
DESIGN AND EVALUATION OF BLOCKCHAIN-BASED
SECURITY PROTOCOLS

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

at the

UNIVERSITY OF BIRMINGHAM
SCHOOL OF COMPUTER SCIENCE

by

Rujia Li

March 2022

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

DECLARATION

I, Rujia Li, hereby declare that both this thesis and the work presented in it are
entirely the outcome of my own original research. Some of the work has been
previously published in conference or journal, and this has been mentioned in
the thesis. The contributions of others in the jointly-authored work are always
explicitly indicated.

To my maternal grandfather, in loving memory.

ABSTRACT

Many security protocols rely on the assumption that the trusted third party (TTP)
will behave “as it should”. However, this assumption is difficult to justify in the real
world. A TTP may become malicious due to its hidden interests or having been
compromised. It is publicly acknowledged that a failed TTP can easily destroy
the entire security protocol. This thesis aims to provide results on how to use
blockchain technologies to mitigate TTP challenges and thereby secure existing
cryptographic protocols.

Firstly, we formally define a smart contract-based TTP (denoted as TTP-I) and
give two security protocols based on such a type of TTP as concrete instances. In
this approach, a smart contract can either complement a TTP’s actions or take
over the entire functions of the existing TTP. This helps to obtain many security
properties such as transparency and accountability. Smart contracts, however, are
not adequate to replace TTP that is capable of maintaining secret information
since all the states changed by TTP-I are in plaintext and publicly accessible.

To fill the gap, we propose another type of TTP (denoted as TTP-II) that enables
confidential executions by combining smart contracts and Trusted Execution En-
vironments (TEEs). To achieve this goal, we first investigate the state-of-the-art
TEE-aided confidential smart contracts and then explore their core mechanisms.
We further apply TTP-II to a traceable credential system and an accountable de-
cryption system. These systems are proved secure and feasible. However, since
blockchain systems suffer from scalability and performance issues, the development
of blockchain-based cryptographic protocols is inevitably retarded.

At last, to make better blockchain systems, we provide two core mechanisms: a
weak consensus algorithm and a delegatable payment protocol. The weak con-
sensus algorithm allows parallel block generation, improving the performance and
scalability of upper-layer blockchain systems. The delegatable payment protocol
creates an offline payment channel, improving the payment speed. Both proposed
algorithms have been practically implemented and systematically evaluated. No-
tably, the weak consensus algorithm has already been taken up by industries.

ACKNOWLEDGEMENTS

First of all, I would like to express my deep and sincere gratitude to my supervisors,
Prof. David Galindo, Prof. Qi Wang and Prof. Mark Ryan, for their continuous
support, inspiration, and encouragement during my four-year PhD career. In par-
ticular, David Galindo always looks at the bright side of life and encourages me
to deal with any problem I encounter with great patience, which gets me through
dark times. Qi Wang is a very kind mentor, and his immense knowledge, strong
motivation, and enthusiasm are invaluable for my whole life. Mark Ryan’s sense
of responsibilities led me towards excellence. I feel so entirely lucky to have them
as my mentor, advisor, and supervisor. Meanwhile, I am profoundly grateful to
my enlightenment teacher, Prof. Rami Bahsoon, who introduced me to scientific
research. Also, as a Research Students Monitoring Group (RSMG) member, he
has offered me many useful suggestions and consistent supports over my MSc and
PhD career. Especially, I would like to thank the examiners of my PhD viva, Prof.
Tom Chothia and Prof. Siamak Shahandashti for their constructive and valuable
comments.

Secondly, I would like to extend my thanks to my dear friends, Amy Li and Yifan
Wu and Qin Wang. Amy Li and Yifan Wu helped me a lot with my PhD applica-
tions. I could not have made it without their support. Qin Wang is my precious
colleague and friend who co-authored many papers during my PhD study. I cannot
imagine my PhD life without his involvement. Meanwhile, many thanks go to the
following people for their useful discussions, suggestions, and supports of my re-
search during my PhD stage: Adi Shamir (Weizmann Institute of Science), Xinrui
Zhang (NanKai), Kim-Kwang Raymond Choo (UTSA), Agnese Pacifico (Sapienza
Università di Roma), Alphea Pagalaran, Jianyu Niu (UBC), Shuang Wu (NTNU),
Jose Moreira (UoB), Wei Chen (UoB), Haiyang Chen (UoB), Jingyu Huang (UoB),
Huanyuan Zhang (Oxford), Feng Liu (USTC), Geyang Wang (SUSTech), Yi Liu
(SUSTech), Jamie Cui (Ant Group) and Ye Liu (Newcastle).

Thirdly, many sincere thanks also go to my colleagues from the industry: Xueqian
Lu, Xunhe Cheng, Shanlin Lou, Jason Hu, Xiaoming Wang, who shaped my think-

ing on business and offered me a great opportunity of being a department leader.
Despite being a temporary position, it still provided me with valuable experience
for joining a digital economy start-up.

Finally, I greatly appreciate my family members (Ruping Gong, Hongmei Ji, etc.)
for their persistent love, support and understanding. My sincere appreciation
goes to my grandfather and brother for their financial support in my MSc stage.
Without their help, I would never have had the opportunity to enter the United
Kingdom for my MSc study. In addition, I would like to thank the Department
of Computer Science at the University of Birmingham for providing me with a
PhD opportunity and the Department of Computer Science and Engineering at
Southern University of Science and Technology for funding my PhD research.

Rujia Li
March 2022

vii

Contents

1 Introduction 1
1.1 Challenges . 2
1.2 Motivation . 5
1.3 Main Contributions . 6
1.4 Thesis Structure . 7
1.5 List of Publications . 8

2 Background 10
2.1 Preliminaries and Assumptions . 10

2.1.1 Preliminaries . 10
2.1.2 Assumptions . 17

2.2 Blockchain and Smart Contracts . 18
2.2.1 Blockchain . 18
2.2.2 Smart Contract . 19

2.3 Trusted Execution Environments 21
2.3.1 Runtime Isolation . 21
2.3.2 Local/Remote Attestation 22
2.3.3 Sealing Technologies . 24

3 TTP-I: Contract-based TTP 26
3.1 General Construction . 26
3.2 TTP-I Protocol Instances . 28

3.2.1 Transparent Certificate Revocation for CBE 28
3.2.2 Transparent Registration-based Encryption 35

3.3 TTP-I Protocol Discussion . 42
3.3.1 TTP-I Roles and Benefits 42
3.3.2 TTP-I Challenges and Issues 46

4 TTP-II: Smart Contract & TEE-assisted TTP 48
4.1 TEE-assisted Confidential Smart Contract 48

4.1.1 System Workflow . 49
4.1.2 Key Management . 56

4.2 TCSC Classification and Evaluation 59
4.2.1 System Classification . 59
4.2.2 Evaluation Framework . 63
4.2.3 L1 and L2 Evaluation . 65

4.3 TCSC Formal Treatment . 69
4.3.1 TCSC Syntax . 70
4.3.2 Security Properties . 71

4.4 TTP-II : TCSC-based TTP . 72
4.4.1 General Construction . 72
4.4.2 TTP-I and TTP-II Comparison 74

5 Security Protocols Using TTP-II 75
5.1 Credential Anonymity Revocation System 75

5.1.1 Problem Statement . 75
5.1.2 Related Work . 77
5.1.3 Construction Overview . 78
5.1.4 Concrete Instantiation . 80
5.1.5 Implementation and Evaluation 87
5.1.6 Security Discussion . 90
5.1.7 Example Applications . 91
5.1.8 Conclusion . 92

5.2 Accountable Decryption System . 93
5.2.1 Problem Statement . 93
5.2.2 Related work . 95
5.2.3 General Construction . 96
5.2.4 Concrete Instantiation . 99

5.2.5 Security Proof . 101
5.2.6 Implementation . 105
5.2.7 Evaluation . 106
5.2.8 Conclusion . 108

6 Blockchain System Enhancement 109
6.1 A Weak Consensus Algorithm . 109

6.1.1 Introduction . 109
6.1.2 Weak Consensus Algorithm 113
6.1.3 Sphinx System . 118
6.1.4 Implementation . 121
6.1.5 Security Analysis . 121
6.1.6 Evaluation . 124
6.1.7 Use Cases of Our Consensus 128
6.1.8 Related Work . 128
6.1.9 Conclusion . 130

6.2 An Offline Delegatable Payment System 131
6.2.1 Introduction . 131
6.2.2 Related Work . 132
6.2.3 DelegaCoin . 137
6.2.4 Formal Protocols . 142
6.2.5 Security Analysis . 146
6.2.6 Implementation . 150
6.2.7 Evaluation . 151
6.2.8 Conclusion . 153

7 Conclusion and Future Work 154
7.1 Summary of Results . 154
7.2 Future Work . 158

A Resource Availability 159

x

List of Figures

1.1 Structure of the thesis and relationships between components 7

2.1 State-of-the-art implementations of existing TEEs/extensions 22
2.2 SGX key derivation procedure with attestation workflow, image

source [61] . 24

3.1 Certificate revocation diagram for CBE using TTP-I 30
3.2 m-bit serial number is labelled as m-level binary tree 33
3.3 Overview of transparent RBE scheme 38

4.1 TEE-assisted confidential smart contract workflow 50
4.2 A diagram on loading the contract code to multiple enclaves 54
4.3 Key usage in a TCSC system . 59
4.4 Layer-one execution model . 61
4.5 Layer-two execution model . 62

5.1 The overview of the auditable blind credential system 79
5.2 A simplified Abe’s scheme [4] . 83
5.3 The diagram of credential tracing protocol 86
5.4 A screenshot of credential anonymity revocation records 88
5.5 Fialka system framework (a) and architecture (b) 96
5.6 The gas and latency evaluation . 108

6.1 Consensus mechanisms diagram . 112
6.2 Complementary mechanism diagram 116
6.3 Sphinx implementation diagram . 122
6.4 Execution time of different operations in Ethereum and Sphinx . . . 125

6.5 Scalability and disk space evaluation 126
6.6 DelegaCoin workflow diagram . 137
6.7 Used disk space and time-consuming of state seal 153

xii

List of Tables

3.1 Definition of CA’s valid revocation and illegal revocation 29
3.2 A public list L of users’ certificate state 32
3.3 Comparison of various public-key encryption schemes 36
3.4 Comparison of existing CBE schemes and our CBE scheme 43
3.5 Comparison of various RBE solutions 45

4.1 Data workflow of TCSC-based voting system 52
4.2 Varieties of TEE internal keys and their main functionalities 57
4.3 Enclave service keys and their main functionalities 57
4.4 Selected TEE-assisted confidential smart contract systems 60
4.5 A comparison of L1 and L2 solutions 63
4.6 Comparison of L1, L2 system and normal smart contract (SC) . . . 67
4.7 Comparison of TTP-I construction and TTP-II construction 74

5.1 Notions in auditable blind credential system 81
5.2 The performance, input data size, gas cost and latency evaluation . 90
5.3 The average cpu-time, gas cost and latency evaluation 106

6.1 Comparison between PBFT algorithm and our algorithm 115
6.2 Featured notations . 135
6.3 The average performance of various operations 152

xiii

Acronyms

BFT Byzantine fault tolerant.

CA certificate authority.

CBE certificate-based encryption.

DDoS distributed denial-of-service.

EPC enclave page cache.

EUF-CMA existential unforgeability under chosen message attack.

IND-CCA indistinguishability under chosen-ciphertext attack.

IND-CCA2 adaptive indistinguishability under chosen-ciphertext attack.

IND-CPA indistinguishability under chosen-plaintext attack.

KC key curator.

MitM man-in-the-middle attack.

NC Nakamoto consensus.

PKE public key encryption.

PKG private key generator.

PKI public key infrastructure.

PPSC privacy-preserving smart contracts.

PPSC-AD auditor smart contract.

PPSC-KM key management smart contract.

RBE registration-based encryption.

SGX Intel software guard extensions.

TEE trusted execution environment.

TTP trusted third party.

1

Chapter 1

Introduction

Security protocols [68, 146, 154], also called cryptographic protocols, typically con-
sist of families of cryptographic primitives, which are defined as a series of security-
related functions with message exchanges between multiple parties to achieve a spe-
cific security objective. Efficient cryptographic protocols generally describe how
the cryptographic primitives are used, including the details of data structures,
workflows, and representations. Cryptographic protocols are essential components
of multiple interoperable versions of a program since they provide the most com-
mon techniques of providing information security [44].

From a high-level perspective, cryptographic protocols are designed to prevent
malicious activities from deviating the system from its designated function [154],
and therefore build a robust system to achieve security goals such as confidentiality,
authentication, data integrity and non-repudiation [100]. However, these goals are
difficult to achieve in some protocols without a trusted third party (TTP) or several
trusted third parties. It has been proved that a fair exchange protocol cannot be
completely fair without the help of a TTP [168]. Even if, in a simple example that
Alice wants to send an encrypted message to Bob, without a TTP’s assurance, it
is difficult for Alice to confirm that Bob’s identity is, in fact, the person for whom
the information is intended.

With requirements for computer systems becoming increasingly complex, various
TTP-based security protocols ranging from identity-based encryption (IBE) [28],

public key encryption (PKE) [66] and signature scheme [178] have been proposed.
Many of them are widely used in credential systems [183], timestamping sys-
tems [7], fair exchange systems [103, 104, 187] and attestation service [49, 188]. In
these protocols or systems, a TTP offers a value-added communication service for
users to aid them in achieving security properties. As a consequence, TTP plays
an important role in providing ideal solutions to preserve confidentiality, integrity,
and authenticity [173]. For example, in an anonymous credential system such as
ABC4Trust [183], a TTP is introduced to help the credential issuer to reveal the
identity and trace the credential, which enables the system to achieve conditional
privacy; A TTP is adopted as a private key generator (PKG) to produce and
distribute private keys in an IBE system [28], certificate-based encryption (CBE)
system [83, 90] and certificateless encryption system [65]; In public key infrastruc-
ture (PKI) [150] system, the certificate authority (CA), inherently performing the
function of a TTP, attests that a given public key indeed belongs to the user who
claims it.

1.1 Challenges

“In this real-world view of security, a problem does not disappear because a designer
assumes it away. The invocation or assumption in a security protocol design of
a "trusted third party" (TTP) or a "trusted computing base" (TCB) controlled by
a third party constitutes the introduction of a security hole into that design.,
TTP assumptions cause most of the costs and risks in a security protocol.”

- Nick Szabo.

In TTP-based security protocols, a TTP must be entirely or partially trustworthy,
requiring the TTP to hold an implicit assumption that it behaves “as it should”.
However, this assumption is impractical in real-world settings, and applying a
TTP to a protocol without compromising any claimed security goals is tricky. As
Szabo pointed out, the TTP assumptions have become most of the costs and risks
in protocol implementation [195]. Considering its threat model, the reasons that
cause a TTP’s failure can be roughly categorized into two types: internal evilness
and external attacks, indicating that a TTP may become malicious intentionally

or may be compromised by an external adversary.

TTP may become malicious. A TTP may become malicious due to hidden
interests. Abilities to fully control the operations of critical components put a
TTP in a position where it can easily commit irregularities. A malicious TTP is
sharply destructive for cryptographic protocols. It may deviate from the designated
functions of losing targeted properties, which further causes the system to fail
completely. This fact on the harmfulness of the malicious TTP has been publicly
acknowledged [68, 128, 146]. Typical examples that support the above opinion are
listed as follows.

- PKI system relies on CA to issue the certificates. However, a malicious CA
may issue a bogus certificate for some domain names to launch impersonation
or Man-in-the-Middle attacks [56], thus making the network communication
between a client and a server become insecure. In fact, these vulnerabilities
have been acknowledged and exploited in [56, 68].

- In the early-stage IBE system [28], PKG has to be completely trusted for
managing users’ private key. However, PKG may engage in malicious activ-
ities such as generating and re-distributing private keys for self-interest or,
even worse, arbitrarily decrypting ciphertexts. The key escrow problem has
been suggested to explain why IBE has not undergone rapid adoption as a
standard [55].

- In a CBE system [83, 90, 142], CA, as a TTP, should issue certificates for
message decryption. However, CA may maliciously revoke a valid certificate
or arbitrarily deny a user’s request for certificate issuance, which indirectly
makes the user’s decryption fail. Worse still, the revocation process privately
happens in an isolated environment. Users have no ways to blame a CA
because they lack valid evidence to prove the CA’s malicious behaviour [208].

In the past decades, many different approaches have been proposed to prevent
TTP’s malicious activities. Among them, the distributed TTP and accountable
TTP are two most featured approaches. The first approach focuses on distribut-
ing one single TTP’s functionalities and responsibilities to multiple parties (e.g.,
sub-TTPs). The standard techniques include Byzantine agreement [20, 32], se-

cure multi-party computation [19] and secret sharing [17]. A typical example is
distributed PKGs [116] in IBE that combines the secret-sharing protocol and key
generation protocol. In such a solution, the master secret is shared among multiple
parties, thus achieving fairness and security. Unfortunately, this approach pays a
high price at communication complexity, participation motivation and collusion is-
sues. To be specific, a distributed solution inevitably entails extra communication.
In the above case [116], a user has to interact with t sub-PKGs (1 ≤ t ≤ n, n is the
total number of the sub-PKGs) for constructing her final private key. Beyond that,
these participants lack the motivation to invest in higher security. Without offer-
ing external incentives/punishment methods to help sub-PKGs behave honestly,
sub-PKGs may conspire to break the security promises [149]. These challenges
make it difficult for distributed TTP to be widely adopted in reality.

The second approach tries to make a TTP’s action accountable by showing evi-
dence of misbehaviours. A typical example is the accountable authority IBE [131]
that is based on the tracing algorithm, in which a malicious PKG runs the risk of
being caught or sued if it discloses a decryption key associated with an identity
over the Internet. However, this approach cannot guarantee that all TTPs’ misbe-
haviours can be caught, since the tracing algorithm needs to take the maliciously
issued (full or partial) decryption key as input. In the real world, finding such
a malicious key from the Internet is difficult. Another route to achieve account-
ability is to employ one or more extra TTPs (monitors) to monitor functional
TTP. Taking Accountable Key Infrastructure (AKI) [124] as an example, AKI
leverages public log servers to enable public integrity validation for certificate in-
formation and further makes CA’s (functional TTP’s) actions accountable, thus
creating deterrence against fraudulent CA activities. However, collusion problem
and motivation-lacking issue among different TTPs (monitors) still remain.

TTP may be compromised by an adversary. Even if a TTP always behaves
honestly and follows the rule as intended, there is a risk of being compromised by
external adversaries. A TTP usually needs to store a piece of confidential informa-
tion, normally privacy-sensitive, for the data owner to support their services. As
in the IBE scheme discussed above, a master private key must be maintained by
PKG to generate the user’s private key. Another example is that, a CA is required

to maintain a secret signing key in the PKI scheme to provide a signature for the
certificate issuance and revocation. Either an intentional or unintentional leakage
of private information will cause the TTP to be imitated immediately and, as a
result, render all communications in the network insecure. Moreover, this leakage
is easy to occur in real scenarios, as a TTP is actually an organization or a reg-
ulatory authority whose devices (e.g., servers, clients) are untrusted. The system
environment (e.g., CPU, memory, disk) that stores the private information can
easily be monitored or observed by adversaries. Many real-world attacks have sup-
ported this claim. For example, a huge amount of data stored in a database hosted
by the Alibaba cloud was compromised recently, causing over 1 billion records of
Chinese citizens to be leaked [224]. Another example is that over 1.2 million cus-
tomers’ SSL keys were leaked by GoDaddy since the attackers gained initial access
permission to untrusted hosting platforms [200].

1.2 Motivation

With these considerations in mind, a TTP plays an essential role in security pro-
tocols but tends to suffer practical security and privacy issues. Thus, it is not sur-
prising that achieving a fair TTP, or privacy-preserving TTP, has become one of
the main research targets in the security area during the past decades. This thesis
extends such a research direction: mitigating the TTP issue and further build-
ing security protocols by using innovative techniques: blockchain [108, 158, 213]
systems and Trusted Execution Environments (TEEs) [61, 112, 133, 172].

The first goal of this thesis is to explore how to use blockchain to establish a secure
and fair TTP, in which blockchain is a distributed and append-only ledger that
maintains a continuously growing list of data records [85, 158]. In particular, a
smart contract as the core application for a blockchain provides a transparent and
automatic environment to execute pre-defined logic. We will explore how smart
contracts can be employed to help the existing untrusted TTP.

Blockchain-based smart contracts lack confidentiality. The state information and
the instruction code in contracts are completely transparent, and any state and
its changes are publicly accessible. Without privacy, building advanced privacy-

preserving protocols becomes a challenge. For this reason, the second motivation of
this thesis is to combine TEEs and blockchain to build a fair and privacy-preserving
TTP for aiding advanced protocols that are hard to achieve using the traditional
cryptographic primitives.

Despite these many benefits, the blockchain system, as a peer-to-peer system, still
has low performance and poor scalability problems [102]. For instance, the transac-
tions per second (TPS) of Bitcoin is about 7 [134], while Ethereum can only handle
an average of 15 TPS, which significantly restricts the development of upper-layer
applications. To make the blockchain-based protocols more widely adopted, build-
ing a practical blockchain system with good performance and scalability becomes
urgent and crucial. Thereupon, the third motivation of this thesis is to explore
several innovative approaches to achieve a better blockchain system.

1.3 Main Contributions

The main contributions of this thesis are listed as follows.

- We introduce a contract-based TTP that achieves fairness (called TTP-I).
Then, we apply such a type of TTP to rebuild existing security protocols,
including CBE and registration-based encryption (RBE). The first protocol
is proposed to provide a transparent certificate revocation mechanism for
CBE [83, 90, 142], where a smart contract is involved as a TTP to assist
CA in managing the certificate revocation(cf. [208]). The second protocol
introduces a transparent RBE [86, 87], which transfers the right of key man-
agement from the centralized key curator (KC) to individual participants by
on-chain registration.

- We investigate the state-of-the-art of TEE-aided confidential smart contract
(TCSC) systems (cf. [138]). Based on that, we propose a hybrid TTP based
on TCSC (called TTP-II). Furthermore, we explore the core mechanism
of TTP-II, and separately apply it to a credential anonymity revocation
system (cf. [135]) and an accountable decryption system (cf. [136]). The first
cryptosystem proposes a novel anonymity revocation approach, where the
revocation codes are running in TCSC, which offers confidentiality as well

as auditability. The second cryptosystem uses TCSC as a decentralized key
manager and a neutral auditor to make investigators’ actions accountable
during the execution of a warrant for accessing users’ sensitive data.

- We propose two core blockchain algorithms to enhance blockchain scalability,
performance, and usability: a weak consensus algorithm (cf. [205]) and a fast
delegatable payment algorithm (cf. [137, 139]). The weak consensus algo-
rithm provides good scalability by relaxing the strong consistency promise,
providing a high-performance blockchain solution. The delegatable payment
system allows users to pay the cryptocurrency instantly under the help of
TEE, which increases the user’s usability when using cryptocurrency. No-
tably, the proposed weak consensus algorithm has recently been adopted by
a digital economics start-up [74]. Using our algorithm, they proposed an in-
novative NFT system [206] with the advanced properties of fast certification
and low transaction fees.

1.4 Thesis Structure

Figure 1.1 depicts the logical organization of the research topics. Each chapter
identifies the research problem mentioned in the previous chapter and then provides
solutions for that problem. This thesis is organized as follows.

TTP Issues in Security Protocols

TTP-I: Contract-based TTP (Chapter 3)

TTP-I Protocol Discussion (Chapter 3.3)

TTP-II: Contract&TEE-assisted TTP (Chapter 4)

TEE-assisted Confidential Contract System (Chapter 4.1)TTP-I Protocol Instances (Chapter 3.2)

Applied TTP-II for Advanced Security Protocols (Chapter 5)

Blockchain Enhancement (Chapter 6)Scalability Performance, Usability

Figure 1.1: Structure of the thesis and relationships between components

Chapter 2 presents the background for this thesis. Beginning with several related
crypto preliminaries and assumptions, this chapter presents the concepts of the

blockchain, smart contract and TEEs.

Chapter 3 introduces a smart contract-based TTP, called TTP-I. TTP-I regards
the smart contract as an agent to achieve fairness. Next, two security protocols
using TTP-I are given to illustrate the applicabilities and drawbacks.

Chapter 4 introduces a new type of contract, called the TEE-assisted smart con-
tract (TCSC), aiming to address the privacy issues associated with smart contracts.
It begins with a comprehensive investigation and evaluation of existing TCSC sys-
tems. Afterwards, a syntax of TCSC and a general construction of TCSC-based
protocol (called TTP-II protocol) are defined, with emphasis on the difference
between TTP-I protocol.

Chapter 5 gives two security protocols adopting TTP-II: an auditable credential
anonymity revocation protocol and an accountable decryption protocol. These
protocols employ TCSC as a high-level primitive, enjoying accountability and
traceability properties. Both protocols provide the security analysis, full imple-
mentation, and comprehensive evaluation, followed by use case discussions.

Chapter 6 begins with the main challenges of current blockchain systems: lack of
scalability, low performance and poor usability. Then, two algorithms are proposed
to solve the above issues. The first algorithm allows running with parallel chains,
providing an improved-scalability blockchain solution. The second algorithm ex-
ploits TEEs as decentralized “virtual agents” to prevent malicious delegation, which
facilitates payments and improves users’ usability.

Chapter 7 concludes this thesis and points out the future work.

1.5 List of Publications

The work covered in this thesis has been published in the following papers:

1. Auditable Credential Anonymity Revocation Based on Privacy-
Preserving Smart Contracts. The 3rd International Workshop on Cryp-
tocurrencies and Blockchain Technology on the 24th edition of the European
Symposium on Research in Computer Security (ESORICS 19), Rujia Li,
David Galindo, Qi Wang (Travel Grant Awarded).

2. Poster: Transparent Certificate Revocation for CBE Based on
Blockchain. The 41st IEEE Symposium on Security and Privacy (IEEE
S&P 20). Qin Wang*, Rujia Li*, Qi Wang, David Galindo.

3. An Accountable Decryption System Based on Privacy-Preserving
Smart Contracts. The 23rd Information Security Conference (ISC 20).
Rujia Li, Qin Wang, Feng Liu, Qi Wang, David Galindo.

4. Poster: A Weak Consensus Algorithm and Its Application to High-
Performance Blockchain. The 28th Annual Network and Distributed
System Security Symposium (NDSS 21). Qin Wang, Rujia Li, Qi Wang.

5. A Weak Consensus Algorithm and Its Application to High-
Performance Blockchain. The 40th Annual IEEE Conference on Com-
puter Communications (INFOCOM 21). Qin Wang*, Rujia Li*.

6. Poster: An Offline Delegatable Cryptocurrency System. The 28th
Annual Network and Distributed System Security Symposium (NDSS 21).
Rujia Li, Qin Wang, Xinrui Zhang, Qi Wang, David Galindo, Yang Xiang.

7. An Offline Delegatable Cryptocurrency System. The 3rd IEEE Inter-
national Conference on Blockchain and Cryptocurrency (ICBC 21).
Rujia Li*, Qin Wang*, Xinrui Zhang, Qi Wang, David Galindo, Yang Xiang.

8. SoK: TEE-assisted Confidential Smart Contract. The 22nd Privacy
Enhancing Technologies Symposium (PETS 22). Rujia Li*, Qin Wang*, Qi
Wang, David Galindo, Mark Ryan.

9. Exploring Unfairness on Proof of Authority: Order Manipulation
Attacks and Remedies. The 17th ACM ASIA Conference on Computer
and Communications Security (ASIACCS 22) Qin Wang*, Rujia Li*, Qi
Wang, Shiping Chen, Yang Xiang.

10. How Do Smart Contracts Benefit Security Protocols? ArXiv.org
E-Print Archive 22. https://arxiv.org/pdf/2202.08699.pdf. Rujia Li*, Qin
Wang*, Qi Wang, David Galindo.

10

Chapter 2

Background

This chapter introduces cryptographic definitions (Section 2.1), the related back-
ground on the blockchain and smart contract (Section 2.2), and TEEs (Section 2.3).
Note that our cryptographic definitions only capture the main preliminaries used
in this thesis, and minor details such as security definitions of CBE and RBE are
omitted.

2.1 Preliminaries and Assumptions

2.1.1 Preliminaries

Symmetric Encryption. A symmetric encryption scheme SE contains the fol-
lowing algorithms.

- SE.KeyGen(1λ) The algorithm takes as input a security parameter λ and
outputs a secret key sk.

- SE.Enc(sk,m) The algorithm takes as input sk and a message m ∈ M,
outputs a ciphertext ct.

- SE.Dec(sk, ct) The algorithm takes as input sk, the ciphertext ct, and outputs
a message m ∈M.

Correctness. A symmetric encryption scheme SE is correct if for all m ∈ M and

every secret key sk generated by SE.KeyGen(1λ), it holds that,

SE.Dec(sk, (SE.Enc(sk,m))) = m.

A secure symmetric encryption scheme SE should provide data confidentiality. In
particular, an adversary cannot learn which message is encrypted in a ciphertext.
Formally, the security of SE is defined as follows.

Definition 1 (IND-CPA security of SE). A symmetric encryption scheme SE

achieves Indistinguishability under Chosen-Plaintext Attack (IND-CPA) if for all
PPT adversaries, there exists a negligible function negl(λ) such that

∣∣Pr [GIND−CPA
A,SE (λ) = 1

]
− 1

2

∣∣ ≤ negl(λ),

where GIND−CPA
A,SE (λ) is defined as follows.

GIND−CPA
A,SE (λ)

1 : sk ← SE.KGen(1λ)// C runs for a private sk

2 : b
$← {0, 1}// C chooses a random bit

3 : m0,m1 ← AO
Enc
sk (·)(1λ)// A provides messages

4 : ct⋆ ← SE.Enc(sk,mb)// C replies with ct⋆

5 : b′ ← AOEnc
sk (·)(ct⋆)//A finally outputs its guess b′

6 : return b = b′

OEnc
sk (m)

1 : ct← SE.Enc(sk,m)

2 : return ct

Signature Scheme. A signature scheme S [79] consists of the following algo-
rithms.

- S.KeyGen(1λ) The algorithm takes as input a security parameter λ and out-
puts a key pair (sk, vk) for signing and verification.

- S.Sign(sk,m) The algorithm takes as input sk and a message m ∈ M, and
outputs a signature σ.

- S.Verify(vk, σ,m) The algorithm takes as input vk, a signature σ, a message
m ∈M, and outputs 1 or 0.

Correctness. A signature scheme S is correct if for all m ∈M and every key pairs
(vk, sk) generated by S.KeyGen(1λ), it holds that,

S.Verify(vk, (S.Sign(sk,m)),m) = 1.

A signature scheme should provide authenticity. An adversary without a signing
key cannot generate a valid signature. The security of the signature scheme S is
formally defined as follows.

Definition 2 (EUF-CMA security of S). A signature scheme S is said to secure
against Existentially Unforgeable under Chosen Message Attack (EUF-CMA) if for
all PPT adversaries, there exists a negligible function negl(λ) such that

Pr
[
GEUF-CMA
A,S (λ) = 1

]
≤ negl(λ),

where GEUF-CMA
A,S (λ) is defined as follows.

GEUF-CMA
A,S (λ)

1 : (sk, vk)← S.KeyGen(1λ)

2 : L ← {}// an empty set

3 : (m⋆, σ⋆)← AO
Sign
sk (·)(vk)

4 : return S.Verify(vk, σ⋆,m⋆) = 1 ∧ σ⋆ /∈ L

OSign
sk (m)

1 : σ ← S.Sign(sk,m)

2 : L := L || σ

3 : return σ

Public Key Encryption. A public key encryption scheme PKE [63] contains the
following algorithms.

- PKE.KeyGen(1λ) The algorithm takes as input a security parameter λ and
generates a private key sk and a public key pk.

- PKE.Enc(pk,m) The algorithm takes as input a public key pk, a message
m ∈M, and outputs a ciphertext ct.

- PKE.Dec(sk, ct) The algorithm takes as input a private key sk and a cipher-
text ct, and outputs a message m ∈M.

Correctness. A public key encryption scheme PKE is correct if for all m ∈M and

all key pairs (sk, pk)← PKE.KeyGen(1λ), it holds that,

PKE.Dec(sk, (PKE.Enc(pk,m))) = m,

A public-key encryption scheme provides confidentiality. An adversary can not
learn which message is encrypted in a ciphertext, even if it equips with the decryp-
tion oracle before and after encryption. Formally, the security of PKE is defined
as follows.

Definition 3 (IND-CCA2 security of PKE). A public key encryption scheme PKE

is said to secure against Indistinguishability Security Under Adaptively Chosen
Ciphertext Attack (IND-CCA2) if for all PPT adversaries, there exists a negligible
function negl(λ) such that

∣∣Pr [GIND-CCA2
A,PKE (λ) = 1

]
− 1

2

∣∣ ≤ negl(λ),

where GIND-CCA2
A,PKE (λ) is defined as follows:

GIND-CCA2
A,PKE (λ)

1 : (sk, pk)← PKE.KGen(1λ)

2 : b
$← {0, 1}// C chooses a random bit

3 : m0,m1 ← AO
Dec1
sk (·)(1λ)// A provides (m0,m1)

4 : ct⋆ ← PKE.Enc(sk,mb)// C replies with ct⋆

5 : b′ ← AODec2
sk (·)(ct⋆, pk)// A outputs its guess b′

6 : return b = b′

ODec1
sk (ct)

1 : m← PKE.Dec(sk, ct)

2 : return m

ODec2
sk (ct)

1 : if(ct == ct⋆) return ⊥

2 : m← PKE.Dec(sk, ct)

3 : return m

Hash Functions. A hash function family H is a pair of algorithms (Gen, {hk}k).

- Gen(1λ) This algorithm takes as input a security parameter λ, and outputs
a key k.

- hk : {0, 1}|m| → {0, 1}|n|) This is an efficient algorithm parameterized by
the key k that compresses |m| length strings to |n| length strings, where
|m| > |n|.

Collision Resistant Hash Functions (CRHF) [18]. A family of functions H is
said to be collision-resistant if for any probabilistic polynomial algorithm A, there
exists a negligible function negl(λ) such that

Pr
[
k ← Gen(1λ), (x1, x2)← A(k, 1λ) : x1 ̸= x2 ∧ Hk(x1) = Hk(x2)] ≤ negl(λ).

Certificate-based Encryption. A certificate-based encryption scheme CBE, first
introduced by Gentry [90], consists of the following algorithms.

- CBE.Gen(1λ, n) The algorithm takes as input a security parameter λ, the
total number of time periods n, and outputs a certifier’s master secret msk

and public parameters pms that include the master public key mpk. The
public parameters pms are implicit input for the rest of the algorithms.

- CBE.Set(1λ) The algorithm takes as input a security parameter λ, and out-
puts a user’s key pair (pk, sk). The algorithm is run by users.

- CBE.Cert(msk, i, user, pk) At the start of each time i, CA takes as input
msk, a user’s information user and a user’s public key pk, and outputs the
user’s certificate Certi.

- CBE.Enc(m, i, user, pk) The algorithm takes as input a message m, a user’s
information user, a user’s public key pk at time period i, and returns a
ciphertext ct.

- CBE.Dec(Certi, sk, ct) At time period i, the algorithm takes as input a cer-
tificate Certi, a user’s private key sk, and the ciphertext ct, and then outputs
a message m or a special symbol ⊥ indicating a decryption failure.

Correctness. A certificate-based encryption scheme CBE is correct if at the time
period i ∈ n, for all m ∈M, all user’s key pairs (sk, pk) output by CBE.Set(1λ), all
msk output by CBE.Gen(1λ, n) and all Certi output by CBE.Cert(msk, i, user, pk),
it holds that,

CBE.Dec(Certi, sk, (CBE.Enc(m, i, user, pk)) = m.

Registration-based Encryption. A registration-based encryption scheme RBE,

first proposed by Garg in 2018 [86], is composed of the following algorithms.

- RBE.Setup(1λ) The algorithm takes as input a security parameter λ and
outputs a common random string crs. Here, crs can be sampled publicly
using public randomness beacon.

- RBE.KeyGen(1λ) The algorithm takes as input a security parameter λ, and
outputs a user’s key pair (sk, pk). Note that these keys are only public and
secret keys, not the encryption or decryption keys.

- RBE.Reg[aux](crs, pp, id, pk) The algorithm takes as input crs, current param-
eter pp, a registering identity id, a public key pk and outputs the updated
public parameter pp′. The auxiliary information aux stores all the data on
users’ identifiers/corresponding public keys and the old parameters. It will
be updated into aux′ during the process of registration (in the setup stage,
public parameters pp are initialized as ⊥ and the auxiliary information aux

is configured as ∅).

- RBE.Enc(crs, pp, id,m) The algorithm takes as input crs, a public parameter
pp, a recipient identity id, a message m, and outputs a ciphertext ct.

- RBE.Upd[aux](pp, id) The algorithm takes as input a user identity id, current
public parameters pp and outputs newly updated public parameters u that
can help id to decrypt its messages. The update of the public parameters is
achieved by reading the auxiliary information aux.

- RBE.Dec(sk, u, ct) The algorithm takes as input a secret key sk, an update
information u1, a ciphertext ct, and outputs a message m ∈ {0, 1}∗ or in
{⊥,GetUpd}. The symbol ⊥ indicates a syntax error, while GetUpd indicates
that u needs to be updated.

Correctness. A registration-based encryption scheme RBE is correct if for all m ∈
M, all crs output by RBE.Setup(1λ) all identities id, all user’s key pairs (sk, pk)

1Here, u represents the latest public parameter (e.g., pp or pp′), it will be updated after some
registrations of new users.

generated by RBE.KeyGen(1λ), and u output by RBE.Upd[aux](pp, id), it holds that,

CBE.Dec(sk, u, (CBE.Enc(crs, pp, id,m)) = m,

Fair Blind Signature. A fair blind signature scheme FBS, proposed by Stadler
et al. [192], is defined by the following algorithms.

- FBS.Setup(1λ) The algorithm takes as input a security parameter λ, and
outputs public parameters pms, which are implicit input for the rest of the
algorithms.

- FBS.KeyGen(1λ) The algorithm takes as input a security parameter λ, and
outputs a signing key pair (isk, ipk) and a private and public revocation key
pair (rsk, rpk) for the issuer. Here, (rsk, rpk) can be independent of (sk, pk).
Meanwhile, a user runs this algorithm to obtain a key pair (usk, upk).

- FBS.Sign(isk, rpk,m) The algorithm takes as input a signing private key sk,
a revocation key key rpk, a message m, and outputs a blind signature σ.

- FBS.Verify(ipk, σ,m) The algorithm takes as input an issuer’s public key ipk,
a signature σ, a message m, and outputs the verification result true or false.

- FBS.TraceSig(rsk, view) The algorithm takes as input a revocation key rsk,
and a view of the issuer during the target session, and outputs a signature
identifier Isig.

- FBS.MatchSig(Isig, σ) The algorithm takes as input a signature identifier Isig
and signature σ, and outputs true or false.

- FBS.TraceSession(rsk, σ) The algorithm takes as input a revocation key rsk,
a target signature σ and outputs a session identifier Isid.

- FBS.MatchSession(Isid, view) The algorithm takes as input a session identifier
Isid and a view, and outputs true or false.

Correctness. It is assumed that a fair blind signature scheme FBS is correct if the
following conditions are satisfied.

- For all m ∈ M, all signing key pairs (isk, ipk), and all revocation keys rpk

output by FBS.KeyGen(1λ), it holds that,

FBS.Verify(ipk, (FBS.Sign(isk, rpk,m)),m) = true.

- For any view, as observed by an issuer, all revocation keys rsk output by
FBS.KeyGen(1λ), all signatures σ output by FBS.Sign(isk, rpk,m) in this
view, it holds that,

FBS.MatchSig((FBS.TraceSig(rsk, view)), σ) = true.

- For any σ output by FBS.Sign(isk, rpk,m), as observed by the issuer, all
revocation keys rsk output by FBS.KeyGen(1λ), it holds that,

FBS.MatchSession((FBS.TraceSession(rsk, σ)), view) = true,

2.1.2 Assumptions

Decision Linear Assumption. The Decision Linear Assumption [27, 122] is
based on the Linear Problem, which is defined as follows.

Definition 4 (Decision Linear Problem [122]). Let G be a cyclic multiplicative
group with a prime order p, and g1, g2, g3 be generators of G. Given the groups
g1, g2, g3, g

a
1 , g

b
2, g

c
3 ∈ G, decide whether a+ b equals to c. If a+ b = c, output true,

or false otherwise. The advantage of an algorithm A in deciding the linear problem
in G is

advLPA =

∣∣∣∣∣∣∣∣∣∣∣∣

Pr[A(g1, g2, g3, ga1 , gb2, ga+b
3) = true:

g1, g2, g3 ← G, a, b← Zp]

−Pr[A(g1, g2, g3, ga1 , gb2, η) = true:

g1, g2, g3, η ← G, a, b← Zp]

∣∣∣∣∣∣∣∣∣∣∣∣
,

with the probability taken over the uniform random choice of the parameters to A
and over the coin tosses of A.

Assumption 1 (Decision Linear Assumption). No adversary A succeeds in decid-

ing the Linear Problem in G with a non-negligible advantage.

Definition 5 (Indistinguishability Obfuscation). A uniform PPT algorithm
Obf [15, 86] is called an indistinguishability obfuscator for a circuit class {Cλ}λ∈N
(where each Cλ is a set indexed by a security parameter λ), if the following require-
ments are satisfied:

• For all security parameters λ ∈ N and all circuits C ∈ Cλ, we obtain an
obfuscation with the same function:

Pr
Obf

[C
′ ≡ C : C

′
= Obf(1λ,C)] = 1.

• For any PPT distinguisher D, there exists a negligible function negl(λ) such
that for all λ ∈ N, for all pairs of functionally equivalent circuits C1 ≡ C2

from the same family C1,C2 ∈ Cλ,∣∣∣Pr
Obf

[D(1λ,Obf(1λ,C1)) = 1]− Pr
Obf

[D(1λ,Obf(1λ,C2)) = 1]
∣∣∣ ≤ negl(λ).

2.2 Blockchain and Smart Contracts

2.2.1 Blockchain

Blockchain, conceptualized by Nakamoto [158], was proposed as a distributed and
append-only ledger in which all committed transactions are stored in a chain of
data records (also named as blocks). According to the initial idea of Bitcoin [194],
when blockchain maintainers reach an agreement on the newest block, transactions
appearing in that time will be packaged in this block and further stored in the dis-
tributed network to maintain a continuously growing list. By providing a secure
consensus solution to distribute information and allowing all participants to audit
shared records, blockchain obtains many key characteristics such as decentraliza-
tion and data transparency. Inspired by [84], we define a secure blockchain system
as follows.

Assumption 2 (Blockchain Assumption [84]). A blockchain is a robust public
transaction ledger if it satisfies the following properties.

- Persistence. Once one honest player accepts a transaction (a transaction is
stored more than k blocks deep2), other honest players (the number depending
on a certain consensus algorithm) will eventually accept such a transaction.

- Liveness. As long as a transaction comes from an honest account holder,
it will be accepted within time-bound δ by the honest blockchain players (the
number depends on a certain consensus algorithm).

Briefly speaking, the persistence assumption says a transaction that has been ac-
cepted by an honest player will be accepted (ended up at a depth of more than
k blocks) in other honest players’ local chains. Meanwhile, the liveness assump-
tion states that all honest players will eventually agree on a decision or a value.
The “eventually” indicates that it may take a delay time δ (δ is finite) to reach
the agreement. By combining persistence and liveness, it ensures that the public
ledger can only accept authentic transactions and will make them permanent.

2.2.2 Smart Contract

Smart contract was originally introduced by Szabo [194], and further first applied
in blockchain systems by Ethereum [213]. Blockchain-based smart contracts adopt
Turing-complete scripting languages to achieve complex functionalities [108] and
execute through state transition/replication over consensus algorithms to realize
final consistency. By its design, a smart contract includes parameters, multiple
functions, and methods that can run on the blockchain when certain conditions
or events are met. Specifically, the source code of a contract forming as part
of a transaction is first sent to the blockchain. Once the transaction is included
in a new block and confirmed by a majority of participants, the contract code
becomes immutable and executable. When an outside user calls the contract, the
state will be updated under the instruction of the preloaded source code. The
neutrality of the execution environment among all blockchain nodes facilitates the
same execution result of the program code. Smart contracts thus enable unfamiliar
participants to exchange fairly, and thus provide a uniform approach to improve
applications across a wide range of industries.

2We use the notation of Garay and Kiayias [84], e.g., k, δ to describe the properties.

Without loss of generality, we use Ethereum [213] as an example to explain the
workflow and benefits of smart contracts. After implementing a smart contract, a
user can compile it to obtain the bytecode and application binary interface (ABI).
Next, the user sends a transaction including bytecode and ABI to the Ethereum
miner. Once a miner receives the transaction, the bytecode will be included in
the next block to ensure that a new contract has been created in the blockchain
network. At the same time, the initial state will be set up for this contract.

Next, when a user wants to trigger the contract execution in the contract invocation
stage, he needs to send a transaction to a blockchain node/player. Then, this node
starts to run the operation code, locally updates the contract state, and broadcasts
the transaction and block. Other nodes repeat the above steps. From a high-level
perspective, smart contracts work as a state-machine replication. The states of
contracts are replicated across different players in a distributed environment. The
players participating in the system will automatically replicate the current state
and transfer to a new state after a consensus round [22]. Thus, we define the smart
contract as a distributed state machine, as shown in Definition 6.

Definition 6 (ŜC). Smart contract is represented as a state machine by a tuple
⟨S,S ′, T ,B⟩, which is defined as:

f : S ′ B←− S ⊗ T ,

where the S represents a set of states or views, S ′ is the new state set after the
specified operations, T means the transaction space that can trigger the execution
of a contract, f is the transition function describing the changes of states, the
blockchain B provides a distributed computing network.

A complete execution of a smart contract in blockchain systems consists of three
procedures: contract deploy, contract state transfer, and contract state read. The
predefined logic can be coded into a file bytecode for further deployment. Three
sub-procedures are presented as follows.

- Deploy. (⟨opcode⟩, ⟨reqcode⟩, s)← ⟨bytecode⟩⊗Tx. The deployment is trig-
gered by a transaction Tx where Tx ∈ T . It takes as input the binary code
⟨bytecode⟩, and outputs initial state s, where s ∈ S. The contract is compiled

into instruction codes ⟨opcode⟩ and ⟨reqcode⟩, where ⟨opcode⟩ specifies the
operation set to be executed and ⟨reqcode⟩ defines the conditions depending
on which the operation of ⟨opcode⟩ can be conducted.

- Transfer. s′
B←− ⟨opcode⟩ ⊗ ⟨reqcode⟩ ⊗ s ⊗ Tx′. By sending a transaction

Tx′ with some inputs (optional), current state s is transited to a new state
s′ under the guidance of ⟨opcode⟩ and ⟨reqcode⟩, where s′ ∈ S ′.

- Read. s′′
B←− ⟨opcode⟩ ⊗ ⟨reqcode⟩ ⊗ s′. By sending a query request, the

contract state s′′ is returned by scanning the blockchain storage.

In this definition, all the state s, s′, s′′ are completely transparent. Also, any
state changes in Transfer step are publicly accessible and publicly verifiable: (1)
all instruction codes ⟨opcode⟩ and ⟨reqcode⟩ are visible to any observer; (2) the
transactions Tx, Tx′, and their executions on the instruction codes in a certain
blockchain node will be verified by all other nodes.

2.3 Trusted Execution Environments

Trusted Execution Environment (TEE) [69] provides a protected area in the main
processor that runs on a separation kernel to ensure confidentiality and integrity of
inside data and computations. State-of-the-art implementations include Intel Soft-
ware Guard Extensions (SGX) [61], ARM TrustZone [172], RISC-V Keystone [133],
etc. For a TEE, three main TEE features are highlighted, including runtime iso-
lation, local/remote attestation and sealing technologies. For simplicity, we use
Intel SGX as an example to establish the concept of these features in the following
section. It should be mentioned that TEE design used in our thesis can also be
implemented on other trusted hardware platforms, as illustrated in Figure 2.1.

2.3.1 Runtime Isolation

SGX-enabled CPU protects the confidentiality and integrity of the internal compu-
tation by creating secure and isolated memory regions named enclaves. Sensitive
data and intermediate computations run inside enclaves are protected against out-
side programs, including the operating system, hypervisor and hardware devices

• ARM
TrustZone [172]
OP-TEE [160]
Sanctuary [34]
Komodo [75]

• Intel
SGX [61]
Haven [16]
Graphene-SGX [198]
Scone [9]

• RISC-V
Sanctum [62]
MultiZone [162]
Keystone [133]
TIMBER-V [210]

• AMD
SEV [112]
SEV-ES [156]
SEV-SNP [113]

Figure 2.1: State-of-the-art implementations of existing TEEs/extensions

attached to the system bus. To be specific, Intel SGX reserves a memory area,
called Processor Reserved Memory (PRM), to protect against all non-enclave mem-
ory access. PRM holds the Enclave Page Cache (EPC), which uses 4KB (kilobyte)
pages to store enclave code and data. The allocation of the EPC page to each
enclave is delegated to the outside untrusted software. When initial code and data
are loaded, the system software requires the CPU to copy them from unprotected
memory (outside the PRM) to the EPC page and assign the page to the enclave.
Then, the system software requires the CPU to mark the enclave as initialized once
all enclaves are loaded into EPC. At this point, the application code can be run
inside the enclave, and all the loading methods defined above become disabled.
Furthermore, to avoid leaking confidential data, a CPU running the enclave code
is not allowed to directly interrupt the page when a page fault happens. Instead,
it is required to perform an Asynchronous Enclave Exit (AEE) from enclave code
to ring 3 code [115], and then serves the above functions.

2.3.2 Local/Remote Attestation

Attestation mechanism [151] is used to prove to a validator that an enclave has been
correctly instantiated. When in that condition, the enclave can then proceed to
establish a secure, authenticated connection for data transmission. TEE provides
two kinds of attestation: local attestation and remote attestation. Local attestation
is achieved by a specific measurement hash that is initialized when a TEE starts,
while remote attestation depends on the measurement and attestation signature

signed by the trusted hardware. Again, we employ Intel SGX as an instance to
establish the attestation concept.

Local Attestation. In Intel SGX, local attestation is used to help an enclave
to attest itself to another enclave that they are running on the same Trusted
Computing Base (TCB) platform. When the target enclave is required to send
the attestation report, it first uses EGETKEY instruction to derive a report key.
Then, it uses EREPORT instruction to produce an attestation Report (REPORT)
that binds a message supplied by the enclave with the enclave’s measurement. The
binding is accomplished by a Message Authentication Code (MAC) tag using the
same report key that is shared with all enclaves initiated by the same platform.

Remote Attestation. Intel SGX enables an enclave to prove a correct loading of
code and data to another enclave that resides in a remote platform. Remote attes-
tation depends on local attestation report. After all provisioning steps have been
completed, the Quoting Enclave first obtains the Provisioning Seal Key and uses
it to decrypt the Attestation Key. Then, it invokes the instruction of EGETKEY
to derive the Report keys for verifying received local attestation reports. If these
reports are verified successfully, the Quoting Enclave will replace their MAC with
an Attestation Signature generated by the Attestation Key. To have a clear un-
derstanding, we will give more details on the key management inside TEE. In the
manufacturing process of the SGX-enabled processor, the manufacturer commu-
nicates with Intel’s key generation facility and generates two secrets burned into
e-fuses: Provisioning Secret and Seal Secret (deviate from Intel’s official docu-
ments). The Provisioning Secret, burned into the e-fuses of each SGX-enabled
processor, is generated at a key generation facility and stored in Intel’s provision-
ing service. On the contrary, the Seal Secret is produced inside the processor chip,
which is not known to Intel. Given the Provisioning Secret, the EGETKEY in-
struction derives the Provisioning key using the enclave’s certificate-based identity
and SGX implementation’s SVN. This brings desirable security properties, such as
quickly convincing the provisioning service that it is communicating to a trusted
Provisioning Enclave (PE) in secure environments provided by an SGX-enabled
processor. Once authentication is completed, the Intel provisioning service gener-
ates an Attestation Key (AK) and sends it back to PE. Afterwards, PE encrypts

AK using a Provisioning Seal key and then stores the encrypted key to the system
software for Quoting Enclave.

Figure 2.2: SGX key derivation procedure with attestation workflow, image
source [61]

2.3.3 Sealing Technologies

Sealing [61] is a process of loading TEE internal secret state to persistent stor-
age. Roughly speaking, using the sealing technologies, secrets are allowed to be
encrypted and stored in the untrusted memory or disk. Further, such encrypted
secrets can be retrieved once the enclave is torn down (either due to the host’s
power or the application itself). Sealing in SGX is achieved by using a private
seal key [61], which covers two kinds of identities: Enclave Identity and Signing
Identity. Enclave Identity is represented by the value of MRENCLAVE, which is a
cryptographic hash of the enclave measurement. Any operation inside an enclave

that changes measurement will yield a different key. Thus, it restricts the per-
mission to sealed data: only the corresponding enclave can access sealed data. In
contrast, Signing Identity, represented by MRSIGNER, is provided by an author-
ity. It provides the same sealing key for different enclaves or different versions of
the same enclave. Therefore, Signing Identity can be used to share sensitive data
between multiple enclaves produced by the same development firm.

26

Chapter 3

TTP-I: Contract-based TTP

In this chapter, we introduce a smart contract-based TTP, called TTP-I. In this
type of TTP, a smart contract is employed as a transparent and neutral agent. We
first establish a universal framework for TTP-I protocols to capture the security
properties (Section 3.1). Then, we provide two instances to show how TTP-I
benefits existing cryptographic protocols. Specifically, our first case uses TTP-I
to aid certificate authority (CA) for fairly revoking the certificate in the CBE [83,
90, 142] scheme. Our second case utilizes TTP-I to replace the role of key curator
(KC) in the RBE [86, 87] scheme for transparent registration. Finally, we discuss
the benefits and drawbacks of TTP-I based security protocols, with emphasis on
their privacy and scalability issues (Section 3.3).

3.1 General Construction

Smart contracts run on decentralized blockchain nodes, which fits the role of TTP
well. A TTP can be defined as an event-driven customized contract. A TTP’s
operations and logic can be coded in the form of executable functions. These
functions are then compiled and distributed to the blockchain network to receive a
global consensus in the deployment stage. This guarantees that all the blockchain
nodes share the same TTP’s logic and an initial configuration. When other parties
in security protocols want to obtain auxiliary data for encryption and decryption,
they need to send a transaction or a message call to the blockchain. Once a

blockchain node receives a transaction to trigger the execution, all nodes will run
the same function as agreed in the deployment stage to obtain the latest state. This
automatically distributed execution ensures that all blockchain nodes, including
other protocol parties, can equally observe the contract-based TTP’s operations.

A TTP-I protocol consists of two main types of participants: protocol users and
a smart contract. The protocol users include both the message sender and the
message receiver, while the smart contract is used as a “bulletin board” to aid or
replace a TTP in maintaining auxiliary information for the sender’s encryption
and the receiver’s decryption. A generic construction is shown as follows.

System Setup pms ← Setup(1λ). The algorithm takes as input a security pa-
rameter λ, and outputs system parameters pms.

Key Generation (sk, pk), (skTx, pkTx)← KeyGen(1λ). The algorithm takes as in-
put λ, and outputs a key pair (sk, pk), and a key pair (skTx, pkTx) for transaction
signing and transaction verification.

Then, a smart contract is deployed, outputting a contract identity ĉ, an initial
state s, the operational code ⟨opcode⟩, and the execution condition ⟨reqcode⟩. The
logic of a TPP is coded into ⟨opcode⟩, and the execution condition of the logic
is coded into ⟨reqcode⟩. This step is finished by calling ŜC.Deploy described
in Definition 6. Next, a message sender encrypts a message using the receiver’s
identity/key and auxiliary data with the assistance of the deployed smart contract.
This assistance is represented as storing or changing auxiliary data in the contract
by ways of sending transactions.

Transaction Generation1 Tx ← Sign(skTx,metadata, auxdata). The algorithm
takes as input a private signing key skTx, a transaction metadata, and auxiliary
data auxdata used for encryption and decryption, and outputs a transaction Tx.

TTP-I Operation s
B←− TtpOperate(ĉ, s,Tx). The algorithm takes as input ĉ,

current state s and a transaction Tx with auxiliary data auxdata, and out-
puts the transferred state s. This algorithm is finished by calling the algorithm
ŜC.Transfer described in Definition 6.
1We use blue texts to emphasize blockchain-related operations.

Encryption ct ←− Enc(pk, auxdata,m). The algorithm takes as input a user’s
public key pk, auxiliary data auxdata and a message m, and outputs a ciphertext
ct. This algorithm is completed in the users’ local clients.

State Read s′
B←− Read(ĉ). The algorithm takes as input a contract identity ĉ,

and outputs a newly transferred state s′. Here, the s′ is necessary for the fol-
lowing decryption algorithm. This algorithm is finished by calling the algorithm
ŜC.Read described in Definition 6.

Decryption m/⊥ ← Dec(sk, s′, ct). The algorithm takes as input a user’s private
key sk, a new contract state s′, a ciphertext ct, and outputs a message m or the
special symbol ⊥ indicating decryption failure. This algorithm is completed in
the users’ local client.

Inspection true/false
B←− Inspect(Tx, s′). This algorithm takes as input a trans-

action Tx, s′ and returns the legality of the State Transfer operation. In
particular, the transactions that trigger the execution of a contract in the State
Transfer operation can be used as evidence to indicate the users’ or TTP’s mis-
behaviours. By tracing the transaction sender, the inspector will know when the
auxiliary information is changed and who changes the auxiliary information for
encryption or decryption. If the transaction sender’s invocation does not match
the established rules, he will be caught and blamed, significantly reducing the
probability of these parties committing malicious behaviours.

3.2 TTP-I Protocol Instances

To demonstrate TTP-I’s feasibility and practicality, this section presents two pro-
tocols using TTP-I, namely, a transparent certificate revocation protocol for CBE
scheme, and a transparent registration protocol for RBE scheme.

3.2.1 Transparent Certificate Revocation for CBE

In a CBE model, an up-to-date certificate must be obtained from a certificate
authority (CA) since it is used as a partial decryption key. A full definition can
be found in Section 2.1.1. However, such a mechanism that heavily relies on

CA, presents several concerns: (1) CA may arbitrarily revoke a valid certificate
and repudiate its actions, indirectly causing decryption to fail (see Table 3.1).
For example, Alice sends a ciphertext to Bob, but a malicious CA has already
revoked the certificate without Bob’s permission. There is no way for Bob to
obtain an up-to-date certificate, and as a result, he cannot decrypt the ciphertext;
(2) Users cannot blame the CA due to the absence of valid evidence of its malicious
behaviours; (3) There is a lack of incentive for the CA to behave honestly.

Table 3.1: Definition of CA’s valid revocation and illegal revocation

Description Legal revocation Illegal revocation
A user sends a revocation request, and
a CA revokes his certificate.

✓

A user does not send a revocation re-
quest, and a CA revokes his certificate.

✗

A user’s certificate has expired, and a
CA revokes such a certificate.

✓

A user’s certificate is valid, and a CA
revokes such a certificate.

✗

Our scheme utilizes a customized smart contract as a transparent agent to man-
age revocations, which takes over part of CA’s functions, making the revocation
operation accountable. In particular, a public list L (including an invalid set IS
and a valid set VS) in the smart contract stores the information on the authorized
address, certificate expiry date, certificate state, etc (see Table 6.2). Any users
who want to revoke the certificate need to send a revocation request to update the
list L. After receiving the request, the smart contract verifies the users’ eligibil-
ity. Only the authorized address owner has permission to update the list L; if a
transaction sender’s address matches an entry in the authorized address list, the
contract logic of updating the list L will be executed. Otherwise, the execution
is aborted. Meanwhile, the contract is also required to automatically check the
expiry state and then to update L. Next, CA periodically fetches all the items in
list L and stops issuing the certificate for the revoked or expired ones.

Our solution focuses on the certificate revocation procedure. Here, we provide a
generic CBE construction and then emphasize the enhancement of this certificate

!
"
#
$
%
&
'(
)

*
(
'&
+
(
,
-.
(
)/
01
%
2
/(

.
(
)/
01
%
2
/(

B
lo

ck
ch

a
in

!
"#
$
%$
&
'$
(

)"
#
$
*+
,
$
(

-
".
/
0
&
1$
(

.
&
'(
)

C
A

2
"34
5+
67

R
e
c
e
iv
e
r

S
e
n
d
e
r

E
n
cr

yp
t

D
e
cr

yp
t

U
se

r
!
3

!"
!#
!$
%&

'
(
)%
*
+!
,
-
"
$
(
).
!!

/0
10
10
2
0
10
3

4
4

4

8
i

8
j

8
ij

9
":

&
4
&
;
$

5
06
(
)(
7
%
(
$

!
"
#
8(
/

*
4!
5
6
7
8
%&
%6
7
9

$
4!
:7
;
(
7
&%
<(

9

;
4!
=
(
)%
>
;
*
&%
6
7
!

S
m

a
rt

 C
o

n
tr

a
ct

9
&
:
0%

F
ig

ur
e

3.
1:

C
er

ti
fic

at
e

re
vo

ca
ti

on
di

ag
ra

m
fo

r
C

B
E

us
in

g
T

T
P

-I

revocation algorithm. Our instantiation follows the design of Gentry’s scheme [90],
and detailed steps are described below.

System Setup pms ← Setup(1λ, n). The algorithm takes as input, a security
parameter λ, a total number of time periods n (optionally), and outputs system
parameters pms. G1 and G2 are two cyclic groups of some large prime order q.

ê : G1 ×G1 → G2 //ê is a bilinear map pairing

P ∈ G1 // select a generator from a group G1

H1 : {0, 1}⋆ → G1 // map an arbitrary string to an element in G1

H2 : G1 → {0, 1}n // map an arbitrary string to an element with a fixed length

sC ∈ Z/qZ // master secret key

Q = sCP // master public key

pms = (G1,G2, ê, P,Q,H1, H2) //public parameters

Key Generation (sB, pB), (skTx, pkTx)← KeyGen(1λ). The algorithm takes as
input a security parameter λ, and outputs a user’s (e.g., Bob’s) key pair (sB, pB)
for encryption and decryption, and a signature key pair (skTx, pkTx) for signing
and verifying transactions.

sB ∈ Z/qZ // Bob’s private key

pB = sBP // Bob’s public key

Then, a smart contract is deployed, outputting a contract identity ĉ, an initial
state s, the operational code ⟨opcode⟩, and the execution condition ⟨reqcode⟩.
⟨opcode⟩ defines some functionalities and interfaces to update the list L, while
⟨reqcode⟩ stores the revocation conditions that need to satisfy for updating list L.
These conditions contain the certificate expiry date and the eligibility of users’
revocations. This step is finished by calling ŜC.Deploy (see Definition 6).

Transaction Generation Tx ← Sign(skTx,metadata, auxdata). The algorithm

signs a transaction metadata and auxiliary data auxdata with a signing key
skTx to obtain a transaction Tx. Here, auxdata represents a request mapping to
the certificate state. For example, auxdata = [Bob : revoked] means that Bob’s
certificate needs to be revoked. This algorithm is run by a user (e.g., Bob) who
wants to revoke his certificate in case his private key is lost.

Table 3.2: A public list L of users’ certificate state

Authorized
Address

User ID State Expiry Date Current Date Certificate

IS

0x0a...670 Bob revoked Dec 25, 2023 Dec 01, 2021 0000...
0xe7...d30 Tom revoked Jan 03, 2025 Dec 01, 2021 0000...
0x60...b6e Kate expired Jun 21, 2020 Dec 01, 2021 0000...
0x67...ea2 Dave expired Nov 30, 2020 Dec 01, 2021 0000...
0x45...912 Alice expired Dec 07, 2020 Dec 01, 2021 0000...

VS 0xbb...709 Rujia valid May 09, 2023 Dec 01, 2021 achgm...
0xc9...a98 Tomas valid Aug 17, 2022 Dec 01, 2021 mdemx...

TTP-I Operation It consists of three algorithms.

1. Revocation Launch s′
B←− TtpOperate(ĉ, s,Tx) The algorithm takes as input

a contract identity ĉ, current state s, a transaction Tx, and outputs the
transferred state s′. Here, s′ refers to the newly updated users’ certificate
state (from “valid” to “revoked”). It consists of two sub-algorithms, which are
finished by calling ŜC.Transfer (see Definition 6).

- Revocation Qualification Check Once the contract ĉ receives the cer-
tificate revocation request, it checks the revocation qualification. Only
the authorized user has the ability to update the revocation state in L;
successful execution of this algorithm indicates that the transaction’s
address is authorized.

- Revocation List Update The contract ĉ updates the public list L. The
revoked certificates and the expired certificates will be added to the
invalid set IS. Next, CA fetches all the data in the L.

2. Certificate Issue Certi ← Cert(sC , i, user, pk). CA takes as input a certifier’s
master secret key sC , user’s information user, a public key pk obtained from

valid set VS, and outputs a certificate Certi. Here, we emphasize that CA
must follow the items in set VS. The detailed algorithm is shown as follows.

H5 : {0, 1}⋆ → G1

Ti = H5(Q, i)

Pk = H1(b1 . . . bk)

Certi = sCTi + xPk

To be specific, CA updates certificates’ status through a binary tree2. CA
arranges for most 2m clients as leaves in a m-level binary tree. A unique
m-bit serial number (SN, b1 . . . bm) is embedded in each client’s long-lived
certificate. SN provides both identities and positions in the tree. b1 . . . bk are
ancestors of b1 . . . bm, where b1 . . . bm are leaves in the m-level binary tree. The
revocation is represented by the deletion of a leaf’s sub-cover nodes [159]. In
our example, as shown in Figure 3.2, there are 23 clients and Alice’s SN
is 001, namely, (b0 = 0, b1 = 0, b2 = 1). If the certificate revokes, Alice’s
SN becomes 00∗, (b0 = 0, b1 = 0, b2 = ∗), and the corresponding certificate
becomes invalid. This algorithm runs in CA’s local machine without the
involvement of blockchain.

0

0 1

0

0

0

00 0

1

111

1

1

Figure 3.2: m-bit serial number is labelled as m-level binary tree

3. Certificate Upload CA uploads newly issued Certi to the public list L. If
2This binary tree is maintained by CA off-chain, while the corresponding certificate state is

stored on-chain.

the certificate has been revoked, the CA uploads ∗ ∗ ∗ ∗ ... for this certificate.
This algorithm is achieved by calling ŜC.Transfer (see Definition 6).

Encryption ct← Enc(Q,BobInfo,m). At the time period i, the algorithm takes
as input Bob’s information BobInfo, CA’s public key Q, a message m, and
outputs a ciphertext ct.

r ∈ Z/qZ

P ′B = H1(BobInfo) ∈ G1

Ti = H5(Q, i)

g = ê(Q, Ti)ê(sBP, P
′
B)

V = m⊗H2(g
r)// XOR

ct = [rP, rP1, ..., rPm, V], whereP ∈ G1, P1 ∈ G1, ...Pm ∈ G1

Note that, at this stage, the message sender has already verified Bob’s long-lived
certificate and therefore knows BobInfo and his serial number.

State Read Certi
B←− Read(ĉ). The algorithm takes as input a contract identity

ĉ, and outputs a reconfirmation certificate Certi (if it exists). This algorithm is
finished by calling the algorithm ŜC.Read described in Definition 6.

Decryption m/⊥ ← Dec(sB, Certi, ct). At the time period i, the algorithm takes
as input a secret key sB, a reconfirmation certificate Certi (if it exists), and
outputs a message m or a special symbol ⊥ indicating decryption failure.

m = V ⊗H2(
ê(rP, Certi + sBP

′
B)

ê(xP, rPk)
)

Inspection true/false
B←− Inspect(Tx,L). This algorithm takes as input Tx, the

list L and returns the legality of the Transfer operation. true indicates that the
certificate is revoked under Bob’s intention. Here, we emphasize the consistency
of the CA’s operation. CA and the contract ĉ share the same list L, and CA

must follow the items in IS to revoke the certificate. Otherwise, CA’s illegal
revocation will be identified instantly, and the cryptocurrency-based rewards will
be confiscated.

Here, the Correctness of our construction is easy to check as we have

m = V ⊗H2(
ê(rP, Certi + sBP

′
B)

ê(xP, rPk)
)

= V ⊗H2(
ê(rP, sCTi + xPk + sBP

′
B)

ê(xP, rPk)
)

= m⊗H2(g
r)⊗H2(

ê(rP, sCTi + xPk + sBP
′
B)

ê(xP, rPk)
)

= m⊗H2(g
r)⊗H2((

ê(P, sCTi + xPk + sBP
′
B)

ê(xP, Pk)
)r)

= m⊗H2(g
r)⊗H2((

ê(P, sCTi)ê(P, xPk)ê(P, sBP
′
B)

ê(xP, Pk)
)r)

= m⊗H2((ê(sCP, Ti)ê(sBP, P
′
B))

r)⊗H2((
ê(P, sCTi)ê(P, xPk)ê(P, sBP

′
B)

ê(xP, Pk)
)r)

= m⊗H2((ê(sCP, Ti)ê(sBP, P
′
B))

r)⊗H2((ê(P, sCTi)ê(P, sBP
′
B))

r)

= m⊗H2((ê(P, Ti)ê(P, P
′
B))

rsCsB)⊗H2((ê(P, Ti)ê(P, P
′
B))

rsCsB)

= m

3.2.2 Transparent Registration-based Encryption

Identity-based encryption (IBE) was first proposed by Shamir [186]. IBE has
gained massive popularity in cryptography research since the early 2000s [26, 29,
43, 184], and it has thus become a central primitive in public-key cryptography.
Aimed at simplifying public key certificate management in Public Key Infrastruc-
ture solutions, IBE adopts a receiver’s actual identifier as the public key for message
encryption instead of a standard public key, which is a human-unmemorable bit
string. However, a high price is paid in exchange for the convenience of using
human-readable and memorable identifiers as public keys, namely the so-called
key escrow problem, is introduced. Indeed, a trusted party called Private Key

Generator (PKG) is now in charge of computing the decryption keys associated
with each identifier. On the one hand, PKG needs to be trusted to not arbitrarily
generate or utilize a user’s secret key without their consent. On the other hand,
centralized key generation increases the risk of a single point of failure.

Table 3.3: Comparison of various public-key encryption schemes

Scheme Setup Key Gen Encryption Decryption
IBE [26,
186]

Setup(1λ)
↓
pp,msk

Genpkg(pp,msk, id)
↓
sku

Encu(pp, id,m)
↓
ct

Decu(sku, pp, ct)
↓
m

CLE [65] Setup(1λ)
↓
pp(mpk),msk

u ← Genpkg(msk, id)
sku ← Genu(pp, id)

Encu(pp, id, pk,m)
↓
ct

Decu((sku, u), pp, ct)
↓
m

CBE [83,
90]

Setup(1λ)
↓
pp(mpk),msk

sku, pku ← Genu(pp)
u ←
Genpkg(msk, id, pku)

Encu(pp, id, pk,m)
↓
ct

Decu(sku, u, ct)
↓
m

RBE [86,
87]

Setup(1λ)
↓
pp(crs)

sku ← Genu(1λ)
u← Updpkg(pp, id)

Encu(pp, id, pk,m)
↓
ct

Decu(sku, u, ct)
↓
m

• msk: PKG’s master private key; pku: user’s public key; sku: user’s private key.
• pp: public parameters; u: auxiliary data for decryption.

Registration-based encryption (RBE) [86], proposed by Garg recently, decouples
the key production process from the PKG altogether by replacing the PKG with
a public key accumulator called Key Curator (KC). Every user in an RBE system
generates its own public-secret key pair and sends the public key to the KC for
registration. The KC is merely responsible for compressing all the registered user
identity-key pairs into a short reference string. When a sender wants to send
encrypted data to a receiver, he only requires the compressed public parameters
along with the target identifier, whereas the receiver requires the public parameter
along with the secret key associated with the registered public key. Importantly,
the public parameter is not frequently changed due to KC’s multiple trees structure,
which makes the decryption smooth. As shown in Table 3.3, we make a comparison
between RBE scheme and other schemes, to emphasize RBE’s advantages.

However, RBE still places a significant amount of trust in key curator (KC), whose
actions are isolated from the outside world and are not accountable. A dishonest
KC may hide a trapdoor that enables the secret creation of a key pair for a yet
unregistered identity or even register multiple keys for already-registered users.

Even if KC is completely honest without these aforementioned misbehaviours,
RBE systems are still far from practical since their identity authentication in the
registration stage is based on certification authorities in public-key infrastructure.
Such a procedure is dense and complex, and these drawbacks severely hamper the
development of RBE-based applications.

To provide a solution to problems of strong centralization, untrustworthy KC, and
identity authentication issues found in original RBE systems [86, 87], we propose
to reboot the RBE approach by coupling it with blockchain technology. Blockchain
has already been proposed as a vehicle to realize decentralized key management
in PKI [149, 174], but it has not yet been applied, in the RBE setting, to the
best of our knowledge. Our transparent RBE construction leverages smart con-
tracts to automate the logic of the KC in a transparent manner, enabling publicly
upgradeable proofs on-chain that render the KC’s actions accountable. The so-
lution transfers the right of key management from KC to users. Smart contracts
guarantee strong availability, the persistence of its state, and the correct execution
of predefined protocols, while the RBE scheme provides a secure, compact, and
user-friendly cryptosystem. For these reasons, building hybrid protocols that take
advantage of both sides seems an appealing solution.

Our scheme consists of two main entities: user and smart contract. A smart
contract is employed as a public bulletin board that maintains the relationship
between the identity and the corresponding public key, and based on that, it
returns some public parameters as the encryption key. The user is composed of two
roles: a message sender and a message receiver. The workflow is as follows. The
sender encrypts the message using the receiver’s identity and public parameters
and then sends the ciphertext to the receiver. The receiver then decrypts the
ciphertext using the private key and public parameters updated from the smart
contract. In particular, a smart contract is used as a KC to compress all users’
identity-key pairs into a short public parameter with auxiliary information. The
identity-key pair is organized as a Merkle tree, and every leaf of the tree is an
identity or its public key. At a high level, after n users have registered, the smart
contract holds auxiliary information: η (η ≤ log(n)) full binary Merkle trees
Tree1, . . . , T reeη with number of leaves 2id1 . . . 2idη and corresponding depths id1 >

m
 :
 n

u
m

b
e
r

o
f

m
e
rg

e
 o

p
e
ra

ti
o

n
s

d
 :
 d

e
p

th

ID
 :
 i
d

e
n
ti

ty
 (
th

e
 i
n
d

e
x

m
e
a
n
s

th
e
 n

u
m

b
e
r

o
f

u
se

rs
)

P
K

 :
 p

u
b

lic
 k

e
y

S
m

a
rt

 C
o

n
tr

a
ct

Re
gi
st
er
(id
)

S
e
n
d

e
r

R
e
ce

iv
e
r

!"
#$
$
!%
!&
'
!(
(!
)
*
!+

,)
'-
.$

/
0
1
%!
1
#2
3!
4'
3!
5
!+

6
$
1
%!
2
*
3!
7
3!
1
.!
+

8
$
0
'

&6
9

:
;
9

&6
9

:
;
9

&6
<

:
;
<

&6
9

:
;
9

&6
<

:
;
<

&6
=

:
;
=

&6
9

:
;
9

&6
<

:
;
<

&6
=

:
;
=

&6
>

:
;
>

d
 =

 1

d
 =

 2
d

=
 2

d
 =

 3

m
 =

 1

m
 =

 3

m
 =

 7

m
 =

 4

!
"
 T

y
p

e
X

 P
ro

to
co

l
#
"
 K

e
y
 A

cc
u
m

u
la

ti
o

n
 i
n
 S

m
a
rt

 C
o

n
tr

a
ct

K
e
y
 C

u
ra

to
r

F
ig

ur
e

3.
3:

O
ve

rv
ie

w
of

tr
an

sp
ar

en
t

R
B

E
sc

he
m

e

id2 > id3 . . . > idη. Meanwhile, the public parameter of each user holds the
form pp = ((hk1, . . . , hkλ), (rt1, d1), . . . , (rtη, dη)) where rti ∈ {0, 1}λ represents the
root of Treei, λ represents the length of identities, and each hki is sampled from
HGen(1λ, 0), where HGen(1λ, 0) is a hash key generation algorithm of somewhere
statistically binding hash functions [86]. We show the detailed protocols as follows.

System Setup crs ← Setup(1λ). The algorithm takes as input a security pa-
rameter λ, and outputs a common random string crs. Here, crs can be sampled
publicly using some public randomness beacons.

Key Generation (sk, pk), (skTx, pkTx) ← KeyGen(1λ). This algorithm takes as
input a security parameter λ and outputs a user’s key pair (sk, pk), and a key pair
(skTx, pkTx) for signing and verifying a transaction. As discussed in Section 2.1.1,
sk and pk are only secret/public keys, not encryption or decryption keys.

Then, a smart contract is deployed, outputting a contract identity ĉ, an initial
state s, the operational code ⟨opcode⟩, and the execution condition ⟨reqcode⟩.
⟨opcode⟩ defines registration logic, a public parameter list L. ⟨reqcode⟩ stores the
registration conditions (preventing cases of registering multiple keys for a registered
user or registering multiple users for a certain key). Also, KC setups an empty
auxiliary information aux = ∅ and an public parameter pp0 = ⊥. This step is
finished by calling ŜC.Deploy (see Definition 6).

Transaction Generation Tx← Sign(skTx,metadata, auxdata). A user sends his
identity id and public key pk to KC. Then, KC signs a transaction metadata and
auxiliary information auxdata using private signing key skTx to obtain a trans-
action Tx. This procedure is represented as a user’s registration. The auxiliary
information auxdata refers to the registration information, including a user’s iden-
tity id and public key pk, which is stored locally in KC.

TTP-I Operation (Registration) ppn+1
B←− TtpOperate[aux](ĉ, s,Tx). This algo-

rithm takes as input public parameter ppn (extracted from the current contract
state s), a registering identity id, a public key pk (supposedly for the identity
id) and outputs a new public parameter ppn+1. This algorithm contains three
sub-algorithms, which are finished by calling ŜC.Transfer (see Definition 6).

1. Identity Verification. Once the identity registration request arrives, the con-

tract ĉ checks the identity based on the predefined logic. The registration
function of the contract ĉ stops if the identity has been registered or the key
has been registered.

2. Tree Generation. The smart contract ĉ parses the parameter and then creates
a new tree.

* Parse aux := ((Tree1, . . . , T reeη), (id1, . . . , idη)) where these trees have
corresponding depths d1 > d2 . . . > dη, and (id1, . . . , idη) is the order
by which the current identities have registered. In initialization phase,
aux := ∅.

* Parse ppn as a sequence ((hk1, . . . , hkλ), (rt1, d1), . . . , (rtη, dη)), and the
rti ∈ {0, 1}λ represents the root of Treei, and di is the depth of Treei.
In initialization phase, pp0 := ⊥.

* Create a new tree Treeη+1 with leaves id and pk. Then, set its root as
rtη+1 := Hash(hk1, id||pk) and thus its depth would be dη+1 = 1.

3. Tree Compression. The smart contract ĉ starts to merge multiple Merkle hash
trees through the sub-algorithm ŜC.Transfer. Let T = {Tree1, ..., T reeη+1}.
While there are two different trees TreeL, T reeR ∈ T of the same depth d,
same size s = 2d (as our trees are full binary trees), the algorithm keeps
doing the following steps.

* Let Tree be a new tree of depth d + 1 that contains TreeL as its left
subtree, TreeR as the right subtree, and rt = Hash(hkd+1, rtL||rtR) as
the root.

* Remove both of TreeL,TreeR from T , and add Tree to T instead.

* Let T := (Tree1, . . . , T reeζ) be the final set of trees with depths d′1 >

. . . > d′ζ and roots rt′1, . . . , rt
′
ζ . Set the ppn+1 and aux as follows:

- ppn+1 := ((hk1, . . . , hkλ), (rt
′
1, d
′
1), . . . , (rt

′
ζ , d
′
ζ)),

- aux := (T , (id1, . . . , idn, idn+1 = id)).

Here, we emphasize the identity-key pair compression algorithm. Intuitively, when
a new user joins the system, the tree root is updated, and the public parameters

of registered users also need to be updated. To minimize the effect of registration
by new users on previously registered users, our solution, following the idea of
the original RBE [86], adopts multiple Merkle hash trees such that any individual
user is affected only a limited number of times. In particular, the trees with the
same depth are continuously merged into a new one in the on-chain calculation
(see Figure 5.1); the tree that holds the identity only needs to be updated at
most O(logn) times, where n represents the total number of registered users. A
registered user does not have to query the smart contract for public parameters
each time of decryption. Alternatively, the user needs to query the smart contract
only when the current public parameters are changed.

Encryption ct← Enc(pp, id,m). The algorithm takes as input the public param-
eter pp obtained from the contract ĉ, an identity id, a message m, and outputs a
ciphertext ct. In particular, it parses pp := ((hk1, . . . , hkλ), (rt1, d1), . . . , (rtη, dη)).
Then, it generates programs P1, . . . , Pη where Pi works as follows,

Hardwired values : rti, di, (hk1, . . . , hkdi),m, id, r (randomness); Note that hki cor-
responds to the level i in a Tree.
Input: pth

- Parse pth := [(h0
0, h

1
0), (h

0
1, h

1
1, b1) . . . , (h

0
di−1, h

1
di−1, bdi−1), rt].

- If rti ̸= rt, then output ⊥.

- If id ̸= h0
0, then output ⊥.

- If rt = Hash(hkdi , h
0
di−1||h

1
di−1) and h

bj
j = Hash(hkj, h

0
j−1||h1

j−1) for all j ∈
[di − 1], then output PKE.Enc(h1

0,m; r) by using h1
0 as the public key and r

as the randomness, otherwise output ⊥.

Next, the algorithm outputs ct := (pp,Obf(P1), . . .Obf(Pη)) where Obf specifies
the IO obfuscation (see Definition 5). The encryption is performed by obfuscation
of the program P using the public key and some auxiliary information. In partic-
ular, the program P outputs the encryption of m only if the path (called Merkle
opening) is from leaves (id, pk) to the root rt in the Merkle tree. When there are
multiple trees Tree1, . . . T reeη held by the smart contract, the ciphertext includes
η obfuscations, one for each Treei (i ≤ η).

Update u
B←− Update[aux](ĉ). The algorithm takes as input a contract identity ĉ,

and outputs an updated Merkle opening u. Letting aux := (Tree1, ..., T reeζ) and
i be an index of the tree which holds id, and thus u is the whole Merkle opening
of the path that leads to id in Treei.

Decryption m/⊥ ← Dec(sk, u, ct). The algorithm takes as input the secret key
sk, an updated Merkle opening u, a ciphertext ct, and outputs the message m ∈
{0, 1}∗ or in {⊥,GetUpd}. The special symbol ⊥ indicates a syntax error, while
GetUpd indicates that the latest received information needs to be updated by re-
executing the algorithms of Update. In particular, it parses ct = (u, P 1, . . . , P η) =

(u,Obf(P1), . . .Obf(Pη)), and then executes mi = PKE.Dec(sk, P i(u)) for every
program P i, and finally outputs the message satisfying mi ̸= {⊥,GetUpd}.

Inspection true/false
B←− Inspect(Tx,L). This algorithm takes as input the trans-

action Tx, and returns the legality of the Registration operation. true indicates
the registration is under the user’s intention. In particular, if a user finds that his
identity id or the key pk is muti-registered in the contract, he knows the malicious
registration.

3.3 TTP-I Protocol Discussion

In this section, we first show how TTP-I benefits CBE and RBE. Then, we discuss
the challenges of using a blockchain-based contract as a TTP.

3.3.1 TTP-I Roles and Benefits

The main difference between using a traditional third party and TTP-I is that
TTP-I shifts the requirement for trustworthiness from any particular party to the
majority of ledger maintainers. The conflict of interest between different ledger
maintainers ensures that it is difficult for any malicious entity to corrupt TTP-I,
and further guarantees that TTP-I’s operations can be carried out as intended.
In a nutshell, as a customized smart contract driven by blockchain, TTP-I helps
security protocols in two ways: assistance with the existing TTP and replacement
of the existing TTP.

Table 3.4: Comparison of existing CBE schemes and our CBE scheme

Schemes Existing CBE Schemes Our CBE Scheme

Roles A TTP is used as CA. • A TTP is used as CA.
• A smart contract is used as
an agent to aid CA.

Duties CA manages the revocation
requests and certificate is-
suance and revocation.

• CA manages certificate is-
suance and revocation.
• A contract manages the re-
vocation request.

Assistance with the Existing TTP. We use the contract-based CBE protocol
to explain this concept. As discussed before, traditional CBE schemes rely on
CA (see Table 3.4). However, an illegal certificate revocation may disable the
decryption capabilities of the corresponding certificate’s owner. In particular, CA
may arbitrarily revoke a valid certificate3, repudiate its actions, and thus indirectly
cause decryption to fail. For example, Alice sends a ciphertext to Bob, but an evil
CA has already revoked Bob’s certificate without his permission. There is no way
for Bob to obtain an up-to-date certificate. As a result, he cannot decrypt the
ciphertext. Worse still, Bob cannot blame CA due to the absence of valid evidence
on his malicious revocation. Meanwhile, the absence of external incentives for CA
decreases their willingness to behave honestly.

We observe that smart contracts can support the existing TTP by adding
functions of validity checking, on-chain storage, and cryptocurrency-based
rewards/punishments.

TTP-I based CBE protocol mitigates the problems of malicious revocation (for the
definition of CA’s valid revocation and illegal revocation, see Table 3.1), absent
evidence and poor incentives. Firstly, the transparency property lets the revoca-
tion conditions become publicly visible and verifiable. Secondly, CA, in practice,
may become malicious, and then it denies his misbehaviour on illegal revocation

3Reasons for CA’s malicious activities are diverse, e.g., hidden interests, and details are outside
the scope of this work

(a valid certificate is maliciously revoked), or a user illegally revokes his certificate
and then frames CA’s honesty. In our solution, the smart contract is required to
receive revocation requests from users and then provide valid ones to CA through
transactions, which can be used as evidence to detect illegal revocations, making
CA and users’ actions undeniable and accountable. Through tracing the transac-
tion sender, the tracer will know the initiator of revocation operations. Thirdly,
if necessary, our scheme can automatically provide cryptocurrency-based reward-
s/punishments under predefined policies in the smart contract for CA’s actions,
which motivates CA to behave honestly.

Replacement of the Existing TTP. In the second case, RBE allows users to
generate their public and secret keys. However, RBE still places a significant
amount of trust in KC, whose actions are not accountable. A dishonest KC may
hide a trapdoor that facilitates the secret creation of a key pair for yet unregistered
identity or even registers multiple keys for already registered users. The issues
of strong centralization, untrusted KC, and identity authentication threaten the
wide adoption of existing RBE schemes. In our case, smart contracts are used
to automate the logic of KC transparently, enabling publicly upgradeable proofs
on-chain that render KC’s actions accountable. Equivalently, smart contacts take
over the tasks of KC, replacing this centralized role with a distributed blockchain.
The solution thereby transfers the right of key management from KC to users.

We find that smart contracts can replace the traditional TTP by acting as
an agent that takes over various tasks. It brings transparency and trust to
centralized TTPs.

Our TTP-I based RBE scheme delivers a number of advanced properties. Firstly,
the scheme provides transparency to every participant, making KC’s behaviours
accountable. Users’ registration and parameters can be publicly accessible. The
only secret parameter is the user’s private key generated by him/herself. This sep-
aration between the key pair and public parameter effectively limits the ability of
KC to misbehave, and the permanent on-chain records make KC’s actions trace-
able and accountable. Secondly, our scheme eliminates the reliance on a central
authority and moves related operations of KC on-chain, where the original TTP

is replaced by the smart contract with automatic state transitions. This replace-
ment protects KC from external attacks, such as MitM [88] between the message
senders and the message receivers. Furthermore, the smart contract ensures KC’s
high availability since it is preserved by a group of maintainers.

We have compared our designs with existing studies [86, 95] with respect to the
properties of transparency, verifiability, succinctness, and high availability (see Ta-
ble 4.5). The KC in the original version of RBE does not hold a master secret key
and thus cannot arbitrarily decrypt the users’ ciphertexts. However, KC works in
a non-transparent way, and all the registration operations are carried out locally.
The lack of transparency leads to the system’s lack of verifiability, where KC is vul-
nerable to internal cheating. These drawbacks hinder the wide adoption of RBE.
Verifiable RBE [95] equips the RBE with provable short proofs to give evidence of
the existing registration. Nevertheless, integrating more crypto primitives with the
original protocol makes it extremely complicated and inefficient. Also, the high
availability of KC in these studies can not be guaranteed. Our transparent solution
resolves the above issues by utilizing external blockchain services. To the best of
our knowledge, it is the first work that uses the contract to solve the untrusted
KC issue for making the RBE scheme more practical to be adopted.

Table 3.5: Comparison of various RBE solutions

Tr
an

sp
ar

en
cy

Ve
rifi

ab
ili

ty

Su
cc

in
ct

ne
ss

Hi
gh

av
ail

ab
ili

ty

Original RBE [86] ✗ ✗ ✓ ✗

Verifiable RBE [95] ✗ ✓ ✗ ✗

Transparent RBE ✓ ✓ ✓ ✓

3.3.1.1 Properties Summary

TTP-I brings security and accountability to existing protocols. The properties of
state-change-transparency and state-consistency of smart contracts ensure the non-
equivocal data of a TTP. In particular, a smart contract shares the same auxiliary

data (state) for message sender’s encryption and message receiver’s decryption,
which lets the system avoid split-world attacks [166] where a malicious TTP may
provide a different state view to the message sender and message receiver. In
TTP-I protocols, after a transaction’s Tx invocation, a unique and deterministic
state will be given and shared with the message sender, message receiver, and other
observers. Meanwhile, TTP-I provides a high available service for all participants
(e.g., the message sender, message receiver). It runs on a decentralized network,
which can operate continuously without failing for a designated period of time.
Even if one blockchain maintainer goes down, the other maintainers still work.
This high availability guarantees that the message sender and receiver can always
get the auxiliary information for encryption and decryption when they need it.

Also, as discussed before, to trigger a contract execution, an external message
is required. This evidence is represented as a transaction sent from a particu-
lar address and confirmed by blockchain maintainers, where the transaction must
be signed. This transparent execution and the unforgeability of signature guar-
antee non-repudiation and non-frameability, further achieving accountability. A
user cannot deny having executed a certain function in a smart contract. This
indirectly indicates that the transaction that triggered the execution of smart con-
tracts cannot be tampered with. Moreover, a user cannot be framed by producing
evidence of his “honest behaviour”. If an honest user does not invoke the function
in a contract, he will never be wrongfully accused.

3.3.2 TTP-I Challenges and Issues

In this section, we discuss the main challenges of using TTP-I in security protocols.

Firstly, TTP-I lacks confidentiality and privacy. The state information and the in-
struction code in TTP-I are completely transparent, and any state and its changes
are publicly accessible and observable; all users’ transaction data and contract
variables are visible to any external observer. Without privacy, building advanced
security protocols that rely on sensitive data becomes a challenge [12, 182]. A
TTP typically requires maintaining secret information for further operations (as
discussed in Section 1.1). The complete transparency of TTP-I constrains its wide
adoption. For instance, TTP-I cannot be directly employed as the role of PKG in

IBE schemes, where all the TTP-I’s states are transparent and PKG requires hid-
ing the master private key from the public. In other words, TTP-I runs contrary
to the intention of the existing TTP.

Secondly, using TTP-I for a security protocol pays a high price on gas consump-
tion. For example, under the initial design of Ethereum, the operations related to
calculation or storage require the contract caller to pay a gas fee to the blockchain
miners for providing computational resources. Furthermore, Ethereum sets a ceil-
ing for operations that can be included in each contract. For example, in our
implementation of transparent RBE, each smart contract can only tolerate about
30 merge operations for key accumulation in the Merkle Tree management due to
the bottleneck of gas limits (upper bound reaches 12, 134, 453 gas). Towards this
setting, each contract can involve 14 registered users (equivalently, 28 tree leaves
at the bottom and a total 29 merge operations), which is impractical for large-scale
applications.

Thirdly, TTP-I runs based on distributed smart contracts, which requires each
blockchain node to perform computations and communicate with other peers to
validate results, reach a consensus and update its final state. This mechanism
makes TTP-I suffer from low-performance issues; it can take several seconds to
thousands of seconds to finish a full-cycle TTP-I operation, depending on the par-
ticular consensus algorithm and network scale. Worse still, neither increasing the
transaction load nor increasing the number of blockchain nodes improve perfor-
mance significantly, which means that TTP-I has scalability issues.

Last but not least, TTP-I protocol, essentially, is a combination of smart contract
and cryptographic schemes. Such a combination inevitably introduces new ex-
ploitable attack vectors to undermine security. On the one hand, for the contract
codes, there is no effective method to make them avoid all vulnerabilities [143].
Any unintentional bugs caused by inappropriate design may make the whole pro-
tocol fail. On the other hand, some critical bugs that may exist in the contract
execution environment (e.g., Ethereum Virtual Machine [213]) also pose security
risks to TTP-I protocols.

48

Chapter 4

TTP-II: Smart Contract &
TEE-assisted TTP

As aforementioned, privacy is of critical concern in TTP-I based security proto-
cols. This chapter introduces a fair and privacy-preserving TTP (we will refer to as
TTP-II). To achieve the goal of creating such a TTP, we first investigate state-of-
the-art technologies on the implementation of existing TEE-assisted confidential
smart contract (TCSC) systems (Section 4.1). Then, we provide a systematization
and a unified framework to evaluate them (Section 4.2). Based on the common
features, we further present a formal treatment of TCSC (Section 4.3). Finally, we
explore how to employ TCSC to build secure protocols with fairness and confiden-
tiality (Section 4.4).

4.1 TEE-assisted Confidential Smart Contract

Blockchain-based smart contracts enable a fair and secure exchange between un-
familiar participants and present a uniform approach for improving applications
across a range of industries. However, they lack confidentiality. The state infor-
mation and the instruction code are completely transparent [93, 221, 225], and any
state and its changes are publicly accessible; all users’ transaction data and contract
variables are visible to any observer. Without privacy, building advanced decentral-
ized applications (DApps [176]) that rely on users’ sensitive data becomes a chal-

lenge [12, 182, 199, 220]. For instance, smart contracts in Ethereum [213] cannot be
directly applied to Vickrey auction [23, 82] or e-voting systems [58, 59], where the
bid and vote are required to be hidden from the public. Moreover, DApps without
privacy protections might be prohibited by the European Union because they go
against the General Data Protection Regulation (GDPR) [201]. Thus, the com-
plete transparency of smart contracts constrains their wide adoption. Recently, re-
searchers have explored many cryptographic solutions to solve these issues, includ-
ing utilizing techniques of zero-knowledge proof (ZKP) [12, 36, 37, 51, 111, 126],
homomorphic encryption (HE) [190] and secure multiparty computation (MPC)
[226]). However, these approaches are time-consuming and complicated, hindering
their adoption by applications requiring compute-intensive tasks.

Moving complex computations into secure hardware offers applications with pri-
vacy as well as good performance. The use of TEEs [34, 69, 112, 123, 133] becomes
thus a general-purpose solution for confidential smart contracts. The TEE is a new
feature provided by recent commodity CPUs. It has the ability to provide secure
environments for running contract code in isolation while guaranteeing execution
integrity and state confidentiality. As a promising alternative technology, TEE has
been adopted by various smart contract platforms, especially by companies work-
ing on consortium blockchain platforms, such as Alibaba CONFIDE [215], Visa’s
LucidiTEE [189] and China’s official blockchain CHANG’AN CHAIN [76, 117].

4.1.1 System Workflow

This section first provides a high-level description of TCSC. Then, a detailed exam-
ple is provided to demonstrate the protocol roles and contract working mechanism.

4.1.1.1 A Lightning Tour

Numerous TCSC systems have been proposed, as shown in Table 4.4. From these
examples, we observe that these systems have a common workflow: Establishing a
confidential smart contract mainly requires four steps, namely invocation, compu-
tation, consensus and response (see Figure 4.1). Note that we assume that TCSC
has been successfully deployed and the contract state has been initialized.

Invocation. In current blockchain systems such as Ethereum [213], once a con-
tract is deployed successfully, the initial state and operational code are replicated
among distributed nodes. Since each transaction requires computational resources
for executions, an external message call with sufficient gas must be launched. This
type of external message call is represented as a transaction (denoted as Tx) sent
from a user. TCSC, as a special type of smart contract, inherits the state-triggering
mechanism. A major difference between confidential contracts and original proto-
cols lies in whether a transaction has to carry a ciphertext (denoted as cu).

TEE

Blockchain

Invocation Computation Consensus

!
"#
$
%
#
&
'(
)
$

confidential state

state request

Response

confirmed state

(cu)

(cb)

(cb’) (cb’)

Figure 4.1: TEE-assisted confidential smart contract workflow

Computation. Once receiving an invocation request (Tx with an encrypted ar-
gument of cu) from a user, TEE decrypts the ciphertext cu and loads the con-
tract source code and current encrypted contract state (denoted as cb) from the
blockchain network. Here, the contract code can be in plaintext or encrypted, but
the states and inputs must be encrypted (see Table 4.6). Then, TEE decrypts the
state cb using a TEE private key sk, executes the contract logic, and outputs an
execution result (denoted as mb). Afterwards, TEE encrypts mb with a specific
user’s public key and a service key to obtain a ciphertext (denoted as c′b). Next,
TEE sends (denoted as c′b) to the blockchain network. This computation algorithm
can run in a TEE or multiple TEEs. If it runs in multiple TEEs, the service key
must be shared among multiple TEEs. As for the concept of service key and key
management, we refer to Section 4.1.2 for more details.

Consensus. After obtaining the encrypted state c′b, the consensus algorithm starts
to reach an agreement over all distributed nodes. Since a block cannot contain the

entire view of the blockchain at one time, each miner must re-execute the consensus
progress. This is usually triggered by the block synchronization mechanism. To be
specific, once enough blockchain miners receive the block and re-execute transac-
tions, the transferred state c′b will eventually reach the final agreement. Meanwhile,
the transaction Tx becomes immutable. Note that, in all the consensus procedures,
c′b is kept encrypted, and the agreement runs on encrypted data.

Response. Finally, the blockchain returns the encrypted state c′b and correspond-
ing transaction Tx to the corresponding user, and this user decrypts the ciphertext
c′b to obtain the final state. Note that, in the real-world settings, c′b may be formed
as two parts: encrypted state for blockchain and encrypted data for users (see our
example in Section 4.1.1.2). Here, we emphasize that no matter what the format
of c′b is, only the user who owns the private key can access the plaintext.

4.1.1.2 E-voting Example using Confidential Smart Contract

This section provides a modified secret e-voting example borrowed from Oasislabs1.
Again, we take Intel SGX [61] as the TEE instance, and we note that the TEE
design used in our example can also be implemented on other trusted hardware
platforms, such as RISC-V Keystone [133].

In this example, three voters voter1, voter2, and voter3 want to vote for their
favourite candidates (see Table 4.1). A high-level overview is that: voter1, voter2
and voter3 call the contract inside TEE with encrypted inputs by sending transac-
tions with an encrypted argument c1u, c2u and c3u. Next, TEE decrypts the arguments
c1u, c2u and c3u, and decrypts the current encrypted blockchain state cb (to obtain
metadata for voting). Afterward, TEE confidentially executes the voting logic
and correspondingly returns m′blockchain and m′t. Then, TEE encrypts m′blockchain as
c′blockchain, m′t as c′t, and sends c′blockchain and c′t to the blockchain. Eventually, the
blockchain reaches a consensus on c′blockchain and c′t. After that, the teller fetches
c′t and decrypts it to obtain the voting result voteresult.

What properties does TCSC-based voting protocol own? A TCSC can
be well qualified for the role of decentralized vote manager in an e-voting sys-

1https://github.com/oasislabs/secret-ballot/blob/master/contracts/SecretBallot.sol

Table 4.1: Data workflow of TCSC-based voting system

Stage/Role Voter Teller TEE Blockchain

Invocation data1u → c1u;
c1u → Tx1u;
data2u → c2u;
c2u → Tx2u;
data3u → c3u;
c3u → Tx3u;

cb;

Computation c1u → data1u;
c2u → data2u;
c3u → data3u;
cblockchain →
mblockchain;
Exec(data1u, data

2
u

, data3u,mblockchain)→
m′blockchain,m

′
t;

m′b,m
′
t →

c′blockchain, c
′
t;

Consensus Tx1u → chaindata;
Tx2u → chaindata;
Tx3u → chaindata;
c′blockchain →
chaindata;
c′t → chaindata;

Response c′t → voteresult

tem [58, 59]. Once a contract-based manager is deployed successfully, the voting
logic is loaded into a TEE, and corresponding secret keys are privately generated
and stored inside TEEs. The encrypted state is then confirmed by the blockchain
nodes. This offers the e-voting protocol confidentiality, neutrality, auditability and
accountability. Firstly, voters’ inputs c1u, c2u, and c3u are encrypted, and intermedi-
ate parameters (e.g., mblockchain) are privately processed through TEEs. External
attackers cannot obtain sensitive information, and thus confidentiality is achieved.
Secondly, the predefined voting logic only occurs in the decentralized network when
certain conditions are satisfied, bringing neutrality to the access control manage-
ment. Thirdly, if a voter wants to vote for a candidate, she needs, in advance, to
encrypt his choice using TEE’s public key and merge the encrypted choice to a
transaction Tx. After that, she calls the contract by sending Tx. Due to the pro-
tection of encryption, the voter’s choice is kept secret, while some metadata, such
as the transaction sender and receiver, remain visible and immutable, ensuring
that the user’s voting is accountable.

We admit that public verifiability as one of the fundamental properties of the

blockchain system is difficult to achieve in the context of encryption. Contracts
that are executed inside TEE make the execution procedure lack public verifia-
bility. Only the nodes who install TEE and that are given corresponding keys
can verify the correctness of contract executions. However, unencrypted trans-
action metadata (e.g., transaction sender, transaction receiver, value) is publicly
verifiable, which makes it possible to verify the absence of double spending.

Sub-procedures. A TCSC-based voting system mainly consists of two sub-
procedures: deployment stage and execution stage. In the deployment stage, all the
operational code and the initial state are coded into a TCSC. This stage includes
two steps.

a. Compile. Contract binary codes are compiled into enclave codes. Since an
enclave has only a small quantity of trusted zones for application code and data
(the protected memory is 128MB, and only 96MB is usable for an enclave in the
current version of Intel SGX [61]), a contract has to determine the boundary of
these zones and identify corresponding zones used for privacy-critical functional-
ities. In particular, the e-voting contract needs to define: the scope of the secret
state, the scope of the public state, the approach to access the secret state and
the approach to access the outside state.

In SGX, Enclave Definition Language (EDL) defines trusted components, un-
trusted components, and corresponding interfaces between them, which takes
charge of translation from contract code to enclave code. It provides two func-
tionalities: Enclave Calls (ECALLs) and Outside Calls (OCALLs). ECALLs
define the functions inside the enclave that are used to expose APIs for un-
trusted applications to call in. OCALLs specify untrusted functions outside the
enclave where the enclave code is able to invoke. In our example, the total num-
ber of votes cast for a candidate cannot be revealed until the voting has ended.
Thus, the total number of votes cast is defined at the access point ECALLs,
and is thereby hidden from the public and can only be revealed once the voting
procedure has been completed.

b. Load. Afterwards, EDL files will load into an enclave, which is stored in the
Enclave Page Cache (EPC). From a micro perspective, the first step is to call

the ECREATE instruction for creating an enclave. This will allocate memory
inside the Enclave Page Cache (EPC). Then, enclave code and data are added
to pages in EPC by calling the EADD instruction. Finally, when the instruction
EINIT completes successfully, an enclave’s INIT attributes become true, and
the above instructions cannot be used anymore.

CPU

EPCM

MEE

DRAM

PRM

EPC

Enclave 1

Enclave 2

Enclave n

Contract Code

Figure 4.2: A diagram on loading the contract code to multiple enclaves

It is worth mentioning that SGX allows multiple enclaves to run on one system
at the same time. This is achieved by dividing the EPC into 4 KB pages and as-
signing them to different enclaves. Each EPC has its own SGX Enclave Control
Structure (SECS), one or more Thread Control Structures (TCS), correspond-
ing Save State Areas (SSAs), Signature Structures (SIGSTRUCT), and Version
Array Pages. The SECS and TCS hold the metadata for each enclave, which
is mainly used for managing simultaneous threads. SIGSTRUCT is responsible
for the signature and sealing identities of the enclave.

After a successful deployment, the initial state and operational code of this
contract will be replicated among blockchain nodes. This means the e-voting
logic cannot be changed. But, the state of functionalities can be transferred to
parties who have been granted permission with a message-call [213].

In the execution stage, voters call the deployed TCSC to finish the voting. This
process has three main features.

Execution Isolation. SGX-enabled processors protect the integrity and confidential-
ity of computation inside an enclave by isolating enclave code/data from the out-
side environment. To have a better understanding, we will introduce several new

concepts: Enclave Page Cache Map (EPCM), Processor Reserved Memory (PRM),
and Memory Encryption Engine (MEE). Enclave Page Cache Map (EPCM) is used
to perform EPC security checks, which contains the status for each page listed in
EPC. EPC performs actions inside the Processor Reserved Memory (PRM) lo-
cated in Dynamic Random Access Memory (DRAM), while EPCM is a look-up
table stored inside a CPU with enclave-related data. Since the data stored in
PRM is encrypted, a new tool named Memory Encryption Engine (MEE) [98] is
necessary to decrypt data inside the CPU in real time. Here, we emphasize that
the MEE key is generated at the boot time and stored within a CPU. The CPU
is thereby the only place of the system that can read the plaintext data stored in
the enclave.

Before an enclave starts to execute the voting operation, it needs to fetch the
current contract state cb from the blockchain. Then, the CPU starts to execute
the plaintext contract in the enclave mode. External attackers cannot obtain the
knowledge of sensitive information since the MEE key never leaves TCB. To prevent
data leakage, a CPU cannot directly deal with failures such as an interrupt, fault
(for example, a page fault) or VM exit when executing enclave code. Considering
the protection of private data, the CPU first needs to switch from enclave code
to ring 3 [47] code by performing an Asynchronous Enclave Exit (AEX) and then
execute the above operations.

Hardware-based Access Control. One important aspect of Intel SGX’s functional-
ity is that the code inside an enclave can access the particular enclave state by
performing additional checks on memory semantics [163]. Back to our example, an
enclave executes the voting operation only when the following four requirements
are fulfilled: (1) The processor runs in enclave mode; (2) The requested page is
part of the same enclave; (3) The page access is through the correct specific vir-
tual address; (4) The code semantics successfully pass the check (the invocation
is initiate by the authorized address). In a word, the CPU is acting as a security
guard in the TCSC, providing a hardware-based access control mechanism.

Transaction-based Accountability. After obtaining results from TEEs, the consen-
sus algorithm starts to reach an agreement. Specifically, when a miner receives
a newly mined block, he will re-execute all transactions inside the block to ob-

tain the newly transferred state. Here, we emphasize that only the TEE result is
encrypted, the other metadata of the transaction remains unencrypted, and the
“re-execute” operation is necessary to verify the absence of double spending. Once
enough blockchain miners receive the block and re-execute transactions, the voting
results and the transactions triggering the contract execution will eventually reach
the final agreement. When all the voting procedures have ended, the teller can
fetch the final encrypted state and obtain the final voting result. Meanwhile, the
transactions can be used as evidence to trace the voter’s behaviour.

4.1.2 Key Management

Various keys are involved in the contract execution, including TEE internal keys
such as the attestation key and TEE service keys for state encryption/decryption
(see Figure 4.3). We will continue to use the above confidential e-voting contract
(see Section 4.1.1.2) to explain the mechanism of key management. In terms of key
generation and usage, the workflow is shown as follows. Initially, SGX generates
an MEE key at boot, which is placed in special registers and destroyed at system
reset. This MEE key is utilized for memory encryption and decryption of enclaves.
At the same time, SGX generates a report key, an attestation key and a sealing
key for further actions. We summarize these keys and their usage in Table.4.3.

Then, TEE creates an enclave, and this enclave generates a key pair (pktee, sktee)
for protecting the user’s input and a symmetric key kblockchain for protecting the
enclave output. After that, voter1, voter2, voter3 and teller generate their key
pairs (pkvoter1, skvoter1), (pkvoter2, skvoter2), (pkvoter3, skvoter3) and (pkteller, skteller)
respectively. Subsequently, voter1, voter2 and voter2 send an encrypted voting
choice c1u, c2u and c3u, respectively, by using the public key pktee that belongs to an
enclave, in which the corresponding private key sktee is stored in enclaves. Then,
the enclave receives ciphertexts (c1u, c2u and c3u) attached to transactions, and then
decrypts them using sktee. Afterwards, the enclave fetches the newest state from
a blockchain and decrypts it using kblockchain, and starts to execute the contract.
Then, TEE encrypts current voting state as c′blockchain using kblockchain, and final
voting result as c′t using pkteller. After that, in the consensus stage, c′blockchain and
c′t will reach agreement on the blockchain nodes. Finally, teller fetches c′t and

Table 4.2: Varieties of TEE internal keys and their main functionalities

TEE Key Functionalities Remarks

MEE key Stored inside a CPU; used to
encrypt (decrypt) data before
writing (reading) it to (from)
RAM.

Different enclaves in
the same TEE plat-
form share one MEE
key.

Report key Derived by EGETKEY instruc-
tion; used to generate a MAC
tag for the measurement.

Different enclaves in
the same TEE plat-
form share one report
key;

Attestation key Stored in tamper-resistant
hardware; only used to pro-
duce attestation signatures.

Different enclaves in
the same TEE plat-
form share one attes-
tation key;

Sealing key Stored in tamper-resistant
hardware; used to migrate
secrets between enclaves.

Different enclaves in
the same TEE plat-
form may share the
sealing key depending
on key policies.

decrypts it to obtain the final result using skteller.

Table 4.3: Enclave service keys and their main functionalities

TEE Key Functionalities Remarks

Enclave
asymmetric key (pktee, sktee) Generated by an enclave; used

to encrypt (decrypt) data that
comes from voters.

pktee is shared among
all the votes.

Enclave
symmetric key kblockchain Generated by an enclave;

used to encrypt (decrypt) the
blockchain state.

kblockchain is privately
stored inside an en-
clave.

Key management dilemma. The private keys in TEE-assisted systems are cru-
cial but hard to manage. On the one hand, putting the service keys (e.g., sktee
and kblockchain) in a single TEE contributes to key security. However, it also raises

the risk of a single point of failure. On the other hand, sharing the private key
among multiple TEEs offers practical availability but (as a sacrifice) increases key
exfiltration risk. State-of-the-art TCSC systems provide a range of technologies to
avoid this dilemma. Ekiden [53] designs a distributed key generation (DKG) [89]
protocol using a secret sharing scheme [185]. Even if one key is compromised, an
adversary still cannot obtain the entire key. However, this solution does not com-
pletely solve the key leakage issues. The final keys are assembled and replicated
among all the end-TEEs. If an adversary compromises an end-TEE, exposing the
entire contract state becomes a trivial task. The key rotation technology, adopted
by Fastkitten [64], Phala [101] partially solves the above issues by providing a
short-term key in every epoch. An adversary cannot corrupt a future or previously
committed state, which minimizes the possibility of key exposure to attackers and
further helps the layer-two system to achieve forward secrecy. Also, some projects
such as COMMITEE [72] mitigate these key issues by providing each TEE with a
secret key. Even if a certain TEE’s private key were stolen, this only would affect
the smart contract running on that compromised TEE. Furthermore, Phala Net-
work [101], equips each contract with an asymmetric key called the contract key,
which also enhances key security to a certain degree. CONFIDE [215] mitigates
this issue by proposing a decentralized key management protocol. Two types of
keys are involved in this protocol: the asymmetric private key used to decrypt
confidential transactions from clients and the symmetric states root key used for
state encryption/decryption between the confidential engine and storage service.
However, these technologies are too complicated for widespread adoption and can-
not completely solve the key issues. Suppose an attacker steals the attestation key
somehow. She might consequently generate the attestation materials to deceive
the user with a fake fact: the contract has been executed. Even worse, if a root
key stored in the tamper-resistant hardware (e.g., Memory Encryption Engine Key
in Intel SGX) is compromised, all aforementioned key technologies for protecting
service keys become useless.

- State encryption

- Contract execution

- State decryption

OUTPUT

Service Key

e.g. User’s public key, enclave key

 - State encryption

 - Contract execution

 - State decryption

QUOTE

Memory Encryption Key Seal Key

Attestation Key Reporting Key

EREPORT REPORT

Provisioning Key
Provisioning

Seal Key

Attestation Key

Seal KeyProvisioning Key

Memory Encryption Key

Intel

Provisioning

Service

Provisioned

Key

P
ro

o
f

o
f

P
ro

vi
si

o
n

in
g

K
e
y

O
w

n
e

rs
h

ip

Attestation Key

Asse
rte

d Enclave

CPU e-fu
ses

Provisio
ning

Enclave

Miners

Node 1

Node 2

Node 4

 S
G

X
 In

te
rn

al ke
ys

S
e
rvice

 ke
ys

Service Key

- State encryption

- Contract execution

- State decryption

Enclave in

 N
ode 2

- State encryption

- Contract execution

- State decryption

Service Key

- State encryption

- Contract execution

- State decryption

Enclave in

 N
ode 3

Intel

Attestation

Service

Intel Key

Generation

Key

Q
U

O
T

E

Node 3

Service KeyService Key

Enclave in

 N
ode 4Enclave in

 N
ode 1

Figure 4.3: Key usage in a TCSC system

4.2 TCSC Classification and Evaluation

This section provides a systematization of existing TEE-assisted confidential smart
contracts driven from academic work and in production projects. Based on their
operating mechanisms and methods of combination, we divide them into two main
categories: layer-one solution and layer-two solution. Then, we establish a unified
evaluation framework that takes into consideration two factors: privacy-preserving
properties and blockchain intrinsic features.

4.2.1 System Classification

TCSC systems can be categorized into two classes according to the place where
contract execution and consensus procedure operate: layer-one solution and layer-
two solution.

4.2.1.1 Layer-One Solution

A layer-one solution enables blockchain nodes to run contracts in their isolated
areas and to conduct the consensus. This approach combines the consensus pro-

Table 4.4: Selected TEE-assisted confidential smart contract systems

Project TEEs Main Functionalities

Ekiden [53] Intel SGX Ekiden proposes a TEE-blockchain hybrid architecture where
the contract computation is separated from consensus.

PDOs [31] Intel SGX PDOs leverages Intel SGX to run the contract code off-chain;
a user is acting as a channel for communication between the
SGX enclave and the blockchain.

ShadowEth [218] Intel SGX ShadowEth establishes a confidential platform protected by
TEEs off the public blockchain for contract execution and
storage

Phala [101] Intel SGX Phala proposes an interoperable smart contract network by
combining TEEs and query responsibility segregation archi-
tecture [167]

Enigma [2, 71] Intel SGX Enigma implements a so-called Secret Network, a proof-of-
stake blockchain that is built on top of the Cosmos SDK [60]
by using Tendermint consensus [197]

Fabric [33] Arm Trustzone Fabric proposes a modular architecture that conceptually de-
couples the traditional chaincode executions into two types of
functionalities containing transaction ordering and state exe-
cution.

CCF [179] Intel SGX CCF implements a leader-based consensus protocol (in par-
ticular, RAFT [165]) and provides secure memory databases
and remote procedure call (RPC) services

CONFIDE [215] Intel SGX CONFIDE separates transactions into public and confidential
transactions; confidential transactions are processed in a con-
fidential engine, whereas public transactions are processed in
normal procedures

cedure and contract execution, either logically or physically. The reason why we
call this method layer-one is that all executions are completed in the same layer
of the blockchain network, both in terms of physical space and time. The key to
such an approach is to equip every blockchain node with a TEE. While this cer-
tainly requires greater integration efforts, it also comes with several advantages.
In particular, a smart contract can implement stateful functionalities that receive
arguments and update the state instantly; a smart contract can directly access the
local ledger, greatly saving time often wasted in communications.

In the layer-one execution pattern, the operations of ledger update (consensus)
and state transition (smart contract) are coupled. Like Ethereum [213], smart

!""#$%&'()*+(,#

Data

!)-.(/0#"1/+-(2&'

Storage

%&'./'.-.

3/)42+/.

5/).2.(*'(#3(&)*6/7
.
/
)

P
e
e
r
s

Code

%&'./'.-.#5)&+/0-)/8&
0/

Figure 4.4: Layer-one execution model

contracts run inside blockchain nodes. Assume that a user plans to use the private
contract, then he only needs to upload data to the blockchain service and wait for
results. The remaining procedures are fully completed by TEE-assisted distributed
nodes. The TEE in these nodes acts as a black box for data processing, and
outputs targeted results without any leakage of sensitive data. This approach
greatly improves the convenience for users due to its easy access and management.
As illustrated in Figure 4.4, a generic data flow is as follows: A contract creator
deploys the code into the blockchain and bootstraps the system. Then, a user
sends his encrypted input data to an arbitrary blockchain node. His request is
confidentially executed by inside TEEs that are connected with smart contracts.
After a full cycle of execution, encrypted results are broadcast to peers. After
encrypted results are confirmed by other blockchain nodes through the consensus
algorithm, the user who sent the request can fetch results from the blockchain.

4.2.1.2 Layer-Two Solution

A layer-two solution is a straightforward approach to combining the TEE and
blockchain to offer smart contracts with confidentiality while retaining scalability.
In such systems, the operations of smart contracts are decoupled from their un-
derlying blockchain systems and are executed in an independent layer outside the
blockchain systems.

In a general layer-two solution, the blockchain is used as a dispute resolution layer.

!"#$%&'()*

+,-&#.

/0
0*1

2-
&

Storage

342
56
57
%'(

/$8-	*0:#58&'2(

/00*;<2(&$%5&=*

CodeData

<2(-#(-8-*>$25#98$#

>#$-'-&%(&*+&2$%)#

?
-
#
$

<2(-#(-8-

+#$@'5#-

Figure 4.5: Layer-two execution model

The smart contract is executed outside the blockchain, making TEEs act as an
agent between users and blockchain systems. Suppose that a user aims to use a
private contract. He first needs to compile original contract codes, push (compiled)
binary codes to a TEE, and then upload execution results to the public ledger. As
illustrated in Figure 4.5, we extract a generic data flow as follows: a user sends the
encrypted input data to a TEE-powered node. Then, the TEE correspondingly
decrypts the input data and executes the contract. Subsequently, the encrypted
execution results are sent to the blockchain platform for verification and storage.
Finally, the user fetches and decrypts blockchain-confirmed results.

Summary. The layer-one solution and layer-two solution share some same princi-
ples: (i) the contracts are executed in an isolated secure area; (ii) the state-changing
in a contract is based on an external message call, usually represented as sending
a transaction by a user; (iii) the final encrypted state is confirmed by blockchain
nodes and finally stored on the chain.

The main difference between layer-one and layer-two solutions lies in the position to
execute the confidential contract. In the layer-one solution, the blockchain miner
is required to provide a TEE service, making the miner execute a confidential
state, and its consensus procedure is executed in the same machine. In contrast,
in the layer-two solution, the state and corresponding procedure are performed
independently.

For a clear understanding, we make a comparison of the original blockchain system

Table 4.5: A comparison of L1 and L2 solutions

Et
he

re
um

L
1

So
lu

tio
n

L
2

So
lu

tio
n

EVM and consensus in same machine ✓ ✓ ✗

EVM and consensus in same TEE - ✗ ✗

Contract execution publicly verifiable ✓ ✗ ✗

Contract execution peer verifiable ✓ ✓ ✗

Consensus procedure publicly verifiable ✓ ✓ ✓

(e.g., Ethereum), layer-one (L1) solution, and layer-two (L2) solution. As shown
in Table 4.5, Ethereum runs smart contracts (in Ethereum Virtual Machine) and
consensus procedures in the same machine of distributed nodes. All the contract
and transaction operations are publicly verifiable due to their total transparency.
The layer-one solution performs such operations (contract execution and consen-
sus) in the same machine, but the contract operations are separate from consensus
procedures. In contrast, the layer-two solution makes both of them operate inde-
pendently. The contracts are executed outside the blockchain network, while state
consensus happens inside the blockchain nodes.

4.2.2 Evaluation Framework

This section establishes a unified evaluation framework. Ideally, moving smart
contract execution into TEEs brings additional security and privacy and maintains
the original benefits of blockchain. Thus, we identify desirable properties in two
main categories: privacy-preserving properties and blockchain intrinsic features.

4.2.2.1 Privacy-Preserving Properties

The property of confidentiality is the most distinguished feature in TEE-assisted
confidential smart contracts.

A1. Specification hidden. The source code of a smart contract is hidden during
the deployment and the subsequent synchronization and execution.

A2. Input privacy. The inputs fed into a confidential smart contract are hidden
from the public. An adversary cannot see the plaintext of the inputs without
a private key.

A3. Output privacy. The output returned from a confidential smart contract is
kept private. Only the authorized user who holds the private key can access
the plaintext.

A4. Procedure privacy. The execution procedure is hidden from unauthorized
parties. An adversary cannot learn operation knowledge inside a TCSC.

A5. Address unlinkability. The pseudonymity of blockchain does not entail strong
privacy guarantees [8, 153]. An adversary may break the address unlinkability
by observing users’ activities. This property ensures that transactions are
unlinkable.

A6. Address anonymity. The contract caller’s identity (a user who calls a smart
contract) is hidden from an anonymity set [36].

4.2.2.2 Blockchain Intrinsic Features

The TCSC also inherits some features given by original blockchain systems. We
summarize these features as follows.

A7. Code immutability. Once a contract is successfully deployed, its source code
cannot be altered.

A8. (Private) state consistency. The execution happens at a certain blockchain
height, where all execution outputs stay the same across different nodes,
despite these outputs being encrypted.

A9. Contract interoperability. A smart contract can call another contract and be
called by others.

A10. High availability. A smart contract is continuously accessible without a single
point of failure.

A11. Decentralized execution. A smart contract runs over a decentralized net-
work, making the same operations execute many times in different blockchain

nodes, which guarantees fairness.

A12. Automatic execution. A smart contract can be automatically executed once
conditions are satisfied.

A13. Gas mechanism. Operations running on smart contracts are charged with
gas fees [213].

A14. Explicit invocation. Each invocation will be formatted as a transaction and
stored on the blockchain.

A15. Public verifiability. The procedure of contract execution and the result are
publicly verifiable.

A16. Consensus verifiability. The consensus procedure on the (confidential) state
is publicly verifiable.

A17. Transaction transparency. This property ensures that transactions that trig-
ger the execution of TCSC are immutable, and cannot be cancelled, tampered
with, or reversed by any involved parties.

A18. Transaction unforgeability. Transaction unforgeability is defined as the in-
ability to forge a valid transaction that deceives the blockchain to accept this
forged transaction.

4.2.3 L1 and L2 Evaluation

4.2.3.1 Layer-One Solution

Privacy-preserving properties indicate that contract states and the procedure of
contract executions are hidden from the public. To achieve privacy, layer-one sys-
tems execute these confidential contracts inside TEEs in every distributed node.
CCF [179], Fabric [33] and CONFIDE [215] follow this straightforward design,
where confidential contracts are loaded to a TEE of each consensus node, which
encrypts both the inputs and outputs of contract states, together with their oper-
ating logic and predefined rules. Enigma [2] introduces a secret network layer, and
this layer allows users to submit their transactions together with encrypted data to
miners. We also notice that current layer-one solutions only focus on internal pro-

cedures rather than the linkability and anonymity of addresses and transactions.
This indicates that TCSC only protects the contents that have been loaded into
TEEs, while the data that relates to outside users is out of scope.

Layer-one systems inherit most of the features empowered by blockchain. More
precisely, the properties of code immutability, high availability, explicit invocation,
decentralized execution, automatic execution and consensus verifiability remain the
same because basic contract executions still rely on their underlying blockchain
systems. Also, the property of (confidential) state consistency in Enigma [2], CCF
[179] and Fabric [33] remains unchanged. The states and executions from these
systems follow the procedures of online consensus processes. Then, the returned
results from inside TEEs must still be confirmed on-chain. This makes their actions
effectively perform the same functions as a normal smart contract, except that the
contents of states are transmitted from plaintext to ciphertext. However, the
property of contract interoperability is lost since the contracts are executed in
isolated TEEs.

4.2.3.2 Layer-Two Solution

The confidential execution is an essential property. In layer-two systems such
as [31, 101, 218], the contract computations run inside Intel SGX enclaves, while
TZ4Fabric [157] moves contract executions into ARM Trusted Zone. Since the
contract state transition process happens inside the TEE, any intermediate states
remain invisible to the outside. Meanwhile, to achieve full life-cycle security for
a smart contract, the input sent to a TEE and the output returned from a TEE
are also required to be encrypted. For example, in ShadowEth [218], PDOs [31],
Phala [101] and Hybridchain [209], the contract invocation arguments are en-
crypted with the TEE public key. They can only be decrypted within the enclave.
Also, before transferring execution results to the blockchain (or users), the inter-
mediate (or final) states in an enclave are encrypted. Some variants also enhance
the privacy-preserving properties from other aspects. In Phala [101], only autho-
rized queries to the contract will be answered. The smart contract source codes in
ShadowEth [218] are hidden during deployment and synchronization. This further
reduces the possibility of data leakage in subsequent contract execution. Consid-

Table 4.6: Comparison of L1, L2 system and normal smart contract (SC)

Properties Sub-properties L1 L2 SC

Confidentiality Property
Specification hidden ✓∖ ✓∖ ✗

Input privacy ✓ ✓ ✗

Output privacy ✓ ✓ ✗

Procedure privacy ✓ ✓ ✗

Address unlinkability ✓∖ ✓∖ ✗

Address anonymity ✓∖ ✓∖ ✗

Intrinsic Feature

Code immutability ✓∖ ✓∖ ✓

State consistency ✓ ✓ ✓

Contract interoperability ✓∖ ✓∖ ✓

High availability ✓∖ ✓∖ ✓

Decentralized execution ✓∖ ✓∖ ✓

Automatic execution ✓ ✓ ✓

Gas mechanism ✓∖ ✓∖ ✓

Explicit invocation ✓∖ ✓∖ ✓

Public verifiability ✗ ✗ ✓

Consensus verifiability ✓ ✓ ✓

Trans transparency ✓ ✓ ✓

Trans unforgeability ✓ ✓ ✓

The character ✓ represents that the item completely holds this property;
✗ means that the item does not own this property; ✓∖ denotes that the item
partly has this property. The underline signifies the common properties.

ering a fixed address may expose the user who calls the contract, PDOs [31] also
allow the user to use pseudonym addresses for submitting a transaction with TEE
outputs to the blockchain.

As for the intrinsic feature, ShadowEth [218] and Taxa [196] introduce a distributed
service to manage the contracts, achieving the properties of code immutability, high
availability and decentralized execution. Meanwhile, the layer-two systems satisfy
state consistency because the encrypted states of contracts in different blockchain
nodes are eventually consistent when reaching a successful agreement. Intuitively,
the contracts deployed in layer-two systems should retain the features given by
original blockchain systems. However, some fundamental properties are lost to
a certain degree when using layer-two solutions. For example, most layer-two
systems lose contract interoperability since each contract is executed on different
machines. Among all the evaluated systems, only Phala [101] identifies this issue
and proposes a command query responsibility segregation architecture to ensure
interoperability. Also, public verifiability is a crucial property for the blockchain
since it allows each contract invocation, and the correctness of contract execution to
be publicly verifiable. Unfortunately, contracts are executed in TEEs and outputs
are encrypted. To check whether TEE has executed contracts following loaded
contract source specifications is a non-trivial task.

4.2.3.3 Properties Summary

Common Properties. In both L1 and L2 systems, the contract state transition
process happens inside the TEE, and any intermediate state remains invisible to
outside programs. Therefore, the procedure of executing a contract is hidden
from unauthorized third parties. Meanwhile, to achieve full life-cycle security
for a smart contract, the input sent to a TEE and the output returned from a
TEE are also required to be encrypted. Even if an adversary can see encrypted
states in the blockchain, they cannot access the plaintext or learn any information
about how the plaintext hidden inside the encrypted state is transferred, without
fetching corresponding keys. Briefly, these properties ensure that no additional
information is leaked to an adversary during the process of contract execution and
data transmission of honest parties.

Meanwhile, a TEE-assisted contract as a special smart contract inherits many
distinguished features of original blockchain systems. Firstly, TCSC inherits the
state triggering mechanism from smart contracts. State-changing is based on an
external message call, which is usually represented as sending a transaction by a
user. This transaction can be further used as a piece of evidence to audit operations
inside the smart contract. In a word, both L1 and L2 system hold the properties of
Procedure privacy, State consistency, Trans transparency and Trans unforgeability,
as shown in Table 4.6.

Shortcomings. Still, a TCSC faces some issues. Firstly, it lacks public verifi-
ability. On the one hand, contracts are executed inside TEE, and the outputs
are usually encrypted, which lacks public verifiability as compared to traditional
blockchain systems. The attestation service can only guarantee that the encrypted
outputs indeed come from a TEE. However, neither users nor the blockchain nodes
can learn whether the TEE is compromised or executes contracts following the pre-
defined specification. Even if many TEEs can re-execute the same contract with
the same setup (e.g., the same private key) to check outputs, this inevitably in-
creases the risk of key leakage. On the other hand, the precise architectures of
some chips are still unclear for some TEE products, such as Intel SGX [61]. TEE-
assisted solutions force the user to put too much trust in the manufacturers of
this hardware. Some users even argue that Intel may have reduced the security of
SGX to improve performance to cater for market demand [67]. Additionally, the
attestation service used to prove that a program runs inside TEEs is centralized
and nontransparent. A compromised provider has the ability to insert fake IDs,
and further, steal the confidential state in smart contracts.

4.3 TCSC Formal Treatment

This section begins with the syntax of TCSC. Then, the security properties are
formalized.

4.3.1 TCSC Syntax

As we discussed in Section 4.1, there are several approaches to achieving confiden-
tiality for a smart contract, including cryptographic approaches backed by mathe-
matics, and TEE-based approaches. Without loss of the generality, we, therefore,
provide a general definition called privacy-preserving smart contract, rather than
TEE-assisted confidential contract. This definition is modified from Definition 6.

Definition 7 (P̂PSC). A privacy-preserving smart contract (PPSC) is a private
state machine built on top of a blockchain system and can be modeled by a tuple
(S,S ′,P , T ,B) under a transition function

f : S ′,P ′ B←− S ⊗ P ⊗ T ,

where S represents a set of private states with the initial state s, P is a public state
space with the initial state p, S ′ is the new state set after the specified operations,
T means a set of publicly visible transactions that can trigger the execution of
a contract, and B represents a blockchain system which provides the execution
environment.

- Deploy. (⟨opcode⟩, ⟨reqcode⟩, s, p) ← ⟨bytecode⟩ ⊗ Tx. The deployment is
triggered by a transaction Tx, where Tx ∈ T . It takes as input the binary
code ⟨bytecode⟩ and outputs a private state s, and a public state p. In partic-
ular, the contract is compiled into instruction codes ⟨opcode⟩ and ⟨reqcode⟩,
where ⟨opcode⟩ specifies the operation set to be executed and ⟨reqcode⟩ de-
fines the conditions depending on which the operation of ⟨opcode⟩ can be
conducted.

- Transfer. (s′, p′)
B←− ⟨opcode⟩⊗⟨reqcode⟩⊗s⊗p⊗Tx′. By sending a transac-

tion Tx′ with some inputs (optional), the current private state s is transited
to a new private state s′, and the current public state p is transited to a
new public state p′ under the guidance of the instruction codes ⟨opcode⟩ and
⟨reqcode⟩. The new private state s′ is returned only when Tx′ satisfies the
conditions defined in ⟨reqcode⟩, i.e., Tx′ ∈ ⟨reqcode⟩.

- Read. s′′
B←− ⟨opcode⟩ ⊗ ⟨reqcode⟩ ⊗ s′ ⊗ Tx′′. By sending a query trans-

action Tx′′ through the blockchain system B, the private state s′′ is re-
turned only when Tx′′ satisfies the conditions predefined in ⟨reqcode⟩, i.e.,
Tx′′ ∈ ⟨reqcode⟩.

In this definition, the instruction code including ⟨opcode⟩ and ⟨reqcode⟩, the trans-
actions Tx, Tx′ and Tx′′, the state p and p′ are completely transparent. In contrast,
state s, s′ and s′′ and their changes are hidden from the public.

4.3.2 Security Properties

Based on the above syntax, we provide four security properties: state-privacy,
state-consistency, transaction-transparency and transaction-unforgeability. We em-
phasize that these properties are held by both L1 and L2 systems (see Table 4.6).

State-privacy. The state-privacy guarantees that the contract state is protected
from the public. Only the user who satisfies predefined conditions can learn the
confidential state. This property in TCSC is achieved by the hardware-based access
control mechanism and hardware-based runtime isolation. We give an informal
definition as follows. No PPT adversaries A can successfully obtain private states
s, s′ and s′′ without sending a transaction or sending an unauthorized transaction.

State-consistency. The state-consistency ensures that a smart contract shares
the same confidential data view after the operation code is executed. This property
in TCSC is achieved by the consensus algorithm. We give an informal definition
as follows. No PPT adversaries A can obtain two valid confidential state s⋆ and
s⋆⋆ for executing Transfer algorithm once.

Transaction-transparency. The transaction-transparency ensures that transac-
tions triggering the execution of PPSC can be freely queried without being can-
celled, tampered with, or reversed by any involved parties. We give an informal
definition as follows. No PPT adversaries A can obtain two transactions Tx⋆ and
Tx⋆⋆ for executing Transfer algorithm once.

Transaction-unforgeability. The transaction-unforgeability guarantees trans-
actions (as evidence) are reliable and authentic without being forged or cheated.
We give an informal definition as follows. No PPT adversaries A can forge a valid
transaction Tx⋆ that can trigger the execution of Transfer algorithm.

4.4 TTP-II : TCSC-based TTP

In this section, we give a definition of TTP-II protocol. Then, we show a compar-
ison between the TTP-I construction and TTP-II construction.

4.4.1 General Construction

Essentially, TTP-II is defined as a customized confidential smart contract. Thus, a
TTP-II protocol consists of two main types of roles: protocol users and confidential
smart contract. The protocol users are composed of both the message sender and
the message receiver. The confidential smart contract is used to aid or replace
a TTP to maintain secret auxiliary information. In a normal case, the auxiliary
information stored in a TTP-II protocol is confidential, and only the authorized
user who satisfies predefined conditions can learn this auxiliary information by
sending a transaction. Meanwhile, this transaction will be used as evidence to
prove the fetching of the confidential state. A generic construction is shown as
follows2.

Comparison with Construction of TTP-I. In order that the reader can
quickly and simply be familiarized with TTP-II construction, the algorithms that
are different from TTP-I’s are denoted with (**); the algorithms that are identical
to TTP-I’s are denoted with (=).

At first, as a conventional security protocol, a TTP-II protocol needs a global setup
and a key generation for the message sender and message receiver.

(=) System Setup pms ← Setup(1λ). The algorithm takes as input a security
parameter λ, and outputs the system parameter pms, which are implicit inputs
for the rest of the algorithms.

(=) Key Generation (sk, pk), (skTx, pkTx) ← KeyGen(1λ). The algorithm takes
as input a security parameter λ, and outputs a key pair (sk, pk) for encryption
and decryption, and a transaction key pair (skTx, pkTx).
2Note that our general construction mainly aims to capture the critical features of TTP-II

protocol. Some sub-algorithms may be omitted or changed as the different manifestations in our
instance. For example, the “Encryption" is replaced by “Credential Generation" in our credential
anonymity revocation system.

Then, a smart contract is deployed, with outputting a contract identity ĉ, an initial
state s, the operational code ⟨opcode⟩, and the execution condition ⟨reqcode⟩. The
logic of a TPP is coded into ⟨opcode⟩, and the execution condition of the logic
is coded into ⟨reqcode⟩. This step is finished by calling P̂PSC.Deploy defined
in Section 4.3.1. Next, a message sender conducts the pre-operation using the
receiver’s identity/key with auxiliary data auxdata stored in the deployed smart
contract. Two examples of pre-operation are message encryption and signature
generation. Here, we emphasize that, at this stage, only the message sender knows
auxdata. Should the message receiver wish to learn auxdata, he must seek the
assistance of the contract; this assistance is represented as calling a function defined
in ⟨opcode⟩ by sending a transaction.

(=)Transaction Generation Tx ← Sign(skTx,metadata, auxdata). The algo-
rithm takes as input a transaction metadata, an auxiliary data auxdata, a private
signing key skTx, and outputs a transaction Tx.

(**)TTP-II Operation s′
B←− TtpOperate(ĉ, s,Tx). The algorithm takes as input

a contract identity ĉ, current contract state s, a transaction Tx, and outputs
the transferred state s′. This algorithm is completed by calling the algorithm
P̂PSC.Transfer described in Section 4.3.1.

Encryption ct←− Enc(pk, auxdata,m). The algorithm takes as input pk, an auxil-
iary data auxdata and a message m, and outputs a ciphertext ct. This algorithm
is completed in the local client of users. At this stage, only the sender knows
this private auxiliary data.

(**)State Read s′
B←− Read(ĉ,Tx). The algorithm takes as input a contract iden-

tity ĉ, a transaction Tx, and outputs a new state s′. This algorithm is con-
ducted by a message receiver. The receiver has to interact with the blockchain
to obtain auxiliary data. This algorithm is completed by calling the algorithm
P̂PSC.Read described in Section 4.3.1.

Decryption m ← Dec(sk, auxdata, ct). The algorithm takes as input sk, an
auxiliary data auxdata extracted from s′, ct, and outputs a message m. This
algorithm is completed in the local clients of users.

Inspection true/false
B←− Inspect(Tx). This algorithm takes as input Tx, and

Table 4.7: Comparison of TTP-I construction and TTP-II construction

Algorithms TTP-I Protocol TTP-II Protocol

TTP-Operation • SC is used as a TTP.
• The changes of a state
are transparent.
• All entities can see
the state, and only
authorized entities can
change the state.
• The transactions that
trigger the change of a
state are transparent.

• TCSC is used as a
TTP.
• The changes of a state
are private.
• Only authorized enti-
ties can see and change
the state.
• The transactions that
trigger the change of a
state are transparent.

State Read The state can be accessed
by reading the blockchain.

The state transfer opera-
tions are needed.

Inspection The state transfer oper-
ations are traceable by
checking the transaction.

The state transfer oper-
ations are traceable by
checking the transaction.

returns the legality of the Transfer operation.

The transactions that trigger the execution of a contract in the State Transfer
operation can be used as evidence to indicate users’ misbehaviours, which signifi-
cantly reduces the probability of TTP or a user acting maliciously.

4.4.2 TTP-I and TTP-II Comparison

Similar to TTP-I, TTP-II employs a customized smart contract as a TTP, but such
a contract is privacy-preserving (details are shown in Table 4.7). The contract state
and the changes of the state are hidden from the public. In particular, the state
inside a contract can only be revealed to authorized parties who called a specific
pre-defined method by using a publicly traceable transaction.

75

Chapter 5

Security Protocols Using TTP-II

This chapter proposes two security protocols using the concept of TTP-II: a cre-
dential anonymity revocation system (Section 5.1), and an accountable decryption
system (Section 5.2). In both protocols, TTP is replaced by an ideal contract-based
“decentralized black box” providing secrecy, correctness, and fairness.

5.1 Credential Anonymity Revocation System

5.1.1 Problem Statement

Anonymity revocation was first discussed by Von Solms and Naccache [202], as
they pointed out that Chaum’s blind signatures [48] could potentially lead to
nonpunishable crime. Subsequently, anonymity revocation has been studied com-
prehensively, especially in e-cash systems designed to combat money laundering
and blackmailing [24, 39, 41]. The idea of adding anonymity revocation to anony-
mous credential systems was first proposed by Camenisch and Lysyanskaya [38],
where they offered an optional anonymity tracing approach to find the identity of
pseudonymous tokens involved in suspicious transactions. In general, anonymity
revocation in a credential system allows an issuer to find out the person who owns
an anonymous credential.

The blindness issuance property of an anonymous credential system prevents an
issuer from completing the task of anonymity revocation by themselves. The party

who helps the issuer to reveal the identity is referred to as revelator. Intuitively,
there are two parties that can act as the revelator: the user (credential holder)
and the judge (trusted third party). Voluntary anonymity revocation by the user
is usually straightforward. The issuer cannot link the identity, the message and
the resulting signature together unless the user does. One typical example is
Microsoft’s U-Prove [169]. In such a system, the issuing protocol and the showing
protocol are unlinkable. Even if the issuer colludes with the verifier, it cannot
associate the message with the resulting signature. The only possibility is that the
user chooses to lift anonymity. Meanwhile, lifting anonymity by a judge, which
is inspired by fair blind signature scheme [80], is widely used in systems such
as [40, 73, 170, 175]. Taking ABC4Trust [175] as an example, it introduces an
inspector to uncover the user who created a presentation token to prevent abuse.

However, several flaws remain in the aforementioned approaches for revocation
anonymity. Firstly, revealing anonymity through the credential holder relies too
heavily on the user’s will, which ultimately leads to the non-availability problem.
This means if a user behaves maliciously and rejects to cooperate with the issuer,
the issuer will never learn the relationship between the identity and the credential.
Furthermore, even if the user is honest, they may be offline, resulting in the failure
of blindness removal. Meanwhile, in most previous proposals revealing anonymity
through the judge lacks transparency, which raises several security concerns: (1)
even without the user’s consent, the issuer and the judge may conspire to map the
credential to the real identity of the user; (2) the judge confronts a single point of
failure. More importantly, the user has no auxiliary information to detect whether
the judge has been compromised or not. These challenges lead to the following
question:

Is it possible to build an anonymity revocation mechanism that satisfies
these requirements: (1) the process of lifting anonymity is transparent and
auditable; (2) the revelator always accepts revealing anonymity if necessary?

This chapter gives a positive answer to this question. Instead of using a trusted
third party, we use a neutral and privacy-preserving smart contract (PPSC) as the
revelator to revoke the blindness. The self-execution property of the smart con-

tract ensures the neutrality of the revelator. This means the neutral blockchain
is always honest and willing to revoke anonymity whenever it is needed by the
issuer. Meanwhile, our PPSC-based approach allows anonymity revocation in an
auditable manner. More precisely, the anonymity tracing must interact with the
PPSC that “lives” on the blockchain and automatically renders the progress au-
ditable. Such revocation progress is recorded in a blockchain transaction which is
publicly visible. This auditability provided by the smart contract calling records
avoids the misuse of revocation and reduces potential collusion problems to a great
extent. Furthermore, the transparent contract calling records provide the user with
auxiliary information to detect whether the issuer has been compromised.

5.1.2 Related Work

In the last few decades, a series of works [4, 80, 120, 192], have been proposed in
the field of anonymity revocation, especially in e-cash systems. Brickell et al. [35]
introduced the first trustee-based tracing electronic cash system, in which the coin
owner can be revealed by several publicly appointed trustees. Camenisch et al. [39]
proposed an anonymous digital payment system with a passive anonymity-revoking
trustee. In their system, the trustee only needs to be involved in the anonymity-
revoking progress rather than regular transactions such as opening a new account.
Jakobsson and Yung [106] presented an e-money system that makes the value of
funds and user anonymity revocable with the consumer rights organisations, even
given an extreme condition that an active attacker gets the bank’s key or forces
the bank to release the money.

In 1995, a fair blind signature scheme was first proposed by Stadler et al. [192].
It involved a judge and allowed this judge to deliver information to the signer to
link the issuing session and resulting message-signature pair. Later, Jakobsson and
Yung [107] pointed out that the reused session identifier may make the anonymity
revocation invalid, and proposed a fair blind signature scheme that guarantees the
one-to-one mapping revocability between the issuing session and the resulting sig-
nature. Thereafter, Hufschmitt et al. [105] presented a formal security model for
fair blind signatures in the random oracle model. Then, based on Hufschmitt’s
model, Fuchsbauer et al. [80] proposed a fair blind signature scheme that is not

based on the random oracle model. To the best of our knowledge, Camenisch and
Lysyanskaya [38] were the first to use anonymity revocation in the credential sys-
tem. They offered an optional approach to trace the identity of the pseudonymous
token for transactions. After that, practical systems like IBM’s Identity Mixer [40],
ABC4Trust [175] started to consider the anonymity revocation. An interesting re-
vocation approach is traceable anonymous certificate [130]. It allows one sub-issuer
to verify the ownership of a user and another sub-issuer to validate the contents.
Then, these two issuers collaborate to map the certificate to its real identity.

However, the aforementioned anonymity revocation approaches have drawbacks:
the repudiation and the lack of auditability in the revocation progress. The as-
sumption that the revelator always remains honest is unrealistic. The revelator
may be offline when it is needed, may conspire with the issuer to seek profits, or
even be entirely controlled by an attacker. Our scheme is the first to use a PPSC
as the revelator to solve the above problems. The self-executing nature of the
contract ensures the neutrality of the revelator. The transparent contract calling
records guarantee that the revelator’s revocation progress is auditable.

5.1.3 Construction Overview

An auditable blind credential system has six participants (see Figure 5.1): issuer,
user, verifier, tracer, inspector and PPSC platform. The user is the holder of a
credential. The issuer is in charge of blindly issuing a credential. The verifier is
responsible for checking the validity of the credential. The tracer is used to reveal
the relationship between the credential and the user’s identity. It should be noted
that we introduced the concept of tracer and allow both the issuer and the verifier
to act as the tracer. The inspector is used to check suspicious revocation activities
and report them. The PPSC platform is employed as a revelator to provide the
revocation service.

The PPSC platform can run based on either L1 system or L2 system (we refer
readers to Section 4.2.1 for more details), which includes two types of nodes: TEE-
powered nodes and consensus nodes. The TEE-powered nodes are composed of the
contract-TEE and the key manager TEE. The contract-TEE is used to execute
the smart contract and then encrypt the resulting state with the key from the key

Verifier

Issuer

Inspector

User

Tracer

!""#$%&'(')*+%)'*

Contract

TEE

Key Manager

TEE

,-%./.0123

4'.
5('

601
33'

-

Node

Block Block Block

Node

Node

Node

Tx

Figure 5.1: The overview of the auditable blind credential system

manager TEE. Consensus nodes are used to achieve an agreement on the encrypted
state of the smart contract.

A basic auditable blind credential system works as follows. The system sets up
parameters and key pairs for the issuer, the user, and the tracer. Then, the system
calls TEE-powered blockchain nodes to obtain a PPSC ĉ, in which the method
name, arguments, and returned data are externally invisible. After that, the user
interacts with the issuer to obtain an anonymous credential. Next, the user shows
the credential to the verifier who wants to check validity. So far, due to the blind
issuance, neither the issuer nor the verifier knows the relationship of the credential
and its holder’s identity. In the revocation stage, the tracer first builds an en-
crypted and authenticated channel with the contract-TEE (one crucial property of
remote attestation [152] in TEE, see Section 2.3). Then, given the user’s identifier
or the anonymous credential, ĉ lifts the blindness and returns the result to the
tracer bearing a transaction1.

Due to the protection of the encrypted channel, transaction contents, including
the input and the output, are kept secret. However, the invoking records of the
transaction remain visible and become immutable because of the confirmation by
consensus nodes. Alternatively, any entity can see the fact that the tracer is
interacting with the contract, but nobody, except the tracer, knows the exact data
in the transaction. Subsequently, the inspector scans the blockchain to collect the

1Here, this transaction must be initiated from a specific identity owned by the tracer. When
contract-TEE executes the functionalities of blindness lifting, it first checks whether the caller
has permission to call this function.

tracer’s calling records and inspect the suspicious credential tracing activity.

5.1.4 Concrete Instantiation

This section presents an instantiation based on Abe’s blind signature scheme [4]
and the PPSC platform of Ekiden [52]. For security and efficiency purposes, we
slightly modify Abe’s scheme by using elliptic curve cryptography. As a result,
all the following arithmetic operations are based on the addition of points, unless
otherwise noted. Let G be a probabilistic polynomial-time algorithm that generates
a group parameter. Define (p, q, g, h) ← G(1λ), where p is a large prime number,
(g, h) are generators of subgroup of order q in Zp. Define H1 : {0, 1}⋆ → ⟨g⟩
and H2,H3 : {0, 1}⋆ → {0, 1}|q|. H1 refers to mapping an arbitrary string to an
element of the subgroup ⟨g⟩. H2 and H3 all refer to mapping an arbitrary string
to an element of Zq with a fixed length.

Key Generation The issuer generates a public key y and a tag key z, where
x ∈ Zq, y = gxmod q, and z = H1(p, q, g, h, y). A user generates a key pair (γ, ξ),
where γ ∈ Zq and ξ = gγ mod q . To simplify the instantiation, we use the session
identifiers to represent the user’s identity and allow one user to generate multiple
identities (γ1, ξ1), (γ2, ξ2), . . . (γn, ξn). Similarly, the tracer generates the session
key pair (ι, τ), where ι ∈ Zq and τ = gτ mod q. Note that the tracer’s session key
is only used to establish authenticated channels to the contract-TEE.

Contract Registration The system compiles pieces of code of a smart contract
ĉ and sends its bytecode to a TEE-powered blockchain node. The code contains
the logic of revealing anonymity (Equations 5.1 and 5.2). Then, the TEE-powered
blockchain node first loads bytecode into the contract-TEE. Then, the contract-
TEE creates a new contract identifier ĉ, obtains a fresh internal contract key
pair (pkin

cid, sk
in
cid) and an internal state key kstate from key manager TEE (see Sec-

tion 4.1.2 for more details on TEE key management). Thereafter, the contract-
TEE outputs an encrypted initial contract state stateinit = SE.Enc(kstate,

−−−→
state0)

and an attestation Ω0
cid, where Ω0

cid is used to prove the correctness of this initial-
ization. After that, the TEE-powered blockchain node gets a proof π of Ω0

cid by
the attestation service and push the final composition (ĉ, pkin

cid, stateinit,Ω
0
cid, π) to

blockchain consensus nodes. Then, blockchain consensus nodes will accept this

Role Symbol Description

user γ user’s private key
ξ user’s public key (user’s identity)

issuer x issuer’s private key
y issuer’s public key
z issuer’s tag key

tracer ι tracer’s private key used to establish channels
τ tracer’s private key used to establish channels

verifier ζ1 user’s credential

inspector tran transaction to recognize suspicious activities.

PPSC ĉ contract identifier
Ω0

cid,Ω
1
cid TEE attestations

skin
cid contract private key

pkin
cid contract public key

kstate contract state key
xt ppsc-based tracer’s private key
yt ppsc-based tracer’s public key

Table 5.1: Notions in auditable blind credential system

smart contract if all attestations and proofs are verified successfully. As for pa-
rameters’ registration, given the common parameters (p, q, g, h) and a public key
of an issuer y, ĉ takes a random number xt under Zq as the private tracing key
and generates the corresponding public key yt = gxt mod q. The private key xt is
secretly held, which can only be accessed by the PPSC ĉ internally.

5.1.4.1 Blind Issuance

Credential Generation Credential generation is an interactive protocol that
involves only the user and issuer, which means that it runs independently from
the PPSC. A basic version is shown as follows: A user first chooses a blinding
factor γ and computes zu = z1/γ. Then, she sends (zu, g

γ) to the issuer. Next,
the issuer blindly issues a signature, bringing a pair (zu, yt) into (z, yγt). By this
approach, the user can obtain a valid signature since she can do the conversion by
taking γ-th power. The signature is left blind gγ ⇎ yγt , since γ is not known by

the issuer. The identity and the signature can be traced through exponentiation,
namely, (yγt)1/xt = gγ and (gγ)xt = yγt . However, these protocols heavily rely on
assumptions that all users are honest in choosing a unique blinding factor γ. In
our protocol, we follow the idea in [4], and provide a security-enhanced version by
adding randomness υ to the blinding factor. Details can be found below.

1. A user chooses a blinding factor γ and computes zu = z1/γ and proves to the
issuer that logg ξ is equal to logzu z.

2. An issuer randomly generates υ, and computes z1 = yυt and z2 = zu/z1.
Then, he proves to the user that z1 is made as it should be.

3. Based on y, z1, z2, the issuer and the user engage in an interactive proof
protocol. For the issuer, the protocol is a witness indistinguishable proof of
knowledge of

logyg ∨ (logz1g ∧ log
(zu/z1)
h).

The issuer converts the proof into

logyg ∨ (logζ1g ∧ log
(z/ζ1)
h)

by raising them with the blinding factor λ under the standard diversion
technique [164]. The converted proof is eventually transformed to a signature
with the Fiat-Shamir technique.

4. The issuer stores ξυ as the identity of this session. Clearly, ξυ is easy to map
to ξ, since the issuer knows the υ.

5. The user outputs credu with Σ, say, Σ = (ζ1, ρ, ω, σ1, σ2, δ) is the signature
for the message m.

Credential Verification Credential verification, proceeding after the operation
of credential generation, is another interactive protocol that runs independently
of blockchain, involving only the user and the verifier. We consider a credential

Issuer (x, υ) User (xt,m)

r ∈ Z⋆
q

zu = rγ
−1

ξ = gγ

zu, ζ

υ ∈ Z⋆
q

z1 = yυt , z2 = zu/z1

u, s1, s2, d ∈ Z⋆
q

a = gu; b1 = gs1zd1

b2 = hs2zd2

z1, a, b1, b2

ζ1 = zγ1 , ζ2 = z/ζ1

t1, t2, t3, t4, t5 ∈ Z⋆
q

α = agt1yt2

β1 = bγ1g
t3ζt5

β2 = bγ2h
t4ζt5

ε = H2(ζ1|α|β1|β2|m)

e = ε− t2 − t5 mod q

e

c = e− d mod q

r = u− cx mod q

r, c, s1, s2, d

ρ = r + t1 mod q

ϖ = c+ t2 mod q

σ1 = γs1 + t3 mod q

σ2 = γs2 + t4 mod q

δ = d+ t5 mod q

(ζ1, ρ,ϖ, σ1, σ2, δ)

ξυ

Figure 5.2: A simplified Abe’s scheme [4]

(Σ,m) is valid if it fulfils:

ω + δ = H2(ζ1|gρyω|gσ1ζδ1 |hσ2(z/ζ1)
δ|m) mod q.

Here, the Correctness of credential generation and verification is easy to check
as we have,

gρyω = gr+t1yc+t2 = gr+cxgt1yt2 = agt1yt2 = α,

gσ1ζδ1 = gγs1+t3zγζ1 = β1,

hσ2(z/ζ1)
δ = hγs3+t3zγζ1 = (gs1zd1)

γgt3zγt51 = bγ2h
t4ζt52 = β2,

H2(ζ1|gρyω|gσ1ζδ1 |hσ2(z/ζ1)
δ|m) mod q

= H2(ζ1|α|β1|β2|m) mod q

= ε.

Meanwhile, we have,

ω + δ = (c+ t2 mod q) + (d+ t5 mod q)

= e+ t2 + t5(mod q)

= ε.

5.1.4.2 Auditable Revocation

TTP-II Operation (Credential Tracing) Credential Tracing is an interactive
protocol that involves the tracer, the TEE-powered blockchain node and blockchain
consensus nodes. It aims to find a credential identifier, which covers the following
sub-protocols:

(1) A tracer first fetches the pkin
cid of the tracing contract ĉ, and then encrypts

the input of a seesion identifier ξυ (user’s identity ξ and issuer’s random
number υ ∈ Z⋆

q) as inptc = PKE.Enc(pkin
cid, ξ

υ), and sends ĉ within inptc to a

TEE-powered blockchain node.

(2) To start the process of the execution, the TEE-powered blockchain node first
loads the contract ĉ, the input inptc and the previous encrypted state stateinit
into the contract-TEE.

(3) The contract-TEE decrypts inpc and stateinit with the keys (e.g., skin
cid, kstate)

from the key manager TEE, saying that, ξυ = PKE.Dec(skin
cid, inptc), and

xt = SE.Dec(kstate, stateinit). Then, it starts to execute the anonymity tracing
function and outputs Icred and state statet. Observing that,

Icred = (ξυ)xt = gγυxt = yγυt = zγ1 = ζ1. (5.1)

(4) The contract-TEE calculates outpTEE
new = PKE.Enc(pkout

cid , Icred) and a new
encrypted state stateTEE

new = SE.Enc(kstate, statet). Then, it sends stateTEE
new ,

outpTEE
new and the proper attestation quote to the tracer through a secure

channel established by the tracer’s session keys (ι, τ).

(5) The tracer acknowledges the reception by calling back the TEE-powered
blockchain node, which triggers the contract-TEE to send the transaction
tran = (ĉ, outpTEE

new , stateTEE
new ,Ω1

cid, π) to the blockchain. The signature π is
used to protect the integrity of the transaction, and the attestation Ω1

cid is
used to prove that outpTEE

new and stateTEE
new come from a TEE.

(6) Once the consensus nodes confirm the transaction tran, the contract-TEE
decrypts outpTEE

new and stateTEE
new as outptnew and statetnew and then sends them

to the tracer through the mentioned secure channel.

(7) The tracer parses outptnew and statetnew and ultimately learns Icred.

Among all sub-protocols, we emphasize that sub-protocol (5) and (6) (Figure 5.3)
are atomic operations, and we refer to [52] for more details. Also, we highlight
two main features. Firstly, the transaction tran will be confirmed by the consen-
sus nodes mentioned in sub-protocol (6). Thus, the contract invoked eventually
becomes immutable and auditable. Second, the output outptnew and state statetnew

are kept secret through the full life cycle of the execution and transmission.

Here, the Correctness of credential tracing is easy to check.

In step (1) and step (3), we have

PKE.Dec(skin
cid,PKE.Enc(pk

in
cid, ξ

υ)) = ξυ,

and,
SE.Dec(kstate, SE.Enc(kstate,

−−−→
state0)) =

−−−→
state0.

In step (4) and step (7), we have

PKE.Dec(skout
cid , SE.Enc(pk

out
cid , Icred)) = Icred,

and,

SE.Dec(kstate, SE.Enc(kstate, statet)) = statet.

Tracer (ξυ) Blockchain (xt)

local session keys (ι, τ)

. build a secure channel .

ξυ

Icred = (ξυ)xt

= yγυt = ζ1;

Icred

(ξυ, Icred)

Figure 5.3: The diagram of credential tracing protocol

TTP-II Operation (Identity Tracing) Identity tracing aims to find a user’s

identifier, given a certain credential identifier (e.g., ζ1). It is achieved by tracing
the session identifier. Observes that,

Iid = ζ
1/xt

1 = z
λ/xt

1 = y
υλ/xt

t = gυλ = ξυ. (5.2)

Since the session identifier ξυ is stored or published by the issuer in the creden-
tial generation stage, the tracer can instantly identify the user who issued the
credential.

Inspection Given the inspector type (identity tracing or credential tracing) and
the smart contract identifier ĉ, the inspector scans the blockchain to collect all
transactions (e.g., tran) related to this contract. Then, the inspector checks all
these transactions to recognize suspicious activities.

5.1.5 Implementation and Evaluation

We have implemented a proof of concept of our instantiation. Next, we report on
our implementations with their performance.

5.1.5.1 Implementation

We focus on implementing the blind issuance protocols and the anonymity revo-
cation smart contracts and leave the implementation of TEE-related protocols to
the Oasis Devnet [52]. Specifically, our implementation is divided into two mod-
ules: the issuing module and the tracing module. The issuing module covers the
protocol of credential generation and credential verification, and it is realised by
Python with 168 lines of code. The issuing module is responsible for blindly is-
suing credentials and verifying the issued ones. Meanwhile, the tracing module
which performs the protocol of credential tracing and identity tracing is achieved
by Solidity2 with 449 lines of code and deployed in Oasis Devnet (version 1.0).
The tracing module allows the tracer to uncover the identity of a credential or the
credential of a specific user.

// example code in Solidity;

2Solidity is an object-oriented, high-level language for implementing smart contracts.

mapping (address => uint256) private CredentialTraceResults;

function CredentialRevocation (uint256 upsilon) {

CredentialTraceResults[upsilon] = power(upsilon, xt, p);

}

Two key properties are highlighted in our implementation: the full protection of
private state and the auditable anonymity tracing records. The full protection of
the private state is represented as that input data and the output data in the
contract are kept secret in the full life cycle. For example, as it is shown in the
example code, the parameter of CredentialTraceResults is designed to privately
store the relationship of the identity and credential. The other entities cannot
read them unless through an end-to-end secure channel that has been established
with the contract-TEE. The auditability of anonymity tracing records is evident
in that all the smart contract invoking records are publicly visible and immutable
(Figure 5.4 is an example of smart contract creation and invoking). In addition,
we provide a web-based client to present an interactive process of credential and
identity tracing. Full codes are shown in the repository3.

Figure 5.4: A screenshot of credential anonymity revocation records

3https://github.com/typex-1/auditable-credential-core

5.1.5.2 Evaluation

Our performance evaluation covers five operations: tracing parameter generation,
credential issuing, credential verifying, credential tracing and identity tracing (see
Table 5.2). All experiments are conducted on a Dell precision 3630 Tower with
16GB of RAM and one 3.7GHz six-core i7-8700K processor running Ubuntu 18.04.
Experiments are measured in seconds through wall clock run time. To have an
accurate and fair result, we repeat experiments for each execution 300 times and
calculate its average. Also, to simplify the performance evaluation, we measure the
running time of each step and accumulate them together if there are many steps
involved. Note that all operations take much less than one second to complete,
and credential issuing is the main performance bottleneck. This operation takes
more time than others because issuing a new credential requires many interactions
between users and issuers. Fortunately, this bottleneck can be ignored in real
applications because a credential is issued only once but can be verified or traced
multiple times.

We then examine the operating cost. Similar to the performance testing, the
cost evaluation covers five mentioned credential operations. Table 5.2 shows the
data size and the cost of these operations measured in gas under an elliptic curve
with 128 bits security level. An analysis of the data size and cost points to some
trends. The data size of the parameter generation is the largest since this operation
needs to register the group parameters to the smart contract. Surprisingly, the
cost of the parameter generation is not the largest, as this operation does not
cover complex computations. On the contrary, the data size of the operation of
the credential issuing and verifying is zero, and there is no gas cost since these
operations are executed independently of the blockchain. Meanwhile, credential
tracing and identity tracing have static gas cost since the length of input data
of these operations is constant, and the data handling procedure is fixed. In our
scheme, a one-time elliptic-curve exponentiation (see Equations (5.1) and (5.2))
is adequate to conduct the complete tracing activity. The gas cost of the one-
time computation is quite lower and easier to adopt by users when compared with
other blockchain-based applications such as [36, 191], where they have massive
elliptic-curve exponentiation operations and significant cost.

Table 5.2: The performance, input data size, gas cost and latency evaluation

Operations Performance(second) Size(byte) Cost(gas) Latency(second)

Parameter
generation⋆

0.00084 260 20672 14.781

Credential issuing 0.00740 0 0 1.601
Credential verifying 0.00232 0 0 1.175
Credential tracing⋆ 0.00306 132 390261 17.538
Identity tracing⋆ 0.00455 132 388944 18.905

⋆ TEE-related operations

Finally, we conduct latency testing, as latency is an essential consideration for
adopting a system. For our implementation, the latency includes blockchain con-
firmation time, network request time and network response time. It is observed
that the latency of credential issuing and identity verifying is much smaller than
that in other operations. The main reason behind this is that these two opera-
tions independently run from the blockchain and do not wait for the block to be
confirmed. Meanwhile, the average latency of credential tracing and identity trac-
ing is approximately eighteen seconds, which would be a primary drawback of our
system. Given these latency constraints, our system, at least built on the current
version of Oasis Devnet, is not suitable for applications that require fast credential
tracing or identity tracing. However, for several privacy-priority applications, such
as medical record tracing systems, our scheme provides a powerful framework to
protect patient’s privacy.

5.1.6 Security Discussion

This section provides a security discussion. Note that we only prove the security of
the credential tracing, considering that identity tracing has the same mechanism.

Given a valid session identifier ξυ, if an adversary obtains a corresponding creden-
tial identifier ζ1 without being audited, there are four possibilities. (i) An adversary
has successfully accessed the private key xt, which is stored in the TEE and lo-
cally calculated the elliptic-curve exponentiation as shown in Equations (5.1) to
conduct the complete tracing activity without interacting with the blockchain. (ii)

An adversary has compromised the DDH-based secure channel and obtained the
tracing resulting outptnew and statetnew. (iii) An adversary has successfully forged
a valid credential identifier ζ⋆1 independently from the blockchain, where ζ⋆1 meets
the conditions: ζ⋆1 ̸= ζ1 and true ← FBS.MatchSig(ζ1, ζ

⋆
1). (iv) An adversary has

called the smart contract ĉ and successfully hid the invoked transactions from the
inspector.

Scenario (i) contradicts our assumption that the TEE provides an isolated secure
environment. The proof of Scenario (ii) is done by contradiction. Suppose that
there exists an adversary A that compromised the secure channel with success
probability AdvscA(n), where AdvscA(n) is not negligible. Then, based on AdvscA(n)

of the adversary A, we can construct another adversary B to solve a DDH prob-
lem with non-negligible advantage [25]. Scenario (iii) indicates two properties: an
adversary has successfully forged a signature, and the forged signature and the
original signature can be linked to one identity. These properties violate the un-
forgeability and signature traceability of a fair blind signature scheme, which has
been proved secure by Abe [4]. For Scenario (iv), if an adversary can successfully
hide the invoked transaction, that indicates the transaction does not eventually
appear in the ledger. However, it contradicts our assumption that the blockchain
meets the Liveness property, which requires that the submitted valid transactions
will eventually be included in the ledger (see Assumption 2 in Section 2.2).

5.1.7 Example Applications

Our scheme may be used for privacy medical record protection, specifically for un-
restricted research purposes. A medical record is supposed to be very sensitive in
cases such as HIV and sexually transmitted infections. A hospital might share the
medical record with a research institution without patients’ permission, thereby
causing information leakage. Our mechanism allows the hospital to show the pa-
tient records without knowing patients’ real identities so that the privacy of the
patient is protected. In the case of a family genetic disorder, patients may disclose
their identities to the research institution by invoking the PPSC. This invocation
represented a transaction that can be publicly traced to prevent misuse.

5.1.8 Conclusion

Anonymity credentials and anonymity revocation were proposed several decades
ago, but they have not yet gained significant adoption. Potential obstacles are the
lack of auditability and neutrality for the revocation process. In this chapter, we
proposed a blockchain-powered traceable anonymous credential framework. Our
approach allows the issuer to blindly issue a credential, then leverages a PPSC that
acts as a revelator to trace the credential. Importantly, all these tracing activities
are auditable due to the immutable smart contract calling records provided by the
public ledger. The auditability and neutrality guaranteed by the blockchain avoid
misuse of tracing and potential collision problems to a great extent.

5.2 Accountable Decryption System

5.2.1 Problem Statement

Accountable cryptographic protocol is increasingly crucial in sensitive personal
data protection. We focus on the following scenario. Law enforcement or intel-
ligence agencies may demand access to personal encrypted data held by service
providers, and sometimes even require access to the communication metadata that
is closely related to sensitive information of individuals. In most cases, a granted
warrant is needed from a legal authority. However, data owners have no way to
know when and how law enforcement collects and accesses their sensitive data.
In particular, abuses of granted warrants of decryption may easily happen since
overseers cannot verify whether practical investigation activities match the scope
permitted in the document. Therefore, the accountability mechanism is a crit-
ical after-the-fact remediation technique to deter investigators since it provides
instant evidence to detect malicious or deviant behaviours, which increases the
transparency of warrant execution.

However, achieving accountability is tricky, and it requires additional roles in-
volved. Investigators cannot autonomously convince others of the accountability
of their actions. They need to resort to one or more neutral trusted parties, usually
named judge(s), to audit their actions. More specifically, an accountability mech-
anism requires each investigator to generate evidence on their warrant executions.
A judge then examines this evidence to detect dishonest behaviours or declare
the examined participant compliant. This approach relies heavily on the faithful
cooperation of the judge and the investigator, as a malicious judge or dishonest
investigator may undermine the accountability mechanism. If the investigator re-
jects to cooperate with the judge to provide the required evidence, or if the judge
themselves examine fake evidence or apply the wrong examination procedure, out-
sides cannot audit investigators’ decryption actions. In this chapter, we generalize
the above example as a standard case in which an investigator obtains an order
from a court, and his access of users’ data needs to be audited by the judge. The
discussed challenges lead to the following research question:

Is it possible to design an accountability mechanism guaranteeing that (1)
the judge honestly checks the evidence; (2) the investigator does not refuse
to provide the evidence trail of their actions?

Based on the previous discussion, the answer would intuitively be “NO”. Firstly, it
is difficult to guarantee that a judge will always be secure and reliable. Even if the
judge claims to be neutral, he faces the threat of being attacked or provided with
misleading evidence. Once the judge is compromised, the accountability mecha-
nism fails as it cannot be applied. Undoubtedly, multiple judges may mitigate such
concerns, but the judge collusion issue cannot be effortlessly overcome. Secondly,
asking the investigator to neutrally create a piece of honest evidence also confronts
difficulties. The isolated local execution environment makes it potentially easy and
profitable for the investigator to generate fake evidence while incurring a low risk
of being detected. Several proposals [5, 57] employed certain trusted hardware to
aid the evidence generation. Intuitively, physical hardware is more secure and re-
liable since the evidence logic and its measurements are hardcoded in non-volatile
storage. However, the risk of compromised hardware still exists [127].

In this chapter, we propose Fialka, a novel transaction-triggering accountability
framework using a privacy-preserving smart contract (PPSC) to make investigators
accountable for executing decryption calls. Our framework prevents the decryption
queries evidence from being maliciously generated (e.g., hidden) while guarantee-
ing the authenticity of the evidence. More precisely, Fialka combines PPSC with
an IND-CCA secure public key encryption (PKE) scheme [122] at the protocol level
to construct an accountability mechanism. PPSC cryptographically hides a secret
random number used as an additional decryption key, where external investigators
have to interact with PPSC for the execution of the decryption warrant. The se-
cret key will be extracted by invoking decryption-related smart contracts, which
consequently generate transaction-based evidence as an on-chain record. After
that, another smart contract plays the role of the judge, who transparently checks
the transaction to decide whether the decryption is legal in a specific setting. Ac-
countability is thereby achieved. Additionally, our framework inherits the benefit
of high availability from the underlying blockchain protocol.

5.2.2 Related work

The smart contract-based accountability approach has been studied comprehen-
sively recently. Xu et al. [214] proposed a remotely decentralized data auditing
scheme for network storage service, where accountability is achieved by involving
a smart contract as a third-party auditor to notarize the integrity of outsourced
data. Azaria et al. proposed MedRec [10], in which an Ethereum [213] smart
contract is used as a meta-data agent to manage the permission of data usage,
making patients’ choices accountable. Neisse et al. [161] proposed a blockchain-
based framework for data accountability and provenance tracking. However, a
pure smart contract cannot provide a complete accountable protocol since it can-
not guarantee the authenticity of the input (i.e., the submitted evidence). In other
words, even if the smart contract is neutral and trustful, a client may provide fake
evidence to the smart contract without being detected.

Several solutions have been proposed to ensure the authenticity of the submitted
evidence. Among them, equipping entities with secure hardware devices [5, 127,
180] is an attractive approach. Alder et al. [5] employed Intel SGX [61] to produce
a verifiable measurement of the resource usage in each function invocation. Luo
et al. [145] applied SGX with blockchain to a data sharing scheme, where the de-
cryption process also relied on the confidentiality of secure hardware devices. The
hardware-based approach is intuitively reliable and robust since trusted hardware
devices cannot change evidence generation rules once loaded. However, security
cannot be guaranteed when adversaries successfully attack the hardware. The ap-
proach using multiple hardware may mitigate such security concerns to a certain
extent. Unfortunately, the efficiency issue and incentives issue cannot be easily
overcome. Another promising approach is directly employing the protocol execu-
tion result as evidence, such as using the ciphertext and the private key as evidence.
A typical example is accountable-authority identity-based encryption [96, 99, 132],
where a judge can decide whether a PKG is malicious by showing cryptographic
proofs that contain the decryption key. However, such an approach lacks practi-
cality.

5.2.3 General Construction

5.2.3.1 System Overview

Our system consists of four entities (see Fig 5.5.a): common users (sender/re-
ceiver), investigator, key management smart contract (PPSC-KM), and auditor
smart contract (PPSC-AD). PPSC-KM is used to manage investigators’ decryp-
tion keys. PPSC-AD is employed as a “judge” to decide whether the event of the
investigator’s decryption is conducted under the court-issued order.

User Investigator

!"#$
%&'(

$)

*"+
,$)

-

."/0
1))1

2(

3$4
)-5

(&627"8
24)

-5(
&62

3$4
)-5

(&62

9":2
'5$

4(&6
2

PPSC-KM

PPSC-ADPPSC

;<&$2(='&>$

Contrat

TEE

PPSC-AD

PPSC-KM

PPSC

Investigator

User
KM

TEEBlockchain Consens!" Node

?$)@$)='&>$

?$4,)$/;A122$<

(a). Framework (b). Implementation Architecture

Figure 5.5: Fialka system framework (a) and architecture (b)

A detailed workflow is shown as follows. The sender encrypts messages with a
random number, which is hidden in PPSC-KM, and then it sends the encrypted
message to the receiver. The receiver decrypts the ciphertext as normal. Mean-
while, the investigator who obtained a court-issued order decrypts the ciphertext by
fetching the random number from PPSC-KM. When a query is sent to PPSC-KM,
the actions will be recorded through a transaction as evidence. Next, PPSC-AD
will check evidence to report malicious decryption. In our protocol, PPSC-KM and
PPSC-AD are, respectively, abbreviated as ĉkm and ĉad for simplicity. Formally,
we provide the general construction as follows.

Setup (pms, ĉkm, ĉad)← Setup(1λ, codes). The algorithm takes as input a security
parameter λ and binary codes codes, and returns public parameters pms and two
contracts ĉkm, ĉad.

Key Generation (pk, sk, tk)← KeyGen(pms). The algorithm takes as input pms,
and returns the receiver’s key pair (pk, sk), and a secret tag key tk. Then, it sends
tk and accountability policies P̆ to added to ĉkm and ĉad, respectively.

Encryption ct← Encrypt(tk, pk,m). This algorithm takes as input tk, pk, and a
message m, and then returns a ciphertext ct.

State Read (Warrant Decryption) (m,Tx)
B←− WDecrypt(r, r1, s, ct). This al-

gorithm takes as input a random number r, r1, and s (including tk), calls the
algorithm Transfer described in Section 4.3.1, and outputs m ∈M.

Decryption m← Decrypt(sk, ct). The algorithm takes as input sk, ct, and returns
the plain message m ∈M.

Inspection true/false
B←− Inspect(Tx, P̆). This algorithm takes as input account-

ability policies P̆ and Tx, and returns the inspection result. The result true in-
dicates that the authorized decryption is legitimately executed under the warrant
and vice versa.

The procedure of Decryption represents normal decryption run by offline users,
whereas Warrant Decryption is run by investigators, who are forced to leave
evidence each time of decryption. Meanwhile, the access control conditions in ĉkm

and the accountability policies in ĉad are set as the same. We notice that the
logic of Warrant Decryption might be confusing: the ĉkm has defined the access
control conditions for investigators. Is accountability necessary for investigators’
decryption? We clarify that access control and accountability in our system play
distinct roles. The access control condition in ĉkm is similar to an order issued
by the court, which describes actions that an investigator should perform but
has not done yet, whereas the accountability policies in ĉad are responsible for
checking the actions an investigator has completed (e.g., whether an investigator
has executed the decryption under a warrant). We define malicious decryption
as: the investigator’s decryption does not match the actions permitted in issued
orders.

5.2.3.2 Security Definitions

Our Fialka system is denoted by Π, and above algorithms are abbreviated as: Set,
Gen, Reg, Enc, Dec, WDec, and Insp, respectively. We assume that an investigator
has already obtained a warrant from a court, and his access to users’ plaintext
needs to be audited by the judge. Inspired by [129], the investigator should obtain

fair treatment, neither being framed for the legitimate investigation nor being
escaped from the punishment for wrongdoings. We capture two properties with
respect to accountability: fairness and completeness.

Fairness. This property prevents the judge from framing honest investigators.
An honest investigator should follow pre-defined policies and return true. We
consider an adversary A who imitates an honest investigator, uses his identity,
creates perjuries, and then maliciously executes the warrant to attempt to frame
such an investigator.

Definition 8 (Fairness). Fialka satisfies fairness if for all PPT adversaries A,
there exists a negligible function negl(λ) such that adv

⅁fair
A,Π (λ) < negl(λ) where

adv
⅁fair
A,Π (λ) is the advantage of A wins the game ⅁fair defined as,

- Initialization⋆. The system configures the parameters as normal, and cre-
ates ĉkm and ĉad by running the algorithm Set. Then, C generates the secret
key tk by running the algorithm Gen. Next, C registers tk and decryption
policies P̆ to ĉkm and ĉad, respectively.

- Actions⋆. At each round, the adversary A and the challenger C execute
the following algorithms. (1) A generates the key pair (ska, pka) by running
the algorithm Gen. (2) C inputs the public key pka, message m, a random
numbers r and a secret key tk, and then obtains the ciphertext ct by running
the algorithm Enc. (3) C runs the algorithm Transfer, and then returns r2

and Tx to A. (4) A inputs r2, the ciphertext ct, and outputs the message
m by running the algorithm WDec. (5) ĉad executes the algorithm Insp with
the input Tx, and return the inspection result.

- Challenge. Assume that A executes above actions at most for l times, and
obtains a set T = {Tx0,Tx1, ...,Txl}. A wins if A generates a transaction
Tx⋆ satisfying the conditions: false← Insp(Tx⋆, P̆) ∧ Tx⋆ /∈ T .

Completeness. This property guarantees that the judge always punishes users
who misbehave. To define completeness, we consider an adversary A aims to
evade the responsibility of illegally executing the authorized decryption; he has
done decryption that does not match the actions permitted in issued orders.

Definition 9 (Completeness). Fialka satisfies completeness, if for all PPT adver-
saries A, there exists a negligible function negl(λ) such that adv⅁comp

A,Π (λ) < negl(λ),
where adv

⅁comp
A,Π (λ) is the advantage of A wins ⅁comp defined as,

- Initialization and Actions. The steps are kept the same, with the fairness
game labelled with (⋆).

- Challenge. Assume that A executes the above action at most for l times,
and then obtains a set of ciphertext-transaction tuple
{C, T } = {(ct0,Tx0), (ct1,Tx1), ..., (ctl,Txl)}. A wins if A successfully gener-
ates a new tuple (ct⋆,Tx⋆) that satisfying the conditions: true← Insp(Tx⋆, P̆)

∧WDec(r, s, ct⋆) = m⋆ ∧ (ct⋆,Tx⋆) /∈ {C, T }.

5.2.4 Concrete Instantiation

In this section, we present an instantiation of Fialka based on Kiltz’s PKE proto-
col [122] and the Oasis Devnet [1, 54]. Kiltz’s PKE is an efficient and IND-CCA
secure scheme with a tight security reduction, while Oasis Devnet is an SGX-
backed PPSC platform with rigorous security proof under the Universal Compos-
ability (UC) framework [42]. In this instance, PPSC-KM manages a secret random
number as the investigator’s decryption key and its access permission through the
SGX enclave, and PPSC-AD audits transactions and then reports the investiga-
tor’s malicious decryption. Specifically, a decryption key used for investigation is
loaded in PPSC-KM and hidden in an enclave, which forces the outside investiga-
tor to fetch it, and further leaves transaction-based evidence that will be audited
by PPSC-AD. Note that SGX-based PPSC is an example of hiding the secret key
inside the hardware, and other approaches can also achieve the same goal, such
as cryptographically hiding the secret key by ZKP. Our framework is compatible
with various aforementioned PPSC technologies [36, 110, 126, 182, 226] (see Sec-
tion 4.2.1). Also, our construction can easily be extended to other accountable
PKE protocols without significant modifications.

Setup (pms, ĉkm, ĉad)← Setup(1λ, codes). The algorithm takes as input a security
parameter λ, and returns public parameters including the multiplicative cyclic
group G with prime order p. Then, it chooses two collision-resistant hash functions

H1 : {0, 1}⋆ → Zp and H2 : G×G→ Zp. Next, it takes as input contract binary
codes, and calls the algorithm Deploy (defined in Section 4.3.1), and finally returns
two contracts ĉkm and ĉad.

Key Generation (pk, sk, tk)← KeyGen(pms). The algorithm is run by the sender
and receiver. The receiver runs the algorithm to generate his key pair (pk, sk), and
the sender runs the algorithm to obtain a secret tag key tk.

tk, x1, x2, y1, y2 ←− Z∗p;

Choose (g1, g2, z) ∈ G, satisfying gx1
1 = gx2

2 = z;

u1 ←− gy11 ;u2 ←− gy22 ; pk ← (G, p, g1, g2, z, u1, u2); sk ← (x1, x2, y1, y2).

Next, the tag key tk is registered into ĉkm. The policies P̆ are added to ĉad by the
means of external message calls (see Section 4.3.1). The privacy of tk and s are
protected by the SGX enclave. More details can be found in our implementation.

Encryption ct← Encrypt(tk, pk,m). This algorithm is run by the sender. It takes
as input tk, pk, and a message m, returns a ciphertext ct.

pk = (G, p, g1, g2, z, u1, u2); r1, r ←− Zp;

r2 ← H1(tk|r);C1 ← gr11 ;C2 ← gr22 ; τ ← H2(C1, C2); V ← r1;

D1 ← zτr1ur1
1 ;D2 ← zτr2ur2

2 ;K ← zr1+r2 ;E ← mK;

ct← (C1, C2, D1, D2, E, V).

State Read (Warrant Decryption) (m,Tx)
B←− WDecrypt(r, r1, s, ct). This al-

gorithm is run by the investigator. It takes as input r, r1 and the private state s

(including tk), and then calls the Transfer algorithm to execute the function
r2 ← H1(tk|r) in an isolated environment provided by the SGX. This calling
progress is represented in the form of a transaction Tx.

Parse ct as(C1, C2, D1, D2, E, V);

r2,Tx← Transfer(s, r);

K ′′ = zr1+r2 ; m← E(K ′′)−1.

Decryption m← Decrypt(sk, ct). This algorithm is run by the receiver. It takes
as input the receiver’s secret key sk, the ciphertext ct, and returns m ∈M.

Parse ct as(C1, C2, D1, D2, E, V);

s1, s2 ←− Zp; τ ← H2(C1, C2);

K ′ ← C
x1+s1(τx1+y1)
1 C

x2+s2(τx2+y2)
2

Ds1
1 Ds2

2

;

m← E(K ′)−1.

Inspection true/false
B←− Inspect(Tx, P̆). This algorithm is run by ĉad. It takes

as input P̆ and Tx, and returns inspection result true/false. The true indicates
the warrant decryption satisfying policies and vice versa.

Here, the correctness of our construction is easy to check as we have

K ′ =
C

x1+s1(τx1+y1)
1 C

x2+s2(τx2+y2)
2

Ds1
1 Ds2

2

= Cx1
1 Cx2

2

(
Cτx1+y1

1

ztr1ur1
1

)s1 (
Cτx2+y2

2

zτr2ur2
2

)s2

=Cx1
1 Cx2

2

(
g
r1(τx1+y1)
1

g
r1(x1τ+y1)
1

)s1 (
g
r2(τx2+y2)
2

g
r2(x2τ+y2)
2

)s2

= gr1x1
1 gr2x2

2 .

Note that the random numbers s1 and s2 are used for implicitly testing if the
ciphertext is consistent with tag τ [122]. We see that K = zr1+r2 = gx1r1+x1r2

1 =

gx1r1
1 gx2r2

2 . Then, we observe that K = K ′ = K ′′. Thus, both the receiver and
investigator can obtain the message m by

Dec(sk, ct) = E(K)−1 = mK(K)−1 = m.

5.2.5 Security Proof

Theorem 1 (Fairness). Assume that the SGX-based PPSC is secure, our construc-
tion Fialka satisfies the property of fairness.

Proof: Suppose that there exists an adversary A who wins the fairness game
⅁fair with non-negligible advantage. Then, we transform an adversary A against

fairness into adversaries against PPSC security. Next, we describe a sequence of
games to finish the proof.

Lemma 1 (SGX-based PPSC [54, 135]). Our SGX-based platform is a secure
instantiation of PPSC whose protocols match the ideal functionality in the UC
framework. More details can be found in [54].

Game ⅁0. This is an unmodified game. Trivially, the winning probability of this
game equals the advantage of A against the fairness game, namely, adv⅁fair

A,Π (λ).

Game ⅁1. In this game, when A calls C, we disallow C to call contract ĉkm.

Game ⅁2. In this game, when A calls C, the transaction-based evidence is not
allowed to be given to ĉad. Instead, the evidence is randomly selected for auditing.

Obviously, the winning probability of the game ⅁2, denoted as adv⅁2
A,Π(λ), is negli-

gible, since the transaction-based evidence is randomly selected. Next, to find out
the differences between these games, we define the following events.

⋄ E[a1]: forging evidence. The event E[a1] implies that the adversary B1 forges
a valid transaction Tx∗ without update ĉkm, denoted as ¬Transfer.

r2,Tx
∗ B←− ¬Transfer(s, r) ∧

WDec (r, r1, s,Enc(tk, pk,m)) = m ∧

false
B←− Insp(Tx∗, P̆)

⇒ E[a1].

⋄ E[a2]: forging an inspection result. The event E[a2] implies that the adver-
sary B2 forges an inspection result, where the originally “true” in the algo-
rithm Insp is modified to be “false”.

r2,Tx
B←− Transfer(s, r)∧

WDec (r, r1, s,Enc(tk, pk,m)) = m∧

false
B←− Insp(Tx, P̆)

⇒ E[a2].

Game ⅁0 ≈ Game ⅁1. The winning condition for ⅁0 is equal to the winning
condition for ⅁1 if and only if the event E[a1] does not happen. The proba-

bility of E[a1] happening is identical to the advantage of breaking the promise
of transaction-unforgeability (see the security property defined in Section 4.3.2).
Thus, we have

|Pr[⅁0]− Pr[⅁1]| = Pr[E[a1]] = adv
⅁unforg
B1,Π (λ).

Game ⅁1 ≈ Game ⅁2. The winning condition for ⅁1 is equal to the winning
condition for ⅁2 if and only if the event E[a2] does not happen. We consider the
possibility of E[a2], and it is identical to the advantage of breaking the promise
of state-consistency (see the security property defined in Section 4.3.2). Thus, we
obtain

|Pr[⅁1]− Pr[⅁2]| = Pr[E[a2]] = adv⅁cons
B2,Π (λ).

Putting everything together, we conclude that

adv⅁fair
A,Π (λ) ≤Pr[E[a1]] + Pr[E[a2]] + adv⅁2

B,Π(λ)

≤adv⅁unforg
B1,Π (λ) + adv⅁cons

B2,Π (λ) + adv⅁2
A,Π(λ) ≤ negl(λ).

Theorem 2 (Completeness). Assume that SGX-based PPSC is secure and Kiltz’s
full PKE scheme [122] is secure against chosen-ciphertext attacks, Fialka satisfies
completeness.

Proof: Suppose that there exists an adversary A who wins the completeness game
⅁comp with non-negligible probability. Then, we transform an adversary A against
completeness into adversaries against the PPSC security and IND-CCA security
of Kiltz’s PKE scheme. We describe a sequence of games to conduct the proof.

Game ⅁0. This is the unmodified completeness game. The winning probability
equals the advantage of A against completeness game, namely, adv⅁comp

A,Π (λ).

Game ⅁1. In this game, when the adversary calls C, we disallow contract ĉad to
execute the algorithm Insp, and then ĉad outputs true to the adversary.

Game ⅁2. In this game, we disallow A calls C, and thus Transfer in ĉkm cannot
be executed, indicating A cannot obtain secret key from blockchain.

Clearly, without querying the smart contract, the adversary’s advantage of winning
⅁2 equals the advantage of breaking the CCA security of PKE. The adversary
against security of Kiltz’s PKE scheme adv⅁CCA

B,Π (λ) is negligible, and the proof is
given in [122]. To find out the difference between these games, we define the events:
(1) E[b1]: blocking the transaction-based evidence. The adversary B1 fetches the
key from the blockchain and successfully hides the transaction Tx⋆ that is used
for validation in the algorithm Insp. (2) E[b2]: forging an inspection result. The
adversary B2 forges an inspection result by executing ¬Insp, where ¬Insp means
the malicious behaviours of inspection, and it modifies the false result as true.
(3)E[b3]: breaking the security of PPSC. The adversary B3 obtains a valid private
key without invoking the blockchain.

Game ⅁0 ≈ Game ⅁1. The winning conditions for ⅁0 equals the winning con-
ditions for ⅁1 if neither event E[b1] nor event E[b2] happen. Thus, we have
|Pr[⅁0]−Pr[⅁1]| = Pr[E[b1]]+Pr[E[b2]]. We then consider the happening probabil-
ities of E[b1] and E[b2]. The happening of E[b1] implies that the adversary B1 hides
the transaction evidence, which contradicts the assumption of transparency prop-
erties. Thus, the winning advantage of E[b1] is identical to breaking the promise of
transaction-transparency (see the security property defined in Section 4.3.2). If the
event E[b2] happens, indicating that the adversary B2 breaks the state-consistency
of PPSC, the possibility is identical to the advantage of breaking the promise of
state-consistency (see the security property defined in Section 4.3.2). Thus, we
have Pr[E[b1]] = adv⅁tran

B1,Π (λ) and Pr[E[b2]] = adv⅁cons
B2,Π (λ).

Game ⅁1 ≈ Game ⅁2. The winning condition for ⅁1 is equal to the winning
condition for ⅁2 if and only if the event E[b3] does not happen. The possibility of
E[b3] is identical to the advantages of breaking the promise of state-privacy (see the
security property defined in Section 4.3.2). Thus, |Pr[⅁1]− Pr[⅁2]| = Pr[E[b3]] =
adv

⅁privacy
B3,Π (λ).

Combining everything together, we obtain that

adv
⅁comp
A,Π (λ) ≤Pr[E[b1]] + Pr[E[b2]] + Pr[E[b3]] + adv

⅁no-query
B,Π (λ)

≤adv⅁tran
B1,Π (λ) + adv⅁cons

B2,Π (λ) + adv
⅁privacy
B3,Π (λ) + adv⅁CCA

B,Π (λ) ≤ negl(λ).

5.2.6 Implementation

In this section, we discuss the implementation1 of our instantiation based on the
SGX-based PPSC platform Oasis Devnet [1, 54] (version 2.0). Our implementation
(see Figure 5.5.b) has two components: client-side and server-side. The client side
is run by the sender, receiver, and investigator, while the server side is run by
the PPSC platform. The client-side covers four algorithms: Set, Gen, Enc, Dec.
They are implemented by 1000+ lines of JavaScript codes in total, containing
the packages of client and client-connector. The client implements basic
operations executed by end-users at local, while client-connector builds a bridge
between the client-side and the server-side. The server-side consists of two pieces
of PPSCs: PPSC-KM and PPSC-AD. PPSC-KM covers the algorithms CGen, Reg
and Trans2, while PPSC-AD includes the algorithm Insp. Both are implemented in
Rust. PPSC-KM protects private decryption keys by using the enclave technology
from Intel SGX [61], while PPSC-AD determines whether the decryption is legal
or not by checking the security policies.

To be specific, after a successful deployment of the contract PPSC-KM and PPSC-
AD, the evidence inspection algorithm Insp and the investigator’s key generation
algorithm (by revoking Trans) as well as their access conditions, will be compiled
as the binary codes and replicated to enclaves [61] in SGX-powered blockchain
nodes. Then, an encrypted contract state containing the investigator’s key H1(tk|r)
reaches an agreement across distributed blockchain nodes. After that, to obtain
the key from PPSC-KM, two requirements must be fulfilled: (1) A transaction
with the input satisfying access conditions should be provided; (2) An encrypted
and authenticated channel connected to enclaves should be established (after a

1A demo site and reference source code are accessible at http://www.fialka.top.
2Trans (Transfer algorithm) calculates the investigator’s key, and it belongs to WDec.

successful attestation [1, 54, 61]). Then, an invocation in the form of a transaction
will remain visible and immutable. Each entity can see/witness the progress of
obtaining the investigator’s key, but no entity, except the contract caller, knows
the exact output (key) of the smart contract. Subsequently, PPSC-AD audits
transactions through an internal query to detect suspicious activities. Essentially,
the privileges of the Trans algorithm are protected and managed at a CPU-level by
Intel SGX. Only designated investigators should be allowed to access this secret
key. We also notice that our implementation only provides one-off auditing since it
can only trace records when the first time an investigator extracts the secret key.
Our implementation provides a prototype to demonstrate feasibility.

5.2.7 Evaluation

We first provide the performance evaluation on average CPU-time, representing
the consumed time since the operation starts. The evaluation contains all the
algorithms, and the testing environment is set as follows. The client-side runs on a
Dell precision 3630 Tower with 16 GB of RAM and one 3.7GHz six-core i7-8700K
processor running Ubuntu 18.04. The server-side runs on a blockchain node, which
is provided by the Oasis SDK [1, 54].

Table 5.3: The average cpu-time, gas cost and latency evaluation

Operations CPU-time/ms Cost/gas Latency/ms

Set 1.16 - -
Gen 50.04 - -
CGen† 0.0880 5129943 5683
Reg 0.0104 494553 3960
Enc 102.35 - -
Dec 64.86 - -
Trans 0.0325 342514 3643
Insp 0.0027 251971 2450

†: CGen means contract generation

CPU-time. The evaluation results illustrate several critical points. The offline
operation Enc is the most time-consuming operation since the encryption covers
seven exponentiations. The offline operation Dec takes approximately half the time

of that in encryption because it processes four exponentiations. On the contrary,
blockchain-related operations CGen, Reg, Trans and Insp take much less than offline
operations since they do not have group mathematics computation. In particular,
the operation Insp is the fastest operation, which indicates the efficiency of our
accountability protocol. However, CPU-time is close to the testing environment,
inefficient to convince that our framework is practical. Therefore, we provide
further evaluations on gas cost and latency for real-world scenarios.

Gas cost. The gas cost measures the amount of computational effort that a
blockchain takes to execute an algorithm. The gas cost evaluation includes the
operations of CGen, Reg, Trans, and Insp. The operation CGen costs the most
gas among all since the initial configuration of a smart contract has to be loaded.
Fortunately, this bottleneck can be ignored because each contract is created only
once and can be reused multiple times. The cost of Reg is relatively high since
the public parameters are needed to store on smart contracts. The cost of Trans
and Insp are relatively low due to simple online calculations, which indicates that
our accountability protocol is financially feasible3. In real-world settings, different
investigators can call the functions in the same PPSC for decryption and auditing
simultaneously. To demonstrate the practicability of our system, we simulate a
distributed environment by increasing the number of invocations from different in-
vestigators. In particular, we test the gas cost of Trans and of Insp with a maximum
of 1000 simultaneous invocations. As shown in Figure 5.6, the outputs remain rela-
tively stable under variations, and the average cost of Trans is approximately 340k
while that of Insp is about 250k. It matches our intuitive expectation since the gas
cost is theoretically independent of the number of investigators. Based on these
results, our accountability framework is practically affordable and can be widely
adopted.

Latency. Our latency test covers all blockchain-related operations including CGen,
Reg, Trans and Insp. Among them, CGen is the most time-consuming, as the
contract codes need to be compiled into the blockchain. The operation Reg also
takes a long time because all parameters have to be configured into contracts. In

3Estimates on the real value of gas cost are omitted since the Oasis token has not been officially
released at the time of writing.

contrast, the operations Trans and Insp are in low latency because they do not have
sophisticated on-chain computations. We also provide a simulation by increasing
the invocations in a distributed environment. Our simulation includes the two
most frequently used functions in PPSC, namely Trans and Insp. As shown in
Figure 5.6, the results turn out that the latency stably increases along with the
growing number of invocations. Theoretically, numerous invocations will impose
a heavy burden on the distributed network, which may even cause the network
failure or transaction stuck. We set an upper bound of invoking transactions with
1000 users at the peak. The testing results confirm our expectations.

Figure 5.6: The gas and latency evaluation

5.2.8 Conclusion

In this chapter, we proposed Fialka, a novel transaction-triggering accountable de-
cryption system based on PPSC. Our system utilized PPSC to trace and detect
the decryption evidence, which makes warrant execution accountable. To the best
of our knowledge, we presented the first PPSC-based accountability mechanism
with formal definitions and proofs. The security analysis showed that our system
holds accountability properties encompassing fairness and completeness. The im-
plementation based on Oasis Devnet with the detailed evaluation indicated that
our system is feasible and applicable.

109

Chapter 6

Blockchain System Enhancement

This chapter provides two blockchain algorithms that enhance the performance,
scalability and usability of current blockchain systems.

6.1 A Weak Consensus Algorithm

6.1.1 Introduction

The consensus mechanism is a critical component in distributed systems, pro-
viding a powerful means of establishing agreement as to the network’s current
state. With the promotion of blockchain, consensus mechanisms obtain tremen-
dous attention due to their influential roles in secure token transferring. Generally,
two mainstream types of consensus algorithms are identified [14][203], namely, the
classic Byzantine Fault Tolerant (BFT) protocols [45][46] and the newly proposed
Nakamoto consensus (NC) [84] such as PoW [30, 158], PoS [119], PoA [70, 207],
etc. However, blockchain systems adopting these algorithms suffer from low-
performance issues due to massive communication or intensive computation. For
example, Bitcoin requires competitive computations to decide the valid chain,
whose rate is limited to 7 transactions per second (TPS) [158]. Such limitations
greatly hurdle the widespread adoption in real scenarios. This leads us back to
their core mechanisms.

BFT protocols have been proposed to achieve consensus even when some replicas

(less than 1/3) are Byzantine faulty. BFT protocols require the negotiation process
for final decisions. A typical system, PBFT [46], is illustrated in Figure 6.1.a. The
leader sends a proposal to replicas, and replicas distribute their replies. Then,
after receiving valid replies over the predefined threshold, a replica broadcasts his
status (whether ready for the new state) to others. Once the received commit
messages exceed the threshold, a decision is made. Time consumption in such a
process is unpredictably unstable due to factors like network delay. Interactive
communications consequently limit the performance of the BFT consensus and
increase the communication overhead.

Nakamoto consensus, patterned after Bitcoin [158], has received remarkable atten-
tion due to its simplicity. NC does not need a closed committee. Instead, it allows
all participants to get involved in the consensus process. NC protocols remove
the interactive model and adopt a competition rule – the longest chain wins. As
shown in Figure 6.1.b, blocks generated by miners are randomly attached to their
ancestors. Only the chain with the most descendants survives, whereas other com-
petitive sub-chains are abandoned. The finality is progressively achieved by letting
blocks bury deep enough. Thus, conflict solving in NC seriously slows down the
confirmation of blocks.

We observe that protocols based on these two types of consensus mechanisms follow
the same principle that only one block is deemed as confirmed at one round (equal
block height in NC). This greatly constrains the overall performance since the pro-
cedure of conflict solving, and total ordering serving for strong consistency costs
much more time than expected. Such mechanisms hurdle their widespread adop-
tions [125][91], particularly, for some high performance required scenarios [211].
To mitigate such a limitation, we ask the following question,

Is it possible to propose a consensus algorithm to improve performance by
weakening the guarantee of consistency?

Intuitively, the answer should be “No”. State consistency is the core property of
the consensus mechanism. Strict consistency ensures that the distributed network
reaches an agreement on the total order of transactions in the presence of fault
maintainers and adversarial network delay. All distributed nodes have the same

global view at each specific height. This guarantees that states are transited in
an organized and managed way, supporting upper-layer establishments like smart
contracts. Disordered transactions, on the contrary, indicate ambiguous states
where users may feel confused when invoking the blockchain service. For example,
Alice sends a transaction to Bob. If this transaction is stored in more than one
block, Bob cannot know which position provides a valid transaction. However, in
some scenarios, strict consistency is not firmly required, such as the blockchain-
based certificate system. The main target of the certificate prover is to confirm that
a certificate is indeed stored in the chain. The specific position of this certificate
does not matter; even a duplicated storage of certificates is allowed. It should be
noted that the partial consistency in several DAG-structure projects [11][216] is
still sensitive to the position of transactions since their upper-layer applications,
such as token transferring, are still based on a fixed sequence of transactions.

In this chapter, we propose a new consensus mechanism, called weak consensus, to
fit the aforementioned scenarios. Our design weakens the guarantee of strict con-
sistency and relaxes the property of persistence [84]. Weak consensus guarantees
that the relative sequences of blocks in one individual chain remain consistent with
that in the other chains. As illustrated in Figure 6.1.c, node B creates a serial of
blocks 1, 2, 3, 4. Our goal is to ensure that the sequence of (B1→ B2→ B3→ B4)

can be correctly maintained across chains, no matter how many blocks (generated
by other nodes) are inserted between them. Blocks in our model are required
to receive replies from other nodes, saying that they have successfully stored the
blocks. Whenever a block collects commit messages more than the threshold, it is
deemed as confirmed. To demonstrate the robustness of our consensus, we formally
define the properties relative persistence and liveness, inspired by [84]. Relative
persistence focuses on the relationship between a predecessor and its successor, en-
suring the correctness of the relative position. Liveness guarantees that all nodes
would eventually agree on the relationship of blocks. Furthermore, we apply this
algorithm to a blockchain system called Sphinx, with a full implementation.

2A

B

C

D

1

2

2

2

a. (Traditional! BFT Consensus

1

1

1

1

A

B

C

D

b. Nakamoto Consensus

1

2 3

54 6

7 8

8

8

"#$#%&'()*+#,&'-./0*

4A

B

C

D

31 2

1 2 3 4

1

2 3

3 4

c. Weak Consensus

Send MessagesReference

Pending

Valid

Invalid

Unrelated

1)2*3'4 1)2*3'5

Figure 6.1: Consensus mechanisms diagram

6.1.2 Weak Consensus Algorithm

This section provides the security assumptions and the general construction of our
consensus algorithm with corresponding security properties.

6.1.2.1 Notations

We denote the nodes in our protocol as N and identify each of them as
{N0,N1, . . . ,Nn}, where n is the index of committee members satisfying n = 3f+1

(f represents the Byzantine nodes). Let i be a growing integer satisfying, 0 ≤ i ≤ r

where r is the index of states and j be an integer satisfying 0 < j ≤ n. Assume
that M is the message space, S is the state space and R is the reference space.
M ∈ M, is the message proposed by some node. PF is the proof of successful
insertion of M . S represents a confirmed state satisfying S ∈ S. Si

Nj
is the i-th

confirmed state in the node Nj, where Si
Nj
∈ {S|S0

N1
, . . . , Sr

N1
; . . . ;S1

Nn
, . . . , Sr

Nn
}.

These two parameters are used to locate a specific state in the network. Sr
{N0,...,Nn}

refers to the states received from other nodes in current round r. ⇓ is the reference
which indicates the relative positions between two states. Specifically, ⇓BA is the
reference pointing from B to A. It defines a happens-before relationship that A

happens before B. More specifically, ⇓
Sy
Nj

Sx
Nj

means that Sx
Nj

is an ancestor of Sy
Nj

where 0 < x < y ≤ r. Further, ⇓
Si
Nj

Si−1
⋆

represents a set of references including the
edges from the state Si

Nj
to states Si−1

N0
, . . . , Si−1

Nn
(a.k.a., the out-degree edges of

Si
Nj

). Correspondingly, ⇓S
i
⋆

Si−1
Nj

contains all the edges from states Si
N0
, . . . , Si

Nn
to the

state Si−1
Nj

(a.k.a., the in-degree edges of Si−1
Nj

).

6.1.2.2 Security Assumption

We assume that honest nodes will always conduct honest behaviours, where the
messages sent to peers are correct. As for the underlying network, we follow the
implicit assumption of a partial synchronous network. In particular, the network
of honest nodes in our system is well-connected, and the communication channels
between honest nodes are unobstructed. Messages from honest broadcasters may
be delayed, but they will eventually arrive at others within the known maximum
delay δ [171]. Our algorithm follows the basic design of classic BFT-style protocols,

with the aim to tolerate one-third of Byzantine nodes. Specifically, we assume
that there are 3f + 1 nodes in total, and the number of participating nodes is
fixed. It indicates that the dynamics of peer participation, or churn, are out of our
consideration. Also, we assume that at least 2f of them perform honestly, where
f is the number of Byzantine nodes.

6.1.2.3 Protocol Overview

The protocol is modelled as a state machine which is replicated across distributed
nodes. Each node in the network maintains a message log containing the accepted
message and the current state. Meanwhile, in our algorithm, a node must maintain
the states received from other nodes. We present our protocol by following the
description of PBFT [45][46][193]: the protocol proceeds in rounds, and each round
has three phases, namely Pre-Prepare, Prepare and Commit. We provide the
overview of our protocol as follows.

- Pre-Prepare. The primary node receives client requests and inserts such
messages into the local chain. Then, the node creates a Pre-Prepare message
to claim the relative position between two client messages. Subsequently, it
broadcasts the signed message to peers.

- Prepare. The node receives the Pre-Prepare message and checks integrity,
correctness, and validity. When the received Pre-Prepare message passes the
verification procedure, the node updates his local-stored state and broadcasts
the replied Prepare message to claim the correct relative position. Otherwise,
the node aborts it.

- Commit. If any node receives a quorum 2f + 1 of valid Prepare messages
from other nodes (possibly including his own) within a specified time interval,
this node confirms the proposed decision by broadcasting a replied Commit
message. When a node collects more than 2f + 1 Commit messages, this
node transits the state and replies to clients with updated states.

Complementary mechanism. Our protocol aims to achieve an eventual con-
firmation of the relative relationship between two states. It is possible that the
relative relationship cannot be committed due to the lack of 2f +1 matched Com-

Table 6.1: Comparison between PBFT algorithm and our algorithm

PBFT algorithm [45] Our algorithm

Request
Stage

- A leader is required. A client
sends a request to the
primary node. If the
primary node has
changed/rotated, it will
broadcast the request
message to all replicas.

- No leader exists in our
algorithm. Every node acts
in similar behaviours. A
client sends a request to a
random node, where a
request message is
represented as the relative
position.

Normal
Case

- Pre-Prepare: The primary
node puts the pending
requests in total order and
initiates agreement by
sending Pre-Prepare
message to all replicas.

- Prepare: Replica
acknowledges the receipt of
a Pre-Prepare message by
sending Prepare message to
other replicas.

- Commit: Replica
acknowledges the reception
of 2f Prepare message
matching a valid pre-prepare
by broadcasting the Commit
message to peers.

Every node executes the
following actions in parallel.
- Pre-Prepare: The same

algorithm with PBFT.
- Prepare: The same

algorithm with PBFT.
- Commit: The same

algorithm with PBFT.

View
Change

- It ensures that the system
can always proceed by
allowing replicas to change
the leader, so as to not wait
indefinitely for a faulty
primary.

- No need for the view change
progress. Alternatively, the
complementary mechanism
was adapted to ensure the
correct relative persistence
to be held.

Garbage
collection

- The checkpoint mechanism is
used to ensure the safety
condition to be held.

- The timeout mechanism is
used to ensure that the
liveness condition is held.

mit messages. Figure 6.2 provides an example to explain the flaws. We assume
that there are three nodes, and the relative position of states S1

N2
and S2

N2
, saying

⇓
S2
N2

S1
N2

, in the node N2 have already been confirmed by the node N3. By the design
of previous protocols, Sphinx achieves an agreement by receiving 2f + 1 replies.
However, the node N1 may store the conflicting states, namely, ⇓

S1
N1

S2
N1

. Note that,

here, we assume ⇓
S1
N2

S2
N2

= ⇓
S1
N1

S2
N1

, indicating that the states sent from N2 are finally
confirmed in the node N1, and accordingly subscripts are changed. Without re-
pulling the state from other nodes when the bound set in the counter is exceeded,
the conflicting states will never be able to be reversed. Thus, the complementary
mechanism re-attaches the state S2

N1
, and the updated S2

N1
will replace the out-

dated version. The relative positions in N1 are thus returned to correct positions,
saying ⇓

S2
N1

S2
N1

= ⇓
S2
N2

S1
N2

= ⇓
S2
N3

S1
N3

. The above procedure is compulsory for N1. If N1

cannot accept relative positions from honest nodes N2 and N3, the new messages
that follow N1 will not be accepted by N2 and N3 since his Pre-Prepare message
is based on the latest state from others. More details are provided in our security
analysis.

21

N1

1 2

12

2

Block2

2

N2

N3

reattach the block

Block1 Block2

3

Figure 6.2: Complementary mechanism diagram

Highlighted Differences. Our protocol differs from PBFT in four aspects (see
Table.6.1): (a) Our protocol is an asynchronously leaderless Byzantine agreement
protocol. Instead of relying on a single leader, Sphinx removes the leader-associated
phases, enabling every participant involved in the consensus procedures. Thus,
every participant does not need to wait for the latest state synchronized from oth-
ers. (b) Every consensus node in the network conducts the similar behaviours
(pre-prepare, prepare, commit). These nodes independently proceed but mutually

interact with each other by cross-references. (c) We remove auxiliary mechanisms
(such as checkpoint, view-change) of PBFT protocols. Instead, we provide a brief
complementary mechanism to solve conflicts like reserved positions between two
states. (d) Our protocol weakens the assumption of strong consistency, with the
gain of higher performance and lower confirmation time. We follow the liveness
property from PBFT. Further, we introduce a new security definition relative per-
sistence, which is inspired by the properties of agreement [45] and persistence [84].

6.1.2.4 Security Properties

Our algorithm weakens the strong guarantee of consistency by reaching a partial
consistency instead of a linear consistency. The procedure of total ordering is no
longer needed in our consensus. Each node individually creates new states and
simultaneously stores the remote (other’s) states. We allow one state to be stored
in multiple positions across parallel chains. The key idea is to keep the consistency
of the relative position between the two states. Based on that, we formalize our
algorithms by two properties: relative persistence and liveness. Relative persistence
means the relative positions of two states are irreversible once enough honest nodes
report it as confirmed. Liveness means once the relative position between two
states is confirmed by one honest node, it should eventually be confirmed by all
the other honest nodes in the network.

Definition 1 (Relative persistence). Weak consensus algorithm achieves the prop-
erty of relative persistence, if for all relationship in R, there exists a negligible
function negl(λ) such that advRN(λ) < negl(λ), where advRN(λ) is the advantage in

which the decisions on the same relationship ⇓
Sy
Ni

Sx
Ni

made by any two honest nodes
are conflicting. Here, 0 < x < y ≤ r.

The relative persistence property ensures that as soon as the relative position be-
tween two states has been confirmed by an honest node, this relationship will ulti-
mately be confirmed in every node in the network with high probability. The prop-
erty guarantees that the relative positions remain consistent between two states
across paralleled chains.

Definition 2 (Liveness). Weak consensus algorithm achieves the liveness property,
if for all PPT honest nodes, there exists a negligible function negl(λ) such that

advRN(λ) < negl(λ), where advRN(λ) is the advantage that the honest node does not

accept the correct relationship ⇓
Sy
Ni

Sx
Ni

. Here, 0 < x < y ≤ r.

The liveness property guarantees that all nodes eventually agree on a unique re-
lationship regarding each chain. The unique relationship represents the relative
position between a state and its ancestor. The term eventually indicates that it
may take a sufficient amount of time (within the upper bound of δ) to reach the
agreement. The property ensures that a state will either be abandoned or accepted
instead of permanently pending status.

6.1.3 Sphinx System

In this section, we first introduce the cryptographic building blocks used to build
the scheme. Then, we present a high-performance blockchain system (Sphinx)
that adopts the weak consensus algorithm.

6.1.3.1 Entities.

Sphinx mainly consists of two types of nodes, namely blockchain node and client
node. The client node is the creator of the message and allows sending a request to
the ledger recorder and waiting for replies after the consensus is completed. The
blockchain node is responsible for two functionalities: record and validate. The
former functionality is used to record the local chain. Another one is employed to
check the correctness of the recording progress.

6.1.3.2 System Design

The state in Sphinx is instantiated as the block, which is validated and confirmed
by other nodes in the network. The message inherits the classic blockchain struc-
ture, which includes the fields of address, timestamp, metadata etc. Every chain
has two types of references in our system: the one pointing to its own parent
block and the other pointing to all other nodes. Explicitly, our system embraces
cross-referencing to increase the blockchain’s security, where multiple nodes simul-
taneously generate their own chains in parallel and validate the blocks of other
nodes. The cross-reference ensures that each chain can mutually validate oth-
ers’ behaviours, such as whether they maintain a consistent sequence of blocks by

checking their previous Merkle roots. This mechanism guarantees the consistency
of relative positions between two blocks. The concrete protocol is presented as
follows.

Pre-Prepare. Each node maintains an individual message pool and an indepen-
dent ledger. When a node Np receives a request (message) M from the client, it
first checks the message’s syntax to ensure the correct execution. If passed, it sorts
the received client messages in the local pool. These messages are ordered by their
timestamps (e.g., Lamport timestamps [45]), in which the latest messages have
higher priorities than the earlier ones. The first received message is processed in
the algorithm, whereas the conflicting/duplicated messages are discarded. Based
on the ordered sequence, the node assigns a valid sequence number SN to M . We
emphasize that the sequence number SN is a local variable used to represent the
index r of a single chain. It is different from the global variable SN defined in BFT
algorithm [45][46]. The index r in our system helps to locate a block in the local
chain while locating a block in the global view requires an additional parameter of
chain id Nj to form a coordinate (r,Nj).

Next, it inserts the message M into its local chain. The insertion mainly merges the
hash of M and the states of remote blocks (Sr

N0
, Sr

N1
, . . . , Sr

Nn
) into a new Merkle

Tree [181]. Next, it signs the Merkle root and appends this block to a public log
by generating a proof PF , which contains three types of proofs: (a) PM is used to
prove that the tree contains M ; (b) PS is used to prove (Sr

N0
, Sr

N1
, . . . , Sr

Nn
) exists

in trees; (c) PB is used to prove the tree is an extension of old blocks.

The message M and states (Sr
N0
, Sr

N1
, . . . , Sr

Nn
) are stored in the leaves of the

Merkle tree from left to right in chronological order. Thus, the proof can be easily
calculated. A Merkle tree contains the items of M and states (Sr

N0
, Sr

N1
, . . . , Sr

Nn
).

In our design, these items are solely stored at leaves. After that, the current node
broadcasts the Pre-Prepare message ⟨Pre-Prepare,M, SN, Sr

Np
, PF,⇓S

r
⋆

Sr−1
Np

⟩ to other

nodes, where ⇓S
r
⋆

Sr−1
Np

represents the relative position between the r-th state and

(r − 1)-th state.

Prepare. Assume that a random node Nq receives the Pre-Prepare message
⟨Pre-Prepare, Sr

Np
,M, PF,⇓S

r
⋆

Sr−1
Np

⟩ from the node Np. The node Nq validates the

correctness of Pre-Prepare message. The algorithm checks whether: (a) the signa-
ture of S⋆ is correct; (b) the message M has been inserted to Np; (c) the previous
state S⋆

q has been inserted to Np; (d) the state of the claimed message has no con-
flict. When the received Pre-Prepare message is checked successfully, the node Nq

updates his local-stored state Sp, and inserts the received message to his local log.
Then, it generates and broadcasts a reply Prepare message ⟨Prepare, SN, d(SN)⟩,
in which d(SN) means the hash digest of the state. Otherwise, the node aborts
the Pre-Prepare message. Note that the same Pre-Prepare message can only be
accepted once, and the duplicated Pre-Prepare message will be discarded.

Commit. If a node receives a quorum 2f + 1 of valid Prepare messages from
different nodes (possibly including his own), it confirms the proposed message and
broadcasts a Commit message ⟨Commit, SN, d(SN)⟩. Then, this node collects the
Commit messages from all nodes. Once exceeding the threshold (2f +1), the node
accepts the updated state. Then, this node replies to the client with new states.

Complementary Mechanism. The aforementioned phases are insufficient since
some malicious (2f − 1) nodes may store the wrong (opposite) relative positions,
making our system fail in satisfying the security property of relative persistence.
It is possible that the relative relationship cannot be committed due to the lack of
2f+1 matched Commit messages. The states, as a result, will never be terminated.
To solve this problem, we introduce our complementary methods. On one side,
each message is embedded with a counter. If the message fails due to the lack
of enough confirmation, the procedure of rebroadcasting will be launched, and
the counter increases each time of a retry. If the accumulated value is greater
than the bound set in the counter, the node will pull the newest state from other
nodes and accept the reversed relationship and rebroadcast it. If a node collects
more than 2f + 1 Commit messages on the reversed position, the node replies to
clients with updated states. Otherwise, the message will be aborted, and the node
will accordingly send a Failure message to the client. On the other side, when
the waiting time exceeds the predefined time bound in the counter, the message is
aborted with a timeout message sent to the client. The complementary mechanism
is essential to achieve the properties of relative persistence and liveness.

6.1.4 Implementation

We have implemented the system in Go language1 with 32,000+ lines of code. We
have developed full functionalities of a classic blockchain system, including account
configuration, consensus mechanism, peer-to-peer network, user interface, etc. We
employ Go’s built-in hash function SHA-256 and elliptic curve digital signature
algorithm secp256k1. Here, we focus on key functions to present a skeleton of
our implementation. Example code segments together with the workflow are il-
lustrated in Figure 6.3. To be specific, ValidateState validates the changed state
after the state transition, such as the receipt roots and state roots. The function
will return a database handle if the validation turns out a success. Otherwise,
an error is returned. ValidateBody validates the uncle blocks and verifies their
header’s receipts. The headers are assumed to be already validated at this point.
NewBlockChain returns a fully initialized blockchain by loading information in the
database. It initializes default validators. FastSyncCommitHead inserts the com-
mitted head block to others by the form of hashes. GetBlocksFromHash returns the
block corresponding to hash and up to n−1 ancestors. InsertHeaderChain attempts
to insert the headers of parallel chains into the local chain. Insert inserts or rejects
a new header of the block into the current local chain. Confirm aims to ensure
whether threshold conditions are satisfied by a block.

6.1.5 Security Analysis

This section proves that our protocol satisfies relative persistence and liveness. We
assume that honest nodes are consistent for their commits, which means if an hon-
est node accepts a relative state, all his commits in this iteration and the following
iterations are consistent. Formally, we define the above intuition in Lemma 1.

Lemma 1. Suppose a node Ni is the first honest node to commit a relationship
⇓
Sy
Ni

Sx
Ni

for the relative positions between the y and x. In all subsequent iterations, all

commits from this node are valid decisions on the relationship ⇓S
y
⋆

Sx
⋆
.

Theorem 1. (Relative persistence) If the relative position of two states y and
x is accepted by the node Ni in iteration r and by the node Nj in r+1, respectively,

1Go is an open-source programming language supported by Google

 SetupGensisBlock

Input: Gensis, Database

Output: Config, Hash

1. if genesis != nil && genesis.Config == nil {

2. return config.MainnetChainConfig, common.Hash{},

errGenesisNoConfig }

// Just commit the new block if there is no stored genesis

block.

3. stored := GetCanonicalHash(db, 0)

4. if (stored == common.Hash{}) {

5. if genesis == nil {

6. genesis = DefaultGenesisBlock() }

7. block, err := genesis.Commit(db)

8. return genesis.Config, block.Hash(), err}

// Check whether the genesis block is already written.

9. if genesis != nil {

10. block, _ := genesis.ToBlock()

11. hash := block.Hash()

12. if hash != stored {

13. return genesis.Config, block.Hash(),

&GenesisMismatchError{stored, hash} GetBlockFromHash

Input: block

Output: ChainInfo

1. number := bc.hc.GetBlockNumber(hash)

2. for i := 0; i < n; i++ {

3. block := bc.GetBlock(hash, number)

4. if block == nil {…}

5. blocks = append(blocks, block)

6. hash = block.ParentHash()

7. number-- }

 Insert

Input: block

Output: ChainInfo

1. updateHeads := GetCanonicalHash(bc.chainDb,

block.NumberU64()) != block.Hash()

// Add the block to the canonical chain number and

mark as the head

2. if err := WriteCanonicalHash(bc.chainDb,

block.Hash(), block.NumberU64()); err != nil {…) }

3. if err := WriteHeadBlockHash(bc.chainDb,

block.Hash()); err != nil {…}

4. bc.currentBlock = block

// If the block is better than out head or is on a

different chain, force update heads

5. if updateHeads {

6. bc.hc.SetCurrentHeader(block.Header())

7. if err := WriteHeadFastBlockHash(bc.chainDb,

block.Hash()); err != nil

8. bc.currentFastBlock = block }

 FastSyncCommitHead

Input: Hash

Output: ChainInfo

1. func (bc *BlockChain) FastSyncCommitHead(hash

common.Hash) error {

// Make sure that both the block as well at its state trie

exists

2. block := bc.GetBlockByHash(hash)

3. if block == nil {

4. return fmt.Errorf("non existent block [%x…]", hash[:4])

}

5. if _, err := trie.NewSecure(block.Root(), bc.chainDb, 0);

// If all checks out, manually set the head block

6. bc.mu.Lock()

7. bc.currentBlock = block

8. bc.mu.Unlock()

9. log.Info("Committed new head block", "number",

block.Number(), "hash", hash)

10. return nil

 ValidateState

Input: block, state, receipts

Output: results

1. header := block.Header()

2. receiptSha := types.DeriveSha(receipts)

3. if receiptSha != header.ReceiptHash {

 return fmt.Errorf("invalid bloom (remote: %x

local: %x)", header.Bloom, rbloom) }

4. if root := statedb.IntermediateRoot(true);

5. header.Root != root {

 return fmt.Errorf("invalid merkle root (remote:

 %x!"local: %x)", header.Root, root)

 ValidateBody

Input: block

Output: results

// Check whether the block's known, and if not, that

it's linkable

1.if v.bc.HasBlockAndState(block.Hash()) {

 return ErrKnownBlock }

2. if !v.bc.HasBlockAndState(block.ParentHash()) {

 return consensus.ErrUnknownAncestor }

// Header validity is known at this point, check the

uncles and transactions

3. header := block.Header()

4. if hash := types.DeriveSha(block.Transactions());

hash != header.TxHash {

 return fmt.Errorf("transaction root hash mismatch:

have %x, want %x", hash, header.TxHash) }

 NewBlockChain

Input: ChainDb, config, Database

Output: ChainInfo

bodyCache, _ := lru.New(bodyCacheLimit)

bodyRLPCache, _ := lru.New(bodyCacheLimit)

blockCache, _ := lru.New(blockCacheLimit)

futureBlocks, _ := lru.New(maxFutureBlocks)

badBlocks, _ := lru.New(badBlockLimit)

bc := &BlockChain{

config: config,

chainDb: chainDb,

stateCache: state.NewDatabase(chainDb),

bodyCache: bodyCache,

bodyRLPCache: bodyRLPCache,

blockCache: blockCache,

futureBlocks: futureBlocks,

badBlocks: badBlocks,}

return bc

 InsertHeaderChain

Input: Header, SycnMode,

Output: ChainInfo

1. start := time.Now()

2. if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq,

mode); err != nil {…}

// Make sure only one thread manipulates the chain at

once

3. bc.chainmu.Lock()

4. defer bc.chainmu.Unlock()

5. bc.wg.Add(1)

6. defer bc.wg.Done()

7. whFunc := func(header *types.Header) error {

8. bc.mu.Lock()

9. defer bc.mu.Unlock()

10. _, err := bc.hc.WriteHeader(header)

11. n, err := bc.hc.InsertHeaderChain(chain, whFunc, start)

B

 Confirm

Input: ProofConfirm, Address

Output: ChainInfo

1. sigHash := confirm.Signature.Hash()

2. if v, ok := u.proofs.Load(sigHash); ok {

3. info := v.(*proofInfo)

4. if confirm.Confirm == true {

5. log.Debug("worker confirm , add confirm”)

6. info.confirmed.Add(addr) }

7. if info.confirmed.Size() >= info.threshold {

// send to worker.

8. info.work.confirmed = true

9. go func(){u.confirmedCh <- info.work}()

10. u.proofs.Delete(sigHash) } }

11. log.Debug("exit confirm function”);

C A

!"#"$%&"'()'

*"+",-"'()./&%&"'

!"#$%&

!
!

*"01&"'

/&%&"

!

21+%3'

4-"#&

Cn

Bn

An

An+1

Bn+1

Bn+2

Cn+3

Cn+2

T
o

ta
l O

rd
e
r

51#6$0%&,1#

7"$6+%&,1#

!"#"$%&,1#

State Event (Ev)Block Workflow

6Reference Loval view Code segment

Verification

—————————

Verify State

 Verify Block

5
1
#
6
$0

C
o
n
firm

a
tio

n

—
—

—
—

—
—

—
—

—

P
ro

o
fs >

 th
re

sh
o

ld

Block

Header

7"$,89''

:%+;%<,#<'()'

An+2

S
n
-1

S
n

S
n
+
1

Figure 6.3: Sphinx implementation diagram

their decisions on the relationship are the same, represented as ⇓S
y
i

Sx
i
=⇓S

y
j

Sx
j
.

Proof. We prove the theorem by contradiction induction. We assume the relation-
ship ⇓S

y
i

Sx
i

is accepted by the node Ni. Similarly, we assume the ⇓S
y
j

Sx
j

is accepted by
the node Nj. We show that, in current iteration and all subsequent iterations, the
reported relationships from Ni and Nj are consistent, namely, ⇓S

y
i

Sx
i
=⇓S

y
j

Sx
j
, and no

valid relationships other than the reported one can be agreed upon.

Suppose the property of relative persistence is violated, which indicates the rela-
tionship holds ⇓S

y
i

Sx
i
̸=⇓S

y
j

Sx
j
. From the above assumption, we know the relationship

⇓S
y
i

Sx
i

from the node Ni has been accepted, which means Ni received 2f + 1 valid
Commit replies in the current iteration. Among these replies, at least one of the
commits comes from an honest node (assume Nk). Thus, Nk must have received
a right relative position between two states and forwarded this relationship to all
other nodes. If ⇓S

y
k

Sx
k
̸=⇓S

y
j

Sy
j
, other honest nodes can immediately detect the mismatch

of relationships from different proposals. A wrong-located state (with the same se-
quence number) is in a reversed position. The nodes then reattach the state until
they obtain a consistent relationship. Dishonest nodes will never collect more than
2f+1 valid Commit messages unless the majority of honest nodes become traitors
in the current and following iterations. However, this situation contradicts Lemma
1. Thus, we have ⇓S

y
i

Sx
i
=⇓S

y
j

Sx
j
.

Now, we move to liveness property and explain how our algorithm guarantees all
honest nodes agree on the same relative relationship and reach the termination.

Theorem 2. (Liveness) If a correct relationship ⇓S
y
i

Sx
i

is committed, every honest
node will eventually accept it.

Proof. Suppose that the property of liveness is violated, where only a small fraction
of nodes (less than the threshold) or even none of the nodes accept the final decision
on the relationship ⇓S

y
⋆

Sx
⋆

between states y and x. Equally, a majority of nodes reject
or have no responses for the commit decision after a sufficient period of time.
We show that, in all subsequent rounds, the malformed relative relationship from
dishonest nodes will never be accepted.

If a randomly selected group of dishonest nodes (more than ⌊3f+1
2
⌋) reject the

decision of the relationship ⇓S
y
⋆

Sx
⋆
, an honest node Ni will never be terminated. This

is because the state of Ni has to be confirmed by enough nodes, which requires at
least 2f + 1 valid Commit messages from other nodes. The confirmed message is
based on the other honest nodes’ states. If the majority of nodes reject a correct
proposal, any honest node cannot get confirmed, either. Thus, when times out, it
must reverse the relative relationship and restart the generation phase to achieve
the final confirmation.

6.1.6 Evaluation

Experimental Configurations. Our experiments are conducted on 8 Dell R730
rack servers in a local cluster with dual 2.1 GHz Opteron CPUs. The bandwidth
is connected with 1 Gbps switched Ethernet. The operating system is running
based on Ubuntu 16.04.1 LTS version. Meanwhile, all nodes in our experiment
are deployed on the same machine and connected to different ports to simulate a
globally distributed system.

Performance Evaluation. The throughput represents the rate of transactions
being confirmed in a certain time interval. We adopt the log-based approach [223]
and the concept of transactions per second (TPS) to measure the rate. In our
performance experiments, we set the production of transactions at a constant rate
and calculate the confirmation time of transactions in a fixed time. The time is
measured in seconds via wall clock running time. To achieve a fair test result, we
repeat 300 times. The results show that the average throughput of Sphinx reaches
43k TPS with 8 full nodes and drops to around 5000 TPS given 64 full nodes.
Even if the TPS drops sharply, our system is still greatly faster than Ethereum. In
particular, given the same testing environment, Ethereum (version 1.9.25, released
on December 11, 2020) only reaches 355, 311, 268, 91 TPS under the setting of 8,
16, 32, 64 nodes, respectively. To explore the reason behind the high throughout,
we further evaluate the performance of each individual algorithm.

Firstly, in the Pre-Prepare stage, the transaction is added to a block. The eval-
uation results (see Figure 6.4) show that it takes approximately 15 milliseconds
to finish the block generation algorithm, making our system reach an extremely

high throughput. In contrast, Ethereum needs over 50 milliseconds to generate a
block. The high-speed generation rate of our system is due to the parallel process-
ing mechanism. Each node has the ability to instantly generate the block, even
if it does not consist of the latest state header. In contrast, for mining a block,
the node in Ethereum has to wait for the latest block header broadcast by other
nodes, which causes a severe delay.

Min Avg Max

10

50

M
ill

is
ec

on
d

Block Generation

Eth
Sphx

Min Avg Max

10

50

100

M
ill

is
ec

on
d

Block Verification

Eth
Sphx

Min Avg Max

10
50

100

150

200

M
ill

is
ec

on
d

Block Propagation

Eth
Sphx

Min Avg Max

10

M
ill

is
ec

on
d

Block Response

Eth
Sphx

Figure 6.4: Execution time of different operations in Ethereum and Sphinx

Then, we consider the verification time and message broadcasting time in the
Prepare stage. The verification time represents the length of time in verifying
states. In particular, it covers the time of checking the validity of signatures, the
correctness of proofs, and the non-conflicts of messages. The results show that our
verification algorithm takes approximately 200 milliseconds, which is remarkably

efficient compared to Ethereum. The broadcasting time indicates the length of
time in propagating a message from one node to another. We assume that all
nodes share the same timestamp, where such configurations can be achieved by
NTP service [155]. When the message is generated by a node, it is broadcast to
other nodes in the network. We adopt the concept of coverage rate to represent
the percentage of reached nodes. Our experiment results show that it takes around
500 milliseconds to achieve 100% coverage rate for a message, which is roughly the
same as Ethereum’s testing results. The algorithm is the main bottleneck of our
system.

Furthermore, we check the response time of a message. The response time repre-
sents the length of time in replying to a message from any chain node to the client.
This operation averagely takes around 15 milliseconds, which is fast and efficient
in our implementation.

Figure 6.5: Scalability and disk space evaluation

1 2 3 4 5 6

·104

1

2

3

4

5
·104

Message Arrival Rate (Tx/s)

Tr
an

sa
ct

io
n

P
er

Se
co

nd
(T

P
S)

(a) TPS under different mes-
sage arrival rates

8 16 24 32 40 48 56 64

1

2

3

4

5
·104

The Number of Consensus Nodes

Tr
an

sa
ct

io
n

P
er

Se
co

nd
(T

P
S)

(b) TPS under different size of
nodes

0.1 0.5 1 1.5 2

·105

1

2

3

4

·104

Transaction Number

D
is

k
Sp

ac
e

of
P
er

N
od

e
[K

B
]

local chain
remote state

(c) Space usage on each Sphinx
node

Scalability. The scalability in Sphinx is used to describe the capability to handle
an increasing number of transactions. To study its scalability, we set the block
size at 4 Megabytes (MB) and the block generation rate at 3s. Then, we run
experiments with the following configurations: (i) increase the transaction arrival
rate with a fixed number of nodes (as shown in Figure 6.6(a), the transaction
arrival rate increases from 104 to 6 ∗ 104); (ii) increase the number of nodes with
a fixed transaction arrival rate (as shown in Figure 6.6(b), the number of nodes
increases from 8 to 64). To obtain an accurate testing result, again, we repeat
experiments 300 times and calculate their average performance.

The first experiment attempts to evaluate the average TPS over different transac-
tion arrival rates. We set 8 nodes participating in the system and start the testing
at a rate of 1250 Tx/s for each node (total arrival rate = 104 Tx/s). Then, we
increase the rate in a fixed interval, as it is shown in Figure 6.6(a). The evaluation
shows that when the arrival rate is less than 50k, the throughput increases linearly.
When the arrival rate gets close to or above the saturation point (50k Tx/s), the
throughput flats out at around 43k TPS. The reason is that the propagation la-
tency becomes the primary bottleneck when the arrival rate is over 50k Tx/s,
which makes the influence of the arrival rate negligible. Meanwhile, the number of
transactions pending in the verification phase also affects the final results.

The second experiment attempts to evaluate the throughput with respect to an
increasing number of nodes. Our algorithm, implemented based on PBFT, is only
suitable for permissioned blockchain. We limit the size of the committee to an
upper bound of 64, and the number of these nodes will remain stable. We send
transactions at a fixed rate (total arrival rate = 5∗104 Tx/s) and adjust participated
nodes from 8 to 64. Figure 6.6(b) shows the throughput of the system drops
down as the number of participants increases. Merely increasing the number of
participants improves the concurrency but scarifies the performance of individual
nodes. Each of them has to wait for enough replies from other nodes (reaching the
threshold). Thus, the scalability of Sphinx cannot be improved without limitation.

Disk Space. To check the feasibility, we also provide evaluations of disk space. In
Sphinx, the storage of the node grows each time when the messages are appended
to the local chain. Meanwhile, for checking the correctness of the behaviours from
other nodes, each auditor must store the state received from other nodes. Thus,
we consider space evaluation in two aspects: (i) the size of the local chain and
(ii) the size of the remote state. We assume that there are eight nodes with the
transaction creation rate of 100 messages/second. Then, we monitor the space
usage of each node and analyze their growth rates. As shown in Figure 6.6(c), the
results indicate that the size of the local chain grows linearly with the increased
transactions. On average, the size of the local chain in each node grows at the rate
of 0.212 KB per message. In contrast, the size of the remote state is static, which
is independent of the scale of transactions. This is easy to understand because the

disk usage of remote states relies on the scale of the participated nodes, where the
number is fixed in the initial configuration.

6.1.7 Use Cases of Our Consensus

This section explores two potential applications to demonstrate the feasibility and
applicability of the proposed consensus.

Certificate System. Issuing and verifying certificates are slow and complicated.
Errors and fraud also threaten the usability of certificates. A blockchain-based
certificate system uploads certificate metadata to the blockchain to achieve reli-
able management. However, current systems such as Bitcoin suffer from extremely
low performance, making the certificate confirmed slowly. This greatly limits the
wide adoption of classic blockchain systems. We observed that the key idea be-
hind a certificate system is to store certificates transparently rather than to sort
their orders. Thus, our system can perfectly meet the requirements: (i) the trans-
action data on the chain proves the existence of uploaded certificates; (ii) the
high-performance system without linear ordered sequence makes it applicable to
large-scale certificate scenarios.

Log System. Blockchain technology provides a new approach to the log system
since it provides a publicly accessible bulletin board. Recording the logs that
are generated by the software onto a distributed storage system greatly improves
security. The irreversibility of the blockchain system guarantees that the uploaded
logs cannot be easily falsified. However, the low performance of current blockchain
systems significantly retards the procedures (upload/store/download/change) of
logs. This impedes their applications to business scenarios. Our weak consensus
benefits current approaches with the ability to prove the existence as well as high
performance of processing, enabling blockchain-based log systems more practical.

6.1.8 Related Work

Our scheme adopts the model of parallel chains [78], where each node maintains
their own chains. Generally, two types of consensus mechanisms are adopted in
our model: the variants of BFT protocols called leaderless BFT protocols, and the

modified NC protocols named extended Nakamoto consensus.

Leaderless BFT protocols. Hashgraph [13] was proposed with the leaderless
BFT mechanism. Each node maintains a separate chain, but they are required to
interact via the gossip protocol mutually. The node that receives the synchroniza-
tion information creates a message locally to record the history and then broad-
casts it to peers. Other nodes iterate the same procedure. Hashgraph achieves
the consensus through an asynchronous Byzantine consensus. However, dissem-
inated information containing all previous histories is heavy, which significantly
increases communication overhead. Parallel chains in DEXON [50] confirm each
other through the reference field called ack, and achieve consensus through these
references. The consensus consists of three steps. Firstly, each block is determin-
istically arranged into one single chain by comparing the residue of its hash value.
Then, DEXON employs the technique of a variant BFT protocol borrowed from
Algorand [92] as its single-chain consensus. Finally, it proposes a sorting mecha-
nism to determine the total order of all blocks across parallel chains. In the case of
a network delay, these steps will easily be congested, which will negatively affect
the entire system. Aleph [81] is a leaderless BFT distributed system. Each node
concurrently issues units (carrying messages). These units are organized in differ-
ent sets. Units in these sets undergo a voting algorithm. The unit is considered
to be valid if it receives more votes than the threshold. However, this procedure
is time-consuming.

Extended Nakamoto Consensus. OHIE [216] shares similarities in compos-
ing multiple parallel chains. OHIE adopts classic Nakamoto consensus for each
individual chain. Miners need to calculate a puzzle to generate blocks and ad-
ditionally have to sort received blocks. Blocks arrive at a global order across all
parallel chains, thus achieving consistency. However, the total ordered sequence
limits the upper bound of performance due to the strong assumption of consis-
tency. Prism [11] structures the network with three types of blocks: proposer
blocks, transaction blocks, and voter blocks. These blocks replace the functional-
ities of a common block in Nakamoto consensus. The consistency is achieved by
sorting all transaction blocks. The total ordering is ensured by its proposer blocks,
which are selected by voter blocks. However, even decoupled functionalities reach

their upper bounds, the procedure of a total ordering algorithm still becomes the
bottleneck of throughput. Chainweb [147] aims to scale Nakamoto consensus by
maintaining multiple parallel chains. It is based on a PoW consensus that incor-
porates each other’s Merkle roots to increase the hash rate. Each chain in the
network mines the same cryptocurrency, which can be transferred cross-chain via
a simple payment verification. The method reduces several coins from one chain
and creates equal amounts on another chain. However, Kiffer et al. [121][78] argue
that Chainweb utilizing Nakamoto consensus is bounded by the same throughput
under the same consistency guarantee.

6.1.9 Conclusion

In this chapter, we proposed a weak consensus algorithm by relaxing the strong
consistency promise. We applied our algorithm to a high-performance blockchain
system. The system runs in parallel chains, where all transactions and blocks
are concurrently processed. We further defined the security of relative persistence
and liveness, and then proved that our system achieves these properties. Also,
we provided a full implementation with all layered components, including P2P
network and ledger structure. The evaluation indicated that our system achieves
high performance, with approximately 43k TPS in total. Finally, we explored
potential applications to demonstrate feasibility and applicability.

6.2 An Offline Delegatable Payment System

6.2.1 Introduction

The interest in decentralized cryptocurrencies has grown rapidly recently. Bit-
coin [158], as the first and most famous system, has attracted massive attention.
Subsequently, a handful of cryptocurrencies, such as Ethereum [213], Namecoin
[6] and Litecoin [222], were proposed. Blockchain-based cryptocurrencies signifi-
cantly facilitate the convenience of payment by providing a decentralized online
solution for customers. However, merely online processing of transactions con-
fronts the problem of low performance and high congestion. Offline delegation
provides an alternative way to mitigate the issue by enabling users to exchange
the coin without having to connect to an online blockchain platform [97]. Unfor-
tunately, decentralized offline delegation still confronts risks caused by unreliable
participants. Misbehaviours may easily happen due to the absence of effective su-
pervision. To be specific, let us start from a real scenario: imagine that Bob, the
son of Alex, a wild teenager, wants some digital currency (e.g., BTC) to buy a film
ticket. According to current decentralized cryptocurrency payment technologies
[158][213], Alex has two delegation approaches:

- Coin-transfer. Alex asks for Bob’s BTC address and then transfers a specific
number of coins to Bob’s address. In such a scenario, Bob can only spend
the received coins from Alex.

- Ownership-transfer. Alex directly gives his own private key to Bob. Then,
Bob can freely spend coins using such a private key. In this situation, Bob
obtains all coins that are saved in Alex’s address.

We observe that both approaches suffer drawbacks. For the first approach, coin-
transfer requires a global consensus of the blockchain, which makes the payment
time-consuming [118]. For example, a confirmed transaction in Bitcoin [158] takes
around one hour (6 blocks), making coin-transfer lose the essential property of real-
time. For the other approach, ownership-transfer highly relies on the honesty of
the delegatee. The promise between the delegator and delegatee depends on their
trust or relationship. But it is weak and unreliable. The delegatee may spend
all coins in the address for other purposes. Back to the example, Alex’s original

intention is to give Bob 200 µBTC to buy a film ticket, but Bob may spend all
coins to purchase his favourite toys. That means Alex loses control of the rest
of the coins. These two types of approaches represent most of the mainstream
schemes ever aiming to achieve a secure delegation, but neither of them provides
a satisfactory solution. This leads to the following research problem:

Is it possible to build a secure offline peer-to-peer delegatable system for
decentralized cryptocurrencies?

The answer would intuitively be “NO”. Without interacting with the online net-
work, used coins confront the risk of being spent twice after another successful
delegation. This is because a delegation is only witnessed by the owner and del-
egatee, where no authoritative third parties perform the final confirmation. The
pending status leaves a window for attacks in which a malicious coin owner could
spend this delegated transaction before the delegatee uses it. Even if a third party
can be introduced as a judge between the delegator (owner) and delegatee to secure
transactions, He faces the threat of being compromised or provided with mislead-
ing assure. Furthermore, the approach that uses a third party contradicts the real
intention of decentralized cryptocurrency systems.

In this chapter, we propose DelegaCoin, an offline delegatable electronic cash sys-
tem. The trusted execution environments (see Section 2.3 for more details on
TEEs) are utilized to play the role of a virtual agent. TEEs prevent malicious dele-
gation of coins (e.g., double-delegation of the same coins). As shown in Figure.6.6,
the proposed scheme allows the owner to delegate his coins without interacting
with the blockchain or any trusted third parties. The owner can directly delegate
specific amounts of coins to others by sending them through a secure channel. This
delegation can only be executed once under the supervision of delegation policy
inside TEEs.

6.2.2 Related Work

Decentralized Cryptocurrency System. Blockchain-based cryptocurrencies
facilitate the convenience of payment by providing a decentralized online solu-
tion for customers. Bitcoin [158] was the first and most popular decentralized

cryptocurrency. Litecoin [222] modified the PoW mechanism by using the Script
algorithm and shortened the block confirmation time. Namecoin [6] was the
first hard fork of Bitcoin to record and transfer arbitrary names (keys) securely.
Ethereum [213] extended Bitcoin by enabling state-transited transactions. Zcash
[114] provided a privacy-preserving payment solution by utilizing zero-knowledge
proofs. CryptoNote-style schemes [217], instead, enhanced privacy by adopting
ring-signatures. However, slow confirmation of transactions retards their wide
adoption from developers and users. Current cryptocurrencies, with ten to hun-
dreds of transactions [158, 223], cannot rival mature payment systems such as Visa
or PayPal that can process thousands of transactions. Thus, various methods have
been proposed for better throughput. The scaling techniques can be categorized
in two ways: (i) On-chain solutions that aim to create highly efficient blockchain
protocols, either by reconstructing structures, connecting chains [219] or via shard-
ing the blockchain [204]. However, on-chain solutions are typically not applicable
to existing blockchain systems (require a hard fork). (b) Off-chain (layer 2) solu-
tions that regard the blockchain merely as an underlying mechanism and process
transactions offline [97]. Off-chain solutions operate independently on top of the
consensus layer of blockchain systems, not changing their original designs. In this
chapter, we explore the second avenue.

Payment Delegation. Payment delegation plays a crucial role in e-commercial
activities, and it has been comprehensively studied for decades. Several widely
adopted approaches are such that, using credit cards (Visa, Mastercard, etc.),
reimbursement, third-party platforms (like PayPal [212], AliPay [144]). These
schemes allow users to delegate their cash spending capability to their devices or
other users. However, these delegation mechanisms heavily rely on a centralized
party that needs a significant amount of trust. Decentralized cryptocurrencies,
like Bitcoin [158] and Ethereum [213], remove the role of trusted third parties,
making the payment reliable and guaranteed by distributed blockchain nodes.
However, such payment is time-consuming since online transactions need to get
confirmed by the majority of participated nodes. The delegation provides the
decentralized cryptocurrency with an efficient payment approach to delegate the
coin owner’s spending capability. The cryptocurrency delegation using SGX was
first explored in [148], where they only focused on credential delegation in the fair

exchange. Teechan [140] provided a full-duplex payment channel framework that
employed TEEs, in which the parties can pay each other without interacting with
the blockchain in a bounded time. However, Teechan requires a complex setup:
the parties must commit a multisig transaction before the channel started. In
contrast, our scheme is simple and more practical.

6.2.2.1 Secure Hardware

In our scheme, parties will have access to TEEs, which serve as isolated environ-
ments to guarantee the integrity and confidentiality of inside code and data. To
capture the secure functionality of TEEs, inspired by [77] we define TEEs as a
black-box program that provides interfaces exposed to users. The abstraction is
given as follows. Note that, due to the scope of usage, we only capture remote
attestation of TEEs and refer to [77] for a full definition.

Definition 10. A secure hardware functionality HW for a class of probabilis-
tic polynomial time (PPT) programs P includes algorithms: Setup, Load, Run,
RunQuote, QuoteVerify.

- HW.Setup(1λ) : The algorithm takes as input a security parameter λ, and
outputs the secret key skquote and public parameters pms.

- HW.Load(pms, P) : The algorithm loads a stateful program P into an enclave.
It takes as input a program P ∈ P and public parameters pms, and outputs
a new enclave handle hdl.

- HW.Run(hdl, in) : The algorithm runs enclave. It inputs a handle hdl that
relates to an enclave (running program P) and an input in, and outputs
execution results out.

- HW.RunQuote(hdl, in) : The algorithm executes programs in an enclave and
generates an attestation quote. It takes as input hdl and in, and executes
P on in. Then, it outputs quote = (hdl, tagP , in, out, σ), where tagP is a
measurement to identify the program running inside an enclave and σ is a
corresponding signature.

- HW.QuoteVerify(pms, quote) : The algorithm verifies the quote. It first exe-

Table 6.2: Featured notations

Symbol Item Functionalities

O Delegator also known as coin owner, the person who sends the coins

D Delegatee the person who receives the coins

B Blockchain an ideal blockchain environment

Tx Transaction the transaction in blockchain network

EO/ED Enclave the Delegatee’s/Delegator’s Intel enclave instance

TEE TEEs a real TEEs environment, sometimes used in superscript for indication

hdl Handle an intermediate parameter when initiating TEEs

quote Quote a flag to request operations when running TEEs

pms Parameters intermediate parameters when running TEEs

pk/sk Key pair the public key and private key to encrypt/decrypt states

vk/sksign Key pair the key pair to identify a specific entity (delegatee)

keyseal Private key a sealing key used to export the state to the trusted storage

r Private key a symmetric encryption key r

ctr Ciphertext the ciphertext under a symmetric encryption key with r inside TEEs

b Account balance the subscript init/deposit/update means the status in different stages

c Encrypted balance the balance that has been encrypted and transferred

σ Signature a valid signature, the subscript indicates its corresponding signer

HW Hardware a ideal and secure hardware functionality used in proofs

P Program space a program that contains a set of algorithms, instantiated as P

O Oracle an environment that can provide ideal functionalities

U(·) Oracle a universal oracle can provide simulated answers

S Simulator an ideal environment that can simulate some behaviours

A Adversary an adversary who has some ability to launch attacks

λ Security parameter a type of parameter to adjust the security level of algorithms

negl(λ) Negligible function a function to show the negligible differences in security proofs

Exp Experiment an experiment that show the game and operations in proofs

PKE Algorithm an IND-CCA2 secure public key encryption scheme

S Algorithm an existentially unforgeable (EUF-CMA) signature scheme

SE Algorithm a IND-CPA secure symmetric encryption scheme

cutes P on in to get out. Then, it takes as input pms,
quote = (hdl, tagP , in, out, σ), and outputs 1 if the signature σ is correct.
Otherwise, it outputs 0.

Correctness. The HW scheme is correct if the following properties hold: For all

program P , all input in

• Correctness of HW.Run: for any specific program P ∈ P , the output of
HW.Run(hdl, in) is deterministic.

• Correctness of RunQuote and QuoteVerify:

Pr[QuoteVerify(pms,RunQuote(hdl, in)) ̸= 1] ≤ negl(λ).

Remote attestation in TEEs provides functionality for verifying the execution and
corresponding output of a certain code run inside the enclave by using a signature-
based quote. Thus, remote attestation unforgeability security [77] is defined simi-
larly to the unforgeability of a signature scheme.

Definition 11 (Remote Attestation Unforgeability (RemAttUnf)). A HW scheme
is RemAttUnf secure if all PPT adversaries, there exists a negligible function
negl(λ) such that

Pr
[
GRemAttUnf
A,S (λ) = 1

]
≤ negl(λ),

where GRemAttUnf
A,HW (λ) is defined as follows:

GRemAttUnf
A,HW (λ)

1 : pms← HW.Setup(1λ);

2 : Lquote ← {}; // C initializes the list Lquote

3 : hdl← HW.Load(pms,Q); // A loads program P into enclave and gets back

the handle hdl

4 : quote← HW.Run&Quote(hdl, in{0,...,n}); // A chooses input to run the

algorithm and gets the quote

5 : Lquote ← quote; // C repeats step 4, and adds the quote into list Lquote

6 : (in⋆, quote⋆)← AO(hdl,·)(pms); // O(hdl, ·) works as the same with step 4

7 : return (HW.QuoteVerify(pms, quote⋆) = 1) ∧ quote⋆ /∈ Lquote; // return true

if the quote⋆ is not in Lquote but is valid

6.2.3 DelegaCoin

In DelegaCoin, three types of entities are involved: coin owner (or delegator) O,
coin delegatee D, and blockchain B (see Figure 6.6). The main idea behind Dele-
gaCoin is to exploit the TEEs as trusted agents between the coin owner and coin
delegatee. TEEs are used to maintain delegation policies and ensure faithful ex-
ecutions of the delegation protocol. In particular, TEEs guarantee that the coin
owner (either honest or malicious) cannot arbitrarily spend the delegated coins.
The workflow is described as follows. Firstly, both O and D initialize and run en-
claves, and the ownerO′s enclave generates an address addr for further transactions
with a private key maintained internally. Next, O deploys delegation policies into
the owner O′s enclave and deposits coins to the address addr. Then, O delegates
coins to D by triggering the execution of delegation inside the enclave. Finally,
D spends delegated transactions to the blockchain network B. Note that the en-
claves in our scheme are decentralized, meaning that each O and D has its own
enclave without depending on a centralized agent, which satisfies the requirements
of current cryptocurrency systems.

Owner Delegatee Blockchain

Negotiation

Enclave Initiation

Address Creation

Coin Deposit

Coin Delegation

 Coin Spend

S
yste

m
 S

e
tu

p
C

o
in

 D
e

p
o

sit
D

e
le

g
a
tio

n
S

p
e

n
d

E
n

cl
a
ve

E
n
cl

a
ve

Figure 6.6: DelegaCoin workflow diagram

6.2.3.1 System Framework

System Setup. In this phase, the coin ownerO and the delegateeD initialize their
TEEs to provide environments for operations with respect to further delegation.

• Negotiation. pms ← ParamGen(1λ): O agrees with D for pre-shared infor-
mation. Here, λ is a security parameter.

• Enclave Initiation. hdlO, hdlD ← EncvInit(1λ, pms): O and D initialize the
enclave EO and ED with outputting the enclave handles hdlO and hdlD.

• Key Generation. (pkTx, skTx), (pkO, skO), keyseal ← KeyGenTEE(hdlO, 1
λ) and

(pkD, skD), (vksign, sksign), r ← KeyGenTEE(hdlD, 1
λ): O and D run the en-

claves EO and ED to create their internal keys. Key pair (pkTx, skTx) is used
for the transaction generation. Key pair (pkO, skO) and (pkD, skD) are used
for remote assertion, while keyseal is a sealing key used to export the state to
the trusted storage. The key pair (vksign, sksign) is used to identify a specific
delegatee, while r is a private key for transaction encryption.

• Quote Generation. quote ← QuoGenTEE(skO, vksign, pms): O generates a
quote for requesting an encrypted symmetric encryption key from D.

• Key Provision. ctr ← ProvisionTEE(quote, sksign, pkO, pms): O proves to D
that EO has been instantiated with a quote to request an encrypted symmet-
ric encryption key ctr. The symmetric encryption is used to encrypt messages
inside TEEs.

• Key Extraction. r ← ExtractTEE(skO, ctr): O extracts a symmetric encryp-
tion key r from ctr using skO.

• State Retrieval. binit = DecTEE(keyseal, cinit): Encrypted states are read back
by the enclave EO under keyseal, where binit is the initial balance and cinit is
the initial encrypted balance. This step prevents unexpected occasions that
may destroy the state in TEEs memory.

Coin Deposit. The enclave EO generates an address and its corresponding private
key pkTx for the deposit. Afterwards, O sends coins to this address in the form of
fund deposits.

• Address Creation. addr ← AddrGenTEE(1λ, pkTx): O calls EO to generate a
transaction address addr. The private key skTx of addr is secretly stored
inside TEEs and generated by an internal pseudo-random number.

• Coin Deposit. bdeposit = UpdateB(addr, binit): O generates an arbitrary trans-
action and transfers some coins to addr as the deposits.

Coin Delegation. In this phase, neither O nor D interacts with the blockchain.
O can instantly complete the coin delegation through offline transactions.

• Balance Update. bupdate ← UpdateTEE(bdeposit, bTx): EO checks current bal-
ance to ensure that it is enough for deduction. Then, EO updates the bal-
ance.

• Signature Generation. σTx ← TranSignTEE(skTx, addr, bTx): EO generates a
valid signature σTx.

• Transaction Generation. Tx ← TranGenTEE(addr, bTx, σTx): EO generates a
transaction Tx using σTx.

• Coin Delegation. ctTx ← TranEncTEE(r,Tx): O sends encrypted transaction
ctTx to D.

• State Seal. cupdate ← EncTEE(keyseal, bupdate): Once completing the delegation,
records cupdate are permanently stored outside the enclave. If any abort or
halt happens, a re-initiated enclave starts to reload missing information.

All algorithms in the step of Coin Delegation must be run as an atomic operation,
meaning that either all algorithms finish or none of them finish. A hardware Root
of Trust can guarantee this, and we refer to [61] for more details.

Coin Spend. Tx← TranDecTEE(r, ctTx): D decrypts ctTx with r, and then spends
Tx by forwarding it to the blockchain network.

Correctness. The DelegaCoin scheme is correct if the following properties hold:
For all Tx, bdeposit, bupdate and bTx.

• Correctness of Update:

Pr [bTx ̸= (bdeposit − bupdate)] ≤ negl(λ).

• Correctness of Seal:

Pr[DecTEE(keyseal,Enc
TEE(keyseal, binit)) ̸= binit] ≤ negl(λ).

• Correctness of Delegation:

Pr[TranDecTEE(r,TranEncTEE(r,Tx)) ̸= Tx] ≤ negl(λ).

6.2.3.2 Oracles for Security Definitions

We now define oracles to simulate an honest owner and a delegatee for further
security definitions and proofs. Each oracle maintains a series of (initially empty)
sets R1, R2 and C which will be used later. Here, we use (instruction;parameter)

to denote both the instructions and inputs of oracles.

Honest Owner Oracle Oowner : This oracle gives the adversary access to honest
owners. An adversary A can obtain newly delegated transactions or sealed storage
with his customized inputs. The oracle provides the following interfaces.

- On input (signature creation; addr), the oracle checks whether a tuple
(addr, σTx) ∈ R1 exists, where addr is an input of transactions. If successful,
the oracle returns σTx to A; otherwise, it computes
σTx ← TranSignTEE(skTx, addr, bTx) and adds (addr, σTx) to R1, and then
returns σTx to A.

- On input (quote generation; vksign), the oracle checks if a tuple
(vksign, quote) ∈ R2 exists. If successful, the oracle returns quote to A;
otherwise, it computes quote← QuoGenTEE(skO, vksign, pms) and adds
(vksign, quote) to R2, and then returns quote to A.

Honest Delegatee Oracle Odelegatee : This oracle gives the adversary access to
honest delegatees. The oracle provides the following interfaces.

- On input (key provision; quote), the oracle checks whether a tuple
(quote, ctr) ∈ C exists. If successful, the oracle returns ctr to A; otherwise,

it computes ctr ← ProvisionTEE(quote, sksign, pkO, pms), adds (quote, ctr) to
C, and then returns (quote, ctr) to A.

HW Oracle: This oracle gives the adversary access to honest hardware. The
oracle provides interfaces as defined as in Definition 10. Note that, to ensure that
anything A sees in the real world can be simulated in the ideal experiment, we
require that an adversary get access to HW Oracle through Odelegatee and Oowner

rather than directly interacting with HW Oracle.

6.2.3.3 Threat Model and Assumptions

As for involved entities, we assume that O attempts to delegate coins to the del-
egatee. Each party may potentially be malicious. O may maliciously delegate an
exceptional transaction, represented as sending the same transaction to multiple
delegatees or spending delegated transactions before D spends them. D may also
attempt to assemble an invalid transaction or double spend delegated coins. We
also assume the blockchain B is robust and publicly accessible.

Regarding devices, we assume that TEEs are secure, which means that an adver-
sary cannot access the enclave runtime memory and their hardware-related keys
(e.g., sealing key or attestation key). In contrast, we do not assume the com-
ponents outside TEEs are trusted. For example, the adversary may control the
operating system or high-level privileged software.

6.2.3.4 Security Goals.

DelegaCoin aims to employ TEEs to provide a secure delegatable cryptocurrency
system. In brief, TEEs prevent malicious delegation in three aspects: (1) The
private key of a delegated transaction and the delegated transaction itself are
protected against the public. If an adversary learns any knowledge about the
private key or the delegated transaction, he may spend the coin before the delega-
tee uses it; (2) The delegation executions are correctly performed. In particular,
the spendable number of delegated coins must be less than (or at least equal to)
that of original coins; (3) The delegation records are securely stored to guarantee
consistency considering accidental TEEs failures or malicious TEEs compromises.
DelegaCoin is secure if adversaries cannot learn any knowledge about the private

key, the delegated transaction, and the sealed storage.

To capture such security properties, we formalize our system through a game in-
spired by [21]. In our game, a PPT adversary attempts to distinguish between a
real world and a simulated (ideal) world. In the real world, the DelegaCoin algo-
rithm works as defined in the construction. The adversary is allowed to access the
transaction-related secret messages created by honest users through oracles, as in
Definition 6.2.3.2. Obviously, the ideal world does not leak any useful information
to the adversary. Since we model additional information explicitly to respond to
the adversary, we construct a polynomial-time simulator S that can fake the ad-
ditional information corresponding to the real result, but with respect to the fake
TEEs. Thus, a universal oracle U(·) in the ideal world is introduced to simulate
the corresponding answers of A called in oracles in the real world. We give a for-
mal model as follows, in which these two experiments begin with the same setup
assumption.

Definition 12 (Security). DelegaCoin is simulation-secure if for all PPT ad-
versaries A, there exists a stateful PPT simulator S and a negligible function
negl(λ) such that the probability of that A distinguishes between ExprealA,DelegaCoin(λ)

and ExpideaA,DelegaCoin(λ) is negligible, i.e.,

∣∣Pr[ExprealA,DelegaCoin(λ) = 1]− Pr[ExpidealA,DelegaCoin(λ) = 1]
∣∣ ≤ negl(λ).

6.2.4 Formal Protocols

In this section, we present a formal model for our electronic cash system by utilizing
the syntax of the HW model. In particular, we model the interactions of Intel SGX
enclaves as calling to the HW functionality defined in Definition 10. The formal
protocols are provided as follows.

The owner enclave program PO is defined as follows. The value tagP is a measure-
ment of the program PO, and it is hardcoded in the static data of PO. Let stateO

denote an internal state variable.

PO:

ExprealA,DelegaCoin(λ)

1 : pms← ParamGen(1λ)

2 : hdlO, hdlD ← EncvInit(1λ, pms)

3 : (pkTx, skTx), (pkO, skO), keyseal ← KeyGenTEE(hdlO, 1
λ)

4 : (pkD, skD), (vksign, sksign), r← KeyGenTEE(hdlD, 1
λ)

5 : quote← A(hdlO, vksign, pms)

6 : ctr ← AProvisionTEE(sksign)(hdlD, quote, pkO, pms)

7 : r ← AExtractTEE(skO)(hdlO, ctr)

. .Setup Completed .

8 : binit = DecTEE(hdlO, keyseal, cinit)

9 : addr ← AddrGenTEE(1λ, pkTx)

10 : bdeposit=UpdateB(addr,binit)

11 : bupdate←UpdateTEE(hdlO,bdeposit,bTx)

12 : σTx ← ATranSignTEE(skTx)(hdlO, addr, bTx)

13 : Tx← TranGenTEE(hdlO, addr, bTx, σTx)

14 : ctTx ← ATranEncTEE(r)(hdlO,Tx)

15 : cupdate = AEncTEE(keyseal)(hdlO, bupdate)

. Delegation Completed

16 : Tx← TranDecTEE(hdlD, r, ctTx)

17 : return (Tx, cupdate)

ExpidealA,DelegaCoin(λ)

1 : pms← ParamGen(1λ)

2 : hdl⋆O, hdl
⋆
D ← S(1λ, pms)

3 : (pkTx, skTx), (pkO, skO), keyseal ← KeyGenTEE(hdl⋆O, 1
λ)

4 : (pkD, skD), (vksign, sksign), r ← KeyGenTEE(hdl⋆D, 1
λ)

5 : quote← A(hdl⋆O, vksign, pms)

6 : ctr ← AS
U(·)

(hdl⋆D, quote, pkO, pms)

7 : r ← ASU(·)
(hdl⋆O, ctr)

. .Setup Completed .

8 : binit ← S(hdlO, keyseal, cinit)
9 : addr ← S(1λ, pkTx)

10 : bdeposit = S(addr, binit)
11 : bupdate ← S(hdl⋆O, bdeposit, 1|bTx|)

12 : σTx ← AS
U(·)

(hdl⋆O, addr, bTx)

13 : Tx← S(hdl⋆O, addr, 1|bTx |, σTx)

14 : ctTx ← AS
U(·)

(hdl⋆O, 1
|Tx|)

15 : cupdate = AS
U(·)

(hdl⋆O, 1
|bupdate|)

. Delegation Completed

16 : Tx← S(hdlD⋆ , r, ctTx)

17 : return (Tx, cupdate)

• On input (“init setup”, sid, vksign2):

- Run (pkO, skO)← PKE.KeyGen(1λ) and keyseal
3 ← SE.KeyGen(1λ).

- Update state to (skO, vksign) and output (pkO, sid, vksign).

• On input (“complete setup”, sid, ctr, σr):

- Look up the stateO to obtain the entry (skO, sid, vksign). If no entry
exists for sid, output ⊥.

- Receive the (sid, vksign) from O and check if vksign matches with the
one in stateO. If not, output ⊥.

- Verify signature b← S.Verify(vksign, σr, (sid, ctr)). If b = 0, output ⊥.

- Run r ← PKE.Dec(skO, ctr).

- Add the tuple (r, sid, vksign) to stateO.
2We assume that the combination (sid, vksign), represented as the identity of a delegatee, has

already been distributed before the system setup.
3Multiple enclaves from the same signing authority can derive the same key, since seal key is

based on the enclave’s certificate-based identity.

• On input (“state retrieval”, sid):

- Retrieve identity-balance pair (sid, cinit) from the sealed storage.

- Run binit = SE.Dec(keyseal, cinit) and update stateO to (sid, binit)

• On input (“address generation”, 1λ):

- Run (skTx, pkTx)← S.KeyGen(1λ) and addr ← AddrGenTEE(1λ, pkTx).

- Update (skTx, addr) to stateO and output (pkTx, addr).

• On input (“transaction generation”, addr):

- Retrieve the private key skTx.

- Run σTx ← S.Sign(skTx, addr, bTx) and output a signature σTx.

- Run Tx← TranGen(addr, bTx, σTx) and update (sid,Tx) to stateO.

• On input (“state update”, addr):

- Check bdeposit and bTx. If bdeposit < bTx, output ⊥.

- Run bupdate ← Update(bdeposit, bTx).

• On input (“start delegation”, addr):

- Retrieve the provision private key r and Tx from stateO.

- Run ctTx ← SE.Enc(r,Tx).

• On input (“state seal”, addr):

- Run cupdate = SE.Enc(keyseal, bupdate) and update stateO to
(addr, bupdate).

- Store addr and cupdate to the sealed storage.

The delegatee enclave program PD is defined as follows. The value tagD is the
measurement of the program PD, and it is hardcoded in the static data of PD.
Let stateD denote an internal state variable. Also, the security parameter λ is
hardcoded into the program.

PD:

• On input (“init setup”, 1λ):

- Generate a session ID, sid← {0, 1}λ.

- Run (pkD, skD)← PKE.KeyGen(1λ), and
(vksign, sksign)← S.KeyGen(1λ).

- Update stateD to (skD, sksign) and output (sid, pkD, vksign).

• On input (“provision”, quote, pkO, pms):

- Parse quote = (hdlO, tagP , in, out, σ), check that tagP == tagO. If not,
output ⊥.

- Parse out = (sid, pkO), and run b← HW.QuoteVerify(pms, quote) on
quote. If b = 0, output ⊥.

- Select a random number r and compute the algorithm
ctr = PKE.Enc(pkO, r) and σr = S.Sign(sksign, (sid, ctr)) and output
(sid, ctr, σr).

• On input (“complete delegation”, ctTx):

- Retrieve r from stateD.

- Run Tx← SE.Dec(r, ctTx).

Setup. The following steps are based on the completed initialization of pro-
grams of the delegator PO and delegatee PD. The delegatee D runs hdlD ←
HW.Load(pms, PD) and (vksign, pkD)← HW.Run(hdlD, (“init setup” , 1λ)). Af-
terwards, D sends vksign to the delegator O. Next, O runs
hdlO ← HW.Load(pms,PO) to load the handle. Meanwhile, O calls quote ←
HW.Run&Quote(hdlO, (“init setup”, sid, vksign)), and sends a quote to D.
Then, D calls (sid, ctr, σr) ← HW.Run(hdlD, (“provision”, quote, pkO, pms)),
and sends (sid, ctr, σr) to O, and O calls
HW.Run(hdlO, (“complete setup” , vksign)). At the end of completing setup,
O’s enclave EO obtains the private key r used for the transaction delegation.

Deposit. O calls cinit ← HW.Run(hdlO, (“state retrieval”, sid)). If cinit does not
exist or equals to 0, O calls addr ← HW.Run(hdlO, (“address generation” , 1λ))

to create a new address addr. Then, O transfers coins to addr through a
normal blockchain transaction.

Delegation. O parses hdlO and calls EO. Then, EO retrieves addr. Afterwards,
it calls bupdate ← HW.Run(hdlO, (“state update”, addr)). If the update algo-
rithm returns false or failure, EO aborts the following operations. Otherwise,
it looks up the state to obtain skTx, and runs
Tx← HW.Run(hdlO, (“transaction generation” , addr)) and outputs a transac-
tion Tx. After that, the delegator’s enclave EO retrieves r and runs ctTx ←
HW.Run(hdlO, (“start delegation” , addr)). Finally, O sends ctTx to D.

Spend. D runs Tx← HW.Run(hdlD, (“complete delegation” , ctTx)). After that, D
spends the received transaction Tx by forwarding it to the blockchain network.
Then, a blockchain node parses Tx = (addr, pkTx,metadata, σTx) and runs
b← S.VerifyB(pkTx, σTx). If b = 0, output ⊥. Otherwise, the node broadcasts
Tx to other blockchain nodes.

6.2.5 Security Analysis

Theorem 3 (Security). Assume that SE is IND-CPA secure, PKE is IND-CCA2
secure, S holds the EUF-CMA security, and TEEs are secure as in Definition 10,
our DelegaCoin scheme is simulation-secure.

Inspired by [77, 141], we use a simulation-based paradigm to conduct security
analysis and explain the crux of our security proof as follows. We first construct a
simulator S that can simulate the challenge responses in the real world. It provides
the adversary A with a simulated delegated transaction, a simulated quote and
sealed storage. The information that A can obtain is merely the instruction code
and oracle responses queried by A in the real experiment. At a high level, the proof
idea is simple: S encrypts zeros as the challenge message. In the ideal experiment,
S intercepts A’s queries to user oracle and provides simulated responses. It uses
its U(·) oracle to simulate oracles in the real world and sends the response back to
A as the simulated oracle output. U(·) and S’s algorithms are described as follows.

Pre-processing phase. S simulates the pre-processing phase similar to in the
real world. It first runs ParamGen(1λ) and records system parameters pms that are

generated during the process. Then, it calls EncvInit(1λ, pms) to create simulated
enclave instances. S also creates empty lists R⋆

1, R⋆
2, C⋆, K⋆ and L⋆.

KeyGen⋆(1λ) When A makes a query to KeyGen(1λ) oracle, S responds the
same way as in the real world except that now S stores all public keys queried
in a list K⋆. That is, S does the following algorithms.

- Compute and output (pkO, skO), (pkTx, skTx)← PKE.KeyGen(1λ).

- Store the keys (pkO, skO), (pkTx, skTx) in the list K⋆.

Enc⋆(key⋆, 1|msg⋆|)4 When A provides the challenge message msg⋆ for symmetric
encryption, the following algorithm is used by S to simulate the challenge
ciphertext.

- Compute and output ct⋆ ← SE.Enc(key⋆, 1|msg⋆|).

- Store ct⋆ in the list L⋆.

Oowner⋆(signature creation;addr). When A takes a query to Oowner oracle, S re-
sponds the same way as in the real world, except that S now stores all the
addr corresponding to the user’s queries in a list R⋆

1. That is, S does the
following algorithms.

- Call Oowner oracle with an input (signature creation; addr) and output σTx.

- Store (addr, σTx) in the list R⋆
1.

Oowner⋆(quote generation; vksign). When A takes a query to the Oowner oracle, S
responds the same way as in the real world, excepting that S now stores all
the quote corresponding to the user’s queries in a list R⋆

2. That is, S does the
following algorithms.

- Call the Oowner oracle with an input (quote generation;vksign) and output
quote.

- Store (vksign, quote) in the list R⋆
2.

Odelegatee⋆(key provision; quote). When A takes a query to the Odelegatee oracle, S
responds the same way as in the real world, except that S now stores all the

4Here, msg⋆ is a wildcard character, representing any messages.

quote corresponding to the user’s queries in a list C⋆. That is, S does the
following algorithm.

- Call Odelegatee oracle with an input (key provision; quote) and output ctr.

- Store (quote, ctr) in the list C⋆.

For a PPT simulator S, we prove the security by showing that the view of an
adversary A in the real world is computationally indistinguishable from its view
in the ideal world. Specifically, we establish a series of Hybrids that A cannot be
distinguished with non-negligible advantage.

Hybrid 0. ExprealDelegaCoin(1
λ) runs.

Hybrid 1. As in Hybrid 0, except that KeyGen⋆(1λ) run by S is used to generate
secret keys instead of KeyGen(1λ).

Proof: The proof is straightforward, storing corresponding answers in lists does
not affect the view of A. Thus, Hybrid 1 is indistinguishable from Hybrid 0.

Hybrid 2. As in Hybrid 1, except that S maintains a list C⋆ of all
quote = (hdl, tagP , in, out, σ) output by HW.Run&Quote(hdlO, in). And, when
HW.QuoteVerify(hdlD, pms, quote) is called, S outputs ⊥ if quote /∈ R2. (R2 is
a quote returned by the real world oracles that A has queried as defined in Sec-
tion 6.2.3.2).

Proof: If a fake quote is produced, then the step HW.QuoteVerify(hdlO, pms, quote)

in the real world would make it output ⊥. Thus, Hybrid 2 differs from Hybrid 1
only when A can produce a valid quote without knowing skO. Assume that there
is an adversary A can distinguish between Hybrid 2 and Hybrid 1. Obviously, this
can be transformed to the ability against Remote Attestation, as in Definition 11.
However, our assumption relies on the fact that the security of Remote Attestation
holds. Therefore, Hybrid 2 is indistinguishable from Hybrid 1.

Hybrid 3. As in Hybrid 2, except that when the Odelegatee oracle calls
HW.Run(hdlD, (“provision”, quote, pkO, pms)), S replaces ctr as an encryption of
zeros, saying PKE.Enc(pkO, 1

|r|).

Proof: The IND-CCA2 challenger provides the challenge public key pkO, and an
adversary A provides two messages r and 1|r|, and further, the challenge returns
an encryption of r or an encryption of 1|r|, which is represented ct⋆. S sets ct⋆

as the real output ctr. For ctr ∈ C, S can use Odelegatee as it used in the real
world. However, for ctr /∈ C, S neither has the oracles nor has skO. But, the
decryption oracle offered by the IND-CCA2 challenger can be used for any ctr /∈ C.
Under this condition, if A can still distinguish Hybrid 3 and Hybrid 2, we can
forward the answer corresponding to A’s answer to the IND-CCA2 challenger. If
A can distinguish between these two hybrids with a non-negligible probability, the
IND-CCA2 security of PKE (see Definition 3) can be broken with a non-negligible
probability.

Hybrid 4. As in Hybrid 3, except that S maintains a list R⋆
1 of all transaction

signature σTx output by Oowner(signature creation; addr) for addr ∈ R1. When
b ← S.verifyB(pkTx, σTx) is called, S outputs ⊥, if (addr, σTx), as components of
a Tx, do not belong to R1. Namely, (addr, σTx) /∈ R1.

Proof: If a transaction is given with an invalid signature, then the step
S.VerifyB(pkTx, σTx) in the real world, would make it output ⊥. Thus, Hybrid 4
differs from Hybrid 3 only when A can produce a valid signature on addr which
has never appeared before in the communication between A and oracles. Let A be
an adversary who can distinguish Hybrid 4 and Hybrid 3. We use it to break the
EUF-CMA [94] security of the signature scheme S. We get a verification key pkTx

and access to S.Sign(skTx, ·) oracle from the EUF-CMA challenger. Whenever S
signs a message using skTx, it uses the S.Sign(skTx, ·) oracle. Also, our construction
does not need direct access to skTx sign; it is used only to sign messages for the
oracle provided by the challenger. Now, if A can distinguish two hybrids, the only
reason is that A generates a valid signature σTx. Then, we can send such signature
as forgery to the EUF-CMA [94] challenger.

Hybrid 5. As shown in Hybrid 4, except that when the Oowner oracle calls the
function HW.Run(hdlO, (“start delegation” , addr)), S replaces Enc with Enc⋆.

Lemma 2. If symmetric encryption scheme SE is IND-CPA secure, Hybrid 5 is
indistinguishable from Hybrid 4.

Proof: Whenever A provides a transaction Tx of its choice, S replies with zeros,
e.g., SE.Enc(1|r|), which is shown as follows.

Hybrid4(1
n)

1 : . . .

2 : ctTx ← SE.Enc(r,Tx)

3 : . . .

Hybrid5(1
n)

. . .

ctTx ← SE.Enc(1|r|,Tx)

. . .

replace the encryption with zeros

Assume that there is an adversary A who can distinguish the environments of
Hybrid 5 and Hybrid 4. Then, we build an adversary A⋆ against IND-CPA secure
of SE. Given a transaction Tx, if A distinguishes the encryption of r from the
encryption of 1|r|, we forward the corresponding answer to the IND-CPA challenger.

Hybrid 6. As in Hybrid 5, except that when the A calls
HW.Run(hdlO, (“state seal” , addr)), S replaces Enc with Enc⋆.

Proof: The Indistinguishability between Hybrid 6 and Hybrid 5 can be directly
reduced to the IND-CPA property of SE, which is similar to Lemma 2

6.2.6 Implementation

We implement a prototype with three types of entities: the owner node, the dele-
gatee node, and the blockchain system. The owner node and the delegatee node are
separately running on two computers. The codes of these nodes are both developed
in C++ using Intel® SGX SDK 1.6 under the operating system of Ubuntu 20.04.1
LTS. For the blockchain network, we adopt Bitcoin testnet [3] as our prototype
platform. Specifically, we employ SHA-256 as the hash algorithm and ECDSA [109]
with secp256k1 [177] as the initial setting to sign transactions, which is the same
as the configuration of the Bitcoin testnet.

Algorithm 1 Remote Attestation
Input: request(quote, pms)
Output: b = 0/1
parse the received quote into hdl, tagP , in, out, σ
verify the validity of vksign
run the algorithm HW.quoteVerify with an input (pms, quote)
verify the validity of quote
return the results b = 1 if it passes

Functionalities. We emphasize two main functionalities in our protocol, includ-
ing isolated transaction generation and remote attestation. The delegation inside
TEEs has full responsibility to govern the behaviours of participants. In particular,
TEEs first call the function sgx_create_enclave and enclave_init_ra to create
and initialize an enclave EO. Then, it derives the transaction key skTx under the
user’s invocation.

Next, the system generates a bitcoin address and a transaction by called the func-
tion create_address_from_string and generate_transaction, respectively. EO
keeps skTx in its global variable storage and signs the transaction with it while
calling generate_transaction. The transaction can only be generated inside the
enclave without exposing to the public. Afterwards, EO creates a quote by call-
ing the function ra_network_send_receive, and proves to the delegatee that its
enclave has been successfully initialized and is ready for further delegation.

6.2.7 Evaluation

In this section, we evaluate the system regarding performance and disk space. To
have an accurate and fair test result, we repeat the experiment for each operation
500 times and calculate the average value.

6.2.7.1 Performance

The operations of public key generation and address create cost approximately the
same time since they are both based on the same type of basic cryptographic prim-
itives. The operations of transaction generation, state seal, and transaction decryp-
tion spend more time than the aforementioned operations because they combine

more complex cryptographic operations. We also observe that the enclave initia-
tion spends much more time than (transactions) key pair generations. Fortunately,
the time used on enclave initiation can be omitted since the enclave launches only
once (one-time operation) each time. The state update spends the lowest time
since most of the recorded messages are overlapped without changes and only a
small portion of data requires an update. The operations of coin deposit and trans-
action confirmation depend on the configuration of Bitcoin testnet, varying from
10+ seconds to several minutes. Furthermore, we attach the time costs of the state
seal operation under increased transactions in Figure.6.7 (right column). The time
consumption grows slowly because a large portion of transactions are processed in
batch. Remarkably, it costs less than 25 milliseconds to finish all operations of
coin delegation, which is significantly lower than the online transaction of Bitcoin
testnet. This indicates that our solution is efficient in transaction processing and
practical coin delegation.

Table 6.3: The average performance of various operations

Phase Operation Average Time / ms

System setup
Enclave initiation 13.18940

Public key generation (Tx) 0.34223

Private key generation (Tx) 0.01119

Coin deposit
Address creation 0.00690

Coin deposit −

Coin delegation

Transaction generation 0.78565

Remote attestation 19.50990

State update 0.00366

State seal 5.43957

Coin spend
Transaction decryption −
Transaction confirmation −

6.2.7.2 Disk Space

In this section, we provide an evaluation of the disk space of the sealed state. We
simulate the situation in DelegaCoin when more delegation transactions join the
network. The transaction creation rate is set to be 560 transactions/second. We
monitor space usage and the corresponding growth rate. Each transaction occupies

approximately 700 KB of storage space. We test eight sets of experiments with an
increased number of transactions in the sequence 1, 10, 100, 200, 400, 600, 800, 1000.
The results, as shown in Figure.6.7 (left column), indicate that the size of the
disk usage grows linearly with increased delegation transactions. The reason is
straightforward: the disk usage closely relates to the processed transactions that
are stored in the list. In our configurations, the transaction generation rate stays
fixed. Therefore, the used space is proportional to increased transactions.

Figure 6.7: Used disk space and time-consuming of state seal

6.2.8 Conclusion

Decentralized cryptocurrencies such as Bitcoin [158] provide an alternative ap-
proach for peer-to-peer payments. However, such payments are time-consuming.
In this chapter, we provided a secure and practical TEEs-based offline delegatable
cryptocurrency system. TEEs are used as the primitives to establish a secure del-
egation channel and offer better storage protection of metadata (keys, policy). An
owner can delegate coins through an offline transaction asynchronously with the
blockchain network. A formal analysis, prototype implementation and evaluation
demonstrated that our scheme is provably secure and practically feasible.

154

Chapter 7

Conclusion and Future Work

In this chapter, we provide a global perspective on the contribution of this thesis.
We begin by summarizing the research conducted in each chapter. Then, we outline
directions for future research.

7.1 Summary of Results

Security protocols [154] are defined as a series of security-related functions with
message exchanges between two or multiple parties to achieve specific security
goals. In practical implementations, security protocols generally rely on one or
several powerful authorities, called the trusted third party (TTP), to achieve secure
communications between different participants. However, the TTP in security
protocols may not behave “as it should”; it may act maliciously due to hidden
interests or having been compromised by malicious attackers. A malicious TTP
can effortlessly destroy an entire security protocol, and this vulnerability has been
widely exploited in real-world cryptosystems.

This thesis extends the research direction seeking to solve TTP issues and tries
to address them by employing newly proposed blockchain and TEE technologies.
Specifically, a smart contract-based TTP in the context of blockchain has been
proposed to enhance existing TTP’s transparency and further make cryptographic
protocols more secure (Chapter 3); another smart contract&TEE-based TTP has

been presented to protect existing TTPs’ privacy, bringing other advanced security
properties such as accountability. For each solution, two instances have been given
to demonstrate feasibility and practicality (Chapter 4 and Chapter 5). Existing
blockchain systems still suffer from scalability and usability issues. Thus, to make
the blockchain-based TTP more practical and more likely to be adopted, two new
blockchain algorithms with high performance, good scalability and usability have
been proposed (Chapter 6). In the following section, we present a summary of the
research results for each chapter.

Chapter 3 introduced a new concept that employs smart contracts as the TPP,
called TTP-I. Unlike most of the current work employing complex protocols or
algorithms to achieve a distributed TTP, the proposed approach uses the smart
contract as a flexible TTP to secure existing security protocols. Subsequently,
TTP-I was applied to CBE [83, 90, 142] and RBE [86, 87] protocols to demonstrate
its feasibility and acceptability. It has been observed that TTP-I enhances security
protocols in two ways. Firstly, TTP-I can be simply used as an autonomous sub-
scriber that automatically informs participants and stores data when triggered by
events. By adding transparent functions of validity checking and routing revoca-
tion requests of certificates, it effectively prevents the existing CA’s misbehaviour
in CBE protocols. Secondly, TTP-I can directly act as the trusted agent in de-
centralized applications, ensuring the authorities perform trusted transactions and
agreements. As in the RBE example, by using a smart contract as a KC, all
registration and query operations are publicly traceable and further make users’
activities and KCs’ behaviours accountable.

Chapter 4 introduced a new type of smart contract, called a TEE-assisted confi-
dential smart contract (TCSC), which exploits TEEs to address privacy problems
existing in TTP-I. In a nutshell, TCSC is defined as an ideal “decentralized black
box” providing data secrecy, execution correctness, and fairness. To achieve a fair
and privacy-preserving TTP, we first investigated the state-of-the-art technologies
involved in the implementations of existing TCSC systems. Then, we showed how
TCSC works and how the TEE keys are managed. Afterwards, we presented a
unified framework to evaluate them. Based on their common features, the syntax
of TCSC and corresponding assumptions were defined for building a general con-

struction of TCSC-based protocol (called TTP-II protocol), followed by discussions
of corresponding assumptions and security properties.

Chapter 5 presented two advanced security systems using TTP-II: a credential
anonymity revocation system and an accountable decryption system.

- Credential anonymity revocation system. Anonymity revocation is es-
sential for credential systems since unconditional anonymity is incompat-
ible with pursuing and sanctioning credential misuse. However, current
anonymity revocation approaches have shortcomings with respect to the au-
ditability of the revocation process. By using TTP-II, we proposed a novel
anonymity revocation approach, bringing neutrality and auditability.

- Accountable decryption system. To achieve accountability during the
execution of a warrant to access users’ sensitive data, a trusted authority
is required, denoted as judge, to faithfully cooperate with participants (e.g.,
investigators). However, malicious judges or uncooperative participants may
void the accountability mechanism in practice, for example, by fabricating
fake evidence or by refusing to provide evidence. By using TTP-II, we pro-
posed a novel accountable decryption system. The inherent neutralities of
blockchain make TTP-II act as an accountable key manager and a transpar-
ent judge, which increases the transparency of warrant execution.

Both TTP-II systems were implemented and evaluated in extensive experiments.
The evaluation results have demonstrated that our solutions are feasible and prac-
tical. Moreover, formal definitions and security analyses have theoretically proved
the security of our proposed solutions.

Chapter 6 proposed two algorithms to enhance the blockchain performance/scala-
bility as well as usability. As discussed, both TTP-I and TTP-II protocols suffer
from the issues of poor scalability and low performance, which causes bad usability,
and further limits their wide adoption especially in scenarios where high perfor-
mance is required. The weak consensus algorithm provided a high-performance
blockchain system by improving existing consensus algorithms. We have imple-
mented the system with 32k+ lines of code, including all relevant components
such as consensus, P2P, etc. The evaluations indicated that our system could

reach a peak throughput of 43k TPS (with eight full nodes), which is significantly
faster than current blockchain systems such as Ethereum, given the same exper-
imental environment. Meanwhile, an offline delegatable cryptocurrency protocol
was proposed to create a fast payment system for cryptocurrencies. The formal
model and analysis, prototype implementation and corresponding evaluations have
demonstrated that our proposed solution is provably secure and practically feasible.

As a result, this thesis represented a significant advance in the state-of-the-art
of blockchain-based security protocols, consensus algorithms, and payment pro-
tocols, which provides a tremendous amount of assistance to cryptographers and
blockchain researchers in both academia and industry. When designing a smart
contract-based TTP, theoretical support must be considered. Our formalized
model of smart contract protocol with well-defined syntax and assumptions (Chap-
ter 3) could be easily used to prove the security of other upper-layer contract appli-
cations. Also, building advanced cryptographic protocols using TEE and contract
naturally brought many security benefits. However, the corresponding security
threat model remains to be uncovered. Our comprehensive investigation and mod-
elling (Chapter 4) provided future researchers with a coherent view of existing
TCSC systems. Additionally, two protocols using TCSC were presented (Chap-
ter 5), and their implementation further proved the feasibility of the approach. In
a nutshell, our research effectively promoted the development of contract-based
security protocols, TEE-assisted smart contracts, TEE&contract-based security
protocols, and blockchain systems.

Finally, it is worth pointing out that the weak consensus algorithm proposed in this
thesis has been adopted by a Non-Fungible Token (NFT) project [74]. Using our
algorithm, their team proposed an innovative Non-Fungible Token framework that
differs from existing contract-based NFT projects [206], where NFT operations of
transaction ordering and data storage are separated, equipping the system with
properties of fast certification and low transaction fee.

7.2 Future Work

Improving the Transparency of TTP-II. In Chapter 5, we presented two
advanced protocols based on TTP-II. However, TTP-II as a customized TEE-
aided smart contract, lacks transparency. On the one hand, contracts are executed
inside TEE, and the outputs are encrypted, which lacks public verifiability. The
attestation service can only guarantee that encrypted outputs indeed come from
a TEE. However, neither users nor the blockchain can learn whether the TEE
is compromised or is faithfully executing contracts following the loaded contract
specification. Even if many TEEs can re-execute the contract with the same setup
(e.g., same private key) to check outputs, this inevitably increases the risk of key
leakage. On the other hand, the precise architecture of chips is still unclear for
several TEE products such as Intel SGX [61]. TEE-assisted solutions force users
to put too much trust in manufacturers of this hardware. For example, some users
argue that Intel may have reduced the security of SGX to improve performance
to cater to market needs [67]. Additionally, the attestation service used to prove
that a program runs inside TEEs is centralized and non-transparent. The service
holder has the ability to insert fake IDs, and further steal the confidential state in
smart contracts. Thus, in the future, we would like to build a publicly verifiable
TTP-II.

Narrowing the Gap between Theory and Practice. In this thesis, all pro-
posed schemes are proved to be theoretically secure. However, contract-based
protocols, TEE&contract-based protocols and their underlying blockchain systems
are inherently hybrid with a sophisticated mechanism. The assumptions used in
our security proof are inevitably strong. Even if several prototype implementa-
tions are given, there is an insurmountable gap between the theoretical case and
real application. Unexpected risks may still exist in practical scenarios. In the
TTP-II-based anonymity revocation system outlined in Section 5.1, even though
our scheme provides an auditable approach to trace credential anonymity, there
are risks that the tracer’s private key is stolen or misused, resulting in a failure
of the whole mechanism. Thus, countermeasures to reduce these risks must be
explored.

159

Appendix A

Resource Availability

• Auditable Credential System

– Code: https://github.com/typex-1/core

– Data: https://github.com/typex-1/core/tree/master/test/result

– Contributors: Rujia Li (80%), Feng Liu (20%)

• Accountable Decryption System

– Code: https://github.com/fialka-1/demo

– Website: http://www.fialka.top

– Data: https://github.com/fialka-1/demo/tree/master/testarea

– Contributors: Rujia Li (50%), Feng Liu (50%)

• High-Performance Blockchain with Weak Consensus Algorithm

– Code: https://github.com/rjgeek/sphinx

– Data: https://github.com/rjgeek/sphinx/tree/master/testdata

– Contributors: Rujia Li (40%), XueqianLu (40%), Qin Wang (20%)

• Offline Delegatable Cryptocurrency System

– Code: https://github.com/tees-projects/delegaCoin

– Data: https://github.com/tees-projects/delegaCoin/tree/main/test_data

– Contributors: Rujia Li (50%), Xinrui Zhang (50%)

160

Bibliography

[1] Build your app on the world’s leading privacy-first blockchain. https://

www.oasislabs.com/. accessed: Dec., 2021.

[2] Enigma is securing the future of the web. https://www.enigma.co/. ac-
cessed: Apr., 2021.

[3] Testnet is an alternative bitcoin blockchain that developers use for testing.
https://www.blockchain.com/explorer/assets/btc-testnet, 2020. ac-
cessed: Dec., 2021.

[4] M. Abe and M. Ohkub. Provably secure fair blind signatures with tight
revocation. In C. Boyd, editor, Proceedings of the 2001 Annual International
Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT), pages 583–601. Springer Berlin Heidelberg, 2001.

[5] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner. S-faas: Trust-
worthy and accountable function-as-a-service using intel sgx. Proceedings of
the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop
(CCSW), 2019.

[6] M. Ali, J. Nelson, R. Shea, and M. J. Freedman. Blockstack: A global
naming and storage system secured by blockchains. In Proceedings of the
2016 USENIX Annual Technical Conference (USENIX ATC), pages 181–194,
2016.

[7] P. Ammann and S. Jajodia. Distributed timestamp generation in planar lat-
tice networks. ACM Transactions on Computer Systems (TOCS), 11(3):205–
225, 1993.

[8] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun.
Evaluating user privacy in bitcoin. In Proceedings of the 2013 International
Conference on Financial Cryptography and Data Security (FC), pages 34–51.
Springer, 2013.

[9] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer. {SCONE}: Secure linux contain-
ers with intel {SGX}. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages 689–703,
2016.

[10] A. Azaria, A. Ekblaw, and T. Vieira. Medrec: Using blockchain for med-
ical data access and permission management. In Proceedings of the 2nd
international conference on open and big data (OBD), pages 25–30. IEEE,
2016.

[11] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath. Prism: Decon-
structing the blockchain to approach physical limits. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS), pages 585–602, 2019.

[12] K. Baghery. On the efficiency of privacy-preserving smart contract systems.
In Proceedings of the 2019 International Conference on Cryptology in Africa
(AFRICACRYPT), pages 118–136. Springer, 2019.

[13] L. Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine
fault tolerance. Technical Report Technical Report SWIRLDS-TR-2016-01,
Swirlds, 2016. accessed: Dec., 2021.

[14] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn,
and G. Danezis. Sok: Consensus in the age of blockchains. In Proceedings
of the 1st ACM Conference on Advances in Financial Technologies (AFT),
pages 183–198, 2019.

[15] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im) possibility of obfuscating programs. In Proceedings

of the 2001 Annual International Cryptology Conference (CRYPTO), pages
1–18. Springer, 2001.

[16] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an un-
trusted cloud with haven. ACM Transactions on Computer Systems (TOCS),
33(3):1–26, 2015.

[17] A. Beimel. Secret-sharing schemes: A survey. In Proceedings of the 2011
International Conference on Coding and Cryptology (IWCC), pages 11–46.
Springer, 2011.

[18] M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making
uowhfs practical. In Proceedings of the Proceedings of the 1997 Annual
International Cryptology Conference (CRYPTO), pages 470–484. Springer,
1997.

[19] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computa-
tion. In Proceedings of the 1993 Annual ACM Symposium on Theory of
Computing (STOC), pages 52–61, 1993.

[20] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proceedings of
the 1988 Annual ACM Symposium on Theory of Computing (STOC), pages
351–371, 1988.

[21] D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi. SoK:
A comprehensive analysis of game-based ballot privacy definitions. In
Proceedings of the 2015 IEEE Symposium on Security and Privacy (SP),
pages 499–516. IEEE, 2015.

[22] A. Bessani, J. Sousa, and E. E. Alchieri. State machine replication for
the masses with bft-smart. In Proceedings of the 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 355–362. IEEE, 2014.

[23] E.-O. Blass and F. Kerschbaum. Borealis: Building block for sealed bid
auctions on blockchains. In Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security (ASIACCS), pages 558–571, 2020.

[24] O. Blazy, S. Canard, G. Fuchsbauer, A. Gouget, H. Sibert, and J. Traoré.
Achieving optimal anonymity in transferable e-cash with a judge. In
Proceedings of the 2011 International Conference on Cryptology in Africa
(AFRICACRYPT), pages 206–223. Springer, 2011.

[25] D. Boneh. The decision diffie-hellman problem. In Proceedings of the 1998
International Algorithmic Number Theory Symposium (ANTS), pages 48–
63. Springer, 1998.

[26] D. Boneh and X. Boyen. Efficient selective-id secure identity-based en-
cryption without random oracles. In Proceedings of the 2004 International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 223–238. Springer, 2004.

[27] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In
Proceedings of the 2004 Annual International Cryptology Conference
(CRYPTO), pages 41–55. Springer, 2004.

[28] D. Boneh and M. Franklin. Identity-based encryption from the weil pair-
ing. In Proceedings of the 2001 Annual International Cryptology Conference
(CRYPTO), pages 213–229. Springer, 2001.

[29] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing.
In J. Kilian, editor, Proceedings of the 2001 Annual International Cryptology
Conference (CRYPTO), pages 213–229. Springer, 2001.

[30] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten.
SoK: Research perspectives and challenges for bitcoin and cryptocurrencies.
In Proceedings of the 2015 IEEE Symposium on Security and Privacy (SP),
pages 104–121. IEEE, 2015.

[31] M. Bowman, A. Miele, M. Steiner, and B. Vavala. Private data objects: an
overview, 2018. arXiv preprint.

[32] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols.
Journal of the ACM (JACM), 32(4):824–840, 1985.

[33] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti. Blockchain and

trusted computing: Problems, pitfalls, and a solution for hyperledger fabric,
2018. arXiv preprint.

[34] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf. Sanctu-
ary: Arming trustzone with user-space enclaves. In Proceedings of the 2019
Annual Network and Distributed System Security Symposium (NDSS), 2019.

[35] E. F. Brickell, P. Gemmell, and D. W. Kravitz. Trustee-based tracing ex-
tensions to anonymous cash and the making of anonymous change. In
Proceedings of the 1995 ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1995.

[36] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. Zether: Towards privacy in
a smart contract world. In Proceedings of the 2020 International Conference
on Financial Cryptography and Data Security (FC), pages 423–443. Springer,
2020.

[37] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bullet-
proofs: Short proofs for confidential transactions and more. In Proceedings
of the 2018 IEEE Symposium on Security and Privacy (SP), pages 315–334.
IEEE, 2018.

[38] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Proceedings
of the 2001 International Conference on the Theory and Applications of
Cryptographic Techniques (EROCRYPT), pages 93–118. Springer, 2001.

[39] J. Camenisch, U. Maurer, and M. Stadler. Digital payment systems with
passive anonymity-revoking trustees. In E. Bertino, H. Kurth, G. Martella,
and E. Montolivo, editors, Proceedings of the 1996 European Symposium
on Research in Computer Security (ESORICS), Lecture Notes in Computer
Science, pages 33–43. Springer Berlin Heidelberg, 1996.

[40] J. Camenisch, S. Mödersheim, and D. Sommer. A formal model of identity
mixer. In Proceedings of the 2010 International Workshop on on Formal
Methods for Industrial Critical Systems (FMICS), pages 198–214. Springer,
2010.

[41] S. Canard and J. Traoré. On fair e-cash systems based on group signature
schemes. In Proceedings of the 2003 Australasian Conference on Information
Security and Privacy (ACISP), pages 237–248. Springer, 2003.

[42] R. Canetti. Universally composable security: a new paradigm for crypto-
graphic protocols. In Proceedings 2001 IEEE Symposium on Foundations of
Computer Science (CSF), pages 136–145. IEEE, 2001.

[43] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption
scheme. In Proceedings of the 2003 International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), pages 255–
271. Springer, 2003.

[44] G. Carle. Wayback machine. https://web.archive.org/web/

20170829004310/http://www.ccs-labs.org/~dressler/teaching/

netzsicherheit-ws0304/07_CryptoProtocols_2on1.pdf, 4 2003. ac-
cessed: Apr.,2021.

[45] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceedings
of the Third USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 173–186, 1999.

[46] M. Castro and B. Liskov. Practical byzantine fault tolerance and proac-
tive recovery. In Proceedings of the 2002 ACM Transactions on Computer
Systems (TOCS), volume 20, pages 398–461. ACM, 2002.

[47] S. Cetola. A Method for Comparative Analysis of Trusted Execution
Environments. PhD thesis, Portland State University, 2021.

[48] D. Chaum. Blind signatures for untraceable payments. In Proceedings of
the 2nd Annual International Cryptology Conference (CRYPTO), pages 199–
203. Springer, 1983.

[49] G. Chen, Y. Zhang, and T.-H. Lai. Opera: Open remote attestation for
intel’s secure enclaves. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 2317–2331, 2019.

[50] T.-Y. Chen, W.-N. Huang, P.-C. Kuo, H. Chung, and T.-W. Chao. DEXON:

A highly scalable, decentralized DAG-based consensus algorithm, 2018.
arXiv preprint.

[51] Y. Chen, X. Ma, C. Tang, and M. H. Au. Pgc: Decentralized confidential
payment system with auditability. In Proceedings of the 2020 European
Symposium on Research in Computer Security (ESORICS), pages 591–610.
Springer, 2020.

[52] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song. Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contract execution, 2018. arXiv preprint.

[53] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song. Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contracts. In Proceedings of the 2019
IEEE European Symposium on Security and Privacy (EUROSP), pages 185–
200. IEEE, 2019.

[54] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song. Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contracts. In Proceedings of the 2019
IEEE European Symposium on Security and Privacy (EUROSP), pages 185–
200. IEEE, 2019.

[55] S. S. Chow. Removing escrow from identity-based encryption. In Proceedings
of the 2009 International Workshop on Public Key Cryptography (PKC),
pages 256–276. Springer, 2009.

[56] M. Conti, N. Dragoni, and V. Lesyk. A survey of man in the middle attacks.
IEEE Communications Surveys & Tutorials, 18(3):2027–2051, 2016.

[57] D. Contractor and D. R. Patel. Accountability in cloud computing by means
of chain of trust. International Journal of Network Security, 19(2):251–259,
2017.

[58] V. Cortier, D. Galindo, S. Glondu, and M. Izabachene. Election verifiabil-
ity for helios under weaker trust assumptions. In Proceedings of the 2014

European Symposium on Research in Computer Security (ESORICS), pages
327–344. Springer, 2014.

[59] V. Cortier, D. Galindo, R. Küsters, J. Mueller, and T. Truderung. Sok:
Verifiability notions for e-voting protocols. In Proceedings of the 2016 IEEE
Symposium on Security and Privacy (SP), pages 779–798. IEEE, 2016.

[60] Cosmos. The internet of blockchains. https://cosmos.network/. accessed:
May, 2021.

[61] V. Costan and S. Devadas. Intel sgx explained. IACR Cryptology ePrint
Archive, 2016(86):1–118, 2016.

[62] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hardware ex-
tensions for strong software isolation. In Proceedings of the 25th USENIX
Security Symposium (USENIX Security), pages 857–874, 2016.

[63] R. Cramer, G. Hanaoka, D. Hofheinz, H. Imai, E. Kiltz, R. Pass, A. Shelat,
and V. Vaikuntanathan. Bounded cca2-secure encryption. In Proceedings
of the 2007 International Conference on the Theory and Application
of Cryptology and Information Security (ASIACRYPT), pages 502–518.
Springer, 2007.

[64] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig, S. Faust,
and A.-R. Sadeghi. Fastkitten: Practical smart contracts on bitcoin. In
Proceedings of the 2019 USENIX Security Symposium (USENIX Security),
pages 801–818, 2019.

[65] A. W. Dent, B. Libert, and K. G. Paterson. Certificateless encryption
schemes strongly secure in the standard model. In Proceedings of the 2008
International Workshop on Public Key Cryptography (PKC), pages 344–359.
Springer, 2008.

[66] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory (TIT), 22:644–654, 1976.

[67] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni, P. Felber, and
D. Hagimont. Everything you should know about intel sgx performance on

virtualized systems. Proceedings of the ACM on Measurement and Analysis
of Computing Systems (POMACS), 3(1):1–21, 2019.

[68] L. Dong and K. Chen. Cryptographic Protocol: Security Analysis Based on
Trusted Freshness. Springer, Berlin, Heidelberg, 2012.

[69] J.-E. Ekberg, K. Kostiainen, and N. Asokan. Trusted execution environments
on mobile devices. In Proceedings of the 2013 ACM Conference on Computer
and Communications Security (CCS), pages 1497–1498, 2013.

[70] P. Ekparinya, V. Gramoli, and G. Jourjon. The attack of the clones against
proof-of-authority. In Proceedings of the 2020 Network and Distributed
System Security Symposium (NDSS), pages 1–14, 2020.

[71] Enigma. The developer quickstart guide to enigma. https://blog.enigma.
co/the-developer-quickstart-guide-to-enigma-880c3fc4308. ac-
cessed: Apr., 2021.

[72] A. Erwig, S. Faust, S. Riahi, and T. Stöckert. Commitee: An efficient and
secure commit-chain protocol using tees. IACR Cryptology ePrint Archive,
2020:1486, 2020.

[73] A. Escala, J. Herranz, and P. Morillo. Revocable attribute-based signatures
with adaptive security in the standard model. In Proceedings of the 2011
International Conference on Cryptology in Africa (AFRICACRYPT), pages
224–241. Springer, 2011.

[74] FASTBOX. Open a new nft world. https://www.fastbox.org/, 2021.
accessed: Dec.,2021.

[75] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo:
Using verification to disentangle secure-enclave hardware from software.
In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP), pages 287–305, 2017.

[76] Financials. Changan chain, the first independent and controllable blockchain
technology system in china, was released today. https://equalocean.com/
briefing/20210127230021545. EqualOcean, accessed: Dec., 2021.

[77] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov. Iron: func-
tional encryption using intel sgx. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 765–
782, 2017.

[78] M. Fitzi, P. Gazi, A. Kiayias, and A. Russell. Parallel chains: Improv-
ing throughput and latency of blockchain protocols via parallel composition.
IACR Cryptology ePrint Archive, 2018:1119, 2018.

[79] G. Fuchsbauer, A. Plouviez, and Y. Seurin. Blind schnorr signatures and
signed elgamal encryption in the algebraic group model. In Proceedings of
the 2020 Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), volume 12106, page 63. Nature
Publishing Group, 2020.

[80] G. Fuchsbauer and D. Vergnaud. Fair blind signatures without random or-
acles. In D. J. Bernstein and T. Lange, editors, Proceedings of the 2010
International Conference on Cryptology in Africa (AFRICACRYPT), pages
16–33. Springer Berlin Heidelberg, 2010.

[81] A. Gagol, D. Lesniak, D. Straszak, and M. Swietek. Aleph: Efficient atomic
broadcast in asynchronous networks with byzantine nodes. In Proceedings
of the 1st ACM Conference on Advances in Financial Technologies (AFT),
pages 214–228, 2019.

[82] H. S. Galal and A. M. Youssef. Trustee: full privacy preserving vickrey auc-
tion on top of ethereum. In Proceedings of the 2019 International Conference
on Financial Cryptography and Data Security (FC), pages 190–207. Springer,
2019.

[83] D. Galindo, et al. Improved certificate-based encryption in the standard
model. In Proceedings of the 2008 International Conference on Security and
Cryptography for Networks (SCN), volume 81, pages 1218–1226. Elsevier,
2008.

[84] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Proceedings of the 2015 Annual International

Conference on the Theory and Applications of Cryptographic Techniques,
pages 281–310. Springer, 2015.

[85] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol with
chains of variable difficulty. In Proceedings of the 2017 Annual International
Cryptology Conference (CRYPTO), pages 291–323. Springer, 2017.

[86] S. Garg, M. Hajiabadi, M. Mahmoody, and A. Rahimi. Registration-based
encryption: Removing private-key generator from ibe. In Proceedings of the
2018 Annual International Cryptology Conference (CRYPTO), pages 689–
718. Springer, 2018.

[87] S. Garg, M. Hajiabadi, M. Mahmoody, A. Rahimi, and S. Sekar.
Registration-based encryption from standard assumptions. In Proceedings of
the 2019 International Workshop on Public Key Cryptography (PKC), pages
63–93. Springer, 2019.

[88] N. Gelernter, S. Kalma, B. Magnezi, and H. Porcilan. The password reset
mitm attack. In Proceedings of the 2017 IEEE Symposium on Security and
Privacy (SP), pages 251–267. IEEE, 2017.

[89] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed
key generation for discrete-log based cryptosystems. In Proceedings of the
1999 Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 295–310. Springer, 1999.

[90] C. Gentry. Certificate-based encryption and the certificate revocation prob-
lem. In Proceedings of the 2003 Annual International Cryptology Conference
(CRYPTO), pages 272–293. Springer, 2003.

[91] A. Gervais, G. O. Karame, K. Wust, V. Glykantzis, H. Ritzdorf, and
S. Capkun. On the security and performance of proof of work blockchains.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 3–16. ACM, 2016.

[92] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP), pages 51–68. ACM,
2017.

[93] S. Goldfeder. Private smart contracts. In Proceedings of the 2018 Privacy
Enhancing Technologies Symposium (PETS), 2018.

[94] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[95] R. Goyal and S. Vusirikala. Verifiable registration-based encryption.
In Proceedings of the 2020 Annual International Cryptology Conference
(CRYPTO), pages 621–651. Springer, 2020.

[96] V. Goyal, S. Lu, A. Sahai, and B. Waters. Black-box accountable authority
identity-based encryption. In Proceedings of the 2008 ACM Conference on
Computer and Communications Security (CCS), pages 427–436. ACM, 2008.

[97] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais. SoK:
Layer-two blockchain protocols. In Proceedings of the 2020 International
Conference on Financial Cryptography and Data Security (FC), pages 201–
226. Springer, 2020.

[98] S. Gueron. Memory encryption for general-purpose processors. IEEE
Security & Privacy, 14(6):54–62, 2016.

[99] H. Guo, Z. Zhang, and et al. Generic traceable proxy re-encryption and
accountable extension in consensus network. In Proceedings of the 2019
European Symposium on Research in Computer Security (ESORICS), pages
234–256. Springer, 2019.

[100] A. Gupta, N. K. Walia, and S. K. Guru. Cryptography algorithms: A review.
International Journal of Engineering Development and Research, 2014.

[101] Y. Hang, Z. Shunfan, and J. Jun. Phala network: A confidential smart con-
tract network based on polkadot. https://crebaco.com/planner/admin/

uploads/whitepapers/3580918phala-paper.pdf, 2019. accessed: Dec.,
2021.

[102] H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo. A survey of state-of-
the-art on blockchains. ACM Computing Surveys (CSUR), 54:1 – 42, 2021.

[103] Q. Huang, D. S. Wong, and W. Susilo. P 2 ofe: Privacy-preserving op-
timistic fair exchange of digital signatures. In Proceedings fo the 2014
Cryptographers’ Track at the RSA Conference (CT-RSA), pages 367–384.
Springer, 2014.

[104] Q. Huang, G. Yang, D. S. Wong, and W. Susilo. A new efficient optimistic
fair exchange protocol without random oracles. International Journal of
Information Security, 11(1):53–63, 2012.

[105] E. Hufschmitt and J. Traoré. Fair blind signatures revisited. In T. Takagi,
T. Okamoto, E. Okamoto, and T. Okamoto, editors, Proceedings of the 20007
International Conference on Pairing-Based Cryptography (ICPBC), Lecture
Notes in Computer Science, pages 268–292. Springer, 2007.

[106] M. Jakobsson and M. Yung. Revokable and versatile electronic money. In
Proceedings of the 3rd ACM Conference on Computer and Communications
Security (CCS), 1996.

[107] M. Jakobsson and M. Yung. Distributed “magic ink” signatures. In W. Fumy,
editor, Proceedings of the 1997 International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), Lecture Notes
in Computer Science, pages 450–464. Springer, 1997.

[108] M. Jansen, F. Hdhili, R. Gouiaa, and Z. Qasem. Do smart contract lan-
guages need to be turing complete? In Proceedings of the 2019 International
Congress on Blockchain and Applications (BLOCKCHAIN), pages 19–26.
Springer, 2019.

[109] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature
algorithm (ECDSA). International Journal of Information Security, 1(1):36–
63, 2001.

[110] A. Juels, A. Kosba, and E. Shi. The ring of gyges: Investigating the future
of criminal smart contracts. In Proceedings of the 2016 ACM Conference on
Computer and Communications Security (CCS), pages 283–295, 2016.

[111] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten.
Arbitrum: scalable, private smart contracts. In Proceedings of the 27th
USENIX Conference on Security Symposium, pages 1353–1370. USENIX
Association, 2018.

[112] D. Kaplan, J. Powell, and T. Woller. Amd memory encryption. White paper,
April, 2016.

[113] D. Kaplan, J. Powell, and T. Woller. Amd sev-snp: Strengthening vm isola-
tion with integrity protection and more. White paper, Jan, 2020.

[114] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn. An empirical analysis
of anonymity in zcash. In Proceedings of 27th USENIX Security Symposium
(USENIX Security), pages 463–477, 2018.

[115] P. A. Karger and A. J. Herbert. An augmented capability architecture to
support lattice security and traceability of access. In Proceedings of the 1984
IEEE Symposium on Security and Privacy (SP), pages 2–2. IEEE, 1984.

[116] A. Kate and I. Goldberg. Distributed private-key generators for identity-
based cryptography. In Proceedings of the 2010 International Conference on
Security and Cryptography for Networks (SCN), pages 436–453. Springer,
2010.

[117] L. Kelly. China’s public chang’an chain gets upgrade to
accelerate processing. https://forkast.news/headlines/

china-blockchain-equip-blockchain-chip/, Mar 2021. Forkast News,
accessed: Dec., 2021.

[118] A. Kiayias and G. Panagiotakos. Speed-security tradeoffs in blockchain pro-
tocols. IACR Cryptology ePrint Archive, 2015:1019, 2015.

[119] A. Kiayias, A. Russell, B. David, and R. Oliynykov. kiayias2017ouroboros:
A provably secure proof-of-stake blockchain protocol. In Proceedings of the
2017 Annual International Cryptology Conference (CRYPTO), pages 357–
388. Springer, 2017.

[120] A. Kiayias and H.-S. Zhou. Concurrent blind signatures without random
oracles. In R. De Prisco and M. Yung, editors, Proceedings of the 2006

International Conference on Security and Cryptography for Networks (SCN),
pages 49–62. Springer Berlin Heidelberg, 2006.

[121] L. Kiffer, R. Rajaraman, and A. Shelat. A better method to analyze
blockchain consistency. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 729–744, 2018.

[122] E. Kiltz. Chosen-ciphertext security from tag-based encryption. In
Proceedings of the 2006 Theory of Cryptography Conference (TCC), pages
581–600. Springer, 2006.

[123] S. Kim, J. Han, J. Ha, T. Kim, and D. Han. Enhancing security and
privacy of tor’s ecosystem by using trusted execution environments. In
Proceedings of the 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 145–161, 2017.

[124] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and V. Gligor. Account-
able key infrastructure (aki) a proposal for a public-key validation infrastruc-
ture. In Proceedings of the 22nd International World Wide Web Conference
(WWW), pages 679–690, 2013.

[125] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford.
Enhancing bitcoin security and performance with strong consistency via col-
lective signing. In Proceedings of the 25th USENIX Security Symposium
(Usenix Security), pages 279–296, 2016.

[126] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts.
In Proceedings of the 2016 IEEE symposium on security and privacy (SP),
pages 839–858. IEEE, 2016.

[127] J. A. Kroll, J. Zimmerman, D. J. Wu, V. Nikolaenko, and E. W. Felten.
Accountable cryptographic access control. In Proceedings of the 2018 Annual
International Cryptology Conference (CRYPTO), volume 2018, 2018.

[128] A. Küpçü. Distributing trusted third parties. ACM SIGACT News, 44(2):92–
112, 2013.

[129] R. Küsters, T. Truderung, and A. Vogt. Accountability: definition and

relationship to verifiability. In Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS), pages 526–535. ACM, 2010.

[130] T. Kwon. Privacy preservation with x. 509 standard certificates. Information
Sciences, 181(13):2906–2921, July 2011.

[131] J. Lai, R. H. Deng, Y. Zhao, and J. Weng. Accountable authority identity-
based encryption with public traceability. In Proceedings of the 2013
Cryptographers’ Track at the RSA Conference (CT-RSA), pages 326–342.
Springer, 2013.

[132] J. Lai and Q. Tang. Making any attribute-based encryption accountable,
efficiently. In Proceedings of the 2018 European Symposium on Research in
Computer Security (ESORICS), pages 527–547. Springer, 2018.

[133] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song. Key-
stone: An open framework for architecting trusted execution environments.
In Proceedings of the 2020 European Conference on Computer Systems
(EUROSYS), pages 1–16, 2020.

[134] C. Li, P. Li, D. Zhou, W. Xu, F. Long, and A. Yao. Scaling nakamoto
consensus to thousands of transactions per second, 2018. arXiv preprint.

[135] R. Li, D. Galindo, and Q. Wang. Auditable credential anonymity revocation
based on privacy-preserving smart contracts. In Proceedings of the 2019
International Workshop on Cryptocurrencies and Blockchain Technology
(CBT), pages 355–371. Springer, 2019.

[136] R. Li, Q. Wang, F. Liu, Q. Wang, and D. Galindo. An accountable decryption
system based on privacy-preserving smart contracts. In Proceedings of the
2020 International Conference on Information Security (ISC), pages 372–390.
Springer, 2020.

[137] R. Li, Q. Wang, Q. Wang, D. G. Chacon, X. Zhang, and Y. Xiang. An
offline delegatable cryptocurrency system. In Proceedings of the 2021 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), 2021.

[138] R. Li, Q. Wang, Q. Wang, D. Galindo, and M. Ryan. Sok: Tee-assisted

confidential smart contract. In Proceedings of the 2022 Privacy Enhancing
Technologies Symposium (PETS), 2022.

[139] R. Li, Q. Wang, X. Zhang, Q. Wang, D. Galindo, and Y. Xiang. Poster: An
offline delegatable cryptocurrency system. In Proceedings of the 28th Annual
Network and Distributed System Security Symposium (NDSS), 2021.

[140] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch. Teechain: a
secure payment network with asynchronous blockchain access. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles (SOSP), pages
63–79, 2019.

[141] Y. Lindell. How to simulate it–a tutorial on the simulation proof technique.
Tutorials on the Foundations of Cryptography, pages 277–346, 2017.

[142] J. K. Liu and J. Zhou. Efficient certificate-based encryption in the standard
model. In Proceedings of the 2008 International Conference on Security and
Cryptography (SECRYPT), pages 144–155. Springer, 2008.

[143] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang. Combining
graph neural networks with expert knowledge for smart contract vulnerability
detection. IEEE Transactions on Knowledge and Data Engineering, 2021.

[144] L. Lu. How a little ant challenges giant banks? the rise of ant financial
(alipay)’s fintech empire and relevant regulatory concerns. International
Company and Commercial Law Review (2018), Sweet & Maxwell, ISSN,
pages 0958–5214, 2018.

[145] Y. Luo, J. Fan, C. Deng, Y. Li, Y. Zheng, and J. Ding. Accountable
data sharing scheme based on blockchain and sgx. In Proceedings of the
2019 International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), pages 9–16. IEEE, 2019.

[146] W. Mao. Modern cryptography: theory and practice. Pearson Education
India, 2003.

[147] W. Martino, M. Quaintance, and S. Popejoy. Chainweb: A proof-of-work
parallel-chain architecture for massive throughput, 2018. Chainweb Whitepa-
per, accessed: Dec., 2021.

[148] S. Matetic, M. Schneider, A. Miller, A. Juels, and S. Capkun. Delegatee:
Brokered delegation using trusted execution environments. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security), pages 1387–
1403, 2018.

[149] S. Matsumoto and R. M. Reischuk. Ikp: Turning a pki around with decen-
tralized automated incentives. In Proceedings of the 2017 IEEE Symposium
on Security and Privacy (SP), pages 410–426. IEEE, 2017.

[150] U. Maurer. Modelling a public-key infrastructure. In Proceedings of the 1996
European Symposium on Research in Computer Security (ESORICS), pages
325–350. Springer, 1996.

[151] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy
(HASP), page 1, 2013.

[152] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy
(HASP), pages 1–1, Tel-Aviv, Israel, 2013. ACM.

[153] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage. A fistful of bitcoins: characterizing payments among
men with no names. In Proceedings of the 2013 AMC Internet Measurement
Conference (IMC), pages 127–140, 2013.

[154] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC press, 2018.

[155] D. L. Mills. Internet time synchronization: the network time protocol. IEEE
Transactions on Communications (TCC), 39(10):1482–1493, 1991.

[156] M. Morbitzer, S. Proskurin, M. Radev, M. Dorfhuber, and E. Q. Salas.
Severity: Code injection attacks against encrypted virtual machines. In

Proceedings of the 2021 IEEE Security and Privacy Workshops (SPW), pages
444–455. IEEE, 2021.

[157] C. Müller, M. Brandenburger, C. Cachin, P. Felber, C. Göttel, and V. Schi-
avoni. Tz4fabric: Executing smart contracts with arm trustzone, 2020. arXiv
preprint.

[158] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, page 21260, 2008.

[159] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes
for stateless receivers. In Proceedings of the 2001 Annual International
Cryptology Conference (CRYPTO), pages 41–62. Springer, 2001.

[160] A. Nehal and P. Ahlawat. Securing iot applications with op-tee from
hardware level os. In Proceedings of the 3rd International conference on
Electronics, Communication and Aerospace Technology (ICECA), pages
1441–1444. IEEE, 2019.

[161] R. Neisse, G. Steri, and I. Nai-Fovino. A blockchain-based approach for
data accountability and provenance tracking. In Proceedings of the 12th
International Conference on Availability, Reliability and Security (ARES),
page 14. ACM, 2017.

[162] G. S. Nicholas, Y. Gui, and F. Saqib. A survey and analysis on soc plat-
form security in arm, intel and risc-v architecture. In Proceedings of the
2020 IEEE 63rd International Midwest Symposium on Circuits and Systems
(MWSCAS), pages 718–721. IEEE, 2020.

[163] G. Noubir and A. Sanatinia. Trusted code execution on untrusted plat-
forms using intel sgx. In Proceedings of the 2016 annual Virus Bulletin
International Conference (VB), 2016.

[164] T. Okamoto and K. Ohta. Divertible zero knowledge interactive proofs and
commutative random self-reducibility. In J.-J. Quisquater and J. Vandewalle,
editors, Proceedings of the 1989 Workshop on the Theory and Application of
Cryptographic Techniques (EUROCRYPT), pages 134–149. Springer Berlin
Heidelberg, 1990.

[165] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of the 2014 USENIX Annual Technical Conference
(ATC), pages 305–319, 2014.

[166] M. Oxford, D. Parker, and M. Ryan. Quantitative verification of certificate
transparency gossip protocols. In Proceedings of the 2020 IEEE Conference
on Communications and Network Security (CNS), pages 1–9. IEEE, 2020.

[167] V. F. Pacheco. Microservice Patterns and Best Practices: Explore patterns
like CQRS and event sourcing to create scalable, maintainable, and testable
microservices. Packt Publishing Ltd, 2018.

[168] H. Pagnia and F. C. Gärtner. On the impossibility of fair exchange without
a trusted third party. Technical Report Technical Report TUD-BS-1999-02,
Darmstadt University of Technology, 1999. accessed: Dec.,2021.

[169] C. Paquin and G. Zaverucha. U-prove cryptographic specification v1. 1.
Technical report, Microsoft Corporation, 2011.

[170] S. Park, H. Park, Y. Won, J. Lee, and S. Kent. Traceable anonymous cer-
tificate. Technical Report Technical Report RFC5636, RFC Editor, Aug.
2009.

[171] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Proceedings of the 2017 Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 643–673. Springer, 2017.

[172] S. Pinto and N. Santos. Demystifying arm trustzone: A comprehensive
survey. ACM Computing Surveys (CSUR), 51(6):1–36, 2019.

[173] D. Polemi. Trusted third party services for health care in europe. Future
Generation Computer Systems, 14(1-2):51–59, 1998.

[174] B. Qin, J. Huang, Q. Wang, X. Luo, B. Liang, and W. Shi. Cecoin: A
decentralized pki mitigating mitm attacks. Future Generation Computer
Systems, 107:805–815, 2020.

[175] K. Rannenberg, J. Camenisch, and A. Sabouri. Attribute-based credentials
for trust. Identity in the Information Society, Springer, 2015.

[176] S. Raval. Decentralized Applications: Harnessing Bitcoin’s Blockchain
Technology. O’Reilly Media, Inc., 2016.

[177] C. Research. 2: Recommended elliptic curve domain parameters, 2000. Stan-
dards for Efficient Cryptography Group, accessed: Dec., 2021.

[178] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Communications of the ACM,
21:120–126, 1978.

[179] M. Russinovich, E. Ashton, C. Avanessians, M. Castro, A. Chamayou,
S. Clebsch, M. Costa, C. Fournet, M. Kerner, S. Krishna, J. Maffre, T. Mosci-
broda, K. Nayak, O. Ohrimenko, F. Schuster, R. Schwartz, A. Shamis,
O. Vrousgou, and C. M. Wintersteiger. CCF: A framework for building con-
fidential verifiable replicated services. Technical Report Technical Report
MSR-TR-2019-16, Microsoft, April 2019.

[180] M. Ryan. Making decryption accountable. In Proceedings of the 2017
Cambridge International Workshop on Security Protocols (SPW), pages 93–
98. Springer, 2017.

[181] M. D. Ryan. Enhanced certificate transparency and end-to-end encrypted
mail. In Proceedings of the 2014 Network and Distributed System Security
Symposium (NDSS), pages 1–14, 2014.

[182] S. S., B. Bichsel, M. Gersbach, N. Melchior, P. Tsankov, and M. Vechev. zkay:
Specifying and enforcing data privacy in smart contracts. In Proceedings
of the 2019 ACM Conference on Computer and Communications Security
(CCS), pages 1759–1776, 2019.

[183] A. Sabouri, I. Krontiris, and K. Rannenberg. Attribute-based credentials for
trust (abc4trust). In Proceedings of the 2012 International Conference on
Trust, Privacy and Security in Digital Business (TrustBus), pages 218–219.
Springer, 2012.

[184] A. Sahai and B. Waters. Fuzzy identity-based encryption. In R. Cramer,

editor, Proceedings of the 2005 International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), pages 457–473.
Springer, 2005.

[185] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[186] A. Shamir. Identity-based cryptosystems and signature schemes. In
Proceedings of the 1984 Workshop on the Theory and Application of
Cryptographic Techniques (EUROCRYPT), pages 47–53. Springer, 1984.

[187] Z. Shao. Fair exchange protocol of schnorr signatures with semi-trusted
adjudicator. Computers & Electrical Engineering, 36(6):1035–1045, 2010.

[188] E. Shi, A. Perrig, and L. Van Doorn. Bind: A fine-grained attestation service
for secure distributed systems. In Proceedings of the 2005 IEEE Symposium
on Security and Privacy (SP), pages 154–168. IEEE, 2005.

[189] R. Sinha, S. Gaddam, and R. Kumaresan. Luciditee: A tee-blockchain sys-
tem for policy-compliant multiparty computation with fairness. Cryptology
ePrint Archive.

[190] R. Solomon and G. Almashaqbeh. smartfhe: Privacy-preserving smart con-
tracts from fully homomorphic encryption. IACR Cryptology ePrint Archive,
2021:133, 2021.

[191] A. Sonnino, M. Al-Bassam, S. Bano, and G. Danezis. Coconut: Thresh-
old issuance selective disclosure credentials with applications to distributed
ledgers, 2018. arXiv preprint.

[192] M. Stadler, J.-M. Piveteau, and J. Camenisch. Fair blind signatures.
In Proceedings of the 2015 International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), pages 209–219.
Springer, 1995.

[193] H. Sukhwani, J. M. Martínez, X. Chang, K. S. Trivedi, and A. Rindos.
Performance modeling of pbft consensus process for permissioned blockchain
network (hyperledger fabric). In Proceedings of the 36th IEEE Symposium
on Reliable Distributed Systems (SRDS), pages 253–255. IEEE, 2017.

[194] N. Szabo. Smart contracts: building blocks for digital markets. EXTROPY:
The Journal of Transhumanist Thought,(16), 18(2), 1996.

[195] N. Szabo. Trusted third parties are security holes. https:

//www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/

Literature/LOTwinterschool2006/szabo.best.vwh.net/ttps.html,
2001. accessed: July, 2021.

[196] Taxa. Taxa network: a universal logic layer for blockchain. https://taxa.
network/, 2021. accessed: Dec., 2021.

[197] Tendermint. Building the most powerful tools for distributed networks.
https://tendermint.com/. accessed: May, 2021.

[198] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical library {OS}
for unmodified applications on {SGX}. In Proceedings of the 2017 USENIX
Annual Technical Conference (USENIX ATC), pages 645–658, 2017.

[199] A. Unterweger, F. Knirsch, C. Leixnering, and D. Engel. Lessons learned
from implementing a privacy-preserving smart contract in ethereum. In
Proceedings of the 9th IFIP International Conference on New Technologies,
Mobility and Security (NTMS), pages 1–5, 2018.

[200] J. Vijayan. Godaddy breach exposes ssl keys of managed wordpress host-
ing customers. https://www.darkreading.com/attacks-breaches/godaddy-
breach-exposes-ssl-keys-of-managed-wordpress-hosting-customers, Nov 2021.
accessed: July, 2022.

[201] P. Voigt and A. Von dem Bussche. The eu general data protection regulation
(gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing,
10:3152676, 2017.

[202] S. von Solms and D. Naccache. On blind signatures and perfect crimes.
Computers & Security, 11(6):581–583, Oct. 1992.

[203] M. Vukolić. Rethinking permissioned blockchains. In Proceedings of
the 2017 ACM Workshop on Blockchain, Cryptocurrencies and Contracts
(ASIACCS’BCC), pages 3–7. ACM, 2017.

[204] G. Wang, Z. J. Shi, M. Nixon, and S. Han. SoK: Sharding on blockchain.
In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies (AFT), pages 41–61, 2019.

[205] Q. Wang and R. Li. A weak consensus algorithm and its application to
high-performance blockchain. IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, pages 1–10, 2021.

[206] Q. Wang, R. Li, Q. Wang, and S. Chen. Non-fungible token (NFT):
Overview, evaluation, opportunities and challenges, 2021. arXiv preprint.

[207] Q. Wang, R. Li, Q. Wang, S. Chen, and Y. Xiang. Exploring unfairness on
proof of authority: Order manipulation attacks and remedies. In Proceedings
of the 2022 ACM on Asia Conference on Computer and Communications
Security (ASIACCS), pages 123–137, 2022.

[208] Q. Wang, R. Li, Q. Wang, and D. Galindo. Poster: Transparent certificate
revocation for cbe based on blockchain. In Proceedings of the 41st IEEE
Symposium on Security and Privacy (SP), pages 1–2, 2020.

[209] Y. Wang, J. Li, S. Zhao, and F. Yu. Hybridchain: A novel architecture
for confidentiality-preserving and performant permissioned blockchain using
trusted execution environment. IEEE Access, 8:190652–190662, 2020.

[210] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and A.-R.
Sadeghi. Timber-v: Tag-isolated memory bringing fine-grained enclaves to
risc-v. In Proceedings of the 2019 Annual Network and Distributed System
Security Symposium (NDSS), 2019.

[211] D. Wenhao, T. Yufang, and X. Yan. A blockchain-based online game design
architecture for performance issues. In Proceedings of the 2020 International
Conference on Pattern Recognition and Artificial Intelligence (PRAI), pages
319–324. Springer, 2020.

[212] D. Williams. Introduction to paypal. Pro PayPal E-Commerce, pages 1–12,
2007.

[213] G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

[214] Y. Xu, J. Ren, Y. Zhang, C. Zhang, B. Shen, and Y. Zhang. Blockchain
empowered arbitrable data auditing scheme for network storage as a service.
Proceedings of the 2019 IEEE Transactions on Services Computing (TSC),
13(2):289–300, 2019.

[215] Y. Yan, C. Wei, X. Guo, X. Lu, X. Zheng, Q. Liu, C. Zhou, X. Song, B. Zhao,
H. Zhang, and G. Jiang. Confidentiality support over financial grade consor-
tium blockchain. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 2227–2240, 2020.

[216] H. Yu, I. Nikolić, R. Hou, and P. Saxena. OHIE: Blockchain scaling made
simple. In Proceedings of the 2020 IEEE Symposium on Security and Privacy
(SP), pages 90–105. IEEE, 2020.

[217] J. Yu, M. H. A. Au, and P. Esteves-Verissimo. Re-thinking untraceability
in the cryptonote-style blockchain. In 2019 IEEE 32nd computer security
foundations symposium (CSF), pages 94–9413. IEEE, 2019.

[218] R. Yuan, Y.-B. Xia, H.-B. Chen, B.-Y. Zang, and J. Xie. Shadoweth: Pri-
vate smart contract on public blockchain. Journal of Computer Science and
Technology (JCST), 33(3):542–556, 2018.

[219] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-
Sanchez, A. Kiayias, and W. J. Knottenbelt. SoK: communication across
distributed ledgers. Cryptology ePrint Archive, 2019.

[220] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An
authenticated data feed for smart contracts. In Proceedings of the 2016
ACM Conference on Computer and Communications Security (CCS), pages
270–282, 2016.

[221] R. Zhang, R. Xue, and L. Liu. Security and privacy on blockchain. ACM
Computing Surveys (CSUR), 52(3):1–34, 2019.

[222] Z. Zhang, J. Yin, Y. Liu, and J. Liu. Deanonymization of litecoin through
transaction-linkage attacks. In 2020 11th International Conference on
Information and Communication Systems (ICICS), pages 059–065. IEEE,
2020.

[223] P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu. A detailed and real-time
performance monitoring framework for blockchain systems. In Proceedings of
the 2018 IEEE/ACM 40th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), pages 134–143. IEEE,
2018.

[224] S. Zheng. Why china’s massive data leak is so chilling.
https://www.bloomberg.com/news/newsletters/2022-07-11/why-china-
s-massive-data-leak-is-so-chilling, July 2022. accessed: July, 2022.

[225] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen, and
B. Xu. Smart contract development: Challenges and opportunities. IEEE
Transactions on Software Engineering, 2019.

[226] G. Zyskind, O. Nathan, and A. Pentland. Enigma: Decentralized computa-
tion platform with guaranteed privacy, 2015. arXiv preprint.

