413231332936.569.53P02359rpsG4371771792067.45P0A803lysS4917211450557.664.73P0AP00lpdA4113181347450.764.4P0ACP7purR4812191251355.261.84P0A836sucC5415221538841.463.24P0A836aceE3319201988799.661.46P00509aspC4814191439643.561.28P0659aceE4315181563066.160.25P0AFF6nusA4614171449554.858.96P0AF64nusA4614171449554.858.96P0A617iscS4013191340445.157.91P0A618hslU3212161264470.758.08<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P0A0P1           | usi<br>mfID | 02       | 10       | 24   | 10       | 285  | 50.4<br>95.2 | 78.05   |
| POAE08anp57820818720.771.47PO0350gnd4615211546851.470.98POA7V3rpsC5291892332670.49POA7Z4rpoA5413231332936.569.53PO2359rpsG4371771792067.45POAC41sdhA4316201658864.466.2POA8N3lysS4917211450557.664.73POAPPOlpdA4113181347450.764.4POACP7purR4812191234138.264.22POA836sucC5415221538841.463.24POABB0atpA3713171251355.261.84POAFG8aceE3319201988799.661.46POA59aceF4315181563066.160.96POA7V0rpsB6811191124126.760.62POA6H5hslU3612171244349.660.25POA6H5hslU3612171244349.660.25POA6H5hslU3612171244349.660.25POA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P09373           | рпв         | 30       | 1/       | 23   | 1/       | /00  | 85.3         | 78.05   |
| P00350gnd4615211546851.470.98P0A7V3rpsC5291892332670.49P0A7Z4rpoA5413231332936.569.53P02359rpsG4371771792067.45P0AC411sdhA4316201658864.466.2P0A8N3lysS4917211450557.664.73P0A9P0lpdA4113181347450.764.4P0ACP7purR4812191234138.264.22P0A836sucC5415221538841.463.24P0AFG8aceE3319201988799.661.46P00509aspC4814191439643.561.28P06959aceF4315181563066.160.96P0A7V0rpsB6811191124126.760.62P0A615hslU3612171244349.660.25P0AFF6nusA4614171449554.858.96P0A615hslU3114161264470.758.08P0A615sucD5811171128929.857.21 <td< td=""><td>P0AE08</td><td>anpC</td><td>57</td><td>8</td><td>20</td><td>8</td><td>18/</td><td>20.7</td><td>/1.4/</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P0AE08           | anpC        | 57       | 8        | 20   | 8        | 18/  | 20.7         | /1.4/   |
| P0A7V3rpsc529189232670.49P0A7Z4rpoA5413231332936.569.53P02359rpsG4371771792067.45P0AC41sdhA4316201658864.466.2P0A8N3lysS4917211450557.664.73P0A9P0lpdA4113181347450.764.4P0ACP7purR4812191234138.264.22P0A836sucC5415221538841.463.24P0ABB0atpA3713171251355.261.84P0AF68accE3319201988799.661.46P0059accF4315181563066.160.96P0A7V0rpsB6811191124126.760.62P0A6H5hslU3612171244349.660.25P0AFF6nusA4614171449554.858.96P0A6H5hslU3612171224470.758.08P0A6B7sicD5811171449554.858.96P0A6H5nisA4614171449554.856.48P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P00550           | gnd         | 40       | 15       | 21   | 15       | 408  | 51.4         | 70.98   |
| PV0A/Z4rpoA5413231332936.569.53P02359rpsG4371771792067.45PVAC41sdhA4316201658864.466.2P0A8N3lysS4917211450557.664.73P0APP0lpdA4113181347450.764.4P0ACP7purR4812191234138.264.22P0A836sucC5415221538841.463.24P0AFG8aceE3319201988799.661.46P0509aspC4814191439643.561.28P06959aceF4315181563066.160.96P0A7V0rpsB6811191124126.760.62P0A6H5hslU3612171244349.660.25P0AFF6musA4614171449554.858.96P0A6B7iscS4013191340445.157.91P0A6E9sucD5811171128929.857.21P0A6E9sucD5811171341645.754.18P0A7L0rplA5412191223424.756.15 <tr< td=""><td>POA/V3</td><td>rpsC</td><td>52</td><td>9</td><td>18</td><td>9</td><td>233</td><td>26</td><td>/0.49</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | POA/V3           | rpsC        | 52       | 9        | 18   | 9        | 233  | 26           | /0.49   |
| P0259rpsG4.571771792067.45P0AC41shA4316201658864.466.2P0A8N3lysS4917211450557.664.73P0A9P0lpdA4113181347450.764.4P0ACP7purk4812191234138.264.22P0A836sucC5415221538841.463.24P0ABB0atpA3713171251355.261.84P0AFG8aceE3319201988799.661.46P00509aspC4814191439643.561.28P06959aceF4315181563066.160.96P0A7V0rpsB6811191124126.760.62P0A6H5hslU3612171244349.660.25P0AFF6nusA4614171449554.858.96P0AA13ftsH3212161264470.758.08P0A6E9sucD5811171128929.857.21P0A6E9sucD5811171341645.754.48P0A7L0rplA5412191223424.756.15 <trr< td=""><td>P0A/Z4</td><td>rpoA</td><td>54</td><td>13</td><td>23</td><td>13</td><td>329</td><td>36.5</td><td>69.53</td></trr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P0A/Z4           | rpoA        | 54       | 13       | 23   | 13       | 329  | 36.5         | 69.53   |
| P0AC41       sdhA       43       16       20       16       588       64.4       66.2         P0A8N3       lysS       49       17       21       14       505       57.6       64.7         P0A9P0       lpdA       41       13       18       13       474       50.7       64.4         P0ACP7       purR       48       12       19       12       341       38.2       64.22         P0A836       sucC       54       15       22       15       388       41.4       63.24         P0ABB0       atpA       37       13       17       12       513       55.2       61.84         P0AF058       aceE       33       19       20       19       887       99.6       61.46         P0509       aspC       48       14       19       14       396       43.5       61.28         P06959       aceF       43       15       18       15       630       66.1       60.96         P0AF05       nusA       46       12       17       12       443       49.6       60.25         P0A615       hslU       36       12       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P02359           | rpsG        | 43       | 1        | 1/   | 1        | 179  | 20           | 67.45   |
| P0A8N3IysS4917211450557.6 $64.73$ P0A0P0lpdA4113181347450.7 $64.4$ P0ACP7purR4812191234138.2 $64.22$ P0A836sucC5415221538841.4 $63.24$ P0ABB0atpA3713171251355.2 $61.84$ P0AFG8aceE3319201988799.6 $61.46$ P00509aspC4814191439643.5 $61.28$ P06959aceF43151815 $630$ $66.1$ $60.96$ P0AFG6nusA4614171244349.6 $60.25$ P0AFF6nusA4614171449554.858.96P0AA13ftsH32121612 $644$ $70.7$ 58.08P0A6B7iscS4013191340445.157.91P0A6B9sucD5811171128929.857.21P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.35P06612topA241417148659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | POAC41           | sdhA        | 43       | 16       | 20   | 16       | 588  | 64.4         | 66.2    |
| P0A OP0       IpdA       41       13       18       13       4/4       50.7       64.4         P0ACP7       purR       48       12       19       12       341       38.2       64.22         P0A836       sucC       54       15       22       15       388       41.4       63.24         P0ABB0       atpA       37       13       17       12       513       55.2       61.84         P0AFG8       aceE       33       19       20       19       887       99.6       61.46         P00509       aspC       48       14       19       14       396       43.5       61.28         P06959       aceF       43       15       18       15       630       66.1       60.96         P0A7V0       rpsB       68       11       19       11       241       26.7       60.62         P0A6H5       hslU       36       12       17       12       443       49.6       60.25         P0A413       ftsH       32       12       16       12       644       70.7       58.08         P0A6E9       sucD       58       11       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P0A8N3           | lysS        | 49       | 17       | 21   | 14       | 505  | 57.6         | 64.73   |
| P0ACP/       purk       48       12       19       12       341       38.2       64.22         P0A836       sucC       54       15       22       15       388       41.4       63.24         P0ABB0       atpA       37       13       17       12       513       55.2       61.84         P0AF08       aceE       33       19       20       19       887       99.6       61.46         P00509       aspC       48       14       19       14       396       43.5       61.28         P06959       aceF       43       15       18       15       630       66.1       60.96         P0A7V0       rpsB       68       11       19       11       241       26.7       60.62         P0A6H5       hslU       36       12       17       12       443       49.6       60.25         P0AFF6       musA       46       14       17       14       495       54.8       58.96         P0A6B7       iscS       40       13       19       13       404       45.1       57.91         P0AGE9       sucD       58       11       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P0A9P0           | IpdA        | 41       | 13       | 18   | 13       | 474  | 50.7         | 64.4    |
| P0A836succ5415221538841.463.24P0ABB0atpA3713171251355.261.84P0AFG8aceE3319201988799.661.46P00509aspC4814191439643.561.28P06959aceF4315181563066.160.96P0AF16nusA4612171244349.660.25P0AFF6nusA4614171449554.858.96P0AGF3iscS4013191340445.157.91P0AGE9sucD5811171128929.857.21P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P33602nuoG23131513908100.254.5P0612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0A6F3glpK3216181650256.251.82P2259pckA321216124054452.04 <tr< td=""><td>POACP/</td><td>purR</td><td>48</td><td>12</td><td>19</td><td>12</td><td>341</td><td>38.2</td><td>64.22</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | POACP/           | purR        | 48       | 12       | 19   | 12       | 341  | 38.2         | 64.22   |
| P0ABB0atpA3713171251355.261.84P0AFG8aceE3319201988799.661.46P00509aspC4814191439643.561.28P06959aceF4315181563066.160.96P0A7V0rpsB6811191124126.760.62P0A6H5hslU3612171244349.660.25P0AFF6nusA4614171449554.858.96P0AA13ftsH3212161264470.758.08P0A6B7iscS4013191340445.157.91P0AGE9sucD5811171128929.857.21P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.31P03602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0AF66sucB4112161246652.552.36P0AF66sucB411216124054452.04<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P0A836           | sucC        | 54       | 15       | 22   | 15       | 388  | 41.4         | 63.24   |
| P0AFG8aceE3319201988799.661.46P00509aspC4814191439643.561.28P06959aceF4315181563066.160.96P0A7V0rpsB6811191124126.760.62P0A6H5hslU3612171244349.660.25P0AFF6nusA4614171449554.858.96P0AA13ftsH3212161264470.758.08P0A6B7iscS4013191340445.157.91P0AGE9sucD5811171128929.857.21P0961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P3602nuoG23131513908100.254.5P0612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0AF66sucB411216124054452.04P0A663glpK3216181650256.251.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P0ABB0           | atpA        | 37       | 13       | 17   | 12       | 513  | 55.2         | 61.84   |
| P00509aspC4814191439643.561.28P06959aceF4315181563066.160.96P0A7V0rpsB6811191124126.760.62P0A6H5hslU3612171244349.660.25P0AFF6nusA4614171449554.858.96P0AAI3ftsH3212161264470.758.08P0A6B7iscS4013191340445.157.91P0AGE9sucD5811171128929.857.21P0361glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P33602nuoG23131513908100.254.5P0612topA2414171486597.354.31P0AF86hns55715713715.552.27P0AF66sucB411216124054452.04P0AF66sucB411216124054452.04P0AF66sucB411216124054452.04P0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P0AFG8           | aceE        | 33       | 19       | 20   | 19       | 887  | 99.6         | 61.46   |
| P06959aceF4315181563066.160.96P0A7V0rpsB6811191124126.760.62P0A6H5hslU3612171244349.660.25P0AFF6nusA4614171449554.858.96P0AA13ftsH3212161264470.758.08P0A6B7iscS4013191340445.157.91P0A6E9sucD5811171128929.857.21P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P3602nuoG23131513908100.254.5P0612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P2259pckA3212161254059.651.65P08660lysC20816844948.551.07 <td>P00509</td> <td>aspC</td> <td>48</td> <td>14</td> <td>19</td> <td>14</td> <td>396</td> <td>43.5</td> <td>61.28</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P00509           | aspC        | 48       | 14       | 19   | 14       | 396  | 43.5         | 61.28   |
| P0A7V0rpsB6811191124126.760.62P0A6H5hslU3612171244349.660.25P0AFF6nusA4614171449554.858.96P0AA13ftsH3212161264470.758.08P0A6B7iscS4013191340445.157.91P0A6E9sucD5811171128929.857.21P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P3602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0A8M0asnS3712161240652.552.36P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P2259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P06959           | aceF        | 43       | 15       | 18   | 15       | 630  | 66.1         | 60.96   |
| P0A6H5hslU3612171244349.660.25P0AFF6nusA4614171449554.858.96P0AA13ftsH3212161264470.758.08P0A6B7iscS4013191340445.157.91P0AGE9sucD5811171128929.857.21P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P3602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P0A7V0           | rpsB        | 68       | 11       | 19   | 11       | 241  | 26.7         | 60.62   |
| P0AFF6nusA4614171449554.858.96P0AAI3ftsH3212161264470.758.08P0A6B7iscS4013191340445.157.91P0AGE9sucD5811171128929.857.21P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P33602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0ASM0asnS3712161246652.552.36P0ACF8hns55715713715.552.27P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P0A6H5           | hslU        | 36       | 12       | 17   | 12       | 443  | 49.6         | 60.25   |
| P0AA13ftsH3212161264470.758.08P0A6B7iscS4013191340445.157.91P0AGE9sucD5811171128929.857.21P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P33602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0ACF8hns55715713715.552.27P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P0AFF6           | nusA        | 46       | 14       | 17   | 14       | 495  | 54.8         | 58.96   |
| P0A6B7iscS4013191340445.157.91P0AGE9sucD5811171128929.857.21P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P33602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0ACF8hns55715713715.552.27P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P0AAI3           | ftsH        | 32       | 12       | 16   | 12       | 644  | 70.7         | 58.08   |
| P0AGE9sucD5811171128929.857.21P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P33602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0ACF8hns55715713715.552.27P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P0A6B7           | iscS        | 40       | 13       | 19   | 13       | 404  | 45.1         | 57.91   |
| P00961glyS3114161468976.856.48P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P33602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0ACF8hns55715713715.552.27P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P0AGE9           | sucD        | 58       | 11       | 17   | 11       | 289  | 29.8         | 57.21   |
| P0A7L0rplA5412191223424.756.15P08200icd4213171341645.754.78P33602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0ACF8hns55715713715.552.27P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P00961           | glyS        | 31       | 14       | 16   | 14       | 689  | 76.8         | 56.48   |
| P08200icd4213171341645.754.78P33602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0ACF8hns55715713715.552.27P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P0A7L0           | rplA        | 54       | 12       | 19   | 12       | 234  | 24.7         | 56.15   |
| P33602nuoG23131513908100.254.5P06612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0ACF8hns55715713715.552.27P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P08200           | icd         | 42       | 13       | 17   | 13       | 416  | 45.7         | 54.78   |
| P06612topA2414171486597.354.31P0A8M0asnS3712161246652.552.36P0ACF8hns55715713715.552.27P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P33602           | nuoG        | 23       | 13       | 15   | 13       | 908  | 100.2        | 54.5    |
| P0A8M0asnS3712161246652.552.36P0ACF8hns55715713715.552.27P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P06612           | topA        | 24       | 14       | 17   | 14       | 865  | 97.3         | 54.31   |
| P0ACF8hns55715713715.552.27P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P0A8M0           | asnS        | 37       | 12       | 16   | 12       | 466  | 52.5         | 52.36   |
| P0AFG6sucB411216124054452.04P0A6F3glpK3216181650256.251.82P22259pckA3212161254059.651.65P08660lysC20816844948.551.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P0ACF8           | hns         | 55       | 7        | 15   | 7        | 137  | 15.5         | 52.27   |
| P0A6F3         glpK         32         16         18         16         502         56.2         51.82           P22259         pckA         32         12         16         12         540         59.6         51.65           P08660         lysC         20         8         16         8         449         48.5         51.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P0AFG6           | sucB        | 41       | 12       | 16   | 12       | 405  | 44           | 52.04   |
| P22259         pckA         32         12         16         12         540         59.6         51.65           P08660         lysC         20         8         16         8         449         48.5         51.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P0A6F3           | glpK        | 32       | 16       | 18   | 16       | 502  | 56.2         | 51.82   |
| P08660 lysC 20 8 16 8 449 48.5 51.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P22259           | pckA        | 32       | 12       | 16   | 12       | 540  | 59.6         | 51.65   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P08660           | lysC        | 20       | 8        | 16   | 8        | 449  | 48.5         | 51.07   |

# Table 19 - Mass spectrometry results from Section 5.2.6– SecHF101 $^{\rm Bpa}$

|    | P0A799   | pgk           | 45 | 11 | 15 | 11 | 387        | 41.1      | 50.61 |
|----|----------|---------------|----|----|----|----|------------|-----------|-------|
|    | P00957   | alaS          | 19 | 12 | 16 | 12 | 876        | 96        | 50.21 |
|    | P23843   | oppA          | 36 | 9  | 12 | 9  | 543        | 60.9      | 48.4  |
| 1  | PODTTO   | hinA          | 32 | 12 | 14 | 12 | 607        | 67.3      | 48.36 |
|    | P0A7D4   | nurA          | 38 | 13 | 16 | 13 | 132        | 47.3      | 17.74 |
|    | D61175   | rolV          | 62 | 0  | 14 | 0  | 110        | 12.2      | 47.12 |
|    | P011/3   | ipiv          | 02 | 9  | 14 | 9  | 110        | 12.2      | 47.12 |
|    | P0A8/0   | talB          | 46 | 11 | 15 | 11 | 31/        | 35.2      | 46.91 |
|    | P60422   | rplB          | 38 | 8  | 15 | 8  | 273        | 29.8      | 46.66 |
|    | P00579   | rpoD          | 28 | 11 | 15 | 10 | 613        | 70.2      | 46.1  |
|    | P00956   | ileS          | 19 | 12 | 15 | 12 | 938        | 104.2     | 45.91 |
|    | P0A862   | tpx           | 59 | 6  | 12 | 6  | 168        | 17.8      | 45.74 |
| 1  | P0AFG3   | sucA          | 22 | 13 | 14 | 13 | 933        | 105       | 45.11 |
|    | POAEX9   | malE          | 34 | 9  | 14 | 9  | 396        | 43.4      | 44 29 |
| 1  | P046P9   | eno           | 30 | 8  | 13 | 8  | 132        | 45.6      | 44.1  |
|    | D62620   | ionC          | 40 | 11 | 14 | 11 | 272        | 40.7      | 42.20 |
|    | P02020   | Ispo          | 42 | 10 | 14 | 10 | 372        | 40.7      | 43.39 |
|    | P0AG30   | rno           | 26 | 10 | 14 | 10 | 419        | 4/        | 43.11 |
|    | P0AEK2   | fabG          | 45 | 8  | 12 | 8  | 244        | 25.5      | 42.45 |
| _  | P0ACF0   | hupA          | 61 | 6  | 13 | 6  | 90         | 9.5       | 41.87 |
|    | P0AG55   | rplF          | 60 | 8  | 12 | 8  | 177        | 18.9      | 41.44 |
|    | P28635   | metQ          | 56 | 8  | 10 | 8  | 271        | 29.4      | 41.02 |
|    | P0AGD3   | sodB          | 66 | 6  | 12 | 6  | 193        | 21.3      | 40.97 |
| 1  | P0A9D8   | dapD          | 48 | 10 | 12 | 10 | 274        | 29.9      | 39.73 |
|    | P27302   | tkt A         | 27 | 11 | 12 | 11 | 663        | 72.2      | 39.66 |
|    | DOAEMA   | nenA          | 41 | 8  | 11 | 8  | 200        | 25.5      | 30.44 |
| į. | DOADU7   | pspA<br>alt A | 41 | 0  | 12 | 0  | 427        | 23.J      | 20.4  |
|    | FUADH/   | gitA          | 41 | 11 | 12 | 11 | 427        | 40        | 39.4  |
| i. | P10059   | pros          | 23 | 9  | 10 | 9  | 5/2        | 03./      | 38.85 |
|    | P60785   | lepA          | 23 | 9  | 11 | 9  | 599        | 66.5      | 38.16 |
|    | P0A6Y5   | hslO          | 40 | 7  | 12 | 7  | 292        | 32.5      | 37.95 |
|    | P0C8J8   | gatZ          | 42 | 9  | 12 | 9  | 420        | 47.1      | 37.93 |
|    | P04036   | dapB          | 24 | 4  | 10 | 4  | 273        | 28.7      | 37.87 |
|    | P0A9Q5   | accD          | 38 | 7  | 10 | 7  | 304        | 33.3      | 37.14 |
| 1  | P0AC38   | aspA          | 28 | 9  | 12 | 9  | 478        | 52.3      | 37.06 |
|    | P0A7V8   | rnsD          | 51 | 10 | 12 | 10 | 206        | 23.5      | 36.48 |
| 1  | D08830   | ntel          | 20 | 10 | 11 | 10 | 575        | 63.5      | 36.3  |
|    | D0A0A6   | ptsi<br>fte7  | 42 | 10 | 11 | 10 | 202        | 40.2      | 26.02 |
|    | POA9A0   |               | 42 | 10 | 10 | 10 | J0J<br>410 | 40.5      | 30.02 |
|    | POABC/   | nnk           | 34 | 9  | 10 | 9  | 419        | 45.5      | 35.2  |
|    | POA'/W'/ | rpsH          | 61 | 8  | 11 | 8  | 130        | 14.1      | 34.99 |
|    | P45523   | fkpA          | 38 | 6  | 9  | 6  | 270        | 28.9      | 34.86 |
|    | P0A7J3   | rplJ          | 52 | 7  | 10 | 7  | 165        | 17.7      | 34.46 |
| _  | P35340   | ahpF          | 33 | 11 | 11 | 11 | 521        | 56.1      | 34.43 |
|    | P60723   | rplD          | 32 | 4  | 10 | 4  | 201        | 22.1      | 34.39 |
|    | P77395   | cnoX          | 32 | 6  | 10 | 6  | 284        | 31.8      | 34.38 |
|    | P31979   | nuoF          | 29 | 9  | 11 | 9  | 445        | 49.3      | 33.86 |
| 1  | P0AEK4   | fabI          | 32 | 5  | 10 | 5  | 262        | 27.8      | 33.1  |
|    | P37095   | nenB          | 33 | 10 | 10 | 10 | 427        | 46.2      | 32.98 |
|    | P0A671   | hscA          | 26 | 10 | 10 | 10 | 616        | 65.6      | 32.82 |
| į, | D23538   | nneA          | 17 | 11 | 11 | 11 | 702        | 87.4      | 32.52 |
|    | D016U1   | olpY          | 24 | 10 | 11 | 10 | 124        | 16.2      | 22.5  |
| i. | POADE    |               | 34 | 10 | 11 | 10 | 424        | 40.5      | 32.10 |
|    | PUA9K9   | slyD          | 67 | 0  | 8  | 0  | 196        | 20.8      | 31.86 |
|    | P0ABC3   | hflC          | 29 | 7  | 10 | 7  | 334        | 37.6      | 31.78 |
|    | P69783   | crr           | 61 | 7  | 10 | 7  | 169        | 18.2      | 31.77 |
| _  | P60624   | rplX          | 54 | 5  | 9  | 5  | 104        | 11.3      | 31.6  |
|    | P07118   | valS          | 17 | 10 | 10 | 10 | 951        | 108.1     | 31.58 |
| 1  | P37440   | ucpA          | 34 | 8  | 10 | 8  | 263        | 27.8      | 31.52 |
|    | P0A7K2   | rplL          | 75 | 7  | 10 | 7  | 121        | 12.3      | 30.18 |
|    | P02943   | lamB          | 29 | 7  | 9  | 7  | 446        | 49.9      | 29.9  |
| j, | P45577   | proO          | 35 | 6  | 9  | 6  | 232        | 25.9      | 29.75 |
|    | D0/092   | rhsA          | 24 | 0  | 10 | 0  | 501        | 55        | 29.75 |
| į, | 1 04983  | 105A          | 24 | 2  | 10 | 2  | 250        | <i>33</i> | 29.07 |
|    | P62/0/   | gpmA          | 30 | 8  | 11 | 8  | 250        | 28.5      | 29.66 |
|    | P0A8L1   | serS          | 28 | 10 | 10 | 10 | 430        | 48.4      | 29.53 |
|    | P68919   | rplY          | 60 | 6  | 10 | 6  | 94         | 10.7      | 29.28 |
|    | P09372   | grpE          | 32 | 3  | 8  | 3  | 197        | 21.8      | 29.17 |
|    | P23893   | hemL          | 40 | 10 | 10 | 10 | 426        | 45.3      | 28.89 |
| 1  | P0A9Q1   | arcA          | 34 | 6  | 7  | 6  | 238        | 27.3      | 28.29 |
|    | P0AB71   | fbaA          | 34 | 6  | 8  | 6  | 359        | 39.1      | 28.12 |
|    | POA6F9   | groES         | 82 | 6  | 10 | 6  | 97         | 10.4      | 27.82 |
| į, | D73836   | phoP          | 55 | 0  | 0  | 0  | 212        | 25.5      | 27.02 |
|    | 1 23030  | phot          | 55 | /  | /  | /  | 443        | 23.3      | 27.40 |

| P02358   | rpsF         | 44           | 5 | 8  | 5 | 135 | 15.7 | 27.43 |
|----------|--------------|--------------|---|----|---|-----|------|-------|
| P17169   | glmS         | 18           | 6 | 7  | 6 | 609 | 66.9 | 27.26 |
| P049K3   | vhe7         | 35           | 8 | 8  | 8 | 346 | 39   | 26.48 |
| P77398   | arn A        | 13           | 6 | 9  | 6 | 660 | 74.2 | 26.40 |
| DOAGIO   | turs         | 21           | 7 | 0  | 7 | 424 | 17.5 | 20.27 |
| DOA 7W1  | rpoE         | 27           | 1 | 7  | 1 | 424 | 47.5 | 25.88 |
| PUA/WI   | IPSE         | 37           | 4 | 7  | 4 | 107 | 17.0 | 25.65 |
| POADY3   | rpin         | 36           | 3 | /  | 3 | 123 | 13.5 | 25.42 |
| P04825   | pepN         | 17           | 8 | 8  | 8 | 870 | 98.9 | 25    |
| P0A707   | ınfC         | 37           | 4 | 6  | 4 | 180 | 20.6 | 24.81 |
| P0A7S9   | rpsM         | 47           | 4 | 6  | 4 | 118 | 13.1 | 24.76 |
| P0A9C5   | glnA         | 23           | 6 | 7  | 6 | 469 | 51.9 | 24.64 |
| P0A805   | frr          | 42           | 6 | 7  | 6 | 185 | 20.6 | 24.59 |
| P0A825   | glyA         | 28           | 8 | 8  | 8 | 417 | 45.3 | 24.3  |
| P00959   | metG         | 16           | 7 | 7  | 7 | 677 | 76.2 | 24.01 |
| P0A9M8   | pta          | 12           | 6 | 7  | 6 | 714 | 77.1 | 23.92 |
| P0A953   | fabB         | 16           | 4 | 6  | 4 | 406 | 42.6 | 23.57 |
| P0A8F0   | ирр          | 49           | 6 | 7  | 6 | 208 | 22.5 | 23.41 |
| P63224   | omh A        | 33           | 6 | 7  | 6 | 192 | 20.8 | 23.33 |
| P25519   | hflX         | 10           | 6 | 8  | 6 | 122 | 48.3 | 23.35 |
| D22500   | nuaC         | 15           | 7 | 8  | 7 | 506 | 40.5 | 23.20 |
| P33399   | mulC         | 10           | 7 | 0  | 0 | 590 | 00.2 | 22.00 |
| P2/298   | pric         | 18           | 0 | 0  | 0 | 080 | //.1 | 22.04 |
| POADZ4   | rpsO         | 42           | 2 | 4  | 2 | 89  | 10.3 | 22.8  |
| P33218   | yebE         | 25           | 4 | .7 | 4 | 219 | 23.7 | 22.79 |
| P07813   | leuS         | 14           | 7 | 7  | 7 | 860 | 97.2 | 22.73 |
| P21889   | aspS         | 13           | 6 | 8  | 6 | 590 | 65.9 | 22.58 |
| P30748   | moaD         | 26           | 1 | 5  | 1 | 81  | 8.8  | 22.48 |
| P08622   | dnaJ         | 29           | 7 | 7  | 7 | 376 | 41.1 | 22.38 |
| P00490   | malP         | 14           | 7 | 7  | 7 | 797 | 90.5 | 22.15 |
| P0A6R0   | fabH         | 30           | 5 | 6  | 5 | 317 | 33.5 | 22.08 |
| P0ABA4   | atpH         | 35           | 4 | 6  | 4 | 177 | 19.3 | 21.98 |
| P00562   | metL         | 12           | 8 | 8  | 8 | 810 | 88.8 | 21.92 |
| P0AA10   | rplM         | 51           | 6 | 7  | 6 | 142 | 16   | 21.91 |
| P60438   | rplC         | 23           | 3 | 6  | 3 | 209 | 22.2 | 21.71 |
| P76422   | thiD         | 20           | 3 | 7  | 3 | 266 | 28.6 | 21.5  |
| P04BZ6   | sur A        | 20           | 6 | 7  | 6 | 428 | 47.3 | 21.5  |
| DOAD17   | omnV         | 44           | 6 | 6  | 6 | 420 | 47.5 | 21.40 |
| FUA917   | omp.         | 44<br>50     | 0 | 0  | 4 | 1/1 | 18.0 | 21.20 |
| PUA/15   | TpsP<br>minD | 32           | 4 | 7  | 4 | 02  | 9.2  | 21.27 |
| POAEZ3   | minD         | 35           | / | 7  | / | 270 | 29.6 | 21.14 |
| P0A6G7   | clpP         | 20           | 2 | 5  | 2 | 207 | 23.2 | 20.97 |
| P0C058   | ibpB         | 35           | 4 | 7  | 4 | 142 | 16.1 | 20.56 |
| P02413   | rplO         | 42           | 5 | 7  | 5 | 144 | 15   | 20.41 |
| P0ADY1   | ppiD         | 15           | 7 | 7  | 7 | 623 | 68.1 | 20.35 |
| P0AF24   | nagD         | 30           | 4 | 6  | 4 | 250 | 27.1 | 20.13 |
| P0AEU0   | hisJ         | 41           | 6 | 6  | 6 | 260 | 28.5 | 20.04 |
| P21170   | speA         | 10           | 4 | 5  | 4 | 658 | 73.9 | 19.72 |
| P0A7R1   | rplI         | 44           | 7 | 7  | 7 | 149 | 15.8 | 19.54 |
| P0ABU2   | ychF         | 25           | 6 | 6  | 6 | 363 | 39.6 | 19.49 |
| P33363   | bglX         | 14           | 7 | 7  | 7 | 765 | 83.4 | 19.43 |
| P0AAB6   | galF         | 31           | 5 | 6  | 5 | 297 | 32.8 | 19.26 |
| POAE88   | cnxR         | 20           | 3 | 5  | 3 | 232 | 26.3 | 19.07 |
| P15288   | nenD         | 12           | 4 | 5  | 4 | 485 | 52.9 | 18.88 |
| POARIS   | cvoB         | 9            | 4 | 5  | 4 | 663 | 74.3 | 18.63 |
| P77690   | arnB         | 20           | 5 | 5  | 5 | 385 | 42.2 | 18.37 |
| D0 4 917 | and W        | 16           | 3 | 5  | 3 | 284 | 42.2 | 18.37 |
| P0A817   | metK         | 10           | 4 | 5  | 4 | 384 | 41.9 | 18.22 |
| P69441   | adk          | 28           | 6 | /  | 6 | 214 | 23.6 | 18.12 |
| P24182   | accC         | 17           | 7 | 1  | 7 | 449 | 49.3 | 17.96 |
| P0A749   | murA         | 18           | 5 | 6  | 5 | 419 | 44.8 | 17.91 |
| P0AFG0   | nusG         | 43           | 5 | 6  | 5 | 181 | 20.5 | 17.88 |
| P0A7E5   | pyrG         | 14           | 6 | 6  | 6 | 545 | 60.3 | 17.85 |
| P0A7J7   | rplK         | 27           | 3 | 6  | 3 | 142 | 14.9 | 17.7  |
| P0AG63   | rpsQ         | 32           | 2 | 4  | 2 | 84  | 9.7  | 17.67 |
| P25553   | aldA         | 17           | 6 | 6  | 6 | 479 | 52.2 | 17.61 |
| P0ACP5   | gntR         | 21           | 5 | 6  | 5 | 331 | 36.4 | 17.37 |
| P69503   | apt          | 40           | 4 | 6  | 4 | 183 | 19.8 | 17.36 |
| P76558   | maeB         | 13           | 6 | 6  | 6 | 759 | 82.4 | 17.22 |
| POAES4   | ovrA         | 9            | 6 | 6  | 6 | 875 | 96.9 | 17.14 |
| POAGIA   | rheK         | 24           | 1 | 6  | 1 | 300 | 22.2 | 16.08 |
| 10430    | 1031         | 2 <b>-</b> 7 | + | 0  | + | 509 | 54.5 | 10.70 |

| P0A7R5    | rnsI    | 35 | 4      | 6 | 4 | 103        | 117   | 16.89 |
|-----------|---------|----|--------|---|---|------------|-------|-------|
| P00370    | adh A   | 17 | 5      | 5 | 5 | 102        | 18.6  | 16.73 |
| D07205    | guill I | 12 | 6      | 6 | 6 | 705        | 97.2  | 16.75 |
| F07393    |         | 13 | 0<br>5 | 0 | 0 | 195        | 67.5  | 16.31 |
| P0A6A3    | аскА    | 18 | 5      | 5 | 5 | 400        | 43.3  | 16.38 |
| P0A912    | pal     | 24 | 3      | 5 | 3 | 173        | 18.8  | 16.37 |
| P0AG44    | rplQ    | 27 | 4      | 6 | 4 | 127        | 14.4  | 16.35 |
| P0A6E4    | argG    | 25 | 6      | 6 | 6 | 447        | 49.9  | 16.34 |
| P0A8M3    | thrS    | 10 | 6      | 6 | 6 | 642        | 74    | 16.26 |
| P0A9A9    | fur     | 30 | 3      | 5 | 3 | 148        | 16.8  | 15.99 |
| P0AGG8    | tldD    | 13 | 4      | 5 | 4 | 481        | 51.3  | 15.92 |
| P27665    | vieD    | 26 | 4      | 4 | 4 | 210        | 22.2  | 15.62 |
| F 57005   | ylaD    | 17 | 4      | 4 | 4 | 219        | 17.7  | 15.02 |
| POAEU/    | ѕкр     | 17 | 2      | 4 | 2 | 161        | 1/./  | 15.6  |
| P0A7M6    | rpmC    | 46 | 2      | 5 | 2 | 63         | 7.3   | 15.57 |
| P0A7K6    | rplS    | 44 | 4      | 5 | 4 | 115        | 13.1  | 15.52 |
| P0A6T1    | pgi     | 11 | 4      | 5 | 4 | 549        | 61.5  | 15.35 |
| P13029    | katG    | 7  | 4      | 5 | 4 | 726        | 80    | 15.23 |
| P0AB91    | aroG    | 20 | 5      | 5 | 5 | 350        | 38    | 15.1  |
| P047M9    | rnmF    | 53 | 3      | 5 | 3 | 70         | 79    | 14.82 |
| D04858    | tpi A   | 20 | 4      | 1 | 4 | 255        | 27    | 14.02 |
| 10A050    | upiA    | 41 | 4      | 4 | 4 | 122        | 15.1  | 14.0  |
| POA/G2    | rbiA    | 41 | 4      | 5 | 4 | 133        | 15.1  | 14.04 |
| P0A8B5    | ybaB    | 45 | 2      | 4 | 2 | 109        | 12    | 14.64 |
| P0A9W9    | yrdA    | 37 | 5      | 6 | 5 | 184        | 20.2  | 14.52 |
| P0A7L3    | rplT    | 24 | 4      | 6 | 4 | 118        | 13.5  | 14.5  |
| P0AAX8    | ybiS    | 26 | 4      | 4 | 4 | 306        | 33.3  | 14.49 |
| P00968    | carB    | 7  | 5      | 5 | 5 | 1073       | 117.8 | 14.43 |
| P61714    | ribE    | 31 | 3      | 4 | 3 | 156        | 16.1  | 14.3  |
| P63020    | nfuA    | 32 | 3      | 1 | 3 | 101        | 21    | 14.3  |
| D07014    | adhD    | 22 |        | 4 |   | 229        | 21    | 14.3  |
| P0/014    | SUILD   | 12 | 4      | 5 | 4 | 238        | 20.8  | 14.29 |
| P04805    | gltX    | 12 | 4      | 5 | 4 | 4/1        | 53.8  | 14.27 |
| P06992    | rsmA    | 20 | 3      | 4 | 3 | 273        | 30.4  | 14.26 |
| P33195    | gcvP    | 7  | 4      | 4 | 4 | 957        | 104.3 | 14.18 |
| P0A8N5    | lysU    | 14 | 5      | 5 | 2 | 505        | 57.8  | 14.18 |
| P0A9W3    | ettA    | 12 | 5      | 5 | 5 | 555        | 62.4  | 14.17 |
| P0C054    | ibnA    | 43 | 4      | 5 | 4 | 137        | 15.8  | 14.12 |
| P30845    | entA    | 13 | 5      | 5 | 5 | 547        | 61.6  | 14.03 |
|           | vagU    | 26 | 4      | 5 | 4 | 204        | 23    | 13.86 |
| DOCD20    | yagO    | 20 | 4      | 5 | 4 | 204        | 23    | 12.05 |
| POCB39    | eptC    | 9  | 4      | 5 | 4 | 577        | 00.0  | 13.85 |
| P0A615    | folE    | 26 | 5      | 5 | 5 | 222        | 24.8  | 13.83 |
| P36672    | treB    | 7  | 2      | 4 | 2 | 473        | 51    | 13.7  |
| P0ABA0    | atpF    | 32 | 4      | 5 | 4 | 156        | 17.3  | 13.65 |
| P0A9S3    | gatD    | 12 | 5      | 5 | 5 | 346        | 37.4  | 13.6  |
| P0AC33    | fumA    | 14 | 4      | 4 | 4 | 548        | 60.3  | 13.41 |
| P0A7X3    | rpsI    | 32 | 4      | 5 | 4 | 130        | 14.8  | 13.28 |
| P27248    | gevT    | 13 | 3      | 4 | 3 | 364        | 40.1  | 13.23 |
| P21500    | pykA    | 10 | 4      | 4 | 4 | 480        | 51.3  | 13.10 |
| D0 A 0112 | UP/CA   | 10 | 4      | 4 | 4 | 400<br>520 | 50.8  | 12.15 |
| P0A9U3    | ybri    | 14 | 4      | 4 | 4 | 330        | 39.8  | 13.15 |
| P0A9L3    | fkiB    | 37 | 5      | 5 | 5 | 206        | 22.2  | 13.1  |
| P0A6N4    | efp     | 17 | 2      | 4 | 2 | 188        | 20.6  | 13.09 |
| P03024    | galR    | 25 | 4      | 4 | 4 | 343        | 37.1  | 13.06 |
| P0A9Y6    | cspC    | 78 | 4      | 4 | 4 | 69         | 7.4   | 13.04 |
| P15042    | ligA    | 10 | 4      | 4 | 4 | 671        | 73.6  | 13.03 |
| P07639    | aroB    | 15 | 3      | 4 | 3 | 362        | 38.9  | 13.03 |
| P68679    | rnsU    | 32 | 3      | 4 | 3 | 71         | 85    | 12.98 |
| POAEC7    | nuoB    | 17 | 3      | 4 | 3 | 220        | 25    | 12.90 |
| DOALCO7   | il N    | 17 | 2      | 4 | 2 | 142        | 25    | 12.90 |
| POAG2/    | y1DIN   | 27 | 3      | 4 | 3 | 143        | 15.6  | 12.95 |
| P25665    | metE    | 9  | 4      | 5 | 4 | 753        | 84.6  | 12.9  |
| P0A7U3    | rpsS    | 37 | 3      | 5 | 3 | 92         | 10.4  | 12.89 |
| P0AC69    | grxD    | 29 | 2      | 3 | 2 | 115        | 12.9  | 12.85 |
| P0ADY7    | rplP    | 32 | 3      | 4 | 3 | 136        | 15.3  | 12.65 |
| P0ACA3    | sspA    | 27 | 5      | 5 | 5 | 212        | 24.3  | 12.56 |
| P76472    | arnD    | 27 | 3      | 4 | 3 | 296        | 33.1  | 12.54 |
| P047U7    | rnsT    | 36 | 1      | 5 | 1 | 87         | 97    | 12.57 |
|           | alaII   | 12 | +      | 3 | + | 0/         | 2.1   | 12.32 |
| PUAEQ3    | ginH    | 15 | 2      | 3 | 2 | 248        | 21.2  | 12.48 |
| P0C018    | rpIR    | 34 | 3      | 4 | 3 | 117        | 12.8  | 12.41 |
| P0AEB2    | dacA    | 19 | 5      | 5 | 5 | 403        | 44.4  | 12.38 |
| P0A9P4    | trxB    | 24 | 4      | 4 | 4 | 321        | 34.6  | 12.34 |
| DOADOO    | ;1vE    | 18 | 4      | 1 | 4 | 300        | 34.1  | 12.22 |

| P0A715           | kdsA           | 17 | 2 | 3 | 2 | 284       | 30.8  | 12.01 |
|------------------|----------------|----|---|---|---|-----------|-------|-------|
| P60906           | hisS           | 8  | 3 | 4 | 3 | 424       | 47    | 11.98 |
| P0A055           | eda            | 21 | 3 | 4 | 3 | 213       | 22.3  | 11.90 |
| P23865           | pro            | 0  | 1 | 4 | 1 | 682       | 76.6  | 11.79 |
| P76576           | vfaM           | 38 | 4 | 4 | 4 | 206       | 22.2  | 11.75 |
| P36680           | ZanD           | 21 | 4 | 4 | 4 | 200       | 22.2  | 11.75 |
| DOAGR6           | rnoE           | 21 | 4 | 4 | 4 | 101       | 20.5  | 11.74 |
| POACEO<br>DOARDS | IPOL 000P      | 31 | 2 | 4 | 2 | 156       | 21.7  | 11.02 |
| POA6K3           | def            | 23 | 1 | 4 | 3 | 150       | 10.7  | 11.53 |
| POAOKS           | uer            | 10 | 4 | 3 | 4 | 267       | 19.5  | 11.33 |
| P0A9Q9           | asu<br>voiT    | 22 | 4 | 4 | 4 | 240       | 40    | 11.47 |
| P77757           | yerr<br>ormC   | 10 | 4 | 4 | 4 | 249       | 27.0  | 11.31 |
| P///3/<br>D0AE02 | arric<br>mid A | 19 | 4 | 4 | 4 | 128       | 30.5  | 11.5  |
| PUAF95           | nuA            | 38 | 3 | 3 | 3 | 644       | 15.0  | 11.22 |
| P0ACC1           | ate A          | 26 | 4 | 4 | 4 | 124       | 15.2  | 11.17 |
| POACOI           | sipA           | 20 | 3 | 4 | 3 | 154       | 15.5  | 11.10 |
|                  | sped           | 27 | 4 | 4 | 4 | 204       | 30.4  | 11.11 |
| P0A6L2           | dapA           | 24 | 2 | 3 | 2 | 292       | 31.3  | 11.08 |
| P01517           | can            | 24 | 4 | 4 | 4 | 220       | 25.1  | 11.05 |
| P39177           | uspG           | 17 | 2 | 3 | 2 | 142       | 15.9  | 11.03 |
| P/01//           | yagn<br>I-J-D  | 1/ | 3 | 3 | 3 | 314       | 33.9  | 11    |
| P04951           | KUSB           | 19 | 4 | 4 | 4 | 248       | 27.0  | 10.92 |
| P0A9A9           | cspA           | 39 | 2 | 3 | 1 | 150       | 1.4   | 10.9  |
| P0AE52           | bcp            | 24 | 3 | 4 | 3 | 150       | 17.0  | 10.80 |
| P1/11/           | nīsA           | 20 | 3 | 3 | 3 | 240       | 26.8  | 10.85 |
| P75913           | gnrA           | 18 | 3 | 3 | 3 | 312       | 35.5  | 10.8  |
| P00722           |                | 5  | 3 | 3 | 3 | 1024      | 116.4 | 10.79 |
| POADW3           | yncB           | 35 | 3 | 3 | 3 | 132       | 15    | 10.73 |
| P00448           | sodA           | 10 | 2 | 3 | 2 | 206       | 23.1  | 10.71 |
| P7/804           | ydgA           | 10 | 4 | 4 | 4 | 502       | 54.7  | 10.71 |
| PUA0Q3           | TabA           | 24 | 4 | 4 | 4 | 1/2       | 19    | 10.7  |
| P13034           | pepP           | 0  | 3 | 4 | 3 | 441       | 49.8  | 10.08 |
| PUAEUo           | acrA           | 11 | 3 | 4 | 3 | 597       | 42.2  | 10.00 |
| POACEO           | nybC           | 12 | 3 | 3 | 3 | 307       | 02.5  | 10.61 |
| P02708           | yaeH<br>traC   | 34 | 4 | 4 | 4 | 128       | 15.1  | 10.57 |
| P28904           | homp           | 8  | 4 | 4 | 4 | 202       | 03.8  | 10.50 |
| P77774           | Dallid         | 13 | 4 | 4 | 4 | 392       | 41.9  | 10.54 |
| P38489           | nisB           | 10 | 3 | 3 | 3 | 217       | 23.9  | 10.53 |
| PUA0L4           | nanA           | 10 | 3 | 3 | 3 | 297       | 52.0  | 10.55 |
| POADG/           | guab           | 17 | 3 | 3 | 3 | 488       | 52    | 10.51 |
| P30936           | pgm<br>tay A   | 12 | 3 | 3 | 3 | 100       | 36.5  | 10.3  |
| PUAA23           | uxA            | 40 | 4 | 4 | 4 | 109       | 11.0  | 10.49 |
| P43303           | ais<br>minE    | 17 | 2 | 3 | 2 | 200       | 10.2  | 10.46 |
| P0A754           | IIIIIE<br>     | 07 | 4 | 4 | 4 | 00        | 10.2  | 10.43 |
| P04004           | IIIIaD         | 10 | 2 | 4 | 2 | 105       | 19.0  | 10.37 |
| DO A D DO        | daeD           | 24 | 2 | 3 | 2 | 220       | 25.0  | 10.34 |
| PUADEO<br>DOAGUS | ueoD           | 24 | 4 | 4 | 4 | 239       | 23.9  | 10.3  |
| POACOS           | Isilio         | 17 | 3 | 3 | 3 | 207       | 23.4  | 10.28 |
| POAC51           | rnmD           | 59 | 3 | 3 | 2 | 50        | 55.5  | 0.06  |
| P0A031           | almM           | 12 | 3 | 4 | 3 | 145       | 47.5  | 9.90  |
| P0A7M2           | rpmB           | 12 | 4 | 4 | 4 | 44J<br>78 | 47.5  | 9.92  |
| P37002           | altI           | 15 | 2 | 3 | 2 | 302       | 33.4  | 9.82  |
| P/3672           | gitt           | 10 | 3 | 3 | 3 | 635       | 72    | 9.70  |
| P0A6Y7           | ibfA           | 22 | 3 | 3 | 3 | 000       | 11.3  | 9.7   |
| POAGK8           | iscP           | 14 | 1 | 2 | 1 | 162       | 17.3  | 9.55  |
| P40874           | solA           | 14 | 3 | 3 | 3 | 372       | 17.5  | 9.48  |
| P04FD1           | nuoF           | 20 | 2 | 3 | 2 | 166       | 18.6  | 9.34  |
| P26616           | maeA           | 12 | 3 | 3 | 3 | 565       | 63.2  | 93    |
| P04783           | rnsI           | 10 | 2 | 3 | 2 | 124       | 13.7  | 9.27  |
| POARAG           | atnG           | 14 | 3 | 3 | 3 | 287       | 31.6  | 9.26  |
| POA7R8           | hslV           | 23 | 3 | 3 | 3 | 176       | 19.1  | 9.26  |
| P05791           | ilvD           | 7  | 3 | 3 | 3 | 616       | 65.5  | 9.23  |
| P0A7E9           | pyrH           | 14 | 2 | 3 | 2 | 241       | 26    | 9.13  |
| POABI1           | cvoA           | 17 | 3 | 3 | 3 | 315       | 34.9  | 9.09  |
| P04982           | rbsD           | 31 | 3 | 3 | 3 | 139       | 15.3  | 9.07  |
| P0A6D7           | aroK           | 22 | 3 | 3 | 3 | 173       | 19.5  | 9.04  |
| P0A9R4           | fdx            | 38 | 2 | 2 | 2 | 111       | 12.3  | 9.03  |
|                  |                |    | - | - | - |           |       |       |

| P30843 | basR  | 16 | 3 | 3 | 3 | 222        | 25         | 8.99 |
|--------|-------|----|---|---|---|------------|------------|------|
| P62623 | ispH  | 9  | 2 | 3 | 2 | 316        | 34.8       | 8.95 |
| P31663 | panC  | 10 | 2 | 3 | 2 | 283        | 31.6       | 8.94 |
| P00962 | glnS  | 6  | 2 | 3 | 2 | 554        | 63.4       | 8.91 |
| POAG90 | secD  | 6  | 3 | 3 | 2 | 615        | 66.6       | 89   |
| P25516 | acnA  | 6  | 3 | 3 | 3 | 891        | 97.6       | 8.86 |
| POAFI1 | miaB  | 12 | 3 | 3 | 3 | 474        | 53.6       | 8.82 |
| DOADIO | andA  | 12 | 3 | 3 | 3 | +/+<br>522 | 58.0       | 9.76 |
| D60651 | cyuA  | 14 | 3 | 3 | 3 | 306        | 22.5       | 8.70 |
| P00031 | Spend | 24 | 3 | 3 | 3 | 100        | 12.9       | 0.74 |
| P0ACD4 | 1scU  | 34 | 3 | 3 | 3 | 128        | 13.8       | 8.08 |
| P00934 | thrC  | 13 | 3 | 3 | 3 | 428        | 47.1       | 8.64 |
| P0A610 | cmk   | 19 | 2 | 3 | 2 | 227        | 24.7       | 8.52 |
| P0A940 | bamA  | 1  | 3 | 3 | 3 | 810        | 90.5       | 8.41 |
| P45578 | luxS  | 26 | 3 | 3 | 3 | 171        | 19.4       | 8.33 |
| P23721 | serC  | 12 | 3 | 3 | 3 | 362        | 39.8       | 8.32 |
| P09546 | putA  | 3  | 3 | 3 | 3 | 1320       | 143.7      | 8.28 |
| P05793 | ilvC  | 10 | 3 | 3 | 3 | 491        | 54         | 8.27 |
| P31224 | acrB  | 4  | 3 | 3 | 3 | 1049       | 113.5      | 8.25 |
| P00864 | ppc   | 4  | 3 | 3 | 3 | 883        | 99         | 8.24 |
| P0ACY1 | ydjA  | 20 | 3 | 3 | 3 | 183        | 20         | 8.1  |
| P0AF12 | mtnN  | 18 | 2 | 2 | 2 | 232        | 24.3       | 7.98 |
| P0A9M2 | hpt   | 21 | 3 | 3 | 3 | 178        | 20.1       | 7.98 |
| P69924 | nrdB  | 11 | 3 | 3 | 3 | 376        | 43.5       | 7.97 |
| P0AED0 | uspA  | 41 | 2 | 2 | 2 | 144        | 16.1       | 7.96 |
| POAEP3 | galU  | 15 | 3 | 3 | 3 | 302        | 32.9       | 7.92 |
| P07862 | ddlB  | 13 | 3 | 3 | 3 | 306        | 32.8       | 7.91 |
| POAGD7 | ffh   | 9  | 3 | 3 | 3 | 453        | 49.8       | 7.83 |
| P04425 | ashB  | 15 | 3 | 3 | 3 | 316        | 35.5       | 7.05 |
| D60716 | lin A | 12 | 2 | 2 | 2 | 221        | 35.5       | 7.75 |
| P00/10 | npA   | 12 | 2 | 2 | 2 | 321<br>804 | 30<br>80.0 | 7.71 |
| PUAES0 | gyrb  | 0  | 2 | 3 | 3 | 501        | 69.9       | 7.00 |
| P09922 | Tuci  | 9  | 3 | 3 | 3 | 190        | 04.9       | 7.00 |
| POAFD6 | nuol  | 22 | 3 | 3 | 3 | 180        | 20.5       | 7.64 |
| POAG59 | rpsN  | 19 | 2 | 2 | 2 | 101        | 11.6       | 7.63 |
| P0A908 | mipA  | 17 | 3 | 3 | 3 | 248        | 27.8       | 7.63 |
| P61949 | fldA  | 28 | 2 | 2 | 2 | 176        | 19.7       | 7.59 |
| P39342 | yjgR  | 8  | 3 | 3 | 3 | 500        | 54.3       | 7.57 |
| P00954 | trpS  | 7  | 1 | 2 | 1 | 334        | 37.4       | 7.57 |
| P0AAI9 | fabD  | 12 | 2 | 2 | 2 | 309        | 32.4       | 7.5  |
| P0A780 | nusB  | 19 | 3 | 3 | 3 | 139        | 15.7       | 7.46 |
| P0ADG4 | suhB  | 11 | 2 | 2 | 2 | 267        | 29.2       | 7.37 |
| P0AGA2 | secY  | 7  | 2 | 3 | 2 | 443        | 48.5       | 7.3  |
| P0AB24 | efeO  | 9  | 2 | 2 | 2 | 375        | 41.1       | 7.21 |
| P0A8E7 | yajQ  | 17 | 2 | 2 | 2 | 163        | 18.3       | 7.18 |
| P0A877 | trpA  | 15 | 2 | 2 | 2 | 268        | 28.7       | 7.16 |
| P38038 | cysJ  | 7  | 3 | 3 | 3 | 599        | 66.2       | 7.13 |
| P0A903 | bamC  | 9  | 2 | 2 | 2 | 344        | 36.8       | 6.96 |
| P0AFM9 | pspB  | 34 | 2 | 2 | 2 | 74         | 8.8        | 6.91 |
| P0A800 | rpoZ  | 26 | 2 | 2 | 2 | 91         | 10.2       | 6.89 |
| POAC53 | zwf   | 8  | 3 | 3 | 3 | 491        | 55.7       | 6.83 |
| P17846 | cvsI  | 8  | 2 | 2 | 2 | 570        | 64         | 6.83 |
| POACE/ | hunB  | 16 | 1 | 2 | 1 | 90         | 9.2        | 6.82 |
| D0A7N4 | rnmE  | 44 | 2 | 2 | 2 | 57         | 5.2        | 6.70 |
| D22524 | mukE  | 10 | 1 | 2 | 1 | 234        | 27         | 6.73 |
| D0A6C9 |       | 16 | 2 | 2 | 2 | 254        | 27         | 6.60 |
| POACO  | агды  | 10 | 2 | 2 | 2 | 238        | 27.1       | 0.09 |
| P00803 | Герв  | 8  | 2 | 2 | 2 | 324        | 35.9       | 0.00 |
| PUA813 | yaaA  | 1/ | 2 | 2 | 2 | 258        | 29.6       | 0.61 |
| P45955 | сроВ  | 16 | 2 | 2 | 2 | 263        | 28.2       | 6.61 |
| P37188 | gatB  | 20 | I | 2 | l | 94         | 10.2       | 6.58 |
| P68187 | malK  | 11 | 2 | 2 | 2 | 371        | 41         | 6.58 |
| P0A722 | lpxA  | 15 | 2 | 2 | 2 | 262        | 28.1       | 6.57 |
| P25437 | frmA  | 12 | 2 | 2 | 2 | 369        | 39.3       | 6.57 |
| P0A6K6 | deoB  | 6  | 2 | 2 | 2 | 407        | 44.3       | 6.55 |
| P16456 | selD  | 12 | 2 | 2 | 2 | 347        | 36.7       | 6.3  |
| P0A9Z1 | glnB  | 24 | 2 | 2 | 2 | 112        | 12.4       | 6.24 |
| P0ACA7 | gstB  | 9  | 1 | 2 | 1 | 208        | 23.7       | 6.16 |
| P18843 | nadE  | 9  | 2 | 2 | 2 | 275        | 30.6       | 6.12 |
| DOCOG1 | mscS  | 10 | 2 | 2 | 2 | 286        | 30.9       | 6.09 |

| P76658   | hldE           | 6  | 2 | 2 | 2 | 477  | 51           | 6.02 |
|----------|----------------|----|---|---|---|------|--------------|------|
| P0AFF2   | nupC           | 9  | 2 | 2 | 2 | 400  | 43.4         | 5.99 |
| P27434   | rodZ           | 10 | 2 | 2 | 2 | 337  | 36.2         | 5.87 |
| P60390   | rsmH           | 11 | 2 | 2 | 2 | 313  | 34.9         | 5.86 |
| P77330   | borD           | 26 | 2 | 2 | 2 | 97   | 10.4         | 5.76 |
| P0A7G6   | recA           | 7  | 2 | 2 | 2 | 353  | 38           | 5.73 |
| POAGEO   | ssb            | 16 | 2 | 2 | 2 | 178  | 19           | 5.68 |
| P0ABN1   | døkA           | 17 | 2 | 2 | 2 | 122  | 13.2         | 5.68 |
| P07012   | prfB           | 9  | 2 | 2 | 2 | 365  | 41.2         | 5.60 |
| P047T7   | rnsR           | 29 | 2 | 2 | 2 | 75   | 9            | 5.66 |
| P33136   | mdoG           | 5  | 2 | 2 | 2 | 511  | 57.9         | 5.66 |
| P04 404  | nteH           | 35 | 2 | 2 | 2 | 85   | 91           | 5.60 |
| POAE08   | mrn            | 5  | 1 | 2 | 1 | 369  | 30.0         | 5.63 |
| P30100   | nrmB           | 6  | 1 | 2 | 1 | 310  | 35           | 5.63 |
| D0 A 003 | fbp            | 11 | 2 | 2 | 2 | 332  | 36.8         | 5.62 |
| P0A6E1   | corA           | 7  | 2 | 2 | 2 | 382  | 41.4         | 5.61 |
| D02020   | tolC           | 5  | 2 | 2 | 2 | 402  | +1.+<br>52.7 | 5.61 |
| P02930   | nroP           | 7  | 2 | 2 | 2 | 493  | 20           | 5.61 |
| P0A/B3   | hedM           | 5  | 2 | 2 | 2 | 520  | 50.2         | 5.58 |
| P06937   | did            | 5  | 2 | 2 | 2 | 571  | 59.5         | 5.50 |
| P00149   | ulu<br>ndlr    | 22 | 2 | 2 | 2 | 371  | 04.0         | 5.57 |
| P0A705   | IIUK           | 25 | 2 | 2 | 2 | 143  | 13.5         | 5.54 |
| P0AG48   | rpiO           | 21 | 2 | 2 | 2 | 105  | 11.0         | 5.54 |
| P31142   | sseA           | 9  | 2 | 2 | 2 | 281  | 30.8         | 5.52 |
| P0C0V0   | degP           | 3  | 1 | 2 | 1 | 4/4  | 49.3         | 5.5  |
| P08312   | pnes           | 1  | 2 | 2 | 2 | 327  | 36.8         | 5.48 |
| PUAFKU   | pmbA           | 0  | 2 | 2 | 2 | 450  | 48.3         | 5.43 |
| P30860   | artJ           | 15 | 2 | 2 | 2 | 243  | 26.8         | 5.33 |
| P09127   | nemX           | 1  | 2 | 2 | 2 | 393  | 42.9         | 5.29 |
| P0A9L5   | ppiC           | 22 | 2 | 2 | 2 | 93   | 10.2         | 5.27 |
| P39833   | gnt I          | /  | 2 | 2 | 2 | 438  | 45.9         | 5.22 |
| P00894   |                | 13 | 2 | 2 | 2 | 105  | 10           | 5.19 |
| P3/051   | fin            | 15 | 2 | 2 | 2 | 280  | 51.9         | 5.18 |
| PUA0K5   | 11S<br>tayD    | 25 | 1 | 2 | 2 | 90   | 11.2         | 5.17 |
| P77329   | icyP<br>evil:E | 6  | 2 | 2 | 2 | 403  | 40.0         | 5.15 |
| POAD01   | рукг           | 21 | 2 | 2 | 2 | 470  | 30.7         | 5.08 |
| POA976   | cspG<br>viaE   | 0  | 2 | 2 | 2 | 226  | 7.0          | 5.02 |
| PUADK0   | ylar<br>murE   | 9  | 2 | 2 | 2 | 452  | 23.0         | 5.03 |
| P 11000  | dolD           | 0  | 2 | 2 | 2 | 432  | 47.4         | 3.02 |
| P04390   | uurP           | 0  | 2 | 2 | 2 | 191  | 51.5         | 4.90 |
| D13881   | fmt            | 10 | 2 | 2 | 2 | 315  | 34.1         | 4.9  |
| P60707   | manV           | 8  | 2 | 2 | 2 | 222  | 25           | 4.09 |
| P13000   | matH           | 2  | 2 | 2 | 2 | 1227 | 135.0        | 4.80 |
| P07013   | tdb            | 10 | 2 | 2 | 2 | 3/1  | 37.2         | 4.76 |
| P12758   | udn            | 0  | 2 | 2 | 2 | 253  | 27.1         | 4.70 |
| P0ACC3   | ernA           | 18 | 2 | 2 | 2 | 114  | 12.1         | 4.75 |
| P60340   | truB           | 6  | 2 | 2 | 2 | 314  | 35.1         | 4.71 |
| P76268   | kdgR           | 10 | 2 | 2 | 2 | 263  | 30           | 4.67 |
| P30011   | nadC           | 7  | 2 | 2 | 2 | 297  | 32.7         | 4 64 |
| P0AG93   | secE           | 10 | 2 | 2 | 2 | 323  | 35.4         | 4.61 |
| P36771   | lrh A          | 10 | 2 | 2 | 2 | 312  | 34.6         | 4.61 |
| P23827   | eco            | 17 | 2 | 2 | 2 | 162  | 18.2         | 4 59 |
| P21165   | penQ           | 5  | 2 | 2 | 2 | 443  | 50.1         | 4.56 |
| P0A9F1   | mntR           | 16 | 2 | 2 | 2 | 155  | 17.6         | 4 49 |
| POABU5   | elbB           | 12 | 1 | 1 | 1 | 217  | 23           | 4 47 |
| POA9T4   | tas            | 10 | 2 | 2 | 2 | 346  | 38.5         | 4 46 |
| 057261   | truD           | 6  | 1 | 1 | 1 | 349  | 39.1         | 4.44 |
| P60546   | gmk            | 16 | 2 | 2 | 2 | 207  | 23.6         | 4.37 |
| P0A7X6   | rimM           | 14 | 2 | 2 | 2 | 182  | 20.6         | 4.34 |
| P13445   | rpoS           | 8  | 2 | 2 | 1 | 330  | 37.9         | 4.32 |
| P0AC18   | crp            | 9  | 2 | 2 | 2 | 210  | 23.6         | 4.24 |
| P0A937   | bamE           | 18 | 1 | 1 | 1 | 113  | 12.3         | 4.19 |
| P00452   | nrdA           | 3  | 2 | 2 | 2 | 761  | 85.7         | 4.17 |
| P76046   | vcjX           | 3  | 2 | 2 | 2 | 465  | 52.6         | 4.13 |
| P0ADC1   | lptE           | 9  | 1 | 1 | 1 | 193  | 21.3         | 4.08 |
| P39831   | ydfG           | 7  | 1 | 1 | 1 | 248  | 27.2         | 4    |
|          | rom A          | 16 | 1 | 1 | 1 | 85   | 91           | 3.95 |

| P0AAC0   | uspE   | 6  | 1 | 1 | 1 | 316 | 35.7  | 3.87 |
|----------|--------|----|---|---|---|-----|-------|------|
| P0A7R9   | rpsK   | 12 | 1 | 1 | 1 | 129 | 13.8  | 3.84 |
| POAFO1   | glcG   | 16 | 1 | 1 | 1 | 13/ | 13.7  | 3.8  |
| D20172   | veeD   | 5  | 1 | 1 | 1 | 204 | 22.6  | 2 72 |
| D00100   | yeaD   | 5  | 1 | 1 | 1 | 294 | 32.0  | 3.73 |
| P08192   | TOIC   | 2  | 1 | 1 | 1 | 422 | 45.4  | 3./1 |
| P0A7D7   | purC   | 7  | 1 | 1 | 1 | 237 | 27    | 3.68 |
| P69411   | rcsF   | 10 | 1 | 1 | 1 | 134 | 14.2  | 3.62 |
| P60752   | msbA   | 3  | 1 | 1 | 1 | 582 | 64.4  | 3.58 |
| P0AA16   | ompR   | 8  | 1 | 1 | 1 | 239 | 27.3  | 3.55 |
| P76027   | oppD   | 7  | 1 | 1 | 1 | 337 | 37.2  | 3.55 |
| O46845   | vghU   | 5  | 1 | 1 | 1 | 288 | 32.4  | 3.54 |
| POA7C2   | levA   | 7  | 1 | 1 | 1 | 202 | 22.3  | 3.48 |
| P00060   | glyO   | 5  | 1 | 1 | 1 | 303 | 34.8  | 3.16 |
| D75015   | giyQ   | 0  | 1 | 1 | 1 | 194 | 20.7  | 2.46 |
| P73913   | yeur   | 0  | 1 | 1 | 1 | 104 | 20.7  | 3.40 |
| POA8X0   | yjgA   | 11 | 1 | 1 | 1 | 183 | 21.3  | 3.45 |
| P0C0L7   | proP   | 3  | 1 | 1 | 1 | 500 | 54.8  | 3.44 |
| P64564   | yggT   | 10 | 1 | 1 | 1 | 188 | 21.2  | 3.43 |
| P76535   | murQ   | 7  | 1 | 1 | 1 | 298 | 31.2  | 3.38 |
| P0A8J4   | ybeD   | 17 | 1 | 1 | 1 | 87  | 9.8   | 3.36 |
| P37182   | hybD   | 10 | 1 | 1 | 1 | 164 | 17.7  | 3.34 |
| P0A7N9   | rpmG   | 27 | 1 | 1 | 1 | 55  | 64    | 3 32 |
| P23830   | vicC   | 4  | 1 | 1 | 1 | 287 | 33.7  | 3.31 |
| DOAAC9   | yice A | 4  | 1 | 1 | 1 | 107 | 11.5  | 2.25 |
| PUAACo   | ISCA   | 15 | 1 | 1 | 1 | 107 | 11.5  | 3.23 |
| P69054   | sdhC   | 9  | I | 1 | 1 | 129 | 14.3  | 3.23 |
| P10371   | hisA   | 7  | 1 | 1 | 1 | 245 | 26    | 3.22 |
| P0AE18   | map    | 5  | 1 | 1 | 1 | 264 | 29.3  | 3.21 |
| P27848   | yigL   | 8  | 1 | 1 | 1 | 266 | 29.7  | 3.21 |
| P00582   | polA   | 2  | 1 | 1 | 1 | 928 | 103.1 | 3.2  |
| P0AG99   | secG   | 16 | 1 | 1 | 1 | 110 | 11.4  | 3.19 |
| P42641   | obgE   | 6  | 1 | 1 | 1 | 390 | 43.3  | 3.19 |
| P24224   | acnS   | 12 | 1 | 1 | 1 | 126 | 14    | 3.17 |
| D16700   | aupb   | 2  | 1 | 1 | 1 | 229 | 27.6  | 2.15 |
| P10/00   | CysP   | 5  | 1 | 1 | 1 | 350 | 37.0  | 3.13 |
| POADCo   | IptG   | 6  | 1 | 1 | 1 | 360 | 39.6  | 3.15 |
| P22939   | ispA   | 7  | 1 | 1 | 1 | 299 | 32.1  | 3.13 |
| P0AFL3   | ppiA   | 8  | 1 | 1 | 1 | 190 | 20.4  | 3.09 |
| P0AFF0   | nuoN   | 2  | 1 | 1 | 1 | 485 | 52    | 3.09 |
| P31802   | narP   | 7  | 1 | 1 | 1 | 215 | 23.6  | 3.08 |
| P0A6N8   | yeiP   | 7  | 1 | 1 | 1 | 190 | 21.5  | 3.08 |
| P0AF36   | zapB   | 26 | 1 | 1 | 1 | 81  | 9.6   | 3.07 |
| P60757   | hisG   | 5  | 1 | 1 | 1 | 299 | 33.3  | 3.07 |
| POADV7   | mlaC   | 6  | 1 | 1 | 1 | 211 | 23.9  | 3.07 |
| P52643   | Idb A  | 4  | 1 | 1 | 1 | 320 | 36.5  | 3.05 |
| D06069   | dut    | 0  | 1 | 1 | 1 | 152 | 16.2  | 2.04 |
| P00908   | dut    | 0  | 1 | 1 | 1 | 132 | 10.5  | 3.04 |
| P27306   | sthA   | 6  | l | I | l | 466 | 51.5  | 3.03 |
| P37759   | rfbB   | 4  | 1 | 1 | 1 | 361 | 40.5  | 3.03 |
| P0A794   | pdxJ   | 6  | 1 | 1 | 1 | 243 | 26.4  | 3.03 |
| P23869   | ppiB   | 7  | 1 | 1 | 1 | 164 | 18.1  | 3.03 |
| P67087   | rsmI   | 6  | 1 | 1 | 1 | 286 | 31.3  | 3.03 |
| P0ACB7   | hemY   | 3  | 1 | 1 | 1 | 398 | 45.2  | 3.01 |
| P77488   | dxs    | 1  | 1 | 1 | 1 | 620 | 67.6  | 2.99 |
| P0A887   | ubiE   | 5  | 1 | 1 | 1 | 251 | 28.1  | 2.99 |
| POAEH5   | elaB   | 17 | 1 | 1 | 1 | 101 | 11.3  | 2.98 |
| POA6SO   | floH   | 7  | 1 | 1 | 1 | 232 | 24.6  | 2.90 |
| D0 4 808 | uhaV   | 10 | 1 | 1 | 1 | 155 | 17.5  | 2.07 |
| P0A898   | yber   | 10 | 1 | 1 | 1 | 155 | 17.5  | 2.97 |
| P0AAY6   | ybjN   | 8  | 1 | 1 | 1 | 158 | 17.7  | 2.96 |
| P0AC19   | folX   | 8  | 1 | 1 | 1 | 120 | 14.1  | 2.96 |
| P0AEM0   | fkpB   | 12 | 1 | 1 | 1 | 149 | 16.1  | 2.94 |
| P0AFC3   | nuoA   | 10 | 1 | 1 | 1 | 147 | 16.4  | 2.91 |
| P06721   | metC   | 6  | 1 | 1 | 1 | 395 | 43.2  | 2.91 |
| P0AD12   | veeZ   | 8  | 1 | 1 | 1 | 274 | 29.7  | 2.89 |
| P0ADR8   | ppnN   | 2  | 1 | 1 | 1 | 454 | 50.9  | 2.89 |
| POAASO   | vlaC   | 10 | 1 | 1 | 1 | 156 | 18.3  | 2.87 |
| POAGWO   | gsh A  | 3  | 1 | 1 | 1 | 518 | 58.2  | 2.87 |
| DOAGUE   | fodD   | 0  | 1 | 1 | 1 | 220 | 27    | 2.07 |
| PUASVO   | Tauk   | 0  | 1 | 1 | 1 | 239 | 21    | 2.07 |
| P1/993   | ubiG   | 1  | 1 | 1 | 1 | 240 | 26.5  | 2.86 |
| P0A6P5   | der    | 4  | 1 | 1 | 1 | 490 | 55    | 2.86 |
| P0AFR4   | yciO   | 5  | 1 | 1 | 1 | 206 | 23.2  | 2.86 |

| P00946             | manA         | 6       | 1 | 1 | 1 | 391        | 42.8         | 2.86 |
|--------------------|--------------|---------|---|---|---|------------|--------------|------|
| P0A959             | alaA         | 3       | 1 | 1 | 1 | 405        | 45.5         | 2.85 |
| P0AEN8             | fucU         | 9       | 1 | 1 | 1 | 140        | 15.5         | 2.83 |
| P0A6J8             | ddlA         | 4       | 1 | 1 | 1 | 364        | 39.3         | 2.82 |
| P30958             | mfd          | 1       | 1 | 1 | 1 | 1148       | 129.9        | 2.81 |
| P0A9V1             | lptB         | 5       | 1 | 1 | 1 | 241        | 26.8         | 2.8  |
| P0AFW4             | rnk          | 18      | 1 | 1 | 1 | 136        | 14.9         | 2.8  |
| P23894             | htpX         | 4       | 1 | 1 | 1 | 293        | 31.9         | 2.79 |
| P06999             | pfkB         | 5       | 1 | 1 | 1 | 309        | 32.4         | 2.79 |
| P33355             | vehS         | 12      | 1 | 1 | 1 | 156        | 18           | 2.78 |
| P37617             | zntA         | 2       | 1 | 1 | 1 | 732        | 76.8         | 2.77 |
| P46837             | vhoF         | 2       | 1 | 1 | 1 | 773        | 85.1         | 2.77 |
| POADB7             | ecnB         | 40      | 1 | 1 | 1 | 48         | 4.8          | 2.77 |
| P0A6W5             | greA         | 9       | 1 | 1 | 1 | 158        | 17.6         | 2.76 |
| POAFP6             | vhgI         | 6       | 1 | 1 | 1 | 247        | 26.9         | 2.75 |
| P75849             | gloC         | 6       | 1 | 1 | 1 | 215        | 23.8         | 2.73 |
| P046V8             | glk          | 4       | 1 | 1 | 1 | 321        | 34.7         | 2.73 |
| P37903             | uenF         | 11      | 1 | 1 | 1 | 144        | 16           | 2.73 |
| P12281             | moeA         | 5       | 1 | 1 | 1 | /11        | 10           | 2.73 |
| D64581             | vaiD         | 16      | 1 | 1 | 1 | 101        | 11           | 2.72 |
| P69/25             | yqjD<br>tatB | 8       | 1 | 1 | 1 | 171        | 18.4         | 2.72 |
| DOAEV8             | seg A        | 7       | 1 | 1 | 1 | 181        | 20.3         | 2.69 |
| P0A648             | acnP         | 21      | 1 | 1 | 1 | 78         | 20.5         | 2.08 |
| D04068             | ily A        | 2       | 1 | 1 | 1 | 514        | 56.2         | 2.08 |
| P04908             | IIVA<br>avaC | 3       | 1 | 1 | 1 | 221        | 25.5         | 2.07 |
| P77750             | quec         | 0       | 1 | 1 | 1 | 231        | 25.5         | 2.07 |
| 1 22333<br>D0A C02 | hamD         | 5       | 1 | 1 | 1 | 245        | 27.8         | 2.00 |
| P20121             | fteN         | 3       | 1 | 1 | 1 | 243        | 25.8         | 2.05 |
| P 29131            | teoC         | 4       | 1 | 1 | 1 | 100        | 20.8         | 2.03 |
| P22121             | homN         | 2       | 1 | 1 | 1 | 190        | 20.8         | 2.04 |
| P0AE70             | viel         | 2<br>16 | 1 | 1 | 1 | 437        | 12           | 2.03 |
| P02841             | yjei<br>melM | 2       | 1 | 1 | 1 | 206        | 21.0         | 2.03 |
| P03641<br>P60222   | inf A        | 3       | 1 | 1 | 1 | 300        | 8.2          | 2.03 |
| P 09222            | nudE         | 0       | 1 | 1 | 1 | 12         | 0.2          | 2.03 |
| P0A717             | nuue         | 0       | 1 | 1 | 1 | 215        | 21.1         | 2.01 |
| P0A/1/<br>P00052   | prs          | 4       | 1 | 1 | 1 | 515<br>417 | 34.2         | 2.01 |
| P22642             | aviA<br>rluD | 7       | 1 | 1 | 1 | 417        | 40.7         | 2.0  |
| P33045             | indA         | 5       | 1 | 1 | 1 | 320        | 57.1<br>41.1 | 2.39 |
| P0A0T0             | lauA         | 3       | 1 | 1 | 1 | 410        | 41.1         | 2.39 |
| P0A910             | nanD         | 8       | 1 | 1 | 1 | 126        | 13.8         | 2.58 |
| P22106             | aspB         | 3       | 1 | 1 | 1 | 554        | 62.6         | 2.58 |
| P27744             | rfb A        | 4       | 1 | 1 | 1 | 202        | 22.7         | 2.58 |
| D0AEU8             | ribC         | 5       | 1 | 1 | 1 | 293        | 23.1         | 2.57 |
| P0A761             | nonE         | 5       | 1 | 1 | 1 | 213        | 24.1         | 2.57 |
| P60776             | lpp          | 15      | 1 | 1 | 1 | 78         | 24.1<br>8.3  | 2.50 |
| P60705             | chbB         | 17      | 1 | 1 | 1 | 106        | 11.4         | 2.50 |
| D0APD2             | bfr          | 0       | 1 | 1 | 1 | 159        | 11.4         | 2.55 |
| POATAO             | nna          | 5       | 1 | 1 | 1 | 176        | 10.5         | 2.55 |
| P0A907             | adhE         | 2       | 1 | 1 | 1 | 801        | 96.1         | 2.55 |
| P36870             | vadG         | 5       | 1 | 1 | 1 | 308        | 34.6         | 2.54 |
| P64624             | vheO         | 11      | 1 | 1 | 1 | 240        | 26.8         | 2.53 |
| P05637             | anaH         | 6       | 1 | 1 | 1 | 280        | 31.3         | 2.53 |
| P09323             | nagE         | 3       | 1 | 1 | 1 | 648        | 68.3         | 2.52 |
| POACN/             | allR         | 1       | 1 | 1 | 1 | 271        | 29.3         | 2.52 |
| P75040             | nag7         | 5       | 1 | 1 | 1 | 3/1        | 27.5         | 2.51 |
| P69829             | ntsN         | 10      | 1 | 1 | 1 | 163        | 17.9         | 2.51 |
| POAFX4             | rsd          | 6       | 1 | 1 | 1 | 158        | 18.2         | 2.51 |
| P25714             | vidC         | 3       |   | 1 | 1 | 548        | 61.5         | 2.49 |
| P11875             | argS         | 2       | 1 | 1 | 1 | 577        | 64.6         | 2.19 |
| P69831             | gatC         | 3       | 1 | 1 | 1 | 451        | 48.3         | 2.48 |
| P29217             | vceH         | 7       | 1 | 1 | 1 | 215        | 24.2         | 2.48 |
| P77239             | cusB         | 3       | 1 | 1 | 1 | 407        | 44.3         | 2.47 |
| P28248             | dcd          | 6       | 1 | 1 | 1 | 193        | 21.2         | 2.47 |
| POAFX9             | rseB         | 4       | 1 | 1 | 1 | 318        | 35.7         | 2.46 |
| POACE7             | hinT         | 11      | 1 | 1 | 1 | 119        | 13.2         | 2.45 |
| P0A8D3             | vaiI         | 10      | 1 | 1 | 1 | 152        | 17           | 2.44 |
| P0AB77             | kbl          | 4       | 1 | 1 | 1 | 398        | 43.1         | 2.43 |
|                    |              |         |   |   |   |            |              |      |

| P0A884 | thvA  | 5  | 1 | 1 | 1 | 264 | 30.5  | 2.42 |
|--------|-------|----|---|---|---|-----|-------|------|
| P0ADI7 | vecD  | 5  | 1 | 1 | 1 | 188 | 20.4  | 2.42 |
| P23847 | dppA  | 5  | 1 | 1 | 1 | 535 | 60.3  | 2.42 |
| P52108 | rstA  | 4  | 1 | 1 | 1 | 239 | 26.7  | 2.41 |
| P11557 | damX  | 3  | 1 | 1 | 1 | 428 | 46.1  | 2.4  |
| P0/693 | tyrB  | 2  | 1 | 1 | 1 | 307 | 43.5  | 2.4  |
| DOADT9 | tyiD  | 6  | 1 | 1 | 1 | 206 | 45.5  | 2.38 |
| PUADIO | ygnvi | 0  | 1 | 1 | 1 | 200 | 25.1  | 2.30 |
| P0A906 | puuk  | 10 | 1 | 1 | 1 | 185 | 20.1  | 2.38 |
| P10100 | rlpA  | 4  | 1 | 1 | 1 | 362 | 37.5  | 2.38 |
| P0A6L0 | deoC  | 5  | 1 | 1 | 1 | 259 | 27.7  | 2.36 |
| P0ADN6 | yifL  | 34 | 1 | 1 | 1 | 67  | 7.2   | 2.35 |
| P32099 | lplA  | 6  | 1 | 1 | 1 | 338 | 37.9  | 2.34 |
| P0AC13 | folP  | 4  | 1 | 1 | 1 | 282 | 30.6  | 2.34 |
| P0A7E3 | pyrE  | 6  | 1 | 1 | 1 | 213 | 23.6  | 2.33 |
| P0A7Y0 | rnc   | 9  | 1 | 1 | 1 | 226 | 25.5  | 2.32 |
| P06715 | gor   | 2  | 1 | 1 | 1 | 450 | 48.7  | 2.31 |
| P30859 | artI  | 9  | 1 | 1 | 1 | 243 | 26.9  | 2.31 |
| P0AE37 | astA  | 3  | 1 | 1 | 1 | 344 | 38.4  | 2.31 |
| P0AED7 | dapE  | 2  | 1 | 1 | 1 | 375 | 41.2  | 2.29 |
| P0AAG8 | mglA  | 2  | 1 | 1 | 1 | 506 | 56.4  | 2.28 |
| POAC44 | sdhD  | 9  | 1 | 1 | 1 | 115 | 12.9  | 2.20 |
| 046868 | ubiK  | 0  | 1 | 1 | 1 | 06  | 11.3  | 2.27 |
| Q40808 | uUIK  | 9  | 1 | 1 | 1 | 90  | 11.5  | 2.20 |
| P24231 |       | 9  | 1 | 1 | 1 | 155 | 13.0  | 2.23 |
| P16095 | sdaA  | 3  | 1 | 1 | 1 | 454 | 48.9  | 2.25 |
| P/5914 | ycdX  | 4  | l | l | l | 245 | 26.9  | 2.25 |
| P68699 | atpE  | 11 | 1 | 1 | 1 | 79  | 8.3   | 2.24 |
| P76270 | msrC  | 6  | 1 | 1 | 1 | 165 | 18.1  | 2.23 |
| P05852 | tsaD  | 4  | 1 | 1 | 1 | 337 | 36    | 2.21 |
| P0A8A8 | rimP  | 7  | 1 | 1 | 1 | 150 | 16.6  | 2.21 |
| P0ADA5 | yajG  | 5  | 1 | 1 | 1 | 192 | 20.9  | 2.2  |
| P0A6L9 | hscB  | 6  | 1 | 1 | 1 | 171 | 20.1  | 2.19 |
| P36979 | rlmN  | 2  | 1 | 1 | 1 | 384 | 43.1  | 2.19 |
| P22188 | murE  | 3  | 1 | 1 | 1 | 495 | 53.3  | 2.19 |
| POAEY5 | mdaB  | 5  | 1 | 1 | 1 | 193 | 21.9  | 2.19 |
| P07001 | pntA  | 4  | 1 | 1 | 1 | 510 | 54.6  | 2.18 |
| P67910 | hldD  | 3  | 1 | 1 | 1 | 310 | 34.9  | 2.18 |
| P32680 | viaG  | 6  | 1 | 1 | 1 | 196 | 22.6  | 2.10 |
| D0AE28 | yjaO  | 4  | 1 | 1 | 1 | 216 | 22.0  | 2.17 |
| D64599 | naiL  | 4  | 1 | 1 | 1 | 207 | 23.7  | 2.17 |
| P04J00 | yqji  | 4  | 1 | 1 | 1 | 207 | 23.4  | 2.13 |
| PUADZ/ | yajC  | 0  | 1 | 1 | 1 | 110 | 11.9  | 2.12 |
| POA/QI | rpmi  | 20 | 1 | 1 | 1 | 05  | 7.5   | 2.12 |
| P25526 | gabD  | 4  | 1 | 1 | 1 | 482 | 51.7  | 2.1  |
| P0A8W8 | yfbU  | 9  | 1 | 1 | 1 | 164 | 19.5  | 2.09 |
| P50465 | nei   | 5  | 1 | 1 | 1 | 263 | 29.8  | 2.09 |
| P0A998 | ftnA  | 6  | 1 | 1 | 1 | 165 | 19.4  | 2.07 |
| P07604 | tyrR  | 2  | 1 | 1 | 1 | 513 | 57.6  | 2.06 |
| P60240 | rapA  | 1  | 1 | 1 | 1 | 968 | 109.7 | 2.05 |
| P0A7I0 | prfA  | 2  | 1 | 1 | 1 | 360 | 40.5  | 2.05 |
| P69228 | baeR  | 7  | 1 | 1 | 1 | 240 | 27.6  | 2.04 |
| P09158 | speE  | 3  | 1 | 1 | 1 | 288 | 32.3  | 2.04 |
| P0A855 | tolB  | 4  | 1 | 1 | 1 | 430 | 45.9  | 2.02 |
| P0ADZ0 | rplW  | 12 | 1 | 1 | 1 | 100 | 11.2  | 2.02 |
| P0AFM2 | proX  | 7  | 1 | 1 | 1 | 330 | 36    | 2.02 |
| P06983 | hemC  | 4  | 1 | 1 | 1 | 313 | 33.8  | 2.02 |
| P77247 | hxpB  | 6  | 1 | 1 | 1 | 222 | 24.3  | 1 99 |
| POARES | ngsA  | 4  | 1 | 1 | 1 | 182 | 20.7  | 1.99 |
| P04079 |       | 2  | 1 | 1 | 1 | 525 | 58.6  | 1.98 |
| P75000 | bluE  | 3  | 1 | 1 | 1 | 403 | 15.3  | 1.97 |
| DOAROO |       | 2  | 1 | 1 | 1 | 406 | 12.5  | 1.97 |
| POADQU | coabe | 7  | 1 | 1 | 1 | 400 | 43.4  | 1.90 |
| PUACL2 | exuk  | 15 | 1 | 1 | 1 | 238 | 29.8  | 1.94 |
| PUAB43 | ycgL  | 15 | 1 | 1 | 1 | 108 | 12.4  | 1.93 |
| PUA8W0 | nanR  | 3  | 1 | 1 | 1 | 263 | 29.5  | 1.93 |
| P52061 | rdgB  | 4  | 1 | 1 | I | 197 | 21    | 1.93 |
| P0AG07 | rpe   | 4  | 1 | 1 | 1 | 225 | 24.5  | 1.92 |
| P0AAQ2 | yajD  | 7  | 1 | 1 | 1 | 115 | 13.4  | 1.92 |