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ABSTRACT

In this thesis, we investigate global nonlinear Brascamp—Lieb inequalities and some related
problems in multilinear harmonic analysis. The body of this thesis is split into three
parts, the first is concerning the near-monotonicity properties of nonlinear Brascamp—
Lieb functionals under heat-flow. We establish a global nonlinear analogy to the heat-
flow monotonicity property enjoyed by linear Brascamp—Lieb inequalities, which we use
to prove a slight improvement of the local nonlinear Brascamp-Lieb inequality due to
Bennett, Bez, Buschenhenke, Cowling, and Flock, as well as a global stability property
of the finiteness of nonlinear Brascamp—Lieb inequalities. In the second part we prove
a diffeomorphism-invariant weighted nonlinear Brascamp—Lieb inequality for maps that
admit a certain structure that generalises the class of polynomial maps. Like polynomials,
they have a well-defined notion of degree, and the best constant in this inequality depends
explicitly on only the degree of these maps, as well as the underlying dimensions and
exponents. Lastly, we refine an induction-on-scales method due to Bennett, Carbery, and
Tao to prove a global multilinear L? estimate on oscillatory integral operators in general

dimensions.
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CHAPTER 1

BACKGROUND AND CONTEXT

In this chapter, we will introduce the ideas and results that we will refer to over the
course of this thesis. Many central problems of interest to harmonic analysis, such as the
restriction conjecture for example, involve operators whose functional-analytic properties
depend on the geometric properties of some underlying manifold. Generally speaking,
in multilinear settings, inequalities of interest are expected to hold provided that a col-
lection of underlying manifolds are sufficiently ‘transversal’ in a suitable sense. As will
become clear, one may view the Brascamp-Lieb inequalities as a fundamental manifes-
tation of this type of transversality in multilinear analysis, that exist at the conceptual
base of a hierarchy of related inequalities, including the celebrated multilinear Kakeya and
Restriction inequalities. Indeed, the suitable notion of transversality required to access
high-dimensional generalisations of Kakeya and restriction inequalities is itself formulated
in terms of the optimal constant for an associated Brascamp-Lieb inequality; in this sense,
Brascamp-Lieb inequalities serve to quantify a certain higher-order notion of transver-
sality, their best constants acting as generalised wedge products. We begin with some

background in their linear theory.



1.1 Linear Brascamp—Lieb Inequalities

For each j € {1,...,m}, let L; : R" — R™ be a linear surjection and p; € [0,1]. The
Brascamp-Lieb inequality associated with the pair (L,p) := ((L;)7L,, (pj)j~,) is the fol-

lowing;:

JH fioLy) H (J ) Vfje L'(R™), f; = 0. (1.1.1)

Using the notation of [14], we refer to the pair (L, p) as a Brascamp—Lieb datum (we shall
often abuse this terminology and refer to L as a datum as well, given that p may often be
regarded as fixed). We define the Brascamp-Lieb constant, BL(L,p), to be the infimum
over all constants C' € (0, 0] for which the above inequality holds. For a given m-tuple
of non-zero, non-negative functions f = (f;)7, € L*(R™) x ... x L*(R™"), we define the

Brascamp—Lieb functional as

S]R” 1 (fj o Ly)Pi

BL(L, p;f) := (S f.)p]
j=1 R Ji

(1.1.2)

We may then write BL(L, p) = sup; BL(L, p; f). The Brascamp—Lieb inequalities are a
natural generalisation of many classical multilinear inequalities that commonly arise in
analysis, examples of which include Holder’s inequality, Young’s convolution inequality,
and the somewhat lesser-known Loomis-Whitney inequality, which we shall now define.
Let 7; : R® — R™! denote the projection map onto the hyperplane {e;)*, where {e;)
denotes the span of the j™ standard unit vector e;. The Loomis-Whitney inequality

states that the following holds for all non-negative f; € L*(R"!).

1

J s <TI0, )"

J= J



The Brascamp-Lieb inequalities have had a significant impact on a broad range of areas
of mathematics. It was developments in the study of Brascamp-Lieb inequalities that led
to the resolution of the century-old Vinagradov mean value conjecture [21], which is now a
celebrated theorem in analytic number theory. Other deep number-theoretic connections
were established by Christ et al. [31], who proved that the algorithmic construction of
the set of Brascamp-Lieb data whose associated constant is finite is equivalent to the
affirmative solution of Hilbert’s tenth problem for rational polynomials. It should also
be noted that Gowers norms, which have become an object of great interest in additive
combinatorics |19,42,/67], may be estimated from above via a suitable discrete version of a
Brascamp—Lieb inequality. Furthermore, the Brascamp—Lieb inequalities have been found
to arise in convex geometry as generalisations of Brunn-Minkowski type inequalities [2],
in the study of entropy inequalities for many-body systems of particles [30], and have
been used as a framework for finding effective solution algorithms for a broad class of

optimisation problems arising in computer science [41].

The most immediate question in the theory of linear Brascamp—Lieb inequalities is of
course that of finding the necessary and sufficient conditions for BL(L,p) to be finite. We
begin with the observation that, by an elementary scaling argument, the following is a

necessary condition for finiteness:

ijnj =n. (1.1.3)
j=1

It was first proved by Barthe, later reproved by Carlen, Lieb, and Loss in [30], that this
condition together with a spanning condition on the surjections L; forms a necessary
and sufficient condition for finiteness in the rank-one case, i.e. when n; = 1 for all

jefl,...m} .

Another important and related question is that of finding necessary and sufficient con-



ditions for the extremisability of Brascamp—Lieb inequalities, and to find a characterisa-
tion of the extremisers should they exist. As we shall discuss later on, if a Brascamp-Lieb
inequality admits an extremiser, then it must admit a gaussian extremiser, a result that
is related to the following theorem due to Lieb. Given the importance of gaussians in the
context of Brascamp—Lieb inequalities, it shall at times be useful to tailor our notation
specifically for them. Let (L,p) be a Brascamp-Lieb datum and let G = (G;)j; be an
m-tuple of gaussians of the form G;(z) := exp(—n(A,x, x)), where each A; € R™*"™ is in
the cone of real-valued n; x n; symmetric positive-definite matrices, which we denote by
Sym, (R™). We shall refer to such an m-tuple of symmetric positive definite matrices as
a gaussian input, and we let G := Sym_ (R™) x ... x Sym_ (R") denote the set of all gaus-
sian inputs. Using the above definitions, we then define BL,(L, p; A) := BL(L, p; G).
Of course, since integrals of gaussians may be computed in terms of their underlying

matrices, we have access to the following explicit formula:

H;'n:1 det(4; JPil2

. 1/2
det (Zj:l ij;Aij>

BLy(L,p; A) =

Theorem 1.1.4 (Lieb’s Theorem [55]) Given any Brascamp-Lieb datum (L,p), the

associated Brascamp—Lieb inequality is exhausted by gaussians, that is to say

sup BLy(L, p; A) = BL(L, p).

AeG
Only needing to test on gaussians makes the problem of establishing whether or not
BL(L,p) is finite significantly more tractable, and based upon this result, necessary
and sufficient conditions for finiteness were proved by Bennett, Carbery, Christ, and

Tao in [14]. They also establish necessary and sufficient conditions for both gaussian-



extremisability and for when such a gaussian extremiser is unique up to rescaling. Before

we give a statement of their theorem, we shall need to state some preliminary definitions.

Definition 1.1.5 Let (L, p) be a Brascamp—Lieb datum. We say that the datum (L, p)

1s feasible if it satisfies the scaling condition , and that for all subspaces V- < R™,

dim(V) < ) p; dim(L;V). (1.1.6)

j=1
Definition 1.1.7 Given (L,p), we say that a proper non-trivial subspace V- < R™ is
critical if it satisfies with equality, and that the datum (L, p) is simple if it admits

no critical subspaces.

The significance of critical subspaces is that, if we were to restrict the domains of the
surjections L; to a critical subspace V, and their codomains to L;V, then we would
obtain a restricted datum that is itself feasible. Moreover, the orthogonal complement
of a critical subspace is itself critical [14]. As a result, the Brascamp-Lieb datum, in
the presence of critical subspaces, exhibits a certain splitting phenomenon, where it may
be decomposed along orthogonal pairs of critical subspaces; and so, in a certain sense,
similarly to the role that simple groups play in group theory, simple Brascamp-Lieb data
may be treated as algebraically fundamental objects, from which one may build larger
classes of Brascamp-Lieb data. An in-depth discussion of such structural considerations
can be found in [14] and [72]. The most immediate such construction is via taking term-

wise direct sums of simple data, and leads to the concept of ‘semi-simple’ data.

Definition 1.1.8 We say that a Brascamp—Lieb datum (L, p) is semi-simple if and only
if there exist invertible matrices C' € GL,(R), and C;j € GLy,(R) for each j € {1,...,m},

as well as simple Brascamp-Lieb data (LW p), ..., (L™ p) where L™ = (L§T))§n=1 and



. \ ) . .
LR LRy , such that for each j € {1,...,m}, L; may be written as

L=c'tVe..eLlc

Semi-simple data arise quite naturally, indeed Holder’s inequality, the Loomis—Whitney
inequality, and certain cases of Young’s convolution inequality are important examples of

Brascamp—Lieb inequalities associated with semi-simple data.

Theorem 1.1.9 (Bennett, Carbery, Christ, Tao (2007) [14]) The following three state-

ments are true for all Brascamp—Lieb data (L, p).

1. BL(L,p) < o if and only if (L, p) is feasible.
2. BL(L, p; ) is gaussian-extremisable if and only if (L, p) is semi-simple,

3. BL(L, p; ) is uniquely gaussian-extremisable up to rescaling if and only if (L, p) is

simple.

The qualititative questions of finiteness and extremisability now largely settled, we shall
now turn our attention to the regularity properties of the Brascamp-Lieb constant. This
subject enjoys its own surprisingly rich theory in the literature; it was Bennett, Bez, Flock
and Lee who first established that the Brascamp—Lieb constant was locally bounded [11]
on the set of m-tuples L = (L;)., such that (L, p) is feasible, which we denote by F,

from the analysis of which it may be observed that F is open in R™*™ x ... x R"m*",

Theorem 1.1.10 (Bennett, Bez, Cowling, Flock (2017) [10]) The mapping BL(-,p) :

F — R is continuous, but not differentiable.

Later, Buschenhenke and the above authors further refine this statement in [9], where

they prove that the Brascamp-Lieb constant is locally Holder continuous on the set of

6



feasible data. Let S denote the set of m-tuples L = (L;)7, such that (L,p) is simple,
then in light of the third part of Theorem [1.1.9] we know there exists a unique map
Y : S — G such that BL,(L, p; Y(L)) = BL(L, p) and such that each component Y;(L)

has unit determinant (we impose this constraint for the sake of uniqueness).

Theorem 1.1.11 (Valdimarsson (2010) [73]) The set S is open in F, and the map

Y is smooth, whence the Brascamp—Lieb constant is also smooth on S.

The above result will be crucial to the analysis in Chapter 2] as this will allow us to
construct a system of ‘local extremisers’ in the nonlinear regime that varies smoothly
over the domain, although for the general case we treat in Chapter |3| we shall need to
construct a substitute to Theorem [1.1.11] since in general Brascamp—Lieb inequalities
are not extremisable. We do however know, due to Lieb’s theorem, that for any ¢ > 0
and any feasible datum (L, p) there exists a gaussian input A such that BL,(L, p; A) >
(1 —9)BL(L, p) (we shall refer to such a g as a d-near extremiser for (L, p)), however we
do not have any a priori information about the norms of its defining matrices or whether
or not this choice may be made smoothly in L. As we shall be dealing with data that
is in general non-extremisible, we shall be interested in proving a well-quantified version
of Lieb’s theorem. More specifically, for each 6 > 0, we shall need to construct a map
Y;s : F — G that sends a given feasible Brascamp—Lieb datum to an associated J-near
gaussian extremiser, and is such that |Y|/y1.0 does not blow up too quickly as 6 — 0
(the rationale for this choice of norm shall become clear later on). The construction of

this map shall be the content of the forthcoming Theorem [3.1.15]

Our exposition of the linear theory now complete, in the next section we turn our

attention to the main focus of this thesis, this being nonlinear Brascamp—Lieb inequalities.



1.2 Nonlinear Brascamp—Lieb Inequalities

Nonlinear Brascamp—Lieb inequalities are a relatively recent further generalisation of the
linear Brascamp-Lieb inequalities, where the linear surjections L; are allowed to be gen-
eral submersions B; : M — M; between Riemannian manifolds. Given an m-tuple of
exponents p = (pj);-”:l, we shall consider the corresponding inequality:
m m bj
f [[(ieBy <C]] (J fj) :
M ;-1 j=1 M;

Jj=

We shall refer to the pair (B, p) as a nonlinear Brascamp—Lieb datum. Inequalities of
this type arise quite naturally in PDE and Fourier restriction contexts, as evidenced
in [4,5,53] and [6,(10,/16] respectively. Early results of significance include a Sobolev variant
of the nonlinear Brascamp-Lieb inequality [12] and a nonlinear C'Y perturbation of the
Loomis-Whitney inequality [16], which was later extended to the C' case by Carbery,
Hénninen, and Valdimarsson via multilinear factorisation [25]. Significant progress in
this area was made recently by Bennett, Bez, Buschenhenke, Cowling, and Flock in [9],
where they employ a tight induction-on-scales method that utilises techniques from convex

optimisation to prove the following very general local nonlinear Brascamp—Lieb inequality.

Theorem 1.2.1 (Local Nonlinear Brascamp—Lieb Inequality (2018) [9]) Lete >
0, and suppose that (B,p) is a C? nonlinear Brascamp—Lieb datum defined over some

neighbourhood U of a point xo € R™. There exists a neighbourhood U U of xo such that

the following inequality holds for all f; € L*(R™):

Lﬁf} o Bj(z)Pdz < (1 + ¢)BL(dB(0), p) ﬁ (JR f])pj : (1.2.2)

j=1

It has been shown in a preprint of Bennett and Bez, to appear in the publications of



the Research Institute of Mathematical Sciences (RIMS) [8], that Theorem implies
an equivalence between three statements that are, while at first glance unrelated, each

manifestations of an underlying Brascamp—Lieb type notion of higher-order transversality.

Theorem 1.2.3 Let Sy, ...,S,, be a collection of compact submanifolds of R™, each equipped
with their natural volume measures oy, ..., oy, Tespectively. Suppose that qq, ..., gm € [1,0)

are Lebesque exponents satisfying the following scaling condition,
m .
dim(.S;
3 dim(S) _ (1.2.4)
=1 G

then, the following statements are equivalent.

o (Transversality) For all V < R™ and all (xq,...,Ty) € S1 X ... X Sy,

dim(V) < ] .

qj

Ui dlm(V M ijSj)

j=1

o (Conwvolution) For all f; € L%(S}),

|frdoy s ..+ fndow|e@ny < ] [If5l0e
j=1

e (Restriction) For all e > 0 and g; € L*(S;),

f [ [losdosl?® <. B Tl
B(0,R) 51 j=1

We refer to operators of the form £g := g/czf, where ¢ is a singular measure supported
on a submanifold of R™ as a Fourier extension operator, see [46,/62,66,69] for further

reading on this topic. It is natural to ask the question of whether or not there is a

more general formulation of Theorem that does not include an e-loss, since we know

9



that certain sharp results hold on the sphere, as established by Carlen, Lieb and Loss
in [30], which were later generalised to the setting of compact homogeneous spaces by
Bramati in [23]; we discuss conjectural sharp Brascamp—Lieb inequalities more generally
in Section [6.2] Some other interesting results for compact domains depart from the usual
transversality assumptions of the aforementioned authors, instead requiring some sort
of bracket-spanning type curvature condition. This includes LP-improving estimates for
multilinear Radon-like transforms, explored by Tao and Wright in the bilinear setting
in [70] then generalised by Stovall to the fully multilinear setting in [65]. We shall not

investigate curvature considerations of this type in this thesis.

While some of the central questions of the local theory of nonlinear Brascamp—Lieb
inequalities have been addressed, in the global setting many interesting questions remain
open, and progress is largely still at the early stage of the analysis of special cases.
Examples include inequalities for certain homogeneous data of degree one [13], a global
weighted nonlinear Loomis—Whitney inequality in R? [53], and some results in the context
of integration spaces [29]. This thesis in part represents a small step towards a general
theory of global nonlinear Brascamp-Lieb inequalities. In particular, the main results
of Chapters |2 and [3| may be viewed as global nonlinear alternatives to the heat-flow
monotonicity properties of the linear Brascamp—Lieb inequality, which we shall discuss in

the next section.

1.3 Heat-flow Monotonicity

Establishing that an inequality enjoys some sort of monotonicity property under heat-
flow has been shown to be the basis of an effective proof strategy in a variety of contexts.
Schematically, the manner in which such a strategy works is that if one wishes to prove
an inequality of the form A(f) < B(f) for all f in some class of functions, where A and

B are functionals defined on this class, it is enough to prove that there exists a semigroup

10



St acting on this class such that A(f) < lirtriioan(Stf), A(S*f) is increasing in ¢, and
that limsup,_,., A(S*f) < B(f). Carlen, Lieb and Loss exploit heat-flow monotonicity
to great effect in their proof of the rank-one case of the Brascamp—Lieb inequality [30],
generalisations of which can be found in [14,123]. Heat-flow techniques were also used by
Bennett, Carbery and Tao to great effect in their treatment of the multilinear Kakeya and
restriction problems [15], later generalised by Tao in [68]. Methods that exploit heat-flow
monotonicity are often referred to as ‘semigroup interpolation” methods (see an article of
Ledoux for further reading [54]), and a systematic study of the generation of monotone
quantities for the heat equation can be found in |7]. An interesting manifestation of heat-

flow monotonicity for the Brascamp—Lieb functional arises from the following inequality

due to Keith Ball.

Lemma 1.3.1 (Ball’s inequality [3,6]) Let (L,p) be a Brascamp—Lieb datum and let
f = ()8 = (g)) € L'(R™) x ... x L*(R™). Given x € R", we define h* :=
(f5()gi(Lj(z) —-))jy. For all choices of inputs £ and g, the following inequality holds.
BL(L, p; f)BL(L, p; g) < supBL(L, p; h*)BL(L, p; f * g)
xeR™

If we assume that BL(L,p) < oo and that g is an extremising input, i.e. BL(L,p;g) =

BL(L, p), then this inequality implies the following two statements:

BL(L,p: f) < BL(L, p; f * g) (1.3.2)
BL(L, p; f) < supBL(L, p; h") (1.3.3)
zeR™

An important consequence is that, if we further suppose that f is an extremiser, then

(1.3.2) implies that the set of extremisers is closed under convolution. This, along with

11



the the topological closure of extremisers, guarantees the existence of a gaussian extremiser
given the existence of at least one extremiser, as we may convolve a given extremiser with
itself iteratively and apply the central limit theorem to the resulting sequence to find that

the limiting extremiser must be gaussian [14].

Suppose that g is a gaussian extremiser, and define its associated family of rescalings
as g, = (T*”j/zgj(7*1/2x))§”=1 where 7 > 0. By the scale-invariance of the Brascamp-Lieb
inequality, each g, is also an extremiser, hence if we now substitute g_ into then
we see that then states that the Brascamp—Lieb functional is monotone increasing

as the inputs flow under the following diffusion equation:
Of; =V - (A7'V )

where A; is the positive definite matrix such that g; := exp(—n(A;z,z)). We shall now
run the scheme outlined at the beginning of this section to derive the sharp finiteness
and extremisability of the Brascamp-Lieb inequality from ((1.3.2)), as was carried out in a

special case in [14].

Lemma 1.3.4 Let (L,p) be a Brascamp—Lieb datum and assume that (1.1.3) holds.
Let g(z) = (g;(v))7Ly = (exp(—7m{Ajx,2)))T, for all x € R", where A; € R™*" is
positive definite. If holds for all inputs £, then BL(L,p) < oo, furthermore g

extremises the Brascamp—Lieb functional BL(L, p;-).

Proof. By homogeneity and scale-invariance of the Brascamp-Lieb functional, we may
assume without loss of generality that San f; =1and San gj = 1 for each j € {1,...,m}.

Given 7 > 0, we may define an m-tuple of anisotropic heat kernels g_:
g, () == (g5 (2))jLy = (77 exp(—n7~ V2 Az, ) )y

12



Observe that for all 7 > 0,

72 fix gr (L (7'x)) = fi(2) exp(=n7 WA (T2 L (2) — 2), 77 Ly(x) — 2))d=z
R"™J
= fi(2) exp(—7r|Ajl-/2Lj (z)]* + 27TT_1/2<Aij(JJ>, 2y — w7 2|?)dz
R"j
— exp(—al A} Li(@)") | fi(2)dz = g; o Ly(x).

R™3

Combining this limit with (3.1.3) via the dominated convergence theorem then gives us
that

m

PHLpD) = f [1/ioLi@yde < ( [ 1t gj) 0 () dx
" i=1 Jn 13
= ( H(f] * gjr) O Lj(T:L.)pan/de
JR" j=1
= ( Hijnj/Q(fj * gj,‘r) o Lj(Tl')pjdx

JR™ j=1

T—00

— J g; © Lj(z)" dx

= BL(L, p; g). 2
Taking the supremum in all £ with unit mass, then implies that
BL(L, p) = sup BL(L, p; f) < BL(L, p; g) < BL(L, p),
£

hence g is an extremiser, whence we may read off the sharp constant.

m —1/2
BL(L,p) = det (Z L;‘Aij>

j=1
Observing this equivalence between heat-flow monotonicity and extremisability, it is then

13



natural to consider whether or not, for some suitable choice of nonlinear Brascamp—Lieb
datum, there exists a variable coefficient heat-flow for which the associated nonlinear
Brascamp—Lieb functional is monotone, and if so whether or not this would imply that
the inequality holds with finite constant. Indeed, this is the approach that was taken in
both [23] and [30] to prove nonlinear Brascamp—Lieb inequalities in certain geometrically
symmetric settings, so it is then plausible to suppose that a generalisation of such a
monotonicity property could hold in a broader class of contexts. The inequalities (|1.3.2))
and express an amenability of the linear Brascamp-Lieb functional to two distinct
processes, the former being smoothing via heat-flow and the latter being localisation via
gaussian extremisers, as we may think of hj as an essentially truncated version of fj,
whose essential support is contained within a ball centred at L;(z). The proof strategy
of [9] was to find a nonlinear version of that would serve as a way to bound the
left-hand side of above by a supremum of similar integrals over smaller domains,
so that if used recursively this would form the engine of an induction-on-scales argument.
In Chapters [2] and [3] we establish a corresponding nonlinear version of (1.3.2)), although
admittedly we only establish heat-flow near-monotonicity for small times. At its core it is
still an induction-on-scales argument, where we tightly bound the possible error between
times that are close to one another so that when we string these inequalities together we

are left with an error that is well-controlled.

1.4 Nonlinear Multilinear Kakeya Inequalities

In this thesis, the notation ‘A < B’ shall denote that there exists a C' > 0 depending
only on the underlying dimensions, manifolds, and exponents such that A < C'B, and
‘A ~ B’ shall denote that A < B < A. Any additional dependence shall be indicated by
a subscript.

The tools we will be using in Chapter {4 trace their lineage back to the multilinear Kakeya
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inequality, proved with an e-loss by Bennett, Carbery, and Tao in [15], later established

without losses by Guth in [45].

Theorem 1.4.1 (Guth [45]) For each 1 < j < n, let T; be a collection of straight
doubly infinite tubes T; < R™ of unit width. Denote the direction of a tube T; € T;
by e(1;), and suppose that there exists > 0 such that, for any configuration of tubes
(Th, ..., Tn) € Ty x ... x Ty, we have the uniform transversality bound | \7_, e(T})| > 0,

then the following inequality holds:

1
n—1

J xr, | de <o [[(#T) (1.4.2)

Vi lTjETj j:]_

Remarkably, the proof of this theorem relies heavily on sophisticated techniques from
algebraic topology. If we suppose that each T; € T; is parallel to the j-th axis, then
we may interpret the tubes T} as preimages of balls V; < R™"! under the projection
m; onto the orthogonal complement of the j-th coordinate axis, as such we may write
2irer, XT; = 2y,ep, Xv; © 7y for some collection V; of unit balls V; in R, from which
we recover the Loomis—Whitney inequality via rescaling and applying a standard density

argument.

Similar statements hold for collections of nonlinear tubes, these being d-neighbourhoods
of smooth curves in R”, although admittedly with an 0 °-loss at the endpoint. The
transversality condition that such statements require generalises the linear case, in that
we require that the tangent vectors to the central curves of these tubes to always be

sufficiently transversal, a property we shall now define concretely.

Definition 1.4.3 Fiz d,v > 0 and let Ty, ..., T, each be collections of d-neighbourhoods
of smooth curves (a 1-dimensional submanifold) in R™. For each T; € T;, let ¢(T;) denote

the central curve of T;, and let e(Tj)(x) be a unit tangent vector to c¢(T;) at z; € c(Tj).
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We say that Ty, ..., T, are v-transversal if and only if, for any configuration of points
(1, 2n) € c(Th) X ... x e(T;n), the uniform transversality bound | \j_, e(Tj)(x;)| > v

holds.

Theorem 1.4.4 (Bennett-Carbery-Tao [15]) Let £, > 0, and if Ty,...,T, are v-

tranversal collections of d-neighbourhoods of smooth curves in R™, then, for all ¢ > %
the following estimate holds:
f TT( > x| so[[#e" (1.4.5)
" j=1 \ TyeT; j=1
Moreover, for q = %, we have that
f TT{ > xry | scom=J[#Ty" (1.4.6)
R j=1 \ TjeT, j=1

Motivated by seeking a more simple proof of Theorem Carbery and Valdimarsson

established the following affine-invariant generalisation via the Borsuk—Ulam theorem [27].

Theorem 1.4.7 (Carbery-Valdimarsson (2013) [27]) Let 1 < m < n. For each
1<j<m,letT; be a collection of straight doubly infinite tubes T; of unit width. Then,

the following inequality holds:

[ 2 IA@hen ] a<[Temm iy

(T1 ..... Tm)e’H‘lx...me j=1 Jj=1

If we can uniformly bound the weight | AL, e(7})| below by some 6 > 0, then this will
allow us to factorise the integrand on the left-hand side of (1.4.8)) in such a manner that

we then recover Theorem [1.4.1]
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Given the existence of affine-invariant versions of multilinear Kakeya inequalities, these
being Theorem [1.7.1) and Theorem [1.4.7| respectively, it is then reasonable to suppose that
there might hold a nonlinear affine-invariant multilinear Kakeya inequality that generalises
Theorem [1.4.7. Most such variants substitute straight tubes, i.e. neighbourhoods of
lines, with neighbourhoods of algebraic varieties, which are sets that are, while in general

nonlinear, still defined using the algebraic structure of R".

Definition 1.4.9 Let R[z1, ..., x,] denote the ring of polynomials over the reals with vari-
ables x1,...,x,. A subset H < R™ is an algebraic variety in R™ if and only if there exists

a finite collection of polynomials P < R|xy, ..., x,]| such that

H={zeR":p(x)=0VYpeP} (1.4.10)

We then define the degree of H to be the minimum of the quantity max,ep degp as P
ranges over all collections of polynomials such that (1.4.1(}) holds.

For instance, any finite set of points is an algebraic variety, and its degree is equal to
its cardinality. By the implicit function theorem, if M admits a defining vector-valued
polynomial p = (p1,...,pna) : R* — R" ¢ whose derivative has full rank at a point
x € M, then M is locally a d-dimensional manifold near x, and we refer to such = as
non-singular points of M. If the non-singular points of M form an open and dense subset
of M, we shall refer to M as a d-dimensional algebraic variety. We remark that, while
being perfectly suitable for our purposes, this is a restricted definition of an algebraic
variety, and would be more widely referred to as the definition of a real affine variety. A
more general definition of an algebraic variety can be found in [49] for example. An early
example of nonlinear multilinear Kakeya inequalities involving varieties was offered by
Bourgain and Guth in [22], where they proved a trilinear inequality for algebraic curves

(1-dimensional algebraic varieties) in R*.
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Theorem 1.4.11 (Bourgain-Guth 2011 [22]) Suppose that I; = R* is an algebraic
curve restricted to the unit 4-ball with degree < 1 and C? norm < 1. Let T; denote the
0-neighbourhood of an algebraic curve I; and let T be an arbitrary finite set of such Tj;.
For each x € T; € T, define an approzimate tangent vector v;(x) € R* by choosing a point
x' € I; n Us(x) and setting v;(x) equal to a unit vector tangent to I; at x’'. The following

estimate holds:

2

L ) > @) avi@) A v@)xnenen (o) | des S HT): (14.12)

(Ti 7T7 ,Tk)ETB

There are higher-dimensional generalisations of this inequality due to Zhang and Zorin-
Kranich, but before we state them, we remark that any higher-dimensional analogue
of must involve some suitable generalisation of the wedge term in the integrand
that tracks the transversality of the varieties in a similar manner. One such generalisation
involves a weight that takes the form of a ‘wedge product’ of the tangent spaces of the

varieties, which we shall now define.

Definition 1.4.13 Let Wy, ...,W,, be a collection of subspaces of R", and for each W;
choose an orthonormal basis w, ..., wi Observing that the > 7" | kj-dimensional volume
J J

ki

of the parallelepiped generated by the union of these bases, given by \/\T:l Aily wf\, does

not depend on the choice of bases, we denote this quantity by |/\;n:l W;|.

Theorem 1.4.14 (kj-variety theorem, Zhang 2015 [76]) Assume that 377" k; = n.
For each j € {1,...,m}, let H; be an open subset of a kj-dimensional algebraic subvariety

in R, and let o; denote the kj-dimensional Hausdorff measure on Hj, then,

1

1

m m—1 m
Ty, Hildoy(y1)..-dom (Ym dx < deg(H;)m1
Jn (JHlmUl(x)x...memUl(x)|/\ wHildor(y) ( )> H (Hy)

i=1 j=1

(1.4.15)
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While at first glance this inequality appears to have a very different form to and
(1.4.12)), one may view the inner integral as a weighted bump function supported in the
intersection of the unit neighbourhoods of the varieties Hy, ..., H,,, where this weight is
a higher-dimensional generalisation of the wedge of tangent vectors arising in (|1.4.12)).
We should remark that, in the same paper, Zhang does prove a stronger theorem than
the above that accounts for more general configurations of dimensions and exponents,
wherein the weight explicitly takes the form of a Brascamp-Lieb constant. Later, Zorin-
Kranich devised a reformulation of this generalised theorem that makes use of Fremlin

tensor product norms, and this is the version we shall be using to prove Theorem 4.1.3|

Definition 1.4.16 Given measure spaces X1, ..., Xy, and p; € [1,0], define the Fremlin

tensor product norm HF||®m LPI (X)) of a measurable function F': X1 x ... x X,, = R by
il

HFH@;”ZILPJ(XJ-) := inf {H | Ejllzei ;) £y € LP(X5), [Pl < ] @ ... ® |Fm|}
j=1

We define the Fremlin tensor product space @;n:lei (X,) to be the completion of the

normed space of all measurable functions F such that ||F|\®m () < O
i

The Fremlin tensor product norm is indeed a norm, as the subadditive property was proved
in Theorem 2.2 of [60], and the reader may quickly verify that the point separation and
absolute homogeneity axioms follow trivially from its definition. Zorin-Kranich also makes
use of a non-standard regime for defining Brascamp—Lieb inequalities that takes, as data,
collections of subspaces as opposed to linear maps, one that we shall now define. Given
a collection of subspaces W1, ..., W,,, < R™ such that dim(W;) = k;, with a corresponding

collection of exponents py, ..., p,, > 0, the associated ‘Brascamp—Lieb inequality’ is defined
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as follows over all f; € LY(R"/W;):

LU]@ (z+ W, Padac<0ﬁ (JMW )pj (1.4.17)

Following the notation of [77], we then write V[_/; = (Wi,... Wn), p := (p1,..-,DPm), and
denote the best constant C' > 0 in the above inequality by BL(W_;, p); to be explicit, in
this thesis we shall always use italics to refer to this subspace formulation of Brascamp—
Lieb constants, and non-italics to refer to the standard one. In his paper, Zorin-Kranich
makes use of local versions of the Brascamp—Lieb constants, which allows for exponents
to lie outside of the polytope defined by the scaling condition Z;n:l pjn; = n. We shall
however state a version of Zorin-Kranich’s theorem that assumes such a scaling condition,

but nonetheless is more general than Theorem [1.4.14]

Theorem 1.4.18 (Zorin-Kranich 2017 [77]) Let Q := Z"+[0,1)" be a decomposition
of R" into unit cubes and for each 1 < j < m, let H; < R" be an open subset of a k;-
dimensional algebraic variety and p; € [0,1] be chosen such that Z;.nzlpj(n — kj) = n.

Suppose that P := Z;lej > 1, then the following inequality holds:

BL(T, H,,p) 7|2, rn 1.4.19
Q;Q\ (T, Hj. p) H®;n1LP/]H . 11 ( )

Consequently, averaging over all translations of O and rescaling by a factor of 2 via the

forthcoming Lemma [4.3.1], we obtain the following inequality under the same conditions:

_1
| israme iz, o e < T T sy, (1.4.20)
n ] 1 j=1

where U,(z) < R"™ denotes the open ball of radius r around x € R". This integral re-

formulation is the form we shall be using in this thesis. In analogy with the discussion
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following the statement of Theorems [1.4.1| and [1.4.7] it is natural to suppose heuristi-

cally that one might be able to derive a corresponding Brascamp-Lieb inequality from

Theorems [1.4.14] or [1.4.18| by formally running the same argument as in the linear case;

viewing the left-hand side as an integral of a weighted product of indicator functions asso-
ciated to tubular neighbourhoods of varieties in R, which we would then want to write as
pullbacks of indicator functions associated to balls under some suitable nonlinear submer-
sions, thereby obtaining a Brascamp—Lieb form that would extend to general functions
via density. However, given a submersion B : M — N between Riemannian manifolds
M and N, the preimage under B; of a ball cannot in general be written directly as, for
some z € M, a tubular neighbourhood of a set of the form B~1({z}), which we refer to
as a fibre of B;, hence we cannot immediately run the same density argument as before.
We therefore need to use a more detailed construction, where we cover these preimages
by a union of many very thin tubular neighbourhoods of fibres, paying careful attention
to how they overlap (see figure Section ; addressing these issues forms the main

content of Chapter [4]

1.5 The Linear Theory of Oscillatory Integrals

In Chapter [5] we shall investigate multilinear Lebesgue estimates on generalisations of
what Stein refers to as ‘oscillatory integrals of the second kind’ [62], which we shall
put in context by first discussing some of their linear theory. Let n € N, and let ¢, :
R 1 xR™ — R be C? functions. Consider the following one-parameter family of operators

mapping functions on R”~! to functions on R™:

SAF(€) = J M@ (2, €) f(2)de, A> 1. (1.5.1)

Rn—1

21



We refer to S* as an oscillatory integral operator, to ¢ as a phase function, and to
as an amplitude function or cut-off function, usually having compact support in one or
more variables. In the special case where ¢(z,£) = p(x) - €, S* coincides with the Fourier
extension operator associated to the graph of p. In general, oscillatory integral operators
enjoy good LP mapping properties, provided that they satisfy a certain non-vanishing

curvature condition due to Hormander.

Definition 1.5.2 We say that S* is a Hormander-type operator, or is of Hormander

type, if the following holds.

1. supp(v) is contained in the unit ball in R"™ x R".
2. For all (z,&) € R x R, the matriz V,Vep(z,&) is of full rankn — 1.

3. Given that this is the case, we may define the associated (non-normalised) Gauss

map G : R x R*" — A" L(R") >~ R"™ as follows:
n—1
G(x,8) == /\ 05, Ved(.€) (1.5.3)
j=1
We require that, for all (x,£) e R"™! x R",

det V2 ((eo(x, €), G(x,))) # 0. (1.5.4)

One may interpret the condition ((1.5.4) in the above definition as a generalised non-
vanishing curvature condition, for the reason that, in the extension case, this condition
may be interpreted as requiring that the underlying manifold has non-vanishing sectional

curvature.

Theorem 1.5.5 (Stein [63], Bourgain-Guth [22]) Let S* be a Hérmander type op-
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erator, and suppose that the exponent p € [1,00] falls within the following range:

2 1
p >(n—+1) if n is odd (1.5.6)
n j—
2 2
>M if n is even (1.5.7)
n

Then, for all € > 0, the following estimate is satisfied uniformly in A = 1

n—1

e 1
|S* Flony Sc X777 || flle (1.5.8)

In fact, Stein proved that the even dimensional case holds without an e-loss. The matter
of the LP-mapping properties of Hormander-type operators in the case when is
positive was later setted by Guth, Hickman, and Iliopoulou, who established LP bounds
for all p outside the range for which there are known counterexamples [47]. This does
not however settle the restriction conjecture for positively curved hypersurfaces, as the
restriction conjecture enjoys a larger range of exponents than general Hormander operators

do, due to a family of counterexamples discovered by Bourgain [20].

1.6 The Wavepacket Decomposition for Oscillatory

Integrals

There is a deep connection between oscillatory integrals and nonlinear Kakeya inequalities
that generalises a well-known connection between the Fourier restriction and Kakeya
problems. This is that we may view S* f as a superposition of modulated cut-off functions
adapted to curvilinear tubes, which we refer to as ‘wavepackets’. Hence, we may then view
nonlinear Kakeya inequalities as non-oscillatory versions of estimates of the form ((1.5.8]

(see [74,/75] for further reading on this topic). In order to understand this connection,
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we must first define a wavepacket decomposition for the oscillatory integral operators we
consider. Heuristically, what this involves is splitting an arbitrary L? function f into
pieces that are essentially orthogonal and localised in both space and frequency, albeit to

reciprocal scales due to uncertainty principle related phenomena.

Fix A > 1 and let Q be a boundedly overlapping cover of R"~! via open cubes of size
A2 say for instance Q := (9A"Y2/10)Z" 1 + (0, \"V2)"~L. Let {1)g}qeo be a partition
of unity subordinate to Q such that |[V*¢gllz=g) < A¥? for all k € N. We shall give
an explicit construction of such a partition of unity for our specific choice of Q. Let
s : R — [0,1] be a smooth bump function that attains 1 on the interval [1/10,9/10]
and attains 0 outside of the interval (0,1). Given Q = 9A"Y20/10 + (0, \"Y/2) where
v € Z" ', Define the function @ZQ :R"! - R by @ZQ(xl, ) = [0 sl + AV2ay),
and let () := (Y, ¥o(r)) 'Wg(x). Differentiating vo(z) we see that |VFyg(z)| =
MN2ITR (ho (ATV2)N[A22]] < AF2. Given w € A\Y2Z7 we then let ag,, € C be the w"
Fourier coefficient in the Fourier series of fiq, hence, defining eqg ,(z) := e 2™ g (x),

we then have that

F=2Ite=2), D, quequ

QeQ QeQ weAl/2zn—1

Note that, by the bounded overlap of the supports of the functions eg,, in ) and their

L?-orthogonality in w, we have that

e = DT > JagulPAT=.

QeQ werl/2zn—1

We refer to a function of the form S*eq, as a wavepacket, and to the following as a
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wavepacket decomposition of S*f:

S)\f = Z Z CLQMS/\GQM

QeQ weAl/2zn—1

We now consider the support of a given wavepacket, the geometry of which is determined
by the phase ¢. First of all, fix a small § > 0, then, given a pair (Q,w) € Q x A\Y2Z !,

we define an associated tube:

The = {6 R [V,d(z,8) — w| < X72 (2,€) € supp(v))}

We raise the exponent in the definition of T} , by & in order to ensure that | S*eq .| Lo ®NT,)
has good decay as A — co. Via a standard stationary phase argument, one may show
that Seq,, is essentially supported in 77 ,, and that [S*eq.| 2 1 on T3 . One is
therefore justified in viewing an L” bound on S as, in some sense, a ‘modulated’ non-
linear Kakeya inequality, where rather than bounding an L” norm of a sum of indicator
functions associated to tubes, we instead are interested in bounding an LP norm of a
sum of modulated indicator functions associated to tubes. In fact, via a now standard
Rademacher function argument, one may derive nonlinear Kakeya inequalities from os-
cillatory integral inequalities. Naturally, this relationship between oscillatory integrals
and nonlinear Kakeya transfers into the multilinear setting, and so we shall find that an
improved understanding of multilinear Kakeya-type inequalities of the type discussed in
Section leads to an improvement in the corresponding oscillatory problem, in fact this

is the content of the main theorem of Chapter [5, Theorem [5.1.1]
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1.7 The Multilinear Theory of Oscillatory Integrals

In recent years, there has been much interest in multilinear versions of inequalities of the
type discussed in the previous section, in no small part due to the fact that approaches to
these problems via a suitable multilinear version have proved to be highly effective [22,/69].
They are in some ways easier to work with than the linear version because they, similarly
to the multilinear Kakeya inequality, often benefit from transversality hypotheses. In fact,
under such transversality hypotheses, curvature hypotheses such as (1.5.4) may even be
disregarded altogether, as in such a case we do not need each contribution to the product

to even be integrable in order for their product to be well-behaved.

Let ¢1,....,0m : R*! x R® — R be a collection of phases, and let 91, ..., ¢, : R?7! x
R™ — R be a collection of amplitudes with compact support in both variables. Define the

following oscillatory integral operators

S (&) = Jn P03, (1, &) f5(x)da

For each j € {1,...,m}, let G,(z,£) denote the non-normalised Gauss map (as defined
in ((1.5.3)) associated to the phase ¢;. We say that the collection of oscillatory integral

operators S}, ..., S is v-transversal if, for all zy,...,z, € R"! and ¢ € R" such that

(z,€) € supp(¥;),
det(Gy(x1,&), ..., G20, 8)) > v

Theorem 1.7.1 (Bennett-Carbery-Tao) Suppose that S}, ..., S? are v-transversal, then
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the following inequality holds uniformly in A > 1 for p > % and ¢ < p(n —1).

[ 15
j=1

<e X0 | [ 15 poqny (1.7.2)
j=1

Lp(R™)

In fact they prove that this statement holds without an e-loss away from the endpoint.
The proof of this theorem centres around the multilinear Kakeya theorem they prove
in the same paper, stated earlier in this chapter as Theorem [1.4.4. The argument is
fundamentally an induction-on-scales, where they first apply a wavepacket decomposition
to Sj‘ fj for each j € {1, ...,n}, so that they then have a corresponding collection of tubes ']I‘;
on which the wavepackets of SJ’-\ f;j are supported. One may show that the v-transversality

hypothesis on the collection S7,....,S? implies that the families of tubes T7,..., T} are

n n
themselves mutually v-transversal. They then partition the domain R™ into cubes of scale
A2, such that the contribution from each can be bounded by an inductive hypothesis,
and then observe that, since the contributions to any given cube can only arise from the
wavepackets that pass through it, one may therefore interpret the resulting upper bound
on each of the cubes as a product of sums of indicator functions associated to these tubes.
In which case, one may then view the sum of these upper bounds over all of the cubes

as the left-hand side of the multilinear Kakeya inequality associated to the families ']1"3\ of

underlying tubes on which the wavepackets are essentially supported.

They then apply a suitable curvilinear multilinear Kakeya inequality to these tubes,
and obtain a restriction estimate that improves on our inductive hypothesis, but with an
e-loss in the exponent of A that is roughly half of that of the hypothesis. Hence, iterating
this argument we then may make this loss arbitrarily small, thus proving the theorem. In
Chapter [f], we globalise this argument and extend it to higher-dimensional regimes using a
framework that generalises both nonlinear multilinear Kakeya inequalities and nonlinear

Brascamp—Lieb inequalities.
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1.8 Guide to the Thesis

Chapters [2| and [3| are about a certain heat-flow near-monotonicity property enjoyed by
nonlinear Brascamp—Lieb inequalities. In the former, we study what we refer to as the
‘simple’ case, which serves to introduce some of the techniques we use in the latter chapter
to prove the theorem in general. In Chapter [, we prove a global nonlinear Brascamp—Lieb
inequality for what we refer to as ‘quasialgebraic’ nonlinear data, incorporating a natural
weight that dampens local degeneracies, which in doing so imparts a diffeomorphism-
invariance property to the inequality. We also use similar techniques to prove two alter-
nate multilinear Kakeya versions of this statement. We depart from the main theme of
nonlinear Brascamp—Lieb inequalities to the related topic of multilinear oscillatory inte-
grals in Chapter |5, where we prove a global L? multilinear oscillatory integral estimate in
general dimensions. Lastly, in Chapter [6] we discuss some of the further research topics

and conjectures that lead on from the results in this thesis.
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CHAPTER 2

A NONLINEAR VARIANT OF BALL’S

INEQUALITY: THE SIMPLE CASE

In this chapter, we shall prove a near-monotone global nonlinear version of the heat-flow
monotonicity property enjoyed by simple linear Brascamp-Lieb data. The most natu-
ral nonlinear candidate to consider would be nonlinear Brascamp-Lieb data (B, p) that
is both suitably smooth and ‘locally simple’; in the sense that (dB(z),p) is a simple
Brascamp-Lieb datum for each x in the domain of B. The reason why this is the most
natural case to first consider is that, by Theorem [I.1.9] each simple Brascamp-Lieb datum
has a unique extremiser up to rescaling, thus our nonlinear datum comes ready equipped
with ‘local extremisers’ from which we may construct our heat-flow. Although a similar
near-monotonicity statement holds for general nonlinear Brascamp—Lieb data on Rieman-
nian manifolds, the core argument for both is essentially the same, so it is instructive to

first consider just the simple case in the euclidean setting.
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2.1 Preliminaries

We say that a nonlinear Brascamp-Lieb datum (B,p) over U is a simple nonlinear
Brascamp-Lieb datum over U if dB(u) € S for all u € U, where S denotes the set of
simple Brascamp-Lieb data as in Section [I.I] By Theorem [I.1.9] for each simple non-
linear datum there then exists a unique (up to rescaling) family of extremising gaussian
inputs {g, := (guj)721}uev such that, for each u € U, g, is an extremiser for the in-
equality associated to the datum (dB(u),p). Moreover, by scale-invariance of the linear
inequality, each of its L'-rescalings g, 5() := (gu,s5())j1; 1= (0 ™ gu;(07"x)), are also
extremisers for (dB(z),p). We shall think of these rescaled gaussians as heat kernels,

even though strictly speaking a genuine heat kernel would have §'/2 in the place of where

we have written ¢. Each g, ; may be written explicitly as

Guy = ¢ T AED  mal

where A; : U — R™*" assigns to each u a symmetric positive-definite matrix and
|- |uj; = (Aj(u)-,-). There is another symmetric positive-definite matrix-valued function

M : U — R™ " that shall be of importance to us, defined as
M(u) = ) p;dB;(u)* A;(u)dB;(u)
j=1
From this definition we have the identity
1 = 2
_ w.i © dB,; Pi = (det M (u))"?e Il 2.1.1
BL @B ) 1] 9“0l = (e () e (21.1)

where | - |, := (M(u)-,-)2 [14].

We shall need to impose some additional uniformity conditions on the nonlinear datum
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B, in particular we need the associated family of gaussian extremisers to have bounded

eccentricity and obey a uniform Holder continuity property.

Definition 2.1.2 Given an open set U < R", we say that a function f : U — RF is
uniformly CY° over U if and only if for all ¢ > 0 there exists § > 0 such that, if |z —y| < §
and x # 1y, then |f(x) — f(Y)|+|Vf(z) =V f)|lz—y|= <e. Let S°(U) denote the set of
uniformly C*° simple nonlinear Brascamp-Lieb data (B, p) over U such that the closure

of the set {(dB(x),p) : x € U} is contained in S.

For example, S < S%(U), and moreover, by openness of S, all sufficiently small C'?
perturbations of a member of S is also in SY(U), the reader is encouraged to bear this

example in mind over the course of this chapter.

Part of the reason for imposing uniform Holder regularity on the nonlinear datum
(B, p) is that our argument requires that the associated matrix-valued functions A; and M
are also uniformly Holder continuous. Fortunately, this follows in a fairly straightforward

manner from the regularity of B.

Proposition 2.1.3 For any open U < R" and p € [0,1]™, if B € S°(U), then we may
choose the corresponding matriz-valued functions A;, M such that they are uniformly C%?

bounded on U, and that moreover, A7' := A;(-)™" and M~" := M(-)~" are L bounded.

Proof. Let K := m, and recall the map G in Theorem that sends a simple
datum to its unique (up to rescaling) associated gaussian extremiser; we may therefore
write (A;)7, =1 A = GodB. Since K = § and K is compact, by the extreme value
theorem 0 < infrex |G(L)| < [A4;(2)| < suppex |G(L)| < o0, hence A; and A;' are L*
bounded, and therefore since M is then a sum of products of L* functions, M is L*
bounded. By smoothness of G and the fundamental theorem of calculus, we know that

there for any z,y € U, and let dx(Lq, Ly) denote the infimum of the lengths of piecewise

31



C" contained in K with endpoints L; € K and Ly € K. It is clear that dg : K x K — R
defines a metric on K and that it is continuous with respect to the ambient euclidean

metric, so by compactness of K, dg(Li, L) < |L; — Ls|.

|Aj(r) — Aj(y)| = |G odB(r) — G o dB(y)| (2.1.4)
< || dG| (k) di (dB(z), dB(y)) (2.1.5)
< |dB(z) — dB(y)| < |z —y|’ (2.1.6)

hence A; is uniformly C%? and therefore so is M, as it is a sum of products of C%

functions. 0

It is this result that shall give us the necessary uniform control to obtain a near-monotonicity
property for the functional SRn ]_[;n:l fj o Bj(x)Pidx under a certain regularisation process
that, although akin to heat-flow, includes some truncation in the kernel and dependence
upon the variable y, as we shall need to pointwise adapt this process to the local behaviour

of the submersions B;.

2.2 Notation

Before we state the main result of this chapter we shall need to introduce some notation.
In this chapter, we shall use the notation x < y to denote x < C'y where C' > 0 depends
only on the underlying Brascamp-Lieb datum B e S%(U), as well as the underlying
dimensions and exponents. We will find that we need to truncate the gaussians g, - ;
outside of a certain ball depending on 7 in order to address local-constancy issues arising
from the rapid decay in their tails. Let 7 > 0, y € R", w € R™, and define the following

families of balls.
1
Vi (x):= {yeR” e —y| < Tlog (—)},
-
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) 1
Vii(z) = {y eRY :|ly—2z| < |dBj||LooT10g( >},

;
We find that this logarithmic radius is perfectly suitable for the purposes of this chapter,
however in Chapter [3]the setup is a lot more sensitive to truncation and so we shall need to
use a polynomial factor instead, being careful to select an appropriate exponent. Letting
k > 0, we shall denote the centred dilate of V. (z) and V; ;(z) by a factor of xk as kV,(x)
and kV; () respectively. We include the factor of |dB;|» in the definition of V; ;(2) so

that we impose the convenient property that, for all x € R", dB;(x)(V-(0)) < V;;(0).

2.3 Statement of the Theorem

We are now in a position to state our main theorem.

Theorem 2.3.1 For each B e S’(R") and any a € (0,0), there exists a v ~, 1 such that,

for all T € (0,v) the following inequality holds over all f; € L*(R").
J;R Hfj o Bj(z)Pdx < (1+7%) JR Hfj # (9z,7i v, 0)) © Bj(x)" dz. (2.3.2)
" =1 " =1

We may think of this as a heat-flow near-monotonicity statement, since the one-parameter
family of linear operators H, ; ; defined by H, ;[ := fj*g, /2 ; is the solution semi-group
of the Cauchy problem for the anisotropic heat equation diu(y,t) = V - (A7 (z)Vu(y,t))
with initial data u(y,0) = f;(y). A benefit of the truncation built into Theorem is
that it allows one to impose some local-constancy on arbitrary f; € L'(R™), a notion that

we now define explicitly.

Definition 2.3.3 Let X be a metric space and f: X — (0,00). Given k,u > 0, we say

that f is k-constant at scale p if and only if f(x) < kf(y) for all z,y € X such that

d(z,y) < .

33



The lack of local-constancy of arbitrary L' functions is a central difficulty in the study
of nonlinear Brascamp-Lieb inequalities. Many proofs for known nonlinear Brascamp-—
Lieb inequalities are based around addressing this issue in some manner, for instance, the
induction-on-scales arguments used in [17] and [9] are inductions on the scale of constancy
of the input functions f;. Some authors even dispense with arbitrary L' functions entirely,
instead imposing some a priori local constancy as in [56|/77], or Sobolev regularity as in [12].
The regularised inputs f; = g,.,;(2) enjoy a local-constancy property uniform both in y

and z, this being the content of Lemmas [2.5.8 and 2.5.9 respectively. It is unfortunate

therefore that gaussians are not locally constant at any scale, due to their rapid decay.
This means that in general f; * g, - ; will also not be locally constant at any scale, however
we remedy this by truncating these gaussians outside of a sufficiently large ball centred
at the origin. From now on, the truncated gaussians we shall be using shall be denoted

by, given 7 > 0 and u € R",

guﬂ’mj = gu7T’j]1 VT,j (O) :

2.4 Outline of the proof of Theorem 2.3.1

The proof of Theorem has similar features to an induction-on-scales type argument,
in the sense that we bound the best constant associated to a weaker inequality above
in a self-similar manner, then iterate to obtain a bound on the best constant associated
to , taking care to show that the resulting bounds are well controlled under this

iteration. Let (B, p) € S’(R") and consider the following inequality for some 0 < s < t.

f [ 15 # ey o Bi(w)Pide < CJ [ 155 % Goss o Bi(a)da (2.4.1)
R Rn j=1
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Define C(s,t) to be the infimum over all constants C' € (0, o] such that (2.4.1)) is satisfied

by all non-negative f; € L'(R"). Notice that for all 0 <r < s < t,

The inequality (2.4.2]) yields the following simple yet important statement which will
serve to bound the constant in the self-similar manner alluded to earlier, which, although

immediate, we refer to as a proposition for structural reasons.

Proposition 2.4.3 For all0 <r <s <1,

C(r,t) < C(r,s)C(s,t). (2.4.4)

The idea will be to use Proposition to break down the constant in (2.4.1)) into a
product of constants for times that are much closer together. If we take these times to be

sufficiently close, then we have an explicit tight bound on the associated constant.

Proposition 2.4.5 Given € (0,0), there exists U ~3 1 such that for all0 <7 < .

O(r,V/21) < (1 +17). (2.4.6)

Along with some minor technical considerations, these two propositions are the only

ingredients we need to prove Theorem [2.3.1] as we shall now demonstrate.

Proof of Theorem giwen Proposition[2.4.5 Let f € (o,0), v > 0, and 0 < 7 < v,

where for now we only require that v < v/20. Define the geometric sequence 7, := 2757

and let K € N. By repeatedly applying Proposition [2.4.3] we split the constant C(7x, T)
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into pieces that can be dealt with by Proposition [2.4.5

C(TK,T) < C(TK,TK,1)0<TK,1,T)

< O(7r, Tk-1)C (TR -1, Tk —2)C(TK —2, T)
K
<|[C¢rmn) <][a+7)
k=1

k=1

Taking logarithms of the above inequality, we obtain that

log(C(k, T) Zlog 1—|—7'k,)
\ ZTk = 25/2 _ 1

It then follows, by a routine application of Taylor’s theorem to the exponential map,
absorbing constants and making v accordingly smaller if necessary, that C(7x,7) <
exp(%) < (1 + 7). Having obtained a bound on C(7x,7) uniform in K, we then
complete the proof by considering (|2 with s = 7 and ¢ = 7 and taking the limit as

K — oo, since Fatou’s lemma then implies that

fngfjij( opde < Jim, | Hfj Gy © By(x)ide

< Jim Clrc.m) | ]_[fj*gm B,(x)"da

K—o

(1+7% JHfJ*gIT] ()p]dx o

Now, all that remains to prove Theorem [2.3.1]is to prove Proposition [2.4.5] but before we
do that we need to understand more about the properties of the various gaussian kernels

involved.
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2.5 Gaussian Lemmas

Here we shall state and prove the technical results concerning the gaussians g, ,; that
we require to prove Proposition [2.4.5] Throughout this section, we shall assume that
B € S’(R"). We will make use of the parameter n € (3,0), which we shall regard as
fixed, and, in light of Proposition [2.1.3] we shall denote the Holder seminorms of M
and A; by p and p; respectively. We shall denote the induced 2-norm of a matrix S by

S = SUP|y|=1 |Sv].

Lemma 2.5.1 (General Truncation of Gaussians) Let n € N and A € R™" be a
positive definite matriz. For each T > 0, define g, : R™ — R to be the gaussian g,(z) :=
T " exp(—7m7 %Az, x)). Let ¢,k > 0, and suppose that |A7 < c. Given v > 0, there

exists a v > 0 depending only on n, k, 7, and ¢ such that for all T € (0,v)

[ ocasm| (25.2)
n kV7(0)

Proof. In this proof we shall break from our convention and the relation < shall denote
that the implicit constant depends only upon ¢, n, and m. We shall first prove the claim
assuming x = 1, then use a rescaling argument to obtain the general result. If we assume
that g, , is L'-normalised, then it suffices to show that there exists v > 0 such that, for

all 7€ (0,v),
J g < 2 (2.5.3)
R™\V; (0)

This is because then there would then exist a ¢ ~ 1 such that

f gTzl—J g-=1-d™ =1 +7)7!
v (0) R™\V;(0)
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provided that 7 is sufficiently small. To estimate the left hand side of ([2.5.3]), we shall
partition the domain of integration R™\V;(0) into annuli, and bound the resulting infinite

sum above by a lacunary series. We take 7 € (0,v), where v € (0, 1) is chosen such that

Zc?log(1)? = 2v.

[
R™\V;(0) la|>log(1/7)

0

- k=0 L’“ log(1/7)<|z|<2k+1 log(1/7)
0

< sup (eXp(—ﬂ'|AI|2))VOZ({2k log(l/'r) < |$| < 2/€+1 10g(1/7)})
k=0 2" log(1/7)=|x|

exp(—m|Az|*)dx

< log(1/7)" "Fexp(—m| AT 7222 log(1/7)%)

< IOg 1/7_ nk 7rc’222k log(1/7)

i MS i ME%

o¢)
Z mc= 222k 1 log(1/7) < Z 7_2'y22k < 72
k=0 k=0

Above we removed a factor of 27! from the exponent to absorb the logarithmic and
geometric factors. Now we turn our attention to the case when k # 1. By what has been

established, for all kK > 0 there exists a v ~, , 1 such that for all 7 € (0, v),

1<(1+7’7)J Grr-

Th (0)

Rescaling the right-hand side we obtain the desired result.

1<(1+ T”)T"(I_E)J Grr (7571 2)d = (1 + T,Y)J gr (2.5.4)
|z|<TI—r7r log(1/T+)

kV-(0) o

We now apply this result to the families of gaussians g, »; and [}, gu,r; o dBj(z)P

Lemma 2.5.5 (Truncation of extremising Gaussians) There exists vy ~, 1 such
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that for all T € (0,11) and x € R",

f [ [ 92rs 0 dBj(@)(y — )P dy < (14 77) ngm o dBj(z)(y — x)"dy
R™ j=1

0.1V (z) 4=

and that for each j € {1,...,m},

J Gy.rj(2)dz < (1 + T”)J Gy.r;(2)dz
" Vr.3(0)

Proof. This follows from ([2 , observing that Lemma‘ 2.5.1|may be applied in a uniform

manner to each gaussian, taking ¢ = ||A]~_1||Loo and ¢ = | M|« for the respective cases.o

The reader should observe that if we instead work with balls of radius ~ 7 rather than
~ 1log(1/7) we are only able to obtain a uniform bound on the left hand side of (2.5.3)),

hence tightness requires that we work with these non-standard radii.

Lemma 2.5.6 (Local switching of Gaussians) There exists a v, ~, 1 such that given

€ (0,1n), veR", and x,y € R"™ such that y € V,(z)

= , 1 + T"
p) Hgyﬂ',j o dB](y>(x - y)p] ngx 7,5 © dB ( )
j=1

Proof. Let 0 < T < vy, where 15 is to be later determined, and y € kV,(x). It follows

from the definition of M that we may write
) [ [ 90.ms 0 dB;(y) (0)"7 = det(M(y)) > exp (——”2 |v|§) : (2.5.7)
p) ; =
J=1

For reasons that will become clear, we shall now prove the claim that logodet oM is

uniformly Holder continuous. By Proposition M is uniformly Holder continuous
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and M~! is bounded so, for all x,y € R™,

[M ()M (y)™ = I] < [ M7 e M(2) = M(y)| < o — y|°

Because log o det is smooth, we may take its first order Taylor expansion around I to find

that there exist 6 ~ 1 such that for |x — y| <6,

[log o det(M (x)) — log o det(M(y))| = |log o det(I + (M(z)M(y)~" — ))| < |z — yI’,

The condition that |z —y| < § can then be dropped by observing that by the fact that | M|
and |M 1| are bounded above implies that | det oM| is both bounded above and bounded
away from zero, hence log o det oM is bounded, so the claim holds for all =,y € R™ provided
we enlarge the implicit constant in the above inequality. Taking the logarithm of the ratio
of and itself with y replaced with x, then applying the Holder continuity of M and

log o det oM, we obtain that, provided x # y.

g [ BL(dB(2). p) [Ti21 9yrg 0 dB (W) (@ —y)™ | _ o [ et ()2 exp (~Flo — yl;)
®\ BL(dB(y). p) [T7%) Gormj 0 dBy(x)(x — y)Ps ® \ det(M (@) exp (— Zw — yl2)

< log(det(M (y) M (x)~") + %(I =)' (M(y) — M(z))(z - y)

<. 70 log(1/7)*7.

The above implies an upper bound exp(cr? log(1/7)2+%) on the error factor for some ¢ ~, 1,

hence, for a sufficiently small choice of vy, this error is at most (1 + 77). o

Lemma 2.5.8 (Stability of heat-flow under local switching) There exists v5 ~, 1,

such that for all T € (0,v3) and x,y € R such that y € V. (z),

gyﬂ’uj < (1 + Tn)glﬂ'yj'
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hence, for each non-negative f; € L*(R™) and 0 < 7 < v3

fi* 0y < (UL HT1)f5 % Gurje

Proof. Let 7 > 0 and y € V,(x). First of all, for each j € {1,...,m} and w € R™,

™

Guera(w) = exp (= 55((A;(9) = Aj(@)w, 1)) Gors ()

Using the Hélder continuity of A, j, it then follows that for all w € V;;(0) and 7 < v3 ~ 1,

s —
Guera(w) < exp (551 45(0) = A;(@)1dB; |37 10g(7™)?) gars(w)
< exp (i |dB; | 307 10g(7 ™)) gar ()

< (1+7"gyrj(w) D

The need for truncated gaussians within our setup is made apparent in the proof of the pre-
vious lemma, as we may observe that we cannot obtain a similar result for non-truncated
gaussians, since the tails of the gaussians g, - ; and g, - ; decay so rapidly that their ratios
will diverge exponentially as we move away from the origin. Thankfully, truncating the
gaussians outside of an appropriately sized ball, small enough to obtain sufficient local
constancy, but large enough for the truncation error to decay polynomially as 7 — 0,
solves these issues. It should also be said that truncating the gaussians is required in
order for them to be suitable cutoff functions for the partition of unity argument that we
will ultimately use to prove Proposition [2.4.5]

For the final lemma, we shall need to dilate the radius of truncation of g, ; by a small

factor slightly larger than one. In general, given x > 0, we shall denote the gaussian
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truncated to the ball kV; ;(0) by

L .
Jyrj "= gy:m]lﬁVr,j(O)

Lemma 2.5.9 (Improvement of local constancy under heat flow) Let v € (0,6),

then there exists a vy ~,~ 1 such that for all T € (0,v4), v € R" and z € V, ;(0),
Gorj(2) < (14 T")g}i;ij(,%) forall |z -z <71

Hence, it follows that for each nmon-negative f; € L'(R™), 0 < 7 < vy, * € R™ and

z,Ze R,
[i#0ur(2) < (L 4+77)f;* §;;i7j(2) for all |z —Z <71

Proof. Let 0 < T < v3, where v3 is yet to be determined. Firstly, for each j € {1,...,m},

reR" and 2,z € R

Goirg(2) = exp(=m7*(|2[7 5 + 2,2 = Dy + |2 = 2[7))
> exp(—m7 2 (|2l3; + 2lzleslz — 2oy + 12— 212,)

> Gorj(2) exp(=37%|2lo 12 — 2ay).
Now suppose that z € V, ;(0) and |z — Z| < 717, then, choosing v4 to be sufficiently small,

- - 1
IZ] < |2| + |2 — 2| < 1.1|dBj| =T log ( )

T
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so Z € 1.1V, ;(0) = supp (g41 ), hence

Jarj(2) = Gorj(2) < exp(372|2]0 512 — Zloy) o, (Z)
< exp (37| |A;|| o7 og(1/7)|2 — Z|) garj(2)
< exp (37| Aj]| o7 10g(1/7)) Gar(Z)

S+ 7 gari(2) = A+ 7" G014 (2) -

2.6 Proof of Proposition 2.4.5

This proof shall draw heavily from that of Ball’s linear inequality. We introduce the
truncated gaussians that we want to convolve our inputs with as a partition of unity.
This partition will also conveniently serve to split up the integral into a continuum of
localised pieces, which will allow us to exploit local constancy and Holder regularity to
perturb the B; to an affine approximation on each of those pieces. We may then apply
the linear Brascamp—Lieb inequality piecewise, and in doing so, obtain the desired form

on the right-hand side.

Proof. Let 7 < min{vy, v, v3, 14} and take some 0 < 7 < ». Later on we will retrospec-
tively impose some trivially stricter assumptions on the size of 7, a statement of which

we omit here for the sakes of readability. For all y € U, by definition of g, ., and Lemma

2.5.5

BLAB().p) < (147 | [y 0 dBi5)(x — )"

(¥) j=1

We may then multiply the left-hand-side of (2.4.1)) by the right-hand-side of the above

inequality, then exchange orders of integration, to obtain that for every non-negative
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fj € LY(R™),

Lﬂf]*gym (y)" dy

< (]' + 7—77) J]Rn BL dB LlVT HfJ *gyT] ) yT] © dB ( )( y>p]dxdy

<+ Jnfolv an‘*gy” o B;(y)" gy.+.; 0 dB;(y)(z — y)P dydx

=1

L+ J fou/ BL dB H 7% Gyrg © Bi()P gy,rj 0 dB;(y)(x — y)P dydz.

Having truncated appropriately, we may now apply Lemma [2.5.6] and Lemma [2.5.8] to
interchange some of the instances of the variables = and y in the integrand, incurring an

error factor of at most (1 + 77)!77, where o = Z;”lej.

f T4 %o o By dy
R™ j=1

1 m
< 1+7‘772+JJ —f '*~:r;7—‘OB' Dj g;r'odB'ZL‘ x — )P dudr
( ) g« BL(dB(z), p) ow,mﬂfj Ge,r © Bi(Y)" gurj © dB; () (zx — y)P dy

By the C1Y regularity of the data, |B;j(z) — B;(y) — dB;j(y)(z — y)| < plz — y['™? <
p(0.171og(1/7))'*?, so for a perhaps smaller choice of 7, |B;j(z) — B;(y) — dB;(y)(z —
y)| < 7117 for all y € 0.1V,(z). We may then apply Lemma , and replace each
B;(y) with its first-order affine approximation centred at x, which we shall denote by

L% := Bj(z) + dB;(z)(y — x), at the cost of an error factor of (14 7")7 and a fattening of
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the support of g - ;.

JU+VT Hfj*gyTJ Bj(y)"dy

(0)j 1

< (14 71)*t2 [ So.av, ) Li2s £3 % Gazy © L5 (9) o rj © d B () (x — )P dy
Ju+v ;. (0) BL(dB(z), p)

e [ S T 5 5, (Bi(e) — dBy (00 gary o By ) Py
Jusvs.0) BL(dB(z), p)

<(1 _|_Tn>2+20 i SRn HJ  Ji ngj< j(z) — dBj(z)y )pjgxﬂ'j o dBj(r)(y )pjdydx
JUu+v ;5.(0) BL(dB(z), p)

The last line follows from the observation that 0.1V,(0) < ;n:1 dB;(x)71(0.1V;;(0)) for

all x € R". We are now in a position to apply the linear inequality.

m pj
<+ | H( Fy e85, (Byo) - 23 (20 da
n . R]

< (1+ 7 f l_[fj G e g o By (a)da

We need to prove the claim that, if 7 is chosen to be sufficiently small, then g, y * o S

yy3r; foreach j € {1,...,m}. Since 1.2 < /2, if 7 is sufficiently small, then 1.17 log(1/7)+
0.171log(1/7) = 7log(1/7"2) < v/27log(1/7%/V2) < v/27log(1/+/27), which implies that

supp (Jur; * Gox ;) < supp (gar) + supp (301 )

= 1.1V,,;(0) + 0.1V;.;(0) < V5, ,(0).

By the semigroup property for heat equations, gyr; * gyr; = 9, .43, ; hence the claim
follows from combining and the pointwise bound g, y Qg;;j S Y * Yo = o/2r -

At this point, we are essentially done, provided that we have chosen 7 to be small enough
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for (1 + 77)%72 < (1 + 77) to hold over all 7 € (0, 7).

| Hfj*gm Sy < (47 [ T] (a2 Bya)” da
n n]::l

1+7’ f H(f] Go/ar.j © o Bj(z ))jdx
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CHAPTER 3

A NONLINEAR VARIANT OF BALL’S

INEQUALITY: THE GENERAL CASE

This chapter is a re-edited version of the preprint ‘A Nonlinear Version of Ball’s Inequality’

[40].

3.1 Setup and Notation

In this chapter, we shall consider fixed complete Riemannian manifolds (without bound-
ary) M, My,...,M,, of dimensions n, ni,...,n,,,. We require at least a Riemannian manifold
structure for a number of reasons, for instance so that the notion of a gaussian defined
on a tangent space make sense. We shall refer to the exponential map based at a point
x on a manifold e, : T,N — N. The injectivity radius of a point x € N is the largest
number p, > 0 such that e, restricts to a diffeomorphism on the ball of radius p, around
0 € T,N. We shall assume that the manifolds we consider have bounded geometry, by
which we mean that they have injectivity radii uniformly bounded below, by a number
p > 0 which we now fix, and also that both the Riemannian curvature and its covariant

derivative are uniformly bounded above. These are standard conditions for the type of
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global setting we shall be considering that exist to ensure that we may apply exponential
maps in a uniform manner. For further reading about analysis on manifolds with bounded

geometry, see [50,61].

We shall refer to a ball centred at a point x € M of radius » > 0 on a manifold M
by U,(z), and refer to a ball centred at a point v € T, M of radius r > 0 by V,(v) (the
tangent space that this ball belongs to should always be clear from context, if it is not
stated explicitly). We shall consider submersions B; : M — M; (j € {1,...,m}) that
may be viewed as fixed for the entirety, and are assumed to have at least L* bounded
derivative maps. Noting this, we shall denote a ball centred at z € M; of radius r|dB;|| 1
by U, ;(2), and similarly a ball centred at w € T, M; of radius r|dB;|.» by V, ;j(w), simply
for the technical reason that then (17", dB;(2)~"(V;,;(0)) = V;(0), a property that shall
prove to be useful later on. Similarly to the linear case, we refer to the pair (B, p) as a
nonlinear Brascamp-Lieb datum. We shall also make use of a fixed parameter v € (0, 1)
close to 1, The exact choice of value here is not particularly important, the reader may
take v to be 0.9, say, however we refrain from doing this for the sakes of clarity and good

book-keeping.

We shall always use a single bar to denote a finite dimensional norm, usually a 2-norm,
and double bars to denote an infinite dimensional norm, which we shall always specify
with a subscript. In the case where we are taking a norm of a matrix, we shall assume that
this is the induced 2-norm unless stated otherwise. Furthermore, if y is some variable, )

is a normed space valued function of y, and f is a real valued function of y, then we shall

use the the notation Q(y) = O(f(y)) to denote that |Q(y)| < f(v).

3.1.1 Statements of Results

Before we state our nonlinear version of (1.3.2), we must first preliminarily define our

‘heat-flow’. The construction thereof is rather involved, however the resulting flow oper-
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ator H, ,; may nonetheless be written essentially as a convolution with a gaussian kernel

Gerj: TjwyM; — R, the key properties of which we now state as a proposition.

Proposition 3.1.1 Suppose that (B, p) is a nonlinear Brascamp—Lieb datum such that
each B; : M — M; is C? and that there exists C > 0 such that |dB |1, [BL(AB, p)| > <
C. Then, there exists an € > 0 such that, for = > 0 sufficiently small, there exists a
smooth family of gaussian inputs G, ; = (Gur ;)72 parametrised by x € M satisfying the

following properties:

1. Fach gaussian G, ; is of unit mass and is defined by a corresponding T-dependent

positive definite matriz A, ;(x), in the sense that

Gorj(2) i= 77 det(Ar(2))? exp(—n7 XA, (2)2, 2)).

2. G, is a T°-near extremiser for the datum (dB(z),p).

3. HATJ’”WI,OO(M)? H det AT,jHWLOO(M) S fOT’ all j € {1, ,m}

The construction of this G, ;; is carried out in detail in Section m whence (1) auto-
matically follows, see the end of Section [3.1.4] and the remark after Lemma for the
proof of properties (2) and (3) respectively. We may now define the corresponding flow
operator, wherein we include some truncation to allow us to map locally to the tangent

space on which G 7 ; is defined.

Hyrj: L'(M;) — LYUy— 7 (Bj(x)))

Hyprjfi(2) = L Fi()Gorj(ep) ) (2) = ey (w))dw

T'Y,j(z)

We now state our near-monotonicity result, which is the main theorem of this chapter.
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Theorem 3.1.2 (Nonlinear Ball’s Inequality) Suppose that (B, p) is a nonlinear
Brascamp-Lieb datum such that each B; : M — M, is a twice continuously differentiable
submersion, and that there exists C > 0 such that |dB|ly1., |BL(dB, p)|r= < C

Then, there exists a > 0 such that for 7 > 0 sufficiently small, for all non-negative

fi e LN(M;),
|m| o Bi(x)Pidr < (14 7° |m| H,.;fjo Bj(z)"dx. 3.1.3
JMj_lfj j(@)de < (1+7 )JMj—l il ()" dx ( )

Of course, in the euclidean case we may identify our domain with every tangent space, so

(3.1.3) then takes the following more familiar form:

| Tt Biapds < @) [ Th Gorpn o) Byla)de
n ‘7:1 n ‘7:1

which of course implies a non-truncated, genuine heat-flow near-monotonicity statement.

J Hfjij(x)pjdx< (1+77) f HfJ 27 0 Bj(x)Pid.
R 1 ;

Often nonlinear Brascamp—Lieb inequalities exhibit sufficient diffeomorphism invariance
that to prove them in manifold settings it suffices to only consider the euclidean one. We
should therefore make clear that in order to obtain an inequality at the level of generality
of , it is vital for our analysis that we work in the manifold setting at every stage
in the proof, as this inequality is not sufficiently diffeomorphism-invariant to be reducible

to the euclidean case, even in the case where M ~ R".

Example 3.1.4 (Multilinear Radon-like transforms) Given functions fi, ..., f, € L'(R"),

20



we may write their n-fold convolution as an integral over an affine subspace.

fi# o fuly) = L HfJ z;)do (1, ..., Tp) (3.1.5)

r1tx2+...+Tm= y}] 1

We may be generalise this notion by nonlinearly perturbing this subspace. Let ¢ : R™ x
x R™ — R™ be a smooth function and suppose that y € R™ is a reqular value of ¢, and

consider the following multilinear operator T'.

T(foy o fn J ] Hf] ) d0(T1, o ) (3.1.6)

Let N := Y" n; and p; :== (N —n)/N, for all j € {1,...,m} and denote the natural

=1
projection map from T,¢~ ' ({y}) € RY = R™ x ... xR™ to R" by LY. Then, provided that
¢ satisfies the condition that BL(L®, p) < 1 for ally € R™, and all (zy, ..., 2m) € 6~ ({y}),
then there exists a 3 > 0 and a family of gaussians (G, r;)j, as in Proposition W

such that for all f; € L*(R™) and T > 0 sufficiently small,

T o ¥ ) () < (14 77) f {} Fo G )5 (1) do (21, o). (3.17)

The main upshot of Theorem is that one may use the local-constancy of H, ,;f;
to perturb the argument in the right-hand side of , either at small scales as in
Corollary [3.1.8] which yields a slightly improved version of the local nonlinear Brascamp-—
Lieb inequality first proved in [9] that better quantifies the relationship between the e-loss
in the constant and the size of the domain on the left-hand side, or at large scales as in

Corollary [3.1.9, which states that finiteness is stable under L* perturbations.

Corollary 3.1.8 Let (B,p) be a nonlinear Brascamp-Lieb datum satisfying the same

conditions as in Theorem [3.1.5, then there exists a f > 0 such that for each xo € M and
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all T > 0 sufficiently small,

fwonf]OB ) dz < (1+7°)BL(dB(x0), p ﬁO )pj

j=1

Corollary 3.1.9 Suppose that Bj,éj :R" - R"™ for all j € {1,..m} and (B,p) is a
nonlinear datum satisfying the conditions of Theorem[3.1.3, that the inequality associated
with (B, p) holds with finite constant, and that |B — B < oo, then the inequality

associated with (B, p) holds with finite constant.

In particular, this corollary implies that any inequality associated with a nonlinear L*
perturbation of a feasible linear datum, provided that it satisfies the conditions of Theorem
3.1.2) must hold with finite constant. It would be reasonable to suggest that a similar
result would hold in the non-euclidean setting, however, due to certain technical geometric

complications, this appears to fall beyond the scope of this thesis.

3.1.2 Reduction of Theorem (3.1.2

Let C(s,t) denote the best constant C' € (0, o] for the following inequality.
f [T Hansfs o By(aPda < C(s, 1) J [ Heusf; o Byl da (3.1.10)
Mj:l Mj:1

It is easy to see that C(s,t) enjoys the submultiplicative property C(r,t) < C(r,s)C(s,t).
We claim that this together with the following proposition is sufficient to prove Theorem

0. 1.2

Proposition 3.1.11 There exist 5,v > 0 such that, for all T € (0,v),

C(r,vV2r) < (1 4+ 79).
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Proof of Theorem[3.1.9 given Proposition[3.1.11. Setting 7o = 7, define the geometric
sequence 7y, := 27%27; and let K € N. We can split the constant C(7x, 7) into pieces that

can be dealt with by Proposition [3.1.11}

Crg,7) < C(1i, Tc—1)C (TR 1, T)

< O(7r, Tk-1)C(TK -1, Tk —2)C(TK —2, T)
K
HOTk,Tkl < (1+7’,f)
k=1

k=1

Taking logarithms of the above inequality, we obtain that

log(C(1k,T)) < Z log(1 + 7))

\Z%—wul

It then follows that, making 7 accordingly smaller if necessary, that C(7x, 7) < exp(5 572[3 ) <
(1 + 79/2). For each j € {1,...,m}, let f; € C(M;) be a non-negative function. By the
forthcoming Lemma [3.2.11] we know that H, . ;f; o Bj(z) — f; o Bj(z) as 7 — 0 for all
x € M, hence we may apply Fatou’s lemma and consider (3.1.10) with s = 7 and t = T,
taking the limit as K — 0.

J H fjoBj(x)Pider < lim 1an HHx,TK,jfj o Bj(z)Pdx

K—w

< liminfC(rg, T JHmengB x)Pidx

K—w

< (147772 J ]_[ H,.;fjo B;(x)Pidx (3.1.12)
Mj=1

This implies the theorem since we may extend this inequality by density to general non-

negative f; € L'(M;). o
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This initial reduction complete, we now turn our attention to the task of constructing
the family of near-extremising gaussians G - ;, but, as we briefly discussed at the end of
Section [1.1] in order to do this we shall first need to establish a slight improvement of the

effective version of Lieb’s theorem (Theorem [1.1.4)) first proved in [9].

3.1.3 A Regularised Effective Lieb’s Theorem

An issue with constructing a suitable heat-flow outside of the case where (dB(z),p) is
simple is that we do not then have a natural choice of gaussian extremiser to use as our
heat kernel, in fact, generally speaking (dB(z), p) may not admit a gaussian extremiser
at all. While Lieb’s theorem does guarantee the existence of a J-near gaussian extrem-
iser for any 6 > 0, i.e. there exists a gaussian input A such that BL,(dB(z),p;A) >
(1 —6)BL(dB(z), p), it does not offer any quantitative information about this gaussian.
The authors of [9] overcame these problems by establishing an effective version of Lieb’s
theorem that tracks how the family of d-near extremisers for a given Brascamp—Lieb

datum degenerates as 6 — 0. We now state a simplified version of their result.

Theorem 3.1.13 (Effective Lieb’s theorem [9]) There exists N € N depending only
on the dimensions and exponents such that the following holds: For any given D > 0
there exists 09 > 0 such that for every § € (0,0y) and any feasible datum (L,p) such that
BL(L,p),|L| < D,

sup  BLg(L,p;A) > (1 —0)BL(L, p). (3.1.14)

|AlJAT <6~ N
This theorem, in other words, establishes the existence of a function Y4 from the set
of feasible Brascamp-Lieb data to the set of gaussian inputs such that Ys(L) is a J-
near extremiser for (L, p) and both ||[Y;|r» and | Y '||1« are bounded above by 6= (to

clarify, Y;!(L) refers to the gaussian input whose jth entry is the inverse of the jth entry
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of Y5(L)). It says nothing however about the existence of a smooth, let alone continuous,
function with such properties. Unfortunately, we require Ys to be W1* bounded for our

analysis, moreover, we require that its W1* norm is bounded polynomially in 6.

Theorem 3.1.15 Recall the definition of F and G from Section [1.1. There exists an
N € N depending only on the dimensions and exponents such that the following holds:
For all open Q € F there exists a v > 0 such that for all § € (0,v), there exists
a smooth function Ys : Q — G such that det(Ys(L);) = 1 for all j € {1,...,m},
1Y s[wroy, [ Y5 @ < 67N and, for each L € Q, Ys5(L) is a §-near extremiser for

(L, p), i.c., that BLy(L, p; Ys(L)) > (1 — 6)BL(L, p).

Fortunately, the authors of [9] in the same paper establish the Holder continuity of the
Brascamp-Lieb constant as a consequence of their effective Lieb’s theorem, which, as it

shall turn out, is an essential ingredient for proving Theorem |3.1.15

Proposition 3.1.16 ( [9]) There exists a number 6 € (0,1) and a constant Cy depending
on the dimensions (n;)7L, and exponents (p;)jL, such that the following holds: Given data

L, L’ such that |L|,|L'| < C; and BL(L, p), BL(L', p) < Cs, we then have
IBL(L,p) — BL(L, p)| < CoC; " V3L — L)Y, (3.1.17)

Proof of Theorem |3.1.15. The proof strategy is to locally average the potentially discon-
tinuous function given by Theorem [3.1.13|in such a way that we both preserve its good
properties and impose on it some additional regularity. We will be averaging via a discrete
cover of €, which we shall now define. Let 6 € (0,1) be an exponent to be determined

later, and let E < ) be the following discrete grid of points:

5\ 7
- s nixn T X7
E:=Qn ((100) Z X .. X 7 ) . (3.1.18)
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Now, let Z be an indexing set for E so that we may write F' = {L;};cz, thenlet Q := {Q;}icz
be a cover of Q via axis-parallel cubes of width equal to (§/10)7, with each Q; centred at
L;. One should note as a matter of technicality that we may need to take § to be very

small for Q to genuinely be a cover of €).

By Theorem [3.1.13] there exists an N € N such that for sufficiently small 6 > 0 there
exists a function Y§ : @ — G such that | Y| r=@), [(Y5) 1@ < 6 and Yy(L) is a
d/2-near extremiser for (L, p) € Q. We begin by showing that, for a suitable choice of 8
and provided that § is chosen to be sufficiently small, for all i € Z, Y3(L;) is also a d-near
extremiser for any (L, p) such that L € Q; n 2. By compactness of Q2 and smoothness of
the Brascamp-Lieb functional in L on F, there exists a vy € (0,1) such that for n € (0,4)

and all L, L' € Q satisfying |L — L'| < n?, we have
BLy(I, p; YA(L) > (1 - n)BLy(L, p; YY(L). (3.1.19)

The presence of exponent in the bound 7? here is merely for absorbing constants. By
Proposition [3.1.16, we may choose 6 € (0, 1/2) such that the following holds: There exists

vy € (0,1) such that for 5 € (0,15) and |L — L/| < 5@, we have that
BL(L,p) = (1 — n)BL(L/, p). (3.1.20)

Again we have used some freedom in our choice in 6 to absorb the constants that arise in

(3.1.17). Choose 9 such that 0 < § < min{vy, s, 1}, then for all i € Z and all L € Q; n Q,
since |L — L;| < 6%/10% < 62/100, we may apply (3.1.19) and (3.1.20)) together with the
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fact that Y$(L;) is a 6/2-near extremiser for (L;, p) to prove the claim.

BL, (L, p; Y3(L;)) = (1 — 6/10)BLg(L;, p; Y3 (L))
> (1—6/2)(1 — 6/10)BL,(L;, p)
> (1-6/2)(1 - /10)*BLy(L, p)

> (1 - 6)BL(L, p) (3.1.21)

Now, let {p;}icz be a smooth partition of unity subordinate to Q with indexing set Z such
that ||dp;| L= < 077 (we may use a similar construction to that in section [1.6), and define

the function Y; Q) —Gg.

YiL) := (Z pi(L)Yg(Li)1> (3.1.22)

Again, we clarify that inversions are defined component-wise. We claim that, for any
L € Q, Y;(L) is an O(d)-near extremiser for (L,p). Firstly, by the homogeneity of the
Brascamp-Lieb functional and (3.1.21)), each p;(L)"'YJ(L;) is a d-near extremiser for all
(L,p) such that L € @; n . Consider now a generic d;-near and dy-near extremiser,

call them A; and A, respectively, for some generic linear datum (L, p), then by Ball’s

inequality,
BL, (L, p; A1)BL,(L, p; Ag) < BL(L, p)BLy(L, p; (AT + A;H) ™)
— (1 —81)(1 — 65)BL(L, p)* < BL(L, p)BL4 (L, p; (A; ' + Ay ™)
— (1 —01)(1 — 62)BL(L, p) < BLy(L,p; (AT + A;H) ™)
— (1 =061 — 62)BL(L,p) < BLy(L,p; (A7 + Ay 1)) (3.1.23)

hence (A7' + A5')"!is a (6, + Jy)-near extremiser for (L,p). Since we are pointwise
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only ever summing boundedly many (by which we mean < 1) contributions in ,
by iterating (3.1.23)), we find that Yj(L) is an O(8)-near extremiser for (L,p) (similar
observations about the closure of extremisers under harmonic addition were made in [14]).
We may of course remove the implicit constant here by a simple substitution, so we shall

proceed assuming that Y;3(L) is a d-near extremiser for (L, p), for all L € Q.

It remains to prove that Y satisfies the necessary L* and W'* bounds. We shall

start with the L* bounds. One bound is trivial, namely that

Y;(L)™ < max [YYL) ™ <6V,

a:LeQq

The other requires the elementary fact that, for all symmetric positive definite matrices

A, BeR™" |(A~'+ B71)~!| < |A| + |B|, which follows from the fact that, for all |v| = 1,
(A7 4+ BVl = (A7 + B0 2 > A1 + B2 2 (A + [B)™ (3.124)
which then gives us that
VL) < ppax [YO(L] <07

It remains to prove the L bound on the derivative dYj. We use the chain rule to deal
with the matrix inversions, apply the above established bounds on [Yj(L)|, then apply

the triangle inequality to show that the derivative is at most polynomially bounded. Let
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W e R™M*™ x ... x R"*" be some unit vector, then

Y [L](W)] = [Y5(L)d((Y5)™)[LI(W)Y (L)
< o7Md((Y5) LW

<57 Y |V (L) [YY(L)

i€
< §3N-3,

Changing our choice of N and absorbing constants as appropriate, we may assume for
the rest of the proof that |dYj|z» < 6~. Finally, we obtain the desired function
Y s by renormalising the determinant, which, by the homogeneity of the Brascamp—Lieb
functional, does not affect the property of being a d-near extremiser. We shall use the
polynomial bounds for Yé =: (Y(Slj);”:l to help us establish polynomial bounds for Y4 =:
(Y5;)7, which we define below.

=0

Y5(L) = (det(Yz; (L))" ¥5,(L))7:

J=1

Since the 2-norm of a real symmetric matrix is its maximal eigenvalue, and the de-
terminant of a matrix is the product of its eigenvalues, we know that det Y (L) <
YD) < 6N, similarly, det Y5(L)™! < |[Y45(L)7Y"™ < 07", Finally, we must
bound the derivative dY;s[L]. Now, in the case when n; = 1, det(Yy;) = Y3, so Y5
is identically one, hence the claim of the theorem is trivial, so shall proceed assuming
that n; > 1. Letting L € 2, by the chain rule and Jacobi’s formula, we know that

d(det Y3,)[L](W) = adj(Yj,(L))* : dYs,[L](W), where adj denotes an adjugate and the
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colon denotes the frobenius inner product A : B := ), ; AijBij, so, taking some W] =1,

[AY[L](W)| < [d(det(Yy) ")) [LI(W)Y5(L)| + | det(Ys,[L]) =™ dYy, [L](W))|
< 67N (|d(det(Y;,) V)L 4+ 672N)

1
<6V (n—yd(det YL+ 5—2N>
J
_ L. 1-1/n; 1-1/nj o
<0 () YL+ 0
J

_ 1 n;— —1/n; AL - e
<07 (I L 4 5 ) 5 6
J

For some ¢ ~ 1. Above we used the fact that the adjugate is a homogeneous polynomial

of degree n; — 1 to obtain the bound |adj(Y;})|rrov < [adj(Yy) | < [V ™" o

3.1.4 Definition of G,

We shall now define the gaussian arising in the statement of Theorem [3.1.2{ using Theorem
B.1.15] In order to do this, we need to find a way of globally applying Theorem to
our manifold context, and to this end, we define BL, to be the set of feasible Brascamp—
Lieb data with domain T, M and codomains T'g, () M1, ..., T, (z) My, and we consider the

following set

Q,:={LeBL,:|L|,BL(L,p) < C}

We remark that BLy := | |,.,; BL, then defines a fibre bundle over M, with natural
projection map w1 BLy — M and Qp = | | ., s defines a fibre subbundle of BL )y,
containing | | ,,{dB(z)}, although we do not rigorously justify these claims as it is not
necessary for the proof. Let U be a boundedly overlapping cover of M via small balls of the
same radius, let {¢y : U — R"}yey be a normal atlas and {¢p, ) : Bj(U) — R"}p, ey

be an atlas for B;(M) consisting of restrictions of normal charts. We may use them to
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define define a system of local trivialisations for BL,,.

Yy mge(U) > U x BL

Yo (2, L) := (x, (dés;w)|Bj(x)] o Lj o dpy[z] )L,

By our bounded geometry assumptions, the forthcoming Lemma [3.2.4] implies that the
exponential map has has bounded first and second derivatives, hence our normal atlases
may be chosen such that | J,.,, Yu(m5.(U) 0 Q) = U x Q, where Q := {L € BL :
IL|, BL(L, p) < 2C'}. The set 2 is open and relatively compactly contained in BL, there-
fore there exists a Y : 2 — G as in Theorem for this choice of 2. Let {py}uey be
a partition of unity subordinate to M with uniformly bounded derivatives, and define the

following gaussian input-valued function:

a-(z):= (Z pu () (Cy(z)*Y ra 0 m 0 Yy, dB(x))CU(x))1> : (3.1.25)

Ueld

where 7 denotes projection onto the second component, Cy(x) := (d¢p,w)(B;(r)))jL,,
and « € (0, 1) is a small exponent to be later determined, which we shall use to control the
blow-up of a, under various norms. By scale-invariance of the Brascamp—Lieb inequality
and the closure of d-near extremisers under invertible linear changes of co-ordinates, each
term of the form Cy(2)*Y ;a om0 ¢y (2, dB(z))Cyp(z) in is a 7®-near extremiser
for (dB(x), p), therefore iterating implies that a,(z) is a O(7*)-near extremiser
for (dB(z), p). Moreover, following the same reasoning as in the proof of Theorem [3.1.15]
we may derive that [a| =), |a; ey < 7. In both instances, we may ignore

the implicit constants that arise by simply raising the exponent a a qualitatively small
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amount. We may then define a gaussian g, - ; : T, )M; — R as

s 7r
Gzrj(2) = T exp <—§<am~(a:)z, z>> )

Implicitly, we may view this gaussian as the fundamental solution of the following anisotropic

heat equation at time t = 72.

oru(z,t) =V, - (ar;(x) ' V,u(z, 1))
At last, we define our gaussian kernel G ; ; as the following infinite convolution.

. oo
Gx,r,j = *k:lg$,27k/27,j

We shall now show that G, ;; is well-defined if o < 2N —1 where this N € N is the one

that arises in Theorem |[3.1.15] To see this, we consider the partial convolution
K .
G;’T?j = Gpo1/2g g * e ¥ Gpo-Kj2r ;g =T det(Cx )2 exp(—n72(Cxv,v)),

where Ck := ( :j( 27 %ay-rs, j(2)~1)7" (this formula may be checked by an application
of the Fourier transform). We now just need to show that Cx converges as K — oo,
since then Ggi)J converges pointwise. Let [ € N, then by the fact that Ha;}k/zﬂjH Loy <

okaN2r=aN for all k > 0,

K+l
Cli = CM T < D) 27 ag-we, (2) 7
k=K+1
K+l
< Z 2—k2kocN/27_—aN
~

k=K+1

!
< 2(@N/2=1)K —aN Z 9(aN/2-1)k
k=1
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By our choice of o, |Cl; — Cx'| = 0 as K — oo uniformly in [, so Cy' is a Cauchy
sequence, and therefore converges. By continuity of matrix inversion, the limit of C'x then
exists provided that limg_,.(Cg') € GL,, (R), otherwise Cx must be unbounded, since
if it were not it must admit a convergent subsequence, which would have to converge to

the inverse of the limit of C', resulting in a contradiction. We therefore only need to

(K)
I?Thj

check that Cg is bounded, whence G

(3.1.24) and the L* bound on a,.

— (;.;,; pointwise, which follows from applying

K o0
Kl ~ - 2-k/127 j < alN/2- - SaN T >
Ol £ 32 agmsag (@)] < 320N hreN gy o e < o0
k=1 k=1

If we denote the limit of Cx by A, ;(x), then we may write G, ;;(2) explicitly as
Gori(2) = 77 det(A,;(2)) 2 exp(—m7 "2 A, j(2)2, 2)).

It is worth noting that by using infinitely many applications of (3.1.23]), we see that
A (7) := (A ()L, is an O(7%)-near extremiser for (dB(x),p), establishing property
(2) of Proposition [3.1.1}

BLg(dB<$), bp; A‘r(
BL(L, p)

z)) o < —ka/2 _ o (a2 -1
>1-7) 2 —1—7%(2%% —1)
k=1

Observe that in the case where (dB(x), p) is simple, we may forego Theorem and
use an exact extremiser for our definition of g, - ;, in which case a, is constant in 7 > 0,
and we would then have the identifications A; = a, and G, ;; = g,-;. Of course, if the
reader wanted to run our argument in the simple case with exact extremisers, then they
would need to take care to ensure that these exact extremisers satisfy appropriate W1H®

boundedness of the type we shall prove for our near-extremisers in the next section.
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3.2 Gaussian Lemmas

This section is, for the most part, dedicated to establishing the properties we require of our
gaussians G ; and g, - ; in order to prove Proposition [3.1.11 which, as we have shown
in Section [3.1.2] implies Theorem [3.1.2 We need to quantify how these gaussians behave
under small perturbations in a number of variables, and for this purpose we shall first

need to prove various bounds on norms the underlying gaussian input-valued functions

a, and A,.

Lemma 3.2.1 For any € > 0, provided « is chosen such that a < min{?%N,%}, there

exists a v > 0 such that for every 7 € (0,v), |A;|wiw, | det Ay |ywro, |[AZ e < 77°.

Proof. The proof is similar to that of Lemma [3.1.15| as it amounts to a straightforward
application of the triangle inequality and an application of the bounds on ay-r2, ;(x) that
immediately follow from Theorem [3.1.15] taking v > 0 small enough so that we may

bound any constants that arise from above by 7V=¢_ for all 7 € (0, v).

o0)
aN 2—-1) k —alN —€
‘ Z 2- ’&2 k/QT] Z / <T
o9)
o(aN/2-1)k _—aN —e
Z 27"y w2 (T Z / <7

b
—_

Now, take W € T, (,)M; such that [W| = 1, then the bound on dA, ;(z) follows from the
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L* boundedness of Ygl and the W1 boundedness of Y

|dA-;(@)(W)] = |Ar;(2)d(A ) () (W) Ar ()]

k=
s
ST 2N d(Y e, 1 [A7B
o0
< 7_726 Z 2*kHY2__1ak/27_a H%w HdY27o¢k/27_o¢ HLoo

0
< 72 Z 2k(3o¢N/271)7_720¢N < 7_745

We now turn our attention to the W'* bound for det(A, ;(x)). First of all, | det A, ;(z)| <
|A; ()| < 77 for all 7 € (0,v), so we have the bound |A,;(z)| < 77¢, similarly
|A; ()7 < 77% for all such 7. all that remains is to establish the L* bound on
d(det A; ;). The case when n; = 1 has already been established, since then det A, ; = A,
so suppose then that n; > 1. Taking any x € M and w € T, M such that |w| = 1, then
by Jacobi’s formula, the chain rule, the Cauchy-Schwarz inequality, and the equivalence

of finite dimensional norms, we have that

jd(det A-;)[x](W)] = [adj(A-; ()" dA;(z)(w)]

S |AT,](x)|n]71‘dAT’J(QZ)| g 7'72(nj71)5

This proves the claim, since we may adjust € accordingly. O

We shall henceforth consider € € (0, (1 —v)/2) and « € (0,£/2N) as fixed parameters,
and we also note at this point that we have now proved property (3) of Proposition m,
completing its proof.

Lemma 3.2.2 For alln e (0, min{y —2¢,0.9y —¢,3y — 2 —¢}), there ezists a v > 0 such
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that the following holds: for all T € (0,v) and x,y € M such that d(x,y) < 77, and z € M,
such that d(z, Bj(x)) < 77, for all f; € L'(M;),

Hy;r,jfj(z) < (1 + Tn)Hx,'r,jfj(Z) (323)

In order to prove this statement, we shall need a geometric lemma, the proof of which

may be found in the appendix.

Lemma 3.2.4 Suppose that M is a Riemannian manifold with bounded geometry, then
given x € M, then the norms of the covariant derivatives (up to second order) of the
exponential map based at p € M may be bounded above uniformly in p in the open unit

ball.

Proof of Lemma[3.2.3 Let 7 > 0 be small, let x,y € M satisfy d(z,y) < 77, and take
some z € M, such that d(z, B;(z)) < 77. First of all, by the chain rule, for any v € T, M,
d(egi(y)oij(x))[v] = d(e;;(y))[ij(x) (v)]dep;()[v]. Given w € U j(z), by Taylor’s theorem,
we may approximate v, 1= egj(y)(z) - egj(y)(w) in terms of v, := e;j(x)(z) - egjl_(w)(w) in

the following manner:

—1 —1 —1 —1
Uy = €p,0) © €B;(2) © €0y (2) = €y © €B,(2) © €y (W)
= d(eg, () © €8;) €5, () ()] (V2) + O(lva])

= d(e; ) [2ldes, e (2)](0:) + Olus ). (3.25)

Above, we use Lemma to uniformly bound the higher derivatives. Define the linear

map T, 1= d(e;;(y))[Z]dij(x) [e;i(x)(z)], then it follows that

[Arg ()20 * = [Arg (1) (T v + O(l0*))

< ’A‘r,j (y)l/z(Tx,yUx)P + 7—2'97_57 (3.2.6)
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for sufficiently small 7 > 0. Now, by the uniform bounds on det A, ; established in Lemma

[3.2.1], we have that

|det A, ;(z) —det A, ;(y)]

1 A —1 Arj <
| Og(det T,J(x)) Og(det T7J(y))| min{\detAT,j(x)\,]detAm-(y)H

<7 7|d(det Arj)| L= d (2, )

—2
< 777

Together with ([3.2.6]), this implies the bound G, ; ;(v,) < (1+77)G, - j(v,) for sufficiently

small 7 > 0.

A e e A

< exp(r7 7 + a7 w2 (| A () PP = [Ary ()P Ty 0a]?)

G
G

<exp(r777% + 7097 4 7TT_2<<A7-J(CC> — TiyAij(y)vay)vx, V)
<exp(r777% + 09 4 WT_QIAW (x) — T;’yAT7j(y)Tx7y]|vw|2)
<exp(r777% + 09 4 27r7_2|\dAijHLoo7'37)

< exp(777% + 7097 4 2727 L 1 4 77

In the penultimate line we applied the mean value theorem in to obtain |A,;(x) —
Ty Arj() eyl < 2|dA;j|pod(7,y). The claim then easily follows from the definition
of Hx,T,j-

Hyqr;fi(z) == J [i(0)Garj(ep) o (2) = €5y (w))dw

Urj (2)

ST [ B@Garslen(2) - en (@) = (14 ) Hyr (2

Uz ;(2)

(3.2.7)

]
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Lemma 3.2.8 (General Truncation of Gaussians) Let m,n € N, k ~ 1, and for
each 7 > 0 let A, € R™™ be a positive definite matriz. Define g, : R™ — R to be the gaus-
sian g, (x) = 7" exp(—7m7 (A z,x)). Let v > 0, and suppose that | det(A, )|, A7 <
77¢ for some € € (0, (1 — v)/2). There exists a v > 0 depending only on n, m, €, and vy

such that for all T € (0,v)

det(A,)7"? = J gr < (1+ Ta)f gr- (3.2.9)

Urvr'y (O)

n

Proof. By the freedom of choice we have in «, if the claim holds for k = 1 and we let
v =~ —n for some small n > 0, we obtain the general result by enlarging the domain of
integration on the right-hand side of (3.2.9)) from U~ to U,__,(0), taking 7 < k7. Tt is

sufficient to show that there exists v > 0 such that, for all 7 € (0, v),

f gr < cTe. (3.2.10)
R™\U7+(0)

for some ¢ ~ 1. To see this we simply split the integral of g, into U~ (0) and R™\U,~(0).

der(a) = [ |
R™\U.~ (0) U:~(0)

T

< cr® + J Jr
U~ (0)

T

det(A,;)"1? —er® < JU o 9r
ks

det(4,) 17 < (1 cder(A,) Vo) | o' = | 0"
U~ (0 U.~(0

Which of course implies (3.2.9) if 7 is taken to be sufficiently small. To estimate the left
hand side of ([3.2.10)), we shall partition the domain of integration R™\U,(0) into annuli,

and bound the resulting infinite sum above by a lacunary series. We take 7 € (0, v), where

68



e (0,1) is chosen such that Zv**7~1 > 2e.

J gr = J exp(—m|AY ) dx
RM\U- (0) a1

0
_ f exp(—r|AY22]?)dz
k=0 v2ETY I a|<2k -1
0
< sup  (exp(—7|A-z[))Vol ({28777 < |o| < 2817771
k=0 2* log(1/7)=|z|

0
< 07" Y 2 R exp(—rr| ALY 222 20D)
k=0

0 0 0
2 71' 2522}67.’\/ 1 Z 71' 25+'y—122k Z 2622k
O

We may now prove the pointwise convergence to initial data for H, ;;f; o B;, a fact the

reader will recall that we needed to prove that Proposition [3.1.11|implied Theorem (3.1.2]

Lemma 3.2.11 (Pointwise convergence to initial data) For each j € {1,...,m}, let

fi € Co(M;) and x € M, then,
lim H,.; ;0 Bj(x) = f; © By(x). (3.2.12)

We give a proof of this lemma in the appendix.

Lemma 3.2.13 (Switching) For alln € (0,«), there exists v > 0 such that for 7 € (0,v)

and x,y € M such that d(z,y) < 77

S5 L0 48,005 @) < iy HgmodB ez )

(3.2.14)

Proof. Let 0 < 7 < p/10, and define the positive-definite symmetric matrix field M, €
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NTM®T*M).
Z p;dB;(x)*ar;(x)dB;(x)
It follows from the definition of M, that

[Ters o 0100 =] Testostans . a2

— exp(—nr M, () 20]?)
Hence, by the fact that a, ;(z) is a 7*-near extremiser for (dB(z), p),
(1 —7%)BL(dB(z),p) < BLy(dB(z), p;a,;(x)) = det(M,(z))""? < BL(dB(z), p),

hence

l_[;n:l Gz.7.; © dBj(x)(v)Ps
BL(dB(z),p)

< det(M, ()2 " exp (—12|M7(x)1/2v|2>
T

n m
(1= 79) det(M, (z)) /> exp (_ﬁyMT@)l/%y?) <

Taking logarithms of the ratio of the two quantities arising on either side of ([3.2.14)) reveals

that the logarithm of the error factor in (3.2.14)) is polynomial in 7.

(e, (z))P
BL(dB(y), p) [ ]2, gerj 0 dBj(x)(ez ()P >

log exp (—WT—Q‘M (y) 1/2 ;1(33)‘2) det (M, ( 1/2
(1 — 7o) exp (—772| M, (x)2e;1(y)[?) et( ()12

og (BL(dB(x),p)H L Gyrj o dB;(y)(e,!

< (IMe(y) ey (o) = [ Me(2)' e (9) %) + log(det (My (y) M (x) ")) — log(1 = 7°)

Yy

Let 0 : I — M be a geodesic such that 0(0) = « and o(1) = y. Let P, : T,M — T,M
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denote parallel transport along o. It is straightforward to check that e; ! (z) := —Pye; ' (y),
hence we may collate the two squares in the first term, allowing us to bound the resulting

quantity using the mean value theorem.

o (BUAB(@). p) [T}, gy 0 By (w) (e ()
S\ BL(AB(), p) [, 9oy © dB; (@) (e, (1)

< 7w (P, M (y) Py — Mo (2))e, M (1), €, (y)) + log(det (M (y) M () 1)) — log(1 — 7°)

S TR dMy || pe|eS ()P + 777 4 S TR L T e g e

Hence, provided 7 is taken to be sufficiently small, we obtain the desired upper bound.

BL(dB(z), p) H;nzl Gyrj © AB; (y)(e;l(x))pj
BL(dB<y>7 p) H;n:l gm,j,r o dBJ (l’) (6;1(y))pj

<exp(er®) < 1+7",

where ¢ ~ 1. o

The next lemma ensures that the we may perturb the operators H, , ; in x at the expense

of a quantitatively small multiplicative error, and it will be a key tool not only for proving

our theorem but also for proving Corollaries(3.1.8/and [3.1.9, It shall become clear why, like

in the previous chapter, it is essential that we truncate the gaussians G, ; ;, as gaussians
are not locally constant at any scale unless restricted to a ball of suitable size with respect
to the scale of mollification, and the choice of 77 is well suited to our purposes, unlike the
radius of 7log(1/7) of the previous chapter, which is too large to cope with the blow-up

in eccentricity of the gaussians as 7 — 0 that we have introduced here.

Again, like the previous chapter, in order to perturb to a nearby gaussian the radius
of truncation needs to be slightly increased, and so we therefore shall need to define a
minor modification of H, ; ;, where the radius of the domain of integration is multiplied

by a factor of 1.1. This factor is of course chosen arbitrarily, but since this consideration
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is a minor technicality we simply choose a value for the sakes of concreteness.

HYL LN M) — LYNU, 110+ (By(x)))

x7T7j

H;,i,jfj('z) = fi (w)G%T,j(e;(gj)(Z) - eél-(x) (w))dw
Uiar7,5(2) ! !

Lemma 3.2.15 (Local-constancy) For any n € (0,v — ¢), there exists a v > 0 such
that the following holds for all T € (0,v): Let x € M, then given z,% € U, ;(B;(z)) such
that d(z,2) < 72 we have that for all f; € L*(M;),

H,.fi(z) < +7NH: £(3) (3.2.16)

Z,7,J

Proof. First of all we need to prove a similar claim for the kernel G, ; ;. Suppose that

v, w € Tg,(z)M; are such that [v — w| < k7 for some x ~ 1 and v, w € V;+ ;(0).

Gy rj(v)

— -2 1/2, 12 1/2, 12
= exp(m7 = (|Ar;(z) 0" — |A;j(z)“w

— exp(rr X Ary ()0 — ), v + 1)
< exp(nr 2| A ll|v — wl|v + w))
< exp(2C% kT 277502 7Y)

= exp(2C% kT 7)
Hence it follows that, for all 7 > 0 sufficiently small, d(z,z) < 7%, and w € U, ;(2),

Gm,j(eg(m)(z) - eg}-(@@)) < (1+ Tn)G:v,T,j(‘fE;;(z)(é) - eéj(x)(w))-
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The lemma then follows from applying this bound directly to the definition of H:! . f;.

x7T7]

Horsfi) = | 5@)Garslenli(2) - egli (@)

UT'Y,j (Z)

< (147 j F1(0) Gy (€51 (2) — €51y (w)) o

Urav,5(2)

=1+ 7" HM fi(2) D

x7T7]

3.3 Proof of Proposition (3.1.11

Our proof strategy is to use the near-extremising gaussians g, . ; to construct a partition
of unity for the integral on the left-hand side of , subordinate to balls of scale
77. At this scale, we may apply our lemmas from the previous section to perturb the
integral, so that we may then apply the linear Brascamp—Lieb inequality locally, thereby
obtaining the desired form on the right-hand side. Gaussian partitions of unity were also
used in [9], and, notably, more recently in the context of decoupling for the parabola by

Guth, Maldague, and Wang [48].

Proof. For each j € {1,...,m}, take some arbitrary f; € L'(M;). Let € (0, min{c, 0.9y —

g,7 — 26,3y — 2 — ¢}) and choose v > 0 such that (3.2.3)), (3.2.9), (A.9)), (3.2.14)), and

(3.2.16)) hold for 7 € (0,v). Consider the following collection of truncated gaussians.

{XVOJTW (0) H;nzl Gy,7.5 © dBj (y)pj } (331)
eM

BL(dB(y), p)

By Lemma and the fact that a,(y) is a 7%near extremiser for (dB(y), p), we know
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that for 7 > 0 sufficiently small,

BL,(dB(y),p;a,(y)) < (1 +17) J HgyT]odB ) (v)Pi
Vo.1-7 (0

BL(dB(y).p) < (1 + ) fv (OﬂgymodB y) (),

hence we may continuously split up the integral on the left-hand side of (3.1.3)) by intro-
ducing (3.3.1)) as one might a partition of unity.

f]‘[ yeifs 0 Bily)Pdy

ol m ‘ _ dy
< 1+T772 HT,f,OB.prg T.odB.y vpjdfu—
( ) JMJVo.hw(y)ﬂ y,7,3J j i (Y)" y,r.j i (y)(v) BL(dB(y), p)
[ ; ‘ dy
< (1+77)? yrifio Bi(W)Pig,.;0dB;(y)(e, ' (z))Pdr—————
( ) JMJUOlTw(y)ﬂ JJ ] ) Y7, ](y)( Y ( )) BL(dB(y),p)
S [ T Hursds o B air o dBi )6 @) e
JM JUy, lTw(I)] 1 BL(dB<y)’p)

We want to perturb the inner integral to a linear Brascamp-Lieb inequality in y. To

do this, we first apply Lemma and Lemma [3.2.13| to remove some of the unwanted
y-dependence. Let P := " p;, then

JM ﬁ[ Hyrjfjo Bj(y)"dy
e [ [ T sty o BP s o 4B P B e
1+Tn3+2pj j HHxT]f]oB<> gm0 ABla ) ()P g —
(14 77)3+5P J fv ]‘[Hm £, 0 By(ea(v ))pﬂ'gm,jodB[x](v)pjdvW.
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We may then use Lemma [3.2.15] to replace the instance of Bj(e,(v)) with its affine ap-

proximation around w, given by L7 (v) := ep, () (dB;(z)v).

dx
BL(dB(z), p)

dx
BL(dB(z),p)

<+ 7">3+4Pf f [T HY £ 0 L2 (0)P g 0 By () ()P do
M IVya1mv(2) j=1

<@ || TTHEL A o L0 gm0 0 dBs ()0
x =1

Above we used the fact that, for all 2 € M Vj1,+(0) = ()2, dBj(x)”'Vo174;(0). At this

point we may apply the linear Brascamp—Lieb inequality (dB(x), p) to the inner integral.

m Dj
<(1+ 7-71)3+4PJ H J H;;ivjfj(ij(x)(vj))gLT,j(vj)dvj dx (3.3.2)
M -1 \YVo.177,5(0)
The resulting integrals in (3.3.2) may be then be bounded by a convolution.

J Hy L fi(eB,;(0)(05)) o (v))dv;
Vo.1+7,5(0)
= J J Fi(2)Garj (05 — €51 (2))Grg (v5) ddv;
Vo.177,5(0) YUy 1.7, (Bj(x))

<(1+T")J

f fi 0 eB(a)(W)Gar (0 = W) G r5(v;)dwdy;
Vo.1r7,5(0) IVi 1.7 5(Bj(x))

= vaTanVl.l‘r'Y(O) * gszanVO.l‘r'y(O) * fj © eBJ(J") (O) (333>

Now, Gy rj* Gerj = Gyo12,; by definition of G, 7 5, and the support of xv, |, 0) * XV 1.+ (0)
is the ball around the origin of radius 1.277, which is less than 27277 provided that v >
2log,(1.2) ~ 0.526.... This implies that supp(Ga,rjXv; 1,4(0) * JorjXVi 1.4 (0)) < Varrz(0),

hence

GvaanVl.lT'Y (0) * gsz’jXVO.l‘r'y (0) < (zeij * ng,T,j)XVQ’yT'y (0) = G$121/27—7jXV2’7/27—’Y (0)
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We may then bound (3.3.3)) as follows:
L o Hy 2 fi(en;0) (V1)) g (V) dvy < Hyirzr i fj 0 By(). (3.3.4)
0.177,5

Finally, we complete the proof by combining (3 with and taking 5 € (0,n). o

3.4 Proof of Corollaries [3.1.8 and |3.1.9

Proof of Corollary[3.1.8 Take some arbitrary f; € L'(M;) for all j € {1,..,m}. By

Theorem [3.1.2] there exists a § > 0 such that for 7 > 0 sufficiently small

b HfJoB ”fdx<f HfmwooBmw
T'Y IO
1], HHW X o) © By

<(1+7° j HHmf] o B(x)Pidu
U2Tw(xo

Take n and v as in the proof of Proposition [3.1.11} if we take 7 € (0,v), then we may
apply Lemma [3.2.13| to perturb H, ,; to H,, ,; and Lemma [3.2.15| to perturb B;(x) to

L3°(z), at which point we may apply the linear inequality to complete the proof.

<1+ +° Honij]oB( )i da
Uarvy IO)] 1

< (1+7%)(1+ )2 J HH;OITJ ;0 LY (x)P da
Uarv (z0) j=1

m bj
< (1+ 7)1 + ) BL(dB(x), 1_[ (f zomfj €B;(z) )
U2‘r"/ ](0)

j=1

<(1+7 )(1 +7-77)3PBL dB(x), ﬁ (f ) ] o

7=1
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Proof of Corollary[3.1.9. Fix some 7 > 0 small enough so that (3.1.3)) holds for the non-
linear datum (B, p). Let R := |B — ]NBHLO@(Rn) and take some v € V,+(B;(z)), then

Goprj(Bj(z) —v) 2 A B () — BB (2 () — 9
G (Bot) o) = ST MBS (@) = Bi(@)IBy () + By() = 20])

)
LE,T,](

< exp(rRr 27| B;(x) + Bj(x) — 2v])
< exp(ﬂRTQ*E(QIBj(&?) — o] + |§](x) — Bj(2)]))

<rs L. (3.4.1)
Define the following convolution operator:
H,,fiy) = fi(2) exp(—m7 2y — 2|*)d=. (3.4.2)
]Rn

Since Gyrj(2) < exp(—n7572|2|?) by Lemma [3.2.1] H,.;f; < H,;f;, so combining this
with (3.4.1), we may bound H, . ;f; o Bj(x) as follows,

Honsly o Bi@) = [ f(0)Guns(Byfa) - s

Vi (B] (J?))

<nr fv [5(2)Gam s (By() — 2)dz

7



The finiteness of (B, p) then follows easily from (3.1.3) and the finiteness of (B, p).

J [ [fieBi@)de < (1+ Tﬁ)J | [ Horsfi o Bila) da
=1 R j=1

<r f [ [ Hesfi o Bj(x)da

78



CHAPTER 4

AN ALGEBRAIC BRASCAMP—LIEB

INEQUALITY

This chapter is a re-edited version of the article ‘An Algebraic Brascamp—Lieb inequality’

39).

4.1 Introduction

As stated at the beginning of the thesis, a common feature of many problems studied
in modern harmonic analysis is the presence of some underlying geometric object, ex-
amples including Kakeya inequalities, Fourier restriction theory, and generalised Radon
transforms. Usually, this object is equipped with a measure that does not detect geomet-
ric features such as curvature or transversality, properties that are often highly relevant
in the contexts we are considering. It has many times been found that incorporating
a weight that tracks these geometric features in a suitable manner yields inequalities
that require few geometric hypotheses and exhibit additional uniformity properties (in
the context of generalised Radon-transforms and convolution with measures supported

on submanifolds, see for example [32,36,37,43}44,57,/64], or in the context of Fourier
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restriction [1,|18}26}2835,138.,/51,/58]). In particular, one often finds that if the geometric
object in question may be parametrised by polynomials or rational functions, then the

associated bounds will usually only depend on their degree, as observed in [32,35-37./64].

The main theorem of this chapter is another instance of this phenomenon, and is set
in the context of a global nonlinear Brascamp—Lieb inequality. The underlying object in
question is a collection of maps that have a certain algebraic structure that generalises that
enjoyed by polynomial, rational, and algebraic maps. Like polynomials, these maps have a
well-defined notion of degree, and the bounds for the corresponding nonlinear Brascamp—
Lieb inequalities we obtain depend only on these degrees, the underlying dimensions, and

exponents.

It was first suggested in [16] that a global Brascamp-Lieb inequality should include
an appropriate weight factor in order to compensate for local degeneracies, and it is

~Lin our

upon this suggestion that we include a weight factor of the form BL(dB(x), p)
inequality. It was also discussed in the same paper that even with an appropriate weight
factor one cannot expect a global nonlinear Brascamp—Lieb inequality to hold with only
local hypotheses, due to reasons relating to infinite failure of injectivity. We address this
issue by imposing that our nonlinear maps are quasialgebraic, a property we define in the

following section, which entails that the fibres of our maps can only intersect one another

boundedly often, thereby precluding such injectivity-related counterexamples.

4.1.1 Preliminary Definitions and Notation

Definition 4.1.1 Let M < R™ be an open subset of a d-dimensional algebraic variety and
let N be a Riemannian manifold. We say that a map F' : M — N that is C* on an open
dense subset of M 1is quasialgebraic if its fibres are open subsets of algebraic varieties. We

define the degree of F' to be the mazimum degree of its fibres (this may be infinite).
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The author is not aware of this notion of a quasialgebraic map being discussed anywhere
in the literature, however this is not to pretend that it is an innovative concept, merely one
that is very much tailored to our purposes. As remarked earlier, the class of quasialgebraic

maps encompasses many important classes of maps, as ordered below.
{polynomial maps} < {rational maps} < {algebraic maps} < {quasialgebraic maps}

As one would hope, the notion of degree in Definition |4.1.1] coincides with the conventional
notion of degree for each of the above classes. It is easy to check that, unlike the classes
of polynomial, rational, and algebraic maps, the class of quasialgebraic maps is ‘closed’
under diffeomorphism, in the sense that given a quasialgebraic map F' : M — N, and a
diffeomorphism ¢ : N — N’, the map F’ := ¢o F : M — N’ is a quasialgebraic map of

the same degree as F'.

Given a manifold X, We let U,.(z) denote an open ball of radius » > 0 centred at
a point x € X, and we denote the centred dilate of a ball V' by a factor ¢ > 0 by cV.
Notice that at some points either dB; will not be defined or will fail to be surjective; in
such cases we set BL(dB(x),p) = . Given a Brascamp-Lieb datum (L, p) such that
L;:V — V; and a subspace W < V', we let BLy/ (L, p) denote the best constant C' > 0

in the following ‘restricted’ Brascamp—Lieb inequality.
m m pj
J H fj o L](x)pﬂd)\w(l') < CH (J fj($j)d)\ij($j>> . (412)
w j=1 j=1 L;w

Lastly, we shall denote the zero-set of a polynomial map p : R® — R¥ by Z(p) := {x €
R™ : p(z) = 0}.

81



4.1.2 Main Results

We shall now state our main theorem.

Theorem 4.1.3 (Quasialgebraic Brascamp—Lieb Inequality) Let d,m,n € N and,
for each 1 < j < m, let n;j € N and p; € [0,1]. Assume that the scaling condition
Z;llpjnj = d s satisfied. Let M < R™ be an open subset of a d-dimensional algebraic

variety, and for each j € {1,...,m}, let M; be an n;-dimensional Riemannian manifold.

We consider quasialgebraic maps B; : M — M; that extend to quasialgebraic maps on
some open set A < R™. Setting p := (p1, ..., pm) and equipping each M; with the measure
w; induced by its Riemannian metric, the following inequality holds for all non-negative

fi € L'(M;):

- P; do(x) = bi
JMQ fioBy(@) BLr, 0 (dB(z), p) < deg(M) H (deg(Bj) JM]- fj(%)@j(%)) )

J=1

(4.1.4)
where o s the induced d-dimensional Hausdorff measure on M.

The reader should note the similar thrust shared by this theorem and Theorem 1 of [43].
We also remark that if M is not an algebraic variety then the notion of degree no longer
makes sense in this context, and therefore this structural condition is necessary. On the
other hand, while the Riemannian structure on M; is a convenient setting for our analysis,
as it immediately gives us suitable notions of differentiability, measure, and distance, it
is however plausible that one might be able to generalise this inequality to some broader
class of topological spaces for which these notions may be defined, although we shall not
pursue this level of generality in this thesis. Unsurprisingly, Theorem immediately
gives us a less powerful, but more concisely stated weighted nonlinear Brascamp—Lieb

inequality for polynomial maps.
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Corollary 4.1.5 (Polynomial Brascamp—Lieb Inequality) Let the dimensions and
exponents be as in Theorem and let B; : R — R" be polynomial maps. The

following inequality holds over all non-negative f; € L'(R"):

J HijBj(f)pj$ <] (deg(Bj) fj(xj)dl’j) B (4.1.6)

(.’,U), p ]:1 an

Notice that we impose no local condition on the maps Bj, not even that they are sub-
mersions. This is allowed because the weight we have incorporated on the left-hand side
vanishes when the maps B; degenerate, hence we do not have to worry about counterex-
amples such as where the functions f; concentrate at critical values of B;. In this sense,
despite the rigidity of the algebraic structure required by Theorem [4.1.3] in applications
the lack of uniform boundedness requirements, of the kind specified by Theorem [3.1.2] in
some aspects make it very robust by comparison. We shall now demonstrate this flexibility

with a concrete example.

Example 4.1.7 Let S* = R denote the unit d-sphere, let V4, ..., V,, < R be a col-
lection of subspaces of R™! such that 3}7" | codim(V;,) = d, let w:= N, Z(flim(vj) ek €
AR, where {ejﬁk}gflim(vj) is an orthogonal basis of V- for each j € {1,...,m}, and
let L; : R — V; denote the projection onto V;. Letting p := (ﬁ,...,#), by
Proposition 1.2 of [0] and the forthcoming Lemma we know that BLz sa(L,p) =
BL((L, 7(z,s4y), (P, 1)) = |z A w\m%ll, where m(p,gay: 1 R — (T,S%)+ denotes the natu-
ral projection map, so then applying Theorem [{.1.3 yields the following inequality for all

fie LNV;):

H <H fio Lj(@) [z A W

S H HfjHLl(vj)
j=1

1
LT (Sd)

Notice that way in which Theorem is stated means we do not need to remove the
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points x € S" that lie in one of the subspaces V;, these being the points at which the

corresponding projection L; fails to be a submersion when restricted to S,

Brascamp-Lieb inequalities were first studied as a generalisation of Young’s convolution
inequality on R™ in [24], it is therefore fitting that one may view Theorem as a
generalisation of Young’s convolution inequality on algebraic groups, those being algebraic
varieties equipped with a group structure such that the associated multiplication and

inversion maps are ‘morphisms’ of varieties, i.e. restrictions of polynomial maps.

Corollary 4.1.8 Let G be an algebraic group, with left-invariant Haar measure du. We
let A : G — (0,00) be the modular character associated to (G, u), which is the unique

homomorphism such that for all measurable f : G — R,

Jf )dp(z ffwgdu)

We define left-convolution as follows:

_ f Fay V) g(w)duty)
G

The inequality ([£.1.9) holds for all pi, ..., pm, 7 € [1, %] such that l, = Z;”:I 2 and all
fj € L (G):

< deg(@) deg(ma)” [ [ Il (4.1.9)
L(G) j=1

m 1

where mg : G x G — G 1is the multiplication operation, and o := Zj:1 o
J

We give a proof of this corollary in the appendix. It is important to note that since the

best constant for Young’s inequality on locally compact topological groups is always less
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than or equal to one [71], Corollary does not offer any improvement to the theory,
however it is nonetheless included in this chapter for the sake of context; we refer the
reader to [34,52,[59,|71] for further details on Young’s inequality in abstract settings. We
remarked earlier on that Theorem [4.1.3]is an example of an affine-invariant inequality, in
the sense that the left-hand side is invariant under the natural action A : B; — B, o A of
GL,(R) on the class of quasialgebraic data, however this inequality in fact exhibits a more

general diffeomorphism-invariance property, as described by the following proposition.

Proposition 4.1.10 Let the dimensions and exponents be as in Theorem [{.1.5. Let M
and M be d-dimensional Riemannian manifolds equipped with induced measures p and
[, and, for each 1 < j < m, let M; be an nj-dimensional Riemannian manifold. Let
Bj: M — M; be a.e. C*, and ¢ : M — M be a diffeomorphism. Defining B = (Bj);-"zl =
(Bj o ¢)i,, the following then holds for all f; € L*(M;):

- o Bj(z)P diilz) = - o Bz dp(z)
Jﬁﬂf] Bj(@) BLTZM(dﬁ(:E),p) JMﬂf] Bj(@) BLr, 0 (dB(z), p)

Proof. By the chain rule and Lemma 3.3 of |14], for almost every x € M,

BLTIM(dﬁ(x), p) = BL, (dB(é(z))dé(z), p) = BLz,,,m(dB(é(z)), p) det(do(z)) ™.

Hence, by changing variables we obtain that

m . dx _ n o B () det(do(x))dx
fyﬂfﬂ Bi(@) BL,, 7(dB(z), p) fﬂgfj Bi(w) BLr,,,, v (dB(¢(z)), p)
- pj dl‘ o
-l Lo By 5 sy

In light of Proposition one may extend Theorem to any m-tuple of maps

(B;)7TL, that may each be written as a composition of a quasialgebraic map with a common
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diffeomorphism ¢, however we shall leave this as a remark. The proof strategy for Theorem
will be to appeal to a generalised endpoint multilinear curvilinear Kakeya inequality,
which we will view as a discrete version of (4.1.4), and run a limiting argument in order

to recover the full inequality.

4.2 Setup for the Proof of Theorem 4.1.3

4.2.1 Reductions

We shall assume for the remainder of the chapter without loss of generality that the
maps B; have finite degree, since the case of infinite degree holds vacuously, and that
BL7, m(dB(2),p) < o for all x € M, in particular that B; is a submersion on M. We
may do this firstly because we may remove the set of non-smooth points harmlessly since
it is closed and null, so M is still an open subset of an algebraic variety, and secondly we
may remove the set of smooth points at which the weight arising in (4.1.3|) vanishes, i.e.
those x € M such that BL(dB(z),p) = o0, since this set is closed by continuity of the

reciprocal of the Brascamp-Lieb constant (Theorem 5.2 of [9]).

We shall begin by reducing to the case where d = n, i.e. where M is an open subset

of R™. We begin with a standard geometric lemma.

Lemma 4.2.1 Let N be an (n—d)-dimensional Riemannian manifold and let x5 : N — R
be the normalised characteristic function associated to the d-ball centred at some fized
z9 € N, defined by xs5(z) 1= 0" UXuy()- Given an open set A < R™ and a submersion

B: A — N, then for any continuous and integrable f : A — R the following holds:

J F@)ys © Bx)da =2 F(z) det (dB(z)dB(2)*)do (z),
A AnB~1({z0})

where do denotes the induced d-dimensional Hausdorff measure.
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We also require the following identity of Brascamp-Lieb constants, which may be
regarded as a crude example of a Brascamp-Lieb constant splitting through a critical

subspace, a phenomenon that was studied in its full generality in [14].

Lemma 4.2.2 Letd,n,m e N, nq,....,n,,, € N and write n,,,1 = n—d. For1l <j <m+1,
we consider linear surjections L; : R™ — R" such that, for 1 < j < m, L; restricts to a
surjection on the subspace V := ker(Ly,41). Let p; € [0,1] for 1 < j <m and ppi1 =1,

m—+1

and assume that the scaling condition Z;n:ll p;nj = n is satisfied. Let L:= (Ljy)j=y and

)m+1

p = (p; Then, the scaling condition d = Z;nzlpjnj holds. Furthermore, if we let

= (Llv)L, and p := (p;)jL,, we then have the following identity:

~

BL(L,p) = det(Ly1 L%, ;) ?BL(L, p).

The proofs of these lemmas are given in the appendix. Combining them with Theorem

in the euclidean case then yields the general case.

Proposition 4.2.3 If Theorem holds for d = n, then Theorem holds for

general d.

Proof. Let B,,;1 : R* — R"? be a polynomial map such that M is an open subset of
Z(Bmy1), and that deg(B,,41) = deg(M). Let A < R™ be any bounded open set such

that B,,.1 restricts to a submersion on A n M. Recall the definition of ys from Lemma

4.2.1] By Lemmas [4.2.1) and |4.2.2] we know that given any f; € C§°(M;),

m o Bz dU(x)
LmM L1552 Bl 5 m o)

) det(dBmH(:c)dBmH( )*)"2do ()
LQMHJ[J Bl BL(dB(z), D)

= lim o B. XéOBmH(x)dx
_}SHOJAHJCJ B;j(x)" ( B(z) p) )
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Applying Theorem [4.1.3| inside the limit on the right-hand side we then obtain

. - dx
LGMH oo B gL (B ). p)

= dealBmely (L@n—d Xé(z)dz) ﬁ (deg(Bj) JMj fi (xj)duj(xj))pj

j=1

~ deg(M) ﬁ (deg(Bj) JM. fj(l’j>dﬂj($j)> )

7j=1

which yields the desired inequality, since the right-hand side is uniform in the choice of

A, and extends to arbitrary f; € L*(M;) via density. D

We shall henceforth assume that our domain is of full dimension, and to emphasise
this, for the remainder of the proof we shall denote the domain of B; by U < R" instead
of M.

Having reduced Theorem to the euclidean case, we shall further reduce Theorem
to a more discrete inequality, where the domain U is replaced with a compact subset
Q < U, and the arbitrary L' functions f; are specifically sums of characteristic functions

associated to small balls on M;.

Proposition 4.2.4 For every compact set Q) < U, there exists a v > 0 such that, for all

d € (0,v) and all collections V; (allowing duplicates) of 0-balls in M;, the following holds:

bj
m

J H Z xv; © B BL— (deg(B;)o" #V;)P (4.2.5)

j=1 \V;eV; j=1

We shall now derive Theorem from Proposition [4.2.4] via a standard limiting

argument.

Proof of Theorem giwen Proposition[{.2. The idea of this proof is to take an in-

creasing sequence of compact domains 2 whose union is U, and for each term in the
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sequence apply (4.2.5)), choosing the collections of balls V; such that the sums of their in-
dicator functions approximate f; from below, up to a constant, from which (4.1.4)) follows

by the monotone convergence theorem.

For each k € N, let €2, € U be compact subset such that €2, < .1 and UZOZI Q. =U.
Let Qék) be an essentially disjoint cover of M; such that for each @); there exists a d;-ball
V(Q,) containing Q; and |Q| ~ 6,”. For each j € {1,...,m}, let f; € Cf(M;) n L'(M;) be
a non-negative function and, for each @); € Q;k), let c§k)(Qj) € N be chosen such that for
all z € M;

. k .
inf fi(2)k =1 < 7(@j) < inf fi(2)k.

At least one such choice exists since the upper and lower bounds are separated by 1. By
construction, we have the pointwise limit ZQ]E o) G5 (Qi)x0, . fw fj, so in particular,

for all x € R™, by the monotone convergence theorem,

bj

m 1 (9 i
fﬂ o2 6 (@)xg, 0 B(2) BL(dB(z), p)

Qp
k j=1 QjEQ;k)

- b 4T
IH—OZLJHfjij(x) BL(dB(). ) (4.2.6)

On the other hand, provided that each ;. is chosen to be sufficiently small with respect to

Q, we may apply (4.2.5) to the multiset consisting of cg-k)(Qj) copies of each ball V(Q);)
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for each Q; € Qg-k).

pj

e 1 (k) dx

= k
=1 Q;eQ

pj
1 & .
sk—PH deg(By)s Y (@)
Jj=1 QJ'EQ;H
m pj
o H (deg(Bj)fM fj(xj)d#j(ffj)) , (4.2.7)
j=1 J

The last line is also a consequence of the monotone convergence theorem. Theorem
then follows by combining (4.2.6) with (4.2.7)), since by density this argument improves
to arbitrary f; € L'(M;). o

4.2.2 Central Constructions

The strategy for proving Proposition [4.2.4] is based on appealing to Theorem [1.4.18]
in particular finding a collection of open subsets Hi,..., H,, of algebraic varieties such
that, if substituted into , then the resulting inequality would yield . These
manifolds may be thought of as the unions of ‘discrete foliations’ of the preimages B (V)

via the fibres of B;.

We shall now carry out this construction. Fix @ and let 6 > 0 and V; be a finite
collection of d-balls in M;. Let a > 1, for each V; € V; let xy, denote the centre of Vj,
and choose an orthonormal basis 01, ..., 0y, € Txvj M;. Given € > 0, we define the discrete

e-grid Ay, = @;?, eZ0;, and we consider the intersection of a dilation of V; with the
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image of this grid under the exponential map:
. e
rw;) = eXPy,, (AV]) N 2V;.

We have dilated the balls V; by a factor of 2 for technical reasons that will become

Figure 4.1: The specific case when V; = {Vj(l), Vj@), Vj(?’)}

apparent in the proof of Lemma [£.3.9 the reader is encouraged to ignore it upon first
reading. In order to track multiplicities, it shall be important that for each V;, V' € V;, we
have I'(V;) n I'(V}) = &, however this is not guaranteed by our construction as it stands,
hence if there exists z € I'(V;) n I'(V}), then we shall remedy this by simply translating

one of these discrete sets by a negligible non-zero distance of, say, 6% .

We shall now use the assumption that B; is quasialgebraic. For each z € M; there
exists a polynomial map p? : R” — R™ such that B;'({z}) is an open subset of Z(p?)

and deg(p3) < deg(B;). Define the following polynomial map:

Sj = H 1_[ p]z,

VieV; zel(v;)

and let Z(S;) be its zero-set. By our assumption that B; is a submersion, we may assume
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that Z(5;) is an (n —n;)-dimensional variety, and contains the following open subset that

will serve as our aforementioned ‘discrete’ foliation:

;= | ByNIT(W) = Z(S)).
Vi€V

Observe that if § > 0 is chosen to be sufficiently small, then #I'(V;) ~ 6= |V}| ~

617 hence we may bound the degree of Z(S;) as follows:

deg(Z(S))) < >, Y, deg(pi) <deg(B;) > #I'(V;) = deg(B,)s! "4V, (4.2.8)

Viev; zel (V) VieV;

Figure 4.2: Picture of H;

4.2.3 Heuristic Explanation of Proof Strategy

Let f; := Zvj ev; XV;» and observe that the right-hand side of 1' is equal to

deg(Bj)o— " San fj, so provided we cancel the factor of §° at some stage, it then seems

promising to substitute Hq, ..., H,, into (1.4.20)), and try to obtain (4.2.5) from that.
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Morally, we may view the left-hand side of as measuring the size of the inter-
sections of tubular neighbourhoods of the varieties H; of unit thickness, weighted by their
mutual transversality. By rescaling we may reduce the size of these neighbourhoods to
an arbitrarily small scale, for technical reasons we will reduce the thickness of the tubes
to near 6°-scale, where o < 8 < 1.

If we now substitute the varieties H, ..., H,, into , assuming our meshes I'(V;) are
sufficiently fine with respect to the size of Vj, then the left-hand side would essentially be

measuring the size of the set

ﬂ U U TH({2}) + Uss (0)): (4.2.9)

which we claim contains (L, Uy,cy, B; Y(V;) n Q, and it is this set that the left-hand
side of (4.2.5)) is measuring, so all we need to make sure of is that the two measures in

question essentially coincide.

The measure being applied to (4.2.9)) is the Lebesgue measure weighted not only by
the transversality of the leaves B; '({z}) comprising H;, as imparted by the integrand
BL(T H;,p), but also, for each j, by a combinatorial factor that counts, given = €

1 UV ev, ( ) ", the number of §°-neighbourhoods that z lies in, and this factor

is given by Zzer(vj) X B ()40, (0) (). As the forthcoming Lemma [4.3.9| demonstrates,

this factor itself splits into two factors: one counts the number of preimages B '(V;) that
x lies in, which is exactly given by Zvj ev; XV o B;(z), and the other is a factor that counts
the amount of overlap between tubes associated with the same ball V; at a point z € U.
This factor will be large when the tubes are tightly packed, and low when the tubes
are more spaced out. These situations correspond to the derivative map dB;(x) having
respectively large and small ‘volume’, which is quantified by the function |R;(x)|, which

we define in the next section. It is due to the content of Lemma [4.3.4] that these additional
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e high overlap: |R;(z)| » 1

IRy ()] = det(dB; (x)dB;(x)*)}

/ low overlap: |R;(z)| « 1

Figure 4.3: overlapping §°-tubes

|R;(z)|-factors will allow us to move from BL-factors to BL-factors, which finally gives

us the left-hand side of (4.2.5)).

4.3 Lemmas

Here we shall prove the results that form the ingredients we need to prove Proposition
4.2.4] First of all, we shall investigate how Fremlin tensor product norms behave under

rescaling.

Lemma 4.3.1 Let X;,..,X,, € R" be smooth submanifolds such that dim(X;) = k;, let
q1, -y qm = 1, and let F' € @Tzl L%(X;). Then, for all e >0,

>
Tj

|BL(T,, X, p = eXM/%| BL(T,, (=" X;), p) (4.3.2)

)H&)LLZ; (X;) H@LL% (e71X;)"

Proof. First of all, since dilation is a conformal mapping, it must preserve tangent spaces
of submanifolds, so in particular T., X; = T,,(¢7'X;). For each j € {1,...,m}, let F} €

L%(X;) be an arbitrary function satisfying F; > 0 and BL(T,, X}, p) < Fi(21)...Fpn(Tm)
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a.e. pointwise. By the definition of a Fremlin tensor product norm, it then suffices that

[ [1E o ) = =%/ H [ E5(e) | £os (=1, (4.3.3)

which follows immediately from rescaling the L% norms. =

A necessary ingredient for proving Proposition is a formula relating the standard
BL-constants with the nonstandard BL-constants arising in ((1.4.20). We find that we
may derive an explicit factorisation that makes explicit the dual role that the BL-constant
plays, in both measuring the mutual transversality of the kernels of the L; and measuring

how close the maps L; come to being non-surjective.

Lemma 4.3.4 Let (L,p) be a Brascamp-Lieb datum such that each map L; : V — V; is

surjective, and let R; € A" (V') denote the nj-fold wedge product of the rows of Lj, then
BL(L, p) = BL(ker(L;) H |R,| 7. (4.3.5)

Proof. For the sakes of concreteness, we shall assume that the domains of the surjections
L; is R" equipped with the standard inner product. By the first isomorphism theorem,
for each j € {1,...,m} there exists an isomorphism ¢; : R"/ker(L;) — V; such that
L; = ¢j om;, where 7; : R* — R"/ker(L;) is the canonical projection map.

First of all, we claim that |det(¢;)] = |R;|. To see this, observe that |L;[0,1]"| =
|p;om;[0,1]" = | det(¢)], so the claim then follows provided we can show that |L;[0,1]"| =
|R;l.

|L[0, 1] = [(L;[0,1]") > [0,1]"7"] = [M [0, 1]"| = | det(M)],

where M e R™" is the matrix whose first n; rows are the rows of L; and the last n —n;
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TOWS are €11, ..., €n, Where ey, ..., €, is an orthonormal basis of R" such that ey, ..., ey,
n4 .
span ker(L;)*" and €y, 41, ..., e, spans ker(L;). Since R; = +|R;| AL, ¢;, the claim then

quickly follows:

n

1L;[0.1]" = |det M| = |[R; A ( /\ e = Rl \ e = |R;|-
j=1

j=n;+1

Now, let f; € L'(V;) be arbitrary and ]7] = fj o ¢;. We may then change variables and

rewrite the left-hand side of the Brascamp—Lieb inequality associated to (L, p) as follows.

J [14 o Litapds = | HfaOW] = | Hf]mkeru; e (43.6)
R" 59 i

Moreover, {g, Jrer(nyy 43 =

(4.3.6) we obtain that

| det(e;)| SHj fi = |Rj|™! SHj f;» hence combining this with

fRnﬁijLj<$)pjdx < BL(ker(L;), p) ﬁ <|R - 1J ) - (43.7)

j=1

Therefore BL(L, p) < BL(ker(L;),p) [ [}, |R;|7". Furthermore, observing that (4.3.7)
is sharp, by the definitions of BLL and BL, this automatically improves to the desired
formula BL(L, p) = BL(ker(L;),p) [ [}2, [R;| 7. 0

We remark that |R;| may also be written as det(L;L*)"?2, since |Rj|* = (R;, Rj)pmi gy =
det((r;x - er)Z’l:l) = det(L;L}), where 1, is the k™ row of L;. As one would expect, the
formula (4 also allows us to carry stability properties from the standard BL-constants
to the BL-constants arising in ((1.4.20]), which we state more precisely in the following

corollary.

Corollary 4.3.8 Let 2 < U be compact. Writing x := (x1,...,%.,), the weight function
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g: Q" — R defined by
9(x) := BL(ker dB(;),p)™"

1s uniformly continuous and locally constant at a sufficiently small scale, that is to say for

e > 0 sufficiently small depending on 2, for all x,y € Q™,

x -yl <e=g(x) S g(y).

Proof. For each z; € Q, let Hj-:j : R" — ker(dB;(z;))* denote the projection map onto
ker(dBj(z;))*, and let ¢/ : R — ker(dBj(z;))" be a family of isometric isomor-
phisms that varies continuously in x;. Define the family of surjections L;j :R® — R
by L7 = (¢;/)"' o II7, and let L* := (L}’)",. By Lemma m, BL(L*,p)™! =
g(x) T | det(¢;")[P" = g(x), hence continuity of g follows from the continuity of
the reciprocal of the Brascamp-Lieb constant over 2, which was established in [10]. By
compactness of 2 and the positivity of g, g® ¢g~! is then uniformly continuous on (2™)2,

so because ¢ ® g~ !(x;x) = 1 for all x € Q™ there exists ¢ > 0 such that for all x,y € Q™,

g® g l(x;y) < 2 provided that |x — y| < ¢, completing the proof. o

The next proposition will allow us to simultaneously cover the preimages Bj_l(Vj) of
the Balls V; by tubular neighbourhoods of the varieties comprising H;, and account for

the missing factor in the weight BL(dB(z), p)~', as alluded to in Section [4.2.3|

Lemma 4.3.9 Let Q < U be compact and fix j € {1,...,m}. Let Rj(x) e A" (R") denote
the n;-fold wedge product of the rows of dB;(x), then for a sufficiently small choice of

0 > 0 depending on €2, over all x € €,

[Rj(@)xv; © By(w) 87 3 Xy, 0(@): (4.3.10)

=el(V;)
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To prove this lemma, we shall need to establish the following intuitive geometric fact that

shall allow us to deal with the nonlinearity present in the quasialgebraic maps B;.

Lemma 4.3.11 Given the same hypotheses as Lemma for a sufficiently small
choice of 6 > 0 depending on 2, L%(Uspa(z)) < Bj(Us(x)) for all v € Q, where L (y) :=
eXpp, () (dB;j(z)(y — ) is the first-order approzimation of B; about x (not to be confused
with the notation used in Corollary .

We give the proof of this lemma in the appendix.

Proof of Lemma[{.3.9. We immediately have that for each x € ,

Z XBJ._l({z})JrUéB(O)(x) = #{z e I'(V;) : d(z, Bj_l({z})) < ¢}

=€l (V;)

# (I'(V;) 0 B;j(Uss (x)))

= # (expay, (A7) 02V 0 By (Uss(2))

By Lemma [4.3.11] we then, for § > 0 sufficiently small, have the bound

> X e = # (expn, (M) A2V 0 LiUpp(e)) . (43.12)

er(v;)

Recall that we denote the centre of V; by xy, € M;. |dB;(x)| is uniformly bounded
over x € §), so provided that x € Bj_l(‘/}), then for all y € Usso(v), d(Lf(y), zv;) <
d(Bj(z), zv,) + |dB;j(2)||Lo@yly — 2| < 6 + |dB[6°/2 < 26, if we take 6 > 0 to be suf-

ficiently small. This implies that if x € B} 1(1/}) N Q, then for 0 > 0 sufficiently small,
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L5 (Uss jo(2)) = 2Vj, which together with (4.3.12)) yields that

Z XBj_l({Z}HUéB(O)(x) > # (eXszj (A(Xs/j) N L?(Uaﬁ/z(x)» XBJ.—l(\/J-)($>
zel'(Vj)

~ 4 (expwj (Aﬁvj*‘g) A L;(Ul(x))> oty (@). (43.13)

Given € > 0, define Q; to be the cubic decomposition of vaj M; into e-cubes whose sides
are axis parallel and whose corresponding set of centres is A%‘,j , and recall the definition
of ¢ > 0 from the proof of Lemma . If we take 5% < ¢/10, then for all z € Q
and Q € Qf-aiﬁ such that @ n L§(Uyja(x)) # &, we must have that @ < L3 (Ui(z)),
since otherwise there would exist a point outside of Lf(U;(x)) within a distance ¢/2 of
Bj(x), which implies that dB;(7)|ierdp,(z)- has an eigenvalue with absolute value less
than ¢, which is of course a contradiction. Since the map that takes a cube in Q?aiﬁ to
its centre then defines an injection from D := {Q € Q?a_ﬁ 1 Q 0 Li(Uipp(x)) # I} to

eXPy,, (A“Sg76> N L3 (U (x)), we obtain the following bound:

D0 Xo(enu, (@) = #DXso1) (@)
)

= | U @llo.8* 1 x g1 (@)

QeD
> |Lf(U1/2($))|5(57Q)anBj—1(vj)($)

~ |dB;(2)]0, 1]n‘5(ﬂ_a)anB;1(vj) (2).

Since Xp-1(y,) = Xv; © Bj, the claim then follows from the fact that |dB;(x)[0,1]"| =
J

|R;(z)|, which follows from an inspection of the proof that |L;[0,1]"| = |R,| in Lemma

434 o

Finally, we need a technical lemma that will allow us to bound the volumes of intersections
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of balls with varieties below by the characteristic functions arising on the right-hand side

of (.3.10).

Lemma 4.3.14 Let Q < U be compact, and fix j € {1,....,m}. Then, for a sufficiently

small choice of 6 > 0 depending on €2, the following holds for all x € Q0 and z € M;:

5ﬂ(n_nj)XB{1({z})+U5B(o)(x) < 1B ({2}) 0 Usss (). (4.3.15)

Proof. We shall begin with some reductions. First of all, we fix 2z € M;, making sure
in what comes after that our choice 6 > 0 does not depend on this particular choice of
z € M;. Suppose that for each choice of xy € €2, there exists a corresponding choice
of §;, > 0 such that holds for each z € Us; (z0) and 0 < § < &, The set
{Uago(iﬁo) : ko € 2} is then an open cover of €, so by compactness of {2 we may take a
finite subcover . The minimal radius among the balls in U, which we shall denote by
8, is such that holds for all ¢ € (0, 5) and z € Q, so the lemma would then hold.

It therefore suffices to fix zy € €} and prove the claim that there exists a d,, such that

(.3.15)) holds for each x € Usz (20) and 0 < 0 < 0.

Furthermore, we may assume that M; is an open subset of R™. To justify this, by
compactness of {2 and continuity of B}, we may choose a § > 0 sufficiently small such that
exp, is a diffeomorphism on Us(0) < T, M; for each y € B;(£2). We then restrict B; to
B;'(Us(z)) and prove that the claim holds with B; replaced with Ej ;= exp; ' 0B;, and
z replaced with 0 € R™ | since in this case §;1({0}) = B; '({z}), hence we would obtain

the claim for our original choice of B;.

Fix zy € (2, recall the definition of L7}® from Lemma and let A € SO(n) be a
rotation such that Aker dB;(zg) = R"™™ x {0}". Since B; is a submersion on €2, dB;(zo)

is surjective, hence it admits a right inverse, call it S. Let ¢ := B; — dBj(x). We define
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the function ¢ : R* — R" by
o(y) := Ay + S(y))).

Forall y e B;Y({2}), = By(y) = dB;(so)y+6(y) = dB;(w0) s+ 56 (1)) = dBs(w0) (A~ (1),
so A7 ¢ (y) € dB;(zo) ' ({z}), hence A~ ¢(y) — Sz € ker dB;(xy), so ¢(y) € R" " x {0} +
ASz. We have now shown that ¢(B; ' ({z})) € R"™™ x {0}"1 + ASz. Moreover, one quickly
verifies that do(xg) = A(I + Sdiy(zg)) = A, hence ¢ is a diffeomorphism in a sufficiently
small ball around x, therefore by taking ¢ to be sufficiently small, we may assume that,
for all @ € Us2s (x0), Ug(ﬁb(l’)) < ¢(Ungs (x)) and det(dg|p-1 (. (y)) = 1 for all y € Us(z),

from which it follows that, for all z € Uses(xg),

BN ({2))  Ugs (1)) = f det(dd] 5+ () () ' dy

(R™™ x {0} +AS2) (U5 (2))
~ [(R™™ x {0} + AS2) A ¢(Uygs (@) (4.3.16)

> |(R"™ x {0} + ASz) n U¥(¢(x))|

> [(R"™™ x {0} + ASz) U3<;5< (@ )>|XB Y{=h+U 5(0)@)‘

(4.3.17)

Since ¢ is smooth and d¢(xy) = A is an isometry, if zy € Bj_l({z}) + Uss(0) and
d is sufficiently small then by Taylor’s theorem we know that for all © € Usps (),
o(x) € o(B;'({z}) + Ug,(;/a( ) = (R x {0} + ASz) + U#(O). In other words,
dist(¢(x), (R*™™ x {0} + ASz)) < %, hence (R x {0} + ASz) N U#(gb(x))) is an

(n — n;j)-disc of radius at least 4/ % - % ~ ¢7, therefore

(R x {0} + ASz) 0 Usss (8(2)) X572 (2141015 0)(®) 2 677 X

L (2D U5 (0)°

(4.3.18)

v
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This bound together with (4.3.17) then yields the claim. o

4.4 Proof of Proposition 4.2.4

Proof. Let 2 < U and choose § > 0 so that we may apply Corollary [4.3.8, Lemma
[4.3.9) and Lemma to Q. After first applying Lemma [£.3.4] they yield the following

pointwise estimate for all x € €2,

pPj

BL 11_[ Z XV; o By(
=1 VieV;
= BL(kerdB;(x),p) [ [ | D] IR;(@)|xv, © Bi(x)
Jj=1 \V;eV;
< BL(kerdB;(z),p) " [ [o©~ PP [ YT X5 ({23405 (0)(7)

Il
—_

V;eV; zel(V;)

D 2 X, o0(®)

VieV; zel(V)

§—Bpi(n—n;) Z 2 T({2}) N Ugss(2)]

VieVj zel' (V)

J
pj

s

— 5@ BL(ker dB;(z), p)~!

<.
Il
—_

bj

.:]3 ﬂ:]S

Il
fu

< §©P" B[ (ker dB,(z), p)~!

J

= 0 PP BL(ker dB;(x),p) " | [ [H; 0 Usgs ()] (4.4.1)

J

Above we used the scaling condition ijlpjnj = n to pull out the power of § from the

product. By Corollary for all x € Q and 1, ..., x,, € H; N Usss (),

—

BL(T, H;,p)" 7.

J

=
12
ol

BL(ker dB;(z), p) (4.4.2)

To speak in general terms momentarily, for each j € {1,...,m} let ¢; € [1,00] and let X;

be a finite measure space. Suppose that a function F' e @;n:qui (X;) satisfies |F'| < C for
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some C' > 0 pointwise almost everywhere, then since constant functions are elementary
tensors, it is immediate from the definition of the Fremlin tensor product, discussed in
Section , that HFH@W; ey < OIS |X;|%%. Now returning to our specific case, we
may therefore average via the Fremlin tensor product norm to find that find that
BL(ker dB; () H [H; 3 U (0)” > | BL(T, H;.p) |2 o,

7 @] L J(H ﬁU265(.1’))

(4.4.3)

We then integrate the inequality (4.4.1)) combined with (4.4.3) with respect to x over 2.

Dj

dx
JH 2w B | rami )

j=1 \V;eV;

< §le=ppn JHBL T, H,p)7 " (4.4.4)

&y Ls) P (U, 5 ()

At this point we then apply Lemma to rescale the inner integral so that we may
then apply Theorem [1.4.18] Finally, using the bound on the degree of Z(S;) o H; [4.2.8
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we obtain (4.2.5)), completing the proof.

bj

m dx
Xv; 0 Bj(2) | mramr
Lﬂ V;vj )| BL(dB(), p)
S 652?—1Pj(n_nj)(s(a_B(P_l))nJ BL T;B <QH> % r _ d
%Q ” ( J 2 77 ’p) ®;”_1ij/pj<¥er\U1(I)> !
éganJ\ BLTx<ﬁH>7p%Ii e dx
NBL(Tz, (%574 ). p) H@?”;LZ“ (%5 met@)
gé‘mj BL(T, (EZS-),p%”i (5 de
NBL(Ts; (%5 2(55) ). p) H®;11ij”f (b5 2sp0ta@)
< 5o [ (deg 2(5,)"
j=1
< 5ann (deg(B;)5"" f>l)nj7§g)j)pJ = H(deg(B])(an#Vg)p] .
J=1 =1

4.5 Two Kakeya—Brascamp—Lieb Versions

In this section, we shall apply the same techniques we used to prove Theorem to
prove two distinct Kakeya—Brascamp—Lieb inequalities. Let d,m,n € N and, for each
1 <j<m,let n; e Nand p; € [0,1]. Assume that the scaling condition Z;”:lpjnj =d
is satisfied. Let M < R"™ be an open subset of a d-dimensional algebraic variety, and for

each j e {1,...,m}, let M, be an n;-dimensional Riemannian manifold.

We consider collections B; = {B,} of quasialgebraic maps B; : M — M; that ex-
tend to quasialgebraic maps on some open set A < R". Setting p := (p1, ..., pm) Where
Z?Ll p; dim(M;) = dim(M) and equipping each M; with the measure ;; induced by its
Riemannian metric, then we have two Kakeya—Brascamp-Lieb versions of Theorem [4.1.3]
The first of which, like Theorem [4.1.3] is also a geometrically invariant inequality, however

we can only formulate it when each exponent p; is equal to ﬁ
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Theorem 4.5.1 (Invariant Quasialgebraic Kakeya—Brascamp—Lieb) If each p; =

ﬁ, then the following inequality holds for all fg, € L*(M;):

1

m—1

[T, f5, o B;(2)
], L Bi@s@.p] W

(Bl ..... Bm)E]le...XBm

<desOD [ 3] dea(B) [ fu (o) (152)

where o s the induced d-dimensional Hausdorff measure on M.

One may run a similar argument to Proposition in order to show that this integral
satisfies appropriate diffeomorphism-invariance properties. The second applies to any
configuration of dimensions and exponents that satisfy the appropriate scaling condition,
however this is at the expense of removing the invariant weight factor, and therefore

require some additional uniformity asssumptions.

Theorem 4.5.3 (Non-invariant Quasialgebraic Kakeya—Brascamp—Lieb) If there
exists C' > 0 such that |dB;(z)|, BL(dB(z),p) ~ C for allz € M and j € {1,...,m}, then

the following inequality holds for all fg, € L*(M;):

Pj by

| TI[ Z 1 0B@) | dotw) scaeeOn] ]| 3 deatBy) | foadisten |

j:1 B]‘EIBJ' j:1 BjEBj

(4.5.4)

We shall use this theorem later in Chapter [5| to prove a corollary of the forthcoming
Theorem [5.1.1] Given the dichotomy between Theorems [4.5.1] and [£.5.3] it is natural

to suppose that there exists an invariant Kakeya—Brascamp—Lieb inequality for general
exponents that generalises both (4.5.2]) and (4.5.4)), however it is not clear yet what such

an inequality would look like, although we discuss this line of enquiry in Section [6.4]
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4.5.1 Setup

We need to modify our definition of the varieties Hy, ..., H,, to suit the more geometrically

complex inequalities (4.5.2)) and (4.5.4]). We now consider the collections of quasialgebraic

maps B; to be fixed. For each B; € Bj, let Vg, be a collection of é-balls in M;, and
given V; € V;, recall the definition of I'(V;), from Section [3.1] Similarly to the earlier
construction, if two I'(V;) happen to have non-empty intersection, then we may translate
them by some qualitatively small amount without affecting the rest of the proof. Now

define the following algebraic varieties for each j € {1,...,m}:

=) U BT

BjE]Bj V]'EVBj

Similarly to before, since #(I'(V})) ~ 61~ for each V; e Vp,, then we see that

deg(H;) =deg | | ] | B'(0(Ve)) |= >, D, des(B;NI'(V3)))

BjE]Bj VBjeVBj B]‘EB]' VBjeij

< deg(Bj) Z Z #(F<VB]))

BjGBj VB]. EVB].

< deg(By)s" ™ Y #Vp  (45.5)

B]‘E]Bj

4.5.2 Reduction to a discrete inequality

First of all, we need to show that the following proposition is sufficient to prove Theorem

451

Proposition 4.5.6 Let B; be as in Theorem |4.5.1. For all compact 2 € U, there ewists

a 6q > 0 such that, for § € (0,6q), for all collections (allowing duplicates) Vi, of d-balls
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VB, © Vp,, the following inequality holds:

1

f 3 1% By ev,, X, ° B\ ™
i
! B BL(dB(z), p)

_1
m—1

sdeg(M)ﬁ > deg(B;)8" # Vs, : (4.5.7)

Proof of Theorem given Proposition[/.5.6. Recall the definition of Q%) Q]k), and
V(Q;) from Sectionm For each B; € By, let fp, € Cg°(M;) be a non-negative function
and, for each Q; € Q(k) let cg?(Qj) € N be chosen such that

inf o, ()b — 1 < (@) < inf f,(2)k.

By construction, we have the pointwise limit % > 0.c0® c(Qj)xq, / fs,,soin particular,
I k—00

for all z € R™, by the monotone convergence theorem,

HJ 12\/51} (Q])XVB o Bj(z)
BL(dB( ),p)m!

JQk o Z

BeBq x...xB.,

j= 1fB OB( ) w1
Hof H(BEB BLAB(0).p)" 1) da (4.5.8)

7j=1

On the other hand, provided that §; < dq, for each k € N, we may apply (4.5.7) to the
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multiset ng_) consisting of cp, (Vp,) copies of each ball V(Q;) for each Q; € ng).

f - Z l_[;n=1 ZQjeQE.k) C(B’?(Qj)XQj © BJ(CE) e p
ua
2 BL(dB(z), p)™!

BeB x...xB,,

1

m k m—
T2 2 e c5(Qi)xvig, © Bi(x) \ ™

< k= dx
fﬂk BeIleZ...x]Bm BL(dB(ZE), p)m—l
_1

min o" Z deg(B Z cgz.)(Qj)

=1 B GB QjEQ]'
e

1
= H E Z QJ XQ; x])d,uj(a:j)

7j=1 J J Q] Q(k)
11 deg(an o, (o)) | (159)
—0 - M.

‘771 BjE]Bj J

The last line follows from the monotone convergence theorem, and combining it with

(4.5.8) then yields Theorem [4.5.1] al

We shall now reduce Theorem to its corresponding discrete version in a similar

manner.

Proposition 4.5.10 Let B; be as in Theorem[4.5.5 For all compact Q € U, there exists
a 6q > 0 such that, for § € (0,6q), for all collections (allowing duplicates) Vp, of §-balls

VB, © Vp;, the following inequality holds:
Dj Dj

JH Z XVBjij(x) do(z) <o deg(M H Z deg(B;)6™ #Vs, |

1= 1 BGB VB GVB B

(4.5.11)
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Proof of Theorem given Proposition[{.5.10. Take V(Q;), Qu, Q" and cp, as before

inf s, (2)k — 1< ¢ (@) < inf fi,(2)k.

2€Q);

By construction, we have the pointwise limit 1 > 0,c0 CB; (Qj)xq; / fB,,so in partic-
] k—0o0

ular, for all x € R", by the monotone convergence theorem,

pj D

Lk]l 2 2 )(Q)xa; 0 Bi@) d“”,:;JH N fs,0By(x) | da

kg 1€B5 Q;eQ() j=1 \ BjeB;

(4.5.12)

On the other hand, provided that d; < dq, for each k£ € N, we may apply (4.5.11)) to the
multiset consisting of cgj(Qj) copies of each ball V(Q;) for each Q); € Qy‘) to obtain the

desired bound.

bj

JQ Z 2 CB (Qj)xq,; o Bj(z) | dx

kg 183 QeQlM)

bj

T3S 2 @ es | d

ol 183 QeQlM)

<l 3 deatn) Y i)
ST G 2 deB) | % e @a adney)
— 11| X destm) [ gt | (45.13)

Again, the last line is also a consequence of the monotone convergence theorem. Combin-
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ing this with (4.5.12)) yields Theorem m D

4.5.3 Proof of Propositions 4.5.6{ and 4.5.10

Proof of Proposition |/.5.6. This proof follows a very similar argument to the proof of
Proposition 4.2.4] where we apply Lemma followed by Lemma [4.3.14] to dominate
the left-hand-side of by an integral that takes the form of a §°-scale version the

left-hand side of (|1.4.15]).

D, [T5%1 2vsev, X, © Bj(@)
m—1
(B1yeryBm)EB1 X ... XxBm, BL(dB($)7 p)

< §la=PN Z

(Bl ..... Bm)eIle...xIEBm

H;n=1 |dB;(x)dB;(x)*|'? Zvjevj szer(vj) XB:({2;})+Uy5(0) (z)
BL(dB(z), p)™!

< sl0-BIN 3 Him 2ven, 2eere Xo (0,0 (%)
(B1,..,Bm)€B1 x...x By BL(ker(dB;(z)), p)™ !
< §aN—Bmn Z H;n:1 Zvjevj szer(vj) ’Bj({zj}) + Usss (OM
(B1,0, B )EB1 X ... x By, BL(ker(dB;(z)), p)™!
" |Hp, 0 Usss(x
< goN—pmn > L= [ A, 0 oo (@) (4.5.14)

(B1,0, B )EB1 X ... x By, BL(ker(dB;(x)), p)™!

By the continuity of the Brascamp—Lieb constant, for sufficiently small § > 0 depending

on €, for all x € €2, we may estimate the summand above by a locally averaged version

H?; |Hp; 0 Usss() f
BL(ker(dBj(x)),p)™ ' JHp, AU,us()x..xHp,, AU

2

doi(xy)...doy (T,
58 (x) BL(Tx] HBj ) p)mil

~

(4.5.15)
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We then integrate this inequality over 2 to obtain a §°-scale version of the left-hand side

of (T4.15)
< 504N—,an Z J dO’l(iCl)...dO'm(l'm
(B1,.--sBm)EB1 X ... X By, Hp, nUysp(x)x...x Hp,, "\U,;5(x) BL(TIJ‘HB]’J p)m_l

_ éuN_ﬁan\ dUl(SCl)...dUm(ﬁm)
HinUyp(x) X ... x HmnUysp (2) BL(ijHj7p)m—1

To bring everything up to unit scale, we then rescale the inner and outer integrals, using

the fact that dilation is a conformal mapping.

_1
m—1

dx

H;‘n=1 Zvjevj Xv; © Bj(z)
L 2 BL(dB(z),p)™!

(Bl ..... Bm)elle...me
1

e J J doy (21)..dop (2n) \ ™ "
Q HlﬁUéﬁ(l‘)X...XHmﬁUég(ZE) BL<T:C]H]7p)m_1

s m—1
_ gom—Bmm oS, T f ( f doy(z1)...doy (zm) ) .
Q \Jo-B(HinUsp(x)x...x HnnUyg (x)) BL(T%_ (5_5}]]-), p)m—1

1

_ 5aanJ J doy(z1)...doy,(z,,) m I
Q \J(E B H) UL (5 B2)x...x (6~ F Hm) U1 (6~P2)) BL(T,. (6 PH;), p)™1
3 J

1
_ (5“”[ J doi(xq)...doy, (x,,) T .
320 \J (4 H1) AU (2) x...x (6~ Hy) U (2) BL(ij (575Hj),p)m71

Proposition 1.2 of [6] gives us that

BL(T,, (5 7/2) Hp) = |\ Ty (672 H,) [

j=1
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Hence, we may then apply (1.4.15)) followed by (4.5.5)) to obtain the desired bound.

_1

m—1

(5omf (J |/\ij (6_6Hj)dal(xl)...dam(ajm)) dx
n (6=PH1)NUi(x)X...x (=B Hy) Ui (2) i1

1

m—1

<5°‘”Hdeg )yt sﬁ > deg(B;)8" # Vs, o

j=1 BjeB;

We now turn our attention to Proposition which again follows a similar proof

strategy to Proposition [4.2.4]

Proof of Proposition |/.5.1(). Again, we apply Lemma and Lemma [4.3.14] each time

absorbing the derivative-dependent contributions into the implicit constant.

pj bj
[Tl 2 2 xweBi@ ] <ed ™[ > 2 2 Xsrwnwuon®
j=1 \ Bj;€B; VBjEVBj j=1 \ BjeB; VB EVB z]eF(VB

Dj
m

< §la=Pn 5=, pj(n—n;) H Z Z Z | ]({Z]}) N Uass ()|

j=1 \ B;eB; VB EVB ZJEF(VB

= 5 [ |y U
j=1
We now may rescale these volumes by a factor of §77/2 to bring them up to unit scale.

5 b 58
(Gﬂﬁ“mﬁfﬁ

Dy

Dj

= §la=BP)n B, pj(n—n;) 1_[

j=1
|

5B 5B
11 (TH]> M U1 <7[E>
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Integrating in x, we may then apply ([1.4.20)) and (4.2.8) to obtain the desired bound.

576 575
(THJ) N Uy <7x)

Pj

dx

pj
f 1_[ Z Z Xv; © B;(x) <c 5(a—ﬁ)nj H
n Al

j=1 \ Bj€B; Vp,eVp, L
m 57ﬁ
= 5omf H (THJ) o) Ul(l’)
n j:1

<c 07" | ] deg(H;)

j=1

pj

dx

bj

S H Z deg(B;)6" #Vp,

j=1 \ BjeB;
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CHAPTER 5

GLOBAL L?-BOUNDS FOR MULTILINEAR

OSCILLATORY INTEGRALS

In this chapter, we will prove a global generalisation of an L? multilinear integral es-
timate due to Bennett, Carbery, Tao [15], stated earlier as Theorem [I.7.1] The proof
methodology draws heavily from their induction-on-scales approach, dealing with the fine
scale oscillation by induction and organising the resulting cube-wise bounds using a more

general version of the multilinear Kakeya inequality, which we now define.

Definition 5.0.1 (Nonlinear Kakeya—Brascamp—Lieb Inequality) Let M be an n-
dimensional manifold and, for each j € {1,...m}, let M; be an n;-dimensional Rie-
mannian manifold. For each j € {1,...,m}, let B; be a finite collection of submersions
B;: M — Mj, and for each By, let [p; € LY(M;), then the associated nonlinear Kakeya—
Brascamp—Lieb inequality is as follows:

Pj i
f [1{ 2] feoBi(&) | d¢<NKBLBP)[[| X | fs | - (5.0.2)
M j=1 \BjeB, j=1 \ B;eB

where B := (B;)7.,, and NKBL(B, p) € (0, 0] is the optimal constant.
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The reader should note that throughout this chapter, like the previous one, the nota-
tion A < B will denote that A < C'B, where C' depends only on the underlying dimensions

and exponents, and any additional dependence will denoted by a subscript.

5.1 Statement of Results

Our theorem states that, provided the operators S7, ..., S are suitably ‘transverse’ in the
sense that the geometry of their wavepackets may be organised by a nonlinear Kakeya—
Brascamp-Lieb inequality, then we can obtain multilinear estimates, although admittedly
with an e-loss in the exponent of A and requiring some polynomial decay in the amplitude.
Before we state our theorem, we shall clarify that, given some 2 < R" the differential
operator V¥ : C*(Q) — C°(Q; (R" ® ... ® R")*) sends a function f to the (k,0)-tensor
that maps a k-tuple (vy, ..., v;) to the k™ order directional derivative d,,...0,, f. Given a

(K, 0)-tensor T', we denote its operator norm by sup,, 1 1<i<k | T (v1, -, Vg)|-

Theorem 5.1.1 (Multilinear L? Oscillatory Integral Estimate) Let ¢ > 0. For
each j € {1,...,m}, let ¢; : R™ x R™ — R be a smooth phase and 1); : R x R" — R such
that supp(v;) < K; x R™ for some compact K; < R" with |K;| < 1. Assume that the
exponents p, ..., pm € (0, 1] satisfy the scaling condition Z}n:lpjnj =n. We consider the

following one-parameter family of oscillatory integral operators:

SMF(E) = J A0y (2, €) f(x)dz, N> 1 (5.1.2)
R™J

Let N, := [n*e ' minjeq,my(p;) ']+ 1 ~c 1, and suppose that the following conditions

hold for some a > 0:

1. (Regularity) For all (x,€) € K; x R" and 1 <k < N, + [n;/2] + 1:

o |Vid;(z, )] < 6"
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o [VaVed;(x,6)l £ 1 and [ViVed;(z,§)| £ ()" fork = 2.
o [Vi;(z, )] < (€)Wt
Here (£) := (1 + [£]*)Y/? denotes the Japanese bracket.

2. (Transversality) Given a finite subset A; < R™ for each j € {1,...,m}, set
B; = {B; : R" > R™ | Bj(£) := Va.0;(x,§),x € Aj}

and B := (B;)™,, then NKBL(B, p) < 1.

j=1

Then, the following inequality holds for all f; € L2(R™):
f [TIS) 1 <e X [T (5.1.3)
R j=1 j=1

Observe that the exponents here coincide with those of the endpoint case of Theorem [1.7.1],
and therefore this Theorem is indeed a generalisation of Theorem [1.7.1], where the condi-
tion that ¢ must be compactly supported in £ has been relaxed to only requiring poly-
nomial decay. Essentially, Theorem [5.1.1|states that every nonlinear Kakeya—-Brascamp—
Lieb inequality implies a related class of multilinear oscillatory integral inequalities; for
example, Theorem implies that bounds of the form hold if the phase admits

a quasialgebraic structure.

Corollary 5.1.4 Fiz some ¢ > 0. For each j € {1,...,m}, suppose that ¢; is a phase and
that 1; is an amplitude function satisfying the reqularity conditions of Theorem with
the additional properties that BL((VeVao(x5,§))jL,, p) =~ 1 for all (x4,§) € supp(v;), and
that the mapping & — V,1;(x,§) is quasialgebraic of bounded degree for all x € R™ | then,

(5.1.3) holds for all f; € L*(R™).
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Proof. Foreach j € {1,...,m}, let A; € R™ be a finite subset, and define B as in Theorem
5.1.1l By the uniform boundedness assumptions of the corollary, Theorem implies
that NKBL(Ba,p) < 1, therefore the transversality condition holds. Since the regularity
condition holds by assumption, follows by the Theorem . O

The proof of Theorem is a refined version of the proof of Proposition 6.9 in [15], and
where it deviates from [15] is in the much more careful treatment of the tail contributions.
In [15], they do not pose any issues since they have negligible mass, so Holder’s inequality
will suffice, however in the global setting that we consider, due to the noncompact support
of ¥; in the second variable, the tails are possibly not even integrable, so we need to use
something more sophisticated to bound them. First of all, rather than bounding the
pointwise contributions from each tail of each wavepacket separately, we bound the tail
contributions simultaneously, exploiting the cancellation between them in order to obtain
some additional decay. Secondly, we have to use the transversality of the supports of the
tails in order to obtain even a finite bound, and the only way of doing that is by appealing
to a Kakeya—Brascamp-Lieb inequality, as we do to organise the main contributions.
The multilinearity of the problem however means that the tails cannot in general be
‘disentangled’ from the main contributions, so we have to change the inductive hypothesis
itself to a hybridised form that generalises both and in order to deal with

the terms that are mixtures of both tails and main contributions.

5.2 Stationary Phase

First of all, we may assume that A > C| for some large C' ~ 1, since we may then derive
the case when A € (1,C') by considering the phase C~'¢;. Using a similar construction
to the one used in Section , for each j € {1,...,m}, let Q; be a boundedly overlapping

open cover of the closure of U&Rn supp(¢;(-,§)) by cubes with centre zg of diameter
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less than A~'/2, and let {Xq,} be a corresponding smooth partition of unity such that
IV xq,| < A¥/2 for all k € N. Taking the Fourier series of each f;xq, and summing them

together, we then obtain a wavepacket decomposition for f;:

fi= Z Z AQjw; €Qjw;

Q;€Q; wjex—1/22™i

where ag, ., € C and eq, o, = e ™%y, . We now want to show that the essential
support of each ij\er,wj lies in a certain tube, namely, fixing some small 4 > 0, and

letting zg, denote the centre of @)y,

T3, 0, = 1€ € R 1 |Vatj(2g,, &) — 2mw;| < X7 and (xq,,€) € supp(¥;)}.

Let U be a boundedly overlapping cover of R™ via A\~? balls. Given U € U, let VVjU =

{(Qj,w;) - Téj,w]- NnU # &}, let f]U = Z(Qj,wj)eW].U 4Q; w;€Q,w; and ijc = f; — fJU.
We view the former term as the dominant term, and it is the content of the following

proposition that we may treat the latter as a tail term for £ € U.

Proposition 5.2.1 For each Q; € Q;, let Bg,(§) 1= V.0;(xq,,£), and for given w; €

AN1277 and X > 1, define the following continuous function:

pij 'R - R
N=1V2 g — 2wy |7t if |z — 2mw,| = A2

P, (@) ==
1 otherwise

For all £ € U € U, we have the following pointwise bound for all N < N.:

1/2

SO s AN Y Jag, |70l © Bo, (€)Y (5.2.2)
Qj:wj
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We shall need to use a vector calculus lemma in order to prove this proposition, a proof

of which is given in the appendix. Given a multi-index o € N we write |a := Zle Q.

Lemma 5.2.3 Let d € N and W : RN\{0} — R? be the vector field with mapping
W (z) := |2|7%2, then for all multi-indices o € N, each component of |z|?1*TV oW (2) is

a homogeneous polynomial of degree |a| + 1. It follows that for all k € N and z € R™\{0},

IVEW (2)] < |27+, (5.2.4)

Proof of Proposition|5.2.1. The proof of this claim is a non-standard stationary phase
argument, where bound the whole tail contribution simultaneously via integration by
parts, exploiting the cancellation between them. First of all, given { € R" and w;, define
Kew, = Kj\{v € K;: Vo¢;(x,§) = 2nw;}. We claim that for any Q; such that (Q;,w;) ¢
WjU, Q) © K¢,- To see this, we show that the following quantity is bounded from below

inze@;:

Vag;(,€) — 2mw;|? )
log (!Vx%(»’lwif) — 2mw;|?

To do this we simply apply Taylor’s theorem and use the regularity condition of Theorem

to bound the higher-order derivatives that arise.

V(2. §) — 2mw;[?
o (e 8L 2l )| = 10819650 2 ) = (9.5, €)= 2
IV, Ol — g,

T Vedj(a,§) = 2mw| T

& A
Now, consider the following linear first-order differential operator:

D‘E:“’j :OOO(KS,WJ') - COO<K§M]')

 —iV;(x, &) — 2mw;
Dg,wjg(@ C T )\|V¢jzx’§) — 27ij‘|j2

-Vg(x)
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Differentiating e(%(#:)=272%) we see that this phase function is a fixed point for D,
hence it is also a fixed point for Dgwj, for all N < N.. We may then substitute this fixed

point equation into the definition of S} f/* and take the L*-adjoint of Dgwj to move the

derivatives onto ¥, (z,§) := ¥;(x,{)xq, (7).

1S3 7€) ==

J ei)\dh'(x,f)w(x, f)f]UC(iL‘)dib‘
R™

Y ag., LW PO o (1 €)da

(Qj i)WV

<Y g J NGO ) o (1 6)dy

Qi |ws:(Qjwy)EWY @
r N
= Z aQ; w; J Dﬁwj e¢>\(¢j(%§)—27rac~wj)¢@j ([E, f)dl’
Qi |w; (Qywi)gW ) Qs Kew;

= Z an,wj J ei/\((z)j (x7€)_27rx.wj) (Dg,w]‘ )Nng (x7 g)dx (525)
Qj wj:(Qj,wj)¢WjU Qj

Here, Dg"wj refers to the formal L? adjoint of D ,;, and integration by parts reveals that

D¢, .9(x) = —iA 'V, - (v, (2,€)g(x)), where v, is defined as the following vector field,

e Vﬂc(ﬁ(‘r?g)_w'
Vo, (7,8) 1= |V$¢]](a:,§) - wj]|2'

Let ng’)wj(x, €)= (DZWJ_)N Vg, (x,§). We then apply the Cauchy-Schwarz inequality and
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rescale to bring the integral up to unit scale.

¢ i (x —2TIAT- W N
Exid <£>|::Zf e (@) Moo et g L b, (2,6) | de

Q; |V w;(Qjw; )EWY

i —2miAzwj N
< A n;/ Z Z e ™ xw]anaijé?jv)Wj (1’,5)
Q; Wj:(Qj,wj)¢WjU L2(Qj)

o o iN1/20 N _
=\ nj/22 Z e 2miA ijanijé)j’)wj ()\ 1/2]7,5)
Qj wj:(Qj,wj)eZWjU L%()\l/sz)

s —omiaY 250 N _
<)\ n]/ZZ 2 o~ 2miA gcw]an,ijc(Qj,)wj(/\ 12y €)
Qj w;(Q; ,wj)géWjU L%L%O()\’lmQj)

By the Sobolev embedding of W*2(A\Y2Q);) in L®(A\Y2Q);), where k = [n/2] + 1, we then

have that

SO Y Y e ag, g, (V)

Qj wj:(Qj,wj)¢W]U L%W;’Z()\I/QQ]')
5 1/2
_ s —2miAY 2w, N -
~ \k/2 1/22 Jl/z Jl/z Z e~ 2miA ]an,wjvkwc(Qj?wj(A I/vaé) dydx
Qj AVEQj ARG, w;t(Qjw; JEW
5 1/2
—k/2—n.; —2miT-; ~ N -
= ARy f f > e Eiag, o VRO, (N2, 0)| dady
Qj )\1/2Qj )‘1/2Qj LTJjEan

where aq, o, 1= ag, \-1125, for (Q;, A720;) ¢ WY and vanishes otherwise. We may then
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apply Plancharel’s theorem to the inner integral to obtain

1/2
c _ . ~ N _
S g AT Y J/ Y. ligs, PIVEvG, s, (A 2y, Fdy
/A
1/2
—k/2—n. N
= AT Jag,n PIVESG L A0, 2 urng,)
(Qj»w)¢W]U
1/2
=AY Jag PIVEYG L, (4, 20y
(Qjw)gw/

To prove the proposition it is therefore sufficient to show that

VEQEY, (2,€)] < A2 )

Wi

o Bg, (€)™ gy~ e hraeh

for all (z,£) € Q; x U. We shall proceed by induction on N, and prove the claim for
general 0 < k < N. — N + [n;/2] + 1. For the base case N = 0, the claim holds for
all 0 < k < N; + [n;/2] + 1 by the regularity hypothesis of Theorem and the
definition of p[:j o Bg,, so now assume for inductive hypothesis that the claim holds for
all 0 < k < N. — N +[n;/2| + 1 for some N < N.. Before proceeding with the proof of
the inductive step, we shall need to briefly define some notation related to multi-indices.
Given multi-indices a, f € N, we say that § < « if for each i € {1,...,n;}, 5 < a;, and
we let (g) =12, (O”) Let a € N" be a multi-index such that |a| = k. By definition of

N .
Qﬂéj )wj we have the recurrence relation

s (2,€) = 9 DE, o, (2,€)

= ATV, - (v (@, U5, (,6))).
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By the product rule, for any C**! functions v : R* — R™ and f : R” — R,

V- (vf) = )] (g) ((6°V -0)0* P f + 0% - 0*7 PV f) |

B<a

hence, by the triangle inequality we have that

GROSMRIENS]

<A ( ) (yaﬂvx vy (2,050, (@, )] + 1000, (2,€) - 857V, (x, 5)\)

B<a

<A 2 Vi, (2, O VET YY) (2,€)] + Vi, (2, )| VEH 90T (2,€)]

=0

k
< NN 0 B, (9N Y IVE (€| AETD/2(g)m (Nem V20 (k=)
=0

+ ‘V;ij ($, 5)‘)\(kfl+1)/2<€>f(N57N+2a(kfl+1))

where above we used the inductive hypothesis. The claim therefore holds provided that
Vi, (2, €)] £ AFD2200% 0 BE(€)(E)* for all | < N.. The case | = 0 holds vacuously, so
without loss of generality assume that [ > 1. Let W : R%\{0} — R™ denote the vector
field with the mapping W (z) := ‘Z|2 and, suppressing the implicit dependence on £ and
wj, let @ : Q; — R™ denote the map ®(z) := V,4;(z,&) —2nw;. Then, v,, = Wo®, so by

the multivariate version of Faa di Bruno’s theorem [33], we know that for a multi-index

«, the derivatives of v, take the form

B2, = Y W o d(a)yas(a)

p<a,B#0

where y, g is a sum of O(1) terms of the form H‘f:'l 0" ®y,, where 1 < ~; < S8 for each
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i€{1,...,|B]}. We may then use this formula to bound |V'v,, (,§)|.

Vi, (2, )] £ max [V'W o &;()[[Vo(z, €) ¢,

By Lemma |5.2.3, we know that for all » € N and z € R™%\{0}, |[V"W(2)| < |2|~"+), hence

V', (2, )] < mais [ ()|~ V|V, €)1
< max @ ()| TV
< |Vt (, ) — wy| 7O (5.2.6)

We now want to bound [V,¢;(x,{) — w;| from below by |V.0¢;(zq,,§) — w;|. By the

Taylor’s theorem, we have that

Vedi(2q,,8) — wil? = [Vaj(2,€) — wjl? < [Vatj(zq,,&) — wil|Vig;(z,8)|lx — zg,]

Vaty(2q;,€) — wjl? <14 A2
Votj(z, &) —wi? — 7 |[Vag(2,) — wjl

<14 279,

hence |V,¢;(z,£) — w;|™1 < A2, 0 Bg,(£){¢)*?. Combining this with (5.2.6) then
yields the desired bound.

V', (@, )] < N7y, 0 Bo, ()X 2 < ATV, 0 Bo, (£)()*"

This closes the induction, completing the proof. =

5.3 Induction-on-Scales

We shall now set up our central induction-on-scales argument. We need to use a slightly

stronger, hybridised version of ([5.1.3) as our inductive hypothesis, which is that there
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exists an a > 0 such that, for any ¢; and v; satisfying the hypotheses of our theorem,
for all Jy c {1,...,m}, the following inequality holds uniformly in all choices of finite sets

A; c R" for j ¢ Jy, letting B, := {B; := V,0,(z,§), v € A;}.

bj

fwms;fj(ofwﬂ >, 98,0 Bila) | de<a X TR T X fRn.gBj -
BjeB; VR

Jj€Jo Jj¢Jo \ BjeB; Jj€Jo Jj¢Jo

(5.3.1)

Our theorem of course coincides with the case when Jy = {1,...,m}, and with (5.0.2))
when Jy = J. The reason for incorporating the non-oscillatory terms is that we may
use Proposition to absorb the tail contribution into them, as we now demonstrate.

We shall abbreviate the non-oscillatory part of the left-hand-side of (5.3.1) by G, (§) :=
P
Hj¢Jo (ZBjij 98, © B; (5))

| TTistsbmen@as < X | TTIsHP

jedo UeU j€Jo
< 3 | TT0sM1+ 182 DGy
veu YU je,

Now, for a given U € Y and J < Jo, let Uy :={£ € U : [S} V(&) = |S}(€)| V) e J}.

The collection {U;} <, defines a cover of U, hence we may write

f [T1SM7Gn < 35 ), f [TUST A+ 1377 G,
R™ jedo Jedo Ue YU jeg,
SN Iy [EV2 § CVRTH
Jodo Ued YU jeg jedJo\J
< 3 % | TTIs PG
JodoUeu VU jeg
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Proposition then yields the following upper bound, for all N < V..

J [T1S) PG < Y ATPr0002720N Eegiss 37 f [TIsrPecy,  (53.2)
R v

jedo Jcdo veu YU jeg

where, for a given subset S < {1,...,m}, Ps := ZjeS p;nj, and we have summarised the
non-oscillatory terms as

bj

GYE&) = 1] | D lagw,l*ed o Bo, (&) Ndx | G ).

Jj¢Jjedo \ Qj,wi

We shall from now on assume that N > n;/2 for each j € Jy, so that (pi‘,j)QN is integrable
and in particular §g.; (pj)j)QN < N0=1/2n  Now, suppose that there exists 5 > 0 such that

for each U e 4 and J < J,,

[ e

jeJ
by bj
_ 2p;
sV P I 1Y el @) T1( X
jed jedo\J \ Qj.w; Bq;(U) j¢Jo \ BjeB; Y Ba; (U)
(5.3.3)
By the almost orthogonality of the eg, ., we know that
Hf]UH%Q = 2 |a’Qj7‘*)j‘2H€ijij%2 ~ A2 2 |a’Qj7‘*"j|2 (5.3.4)
(Qj,wj)erU (Qj,LUj)EWjU
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Take an (Q;,w;) € W/, then there exists a ¢’ € T, ., N U. By the triangle inequality,

‘ngb(ij:fU) - wj‘ < ’Vx¢(ij>€U> - V:v(b(ij?é/N + ’vz(b(ijv §/> - wj‘
SN2V, o(2g,, &o)| + A2

< 2)\671/2

where applied the fact that V.V ¢; is L* bounded and the fact that we may assume that
A is large. It therefore follows that for all (Q;,w;) € WV, ;ﬁ,ﬁw o Bj(&y) = 1, provided

that ¢ is sufficiently small. Applying this to we obtain the inequality

Hf]UH%Q < )‘_nj/Q Z |a'Qj7Wj|2pL)¢\J§10 © BQ;‘ (gU)
(Qjwj)
The mean-value theorem and the L* boundedness of V¢V,¢ implies that Bg,(U) <
Uer-112(Bg,(€v)) for some ¢ ~ 1. Let j} (2) := A™/? SU%,l/Q(z)(po/\Jj)QN? and gp,(2) =
\"i/2 SU

2)\—1/2(2

) 9B;- Summing ([5.3.3)) over U and averaging, we obtain a Kakeya—Brascamp—
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Lieb form, which is bounded by the transversality hypothesis.

ZJ H‘S/\fU 2p]GU

jGJ
pj
2
< NS T ool [, ) TS [ o
U jeJ jeJo\J (Q],w])eW j¢Jo \ BjeB; Y Ba; (U)
< Aﬁ—PJ—n/2ZH Z |(1Q],w]| pw] B TQ; (gU)ZN
U 5&J \(Qjwj)eW[
pj bj
< 1T | 25 laguuwl’ds, o Ba,&o) | [T D 98 © Biléw)
jedo\J \ @j.w; J¢Jo \ BeB;
by
S| TSty P o B (€2
JjeJ Qj,wj
pj pj
< [T | D lagw, 83,0 Bo, ) | TT| D) a8 0Bi(€) | d¢
jeJo\J \ Qjw; Jj¢Jo \ BeEB;
pj pj
g)\B—PJH Z |an’wj|2)\(5—1/2)nj H Z |an’wj|2/\(5—1/2)nj H Z Jn.gBj
jeJ \ Qjwj jedo\J \ Qj.w; j#Jo \ BjeB; “R
pj

2
< \PHOP3 =Py H ny” PJ Z f 9,
BjeB;

JjeJdo J¢Jo

Combining this with (5.3.2 - ) then yields (5 , provided that N may be chosen such that
N = ndé~ ' min(p;) /2.

bj
f H |S)\fj‘2pj H Z g;c o B](f) 2 )\—n/2 26NZ],5JO\JPJ J 1_[ ’S)\fU 2p; GU
jeJo j¢Jo \ BjEB; JcJo jedJ
bj
<5 Z \B+0(Pig=2N Sy s Pi)—Pagps /2Py H Hf]Hzpj 1—[ Z f
Jcdo jedo j¢Jo \ B;EB,
bj
s B TG S [ o (5:3.5)
jedo j¢Jo \ BjeB;

128



In summary, we have now shown that if holds for some [, then holds for
a = [+ on. We now want to show that there exists at least one § = [y such that that
holds, which we refer to as the ‘base case’, and that if holds for some «
then holds for f = «/2, which we refer to as the ‘inductive step’. Iterating this
chain of implications we find that holds for o = 27%5, + Zf:o 27"on for all k € N,
hence holds for all & > 2dn. Choosing § < £/2n sufficiently close to £/2n so that

nd ' min(p;)~'/2 < N. then proves the theorem.

5.4 The Remaining Proof

All that remains now to prove Theorem [5.1.1] is to establish the two inequalities that
we referred to at the end of the last section as the base case and the inductive step

respectively.

Proof of Theorem |5.1.1. The base case follows from a crude size estimate on the oscilla-

tory part, followed by an application of the transversality assumption. For each j € J,

choose any B; = V,0;(z,§)

[ TIsees < [ TI( [ weolmwie)” & e

jeJ jed
2
<TTI | eveu
jedJ
2
T f [T s, © Bi€)GY (€)de
jed jEJ
) Pj
2
<A PJ/21_[HfUH D H ‘aQJw]‘ J pwJ 2N Z J
jeJ jeJo\J \ Qj.w;j j¢<]0 BjeB;

This shows that ([5.3.3)) holds for 5 = n/2, establishing the base case.

The inductive step involves rescaling the integral over each U by a factor of A2, so

that they are up to unit scale, at which point we then apply the inductive hypothesis
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but now with a scaling parameter of value \'/2, thereby halving the resulting exponent as
desired. First of all, let x 12y denote a smooth bump function that takes the value 1 in
AY2U and 0 outside of 2AY2U. Since the ball A'/2U is at unit scale, we may further assume
that the derivatives of xy12;; are uniformly bounded in A. Denoting the centre of U by &,
we then define the rescaled versions of the phase and cut-off functions to which we shall
be applying the inductive hypothesis, ¢} (z,&) = A/2¢;(x, A7) — A2¢;(x, &) and
wj)-‘(:zr, €) := (2, \Y2E) X2 (€). We need to check that the hypotheses of our theorem
hold for phases gb;‘ and amplitudes wj\ uniformly in A > 0. First of all, the transversality
condition holds by invariance of under translation and rescaling, so we just need

to check the regularity condition. Let £ € 2\2U, 2 € R, and k < 2N..

o [V56} @ €)] = AVIVEG (0. A7V2) = VEoy (6| < NVIVEVeo(a, 6u)l|A 12 —
&l (0

o [VEVep) (2,6)] = ANV |VEV (¢ (2, A\T120))| = [VEVeg; (2, A\7126)| < () for k =

2, and this also means that |V, V¢¢}(z, )| < 1.
o [Viuj(z,8)| = [Viv;(z, \72) < 1

Now, suppose that the inductive hypothesis (5.3.1)) holds for o = 5. We have shown
that ¢7,...¢) and 7, ..., 1\ satisfy the hypotheses of Theorem [5.1.1} so we may apply the
inductive hypothesis uniformly in A to each of their corresponding one-parameter families

of oscillatory integral operators, namely,

S;-L’Afj = J ezu(ﬁ;\(z{)wj}\(x?g)f](x)d‘r o= L.

R"3

We also need to define corresponding rescaled terms for the non-oscillatory parts,

Let BME) := AV2Bj(A12%¢) and Bg,(§) := V.¢}(zq,,§). We then have the following
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identities for all A > 1 and & € A/2U:

1/2 s (x
Sj‘ij(f) = S]’,\ ,A(e Ag;( 7§U)ij)()\1/2£>

P:},. o B, (§) = :Oo);j ()\71/2<B$j ()‘1/25) + Vetj(2g,,Ev))

J

We may substitute these identities into the left-hand side of ([5.3.3)) and rescale out the

factors of A2 from the argument, bringing the integral up to unit scale.

bj

2p; 1—[ Z QB]-()\_I/2BJ)'\()‘1/2§))

jEJ j¢J0 BJEBJ'

f 1_[|S>\fU 2p]FJ )\1/2 >\ z)\gbj(z &u) fU)<A1/2§>

jeJ

bj

< TT | D] lag,w, Ped,(N2(BY, (M2) + Vagi(xq,, &)™ | dé

Jj¢J,j€Jo Qg Wy

X (zfu 2p;
ST g@ " T S a0 Bie)

jed j¢Jo \ BjeB;

bj

Dj

< T | 2] lague, ol (A2 B, (€) + Vaedj(aq,, &0)*Y) | d€

j¢gedo \ Qj.wj

Applying the inductive hypothesis ([5.3.1)) to Sf‘ 1/2”\, ., S we then obtain the desired

? m
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estimate.

f [T1) 0 Y

jGJ

< )\—n/ZJ S)\l/QA iApj(z,6v) fU §
WUH( o[

bj

X H Z |an7wj|2pc>L\)j<A_1/2Bé)j(§) + v$¢j<$Qj’§U))2N)

Jj¢Jjedo \ Qj,wj

<a /\a/2 Pj/2—n/2 H ||fU||2pg Z J gB 1/2
BjeB;

jed J¢Jo

bj

)dz

Dj

X H Z |aQ.77w.7|2 J}an pgi(}‘_lﬂz + qubj(ij,{U))Ndz

|

Jj¢Jjedo \ Qj,w;

— \¥/2-Ps/2- n/2+PJc/21_[HfUH2pJ 1_[ Z |GQJ7wJ|2

jeJ Jj#J,j€Jo Q]:UJ]

el TS Jagyw j (o)

jeJ Jj¢J,5€do Q]7w]

pj

J¢J0

This establishes the inductive step, completing the proof.
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bj

TTT S 95,00 2B29)

]¢J0 BjEBj

dg

Z fn 9B,
J BjeB;

¢0

Z Jn 9B,
BjeB;

bj



CHAPTER 6

FURTHER RESEARCH

In this chapter, we shall discuss some of the questions that lead on from the results of

this thesis and offer some speculative conjectures.

6.1 Exact Heat-flow Monotonicity

In this thesis, we do not achieve exact heat-flow monotonicity statements for nonlinear
Brascamp-Lieb functionals, however such statements do hold in certain geometrically
symmetric regimes, such as those considered by Carlen, Lieb, and Loss [30], later gen-
eralised by Bramati [23]. The following unpublished result of Hong Duong as we shall

discuss is another such statement.

Theorem 6.1.1 Let n,ny,....,ny, € N, p = (p1,...,;pm) € [0,1]™ be an m-tuple of expo-
nents such that Z;n:lpjnj =mn, and for each j € {1,...,m}, let B; : R* — R™ be a smooth
submersion such that there exists a uniformly positive definite matriz valued function

A R" — R™™ and for each j € {1,...,m}, a uniformly positive-definite matriz-valued
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function A; : R" — R"™*" satisfying

A(x)

Y} dB;(x)" Ay(a)dBy(x)

Let £L:=V - (A7'V) and f; : R" — R. Let u; : R™ x (0,00) — R and suppose that there
exists a smooth supersolution to L of the form ug-t) o Bj, t.e.

o(ul 0 B)) = L\ o By) (6.1.2)

Then H;nzl(uy) o B;)Pi is also a supersolution to L.

The proof of this statement follows very similar reasoning to the proof of heat-flow mono-
tonicity in the linear geometric case found in [14], and analogously to the linear case

implies heat-flow monotonicity under certain reasonable integrability conditions.

Corollary 6.1.3 Let u := []" (u§t) o Bj), and assume that div(AVu) € L'(R™) is in-

j=1
tegrable, Vu — 0 as |x| — o, and o is uniformly bounded. Then, under the same
assumptions as the above theorem, the quantity Q(t) := SRn u 18 monotone increasing for

allt > 0.

Proof. By uniform boundedness of the time derivative we may exchange orders of differ-

entiation and integration as follows

%Q(t) = ﬁtj u = | ou® > f div(AVu®)

n Rn

= lim div(AVu®)
R—© Jp(o,R)

= lim AVU® - dn =0 O

E— J5B(0,R) B
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This result poses a difficult question, this being that of when there exist supersolutions
of the form ug-t) o Bj, i.e. supersolutions whose fibre structure coincides with that of the
maps B;, however the existing theory of supersolutions to diffusion equations cannot yet
provide any immediate answers to this question. It is appealing to think that they may
be constructed as solutions to some other variable coefficient diffusion equation, as then
by our uniformity assumptions it is reasonable to suppose that these supersolutions may
be written as u’ o Bj(z) = {4, Pi(z,y;)f; o B;(y;)dy; for some integral kernel P;, which
of course is the case if they may be constructed explicitly as solutions to some related
diffusion equation. Using the co-area formula, we would then obtain a formal bound for

the nonlinear Brascamp—Lieb inequality.

f l_[fJoB pfdxélimsupf l_[uzij(x)pjdx
R R™ 51

nj 1 t—0

m by

= lim sup ( H (J Pi(z,y;)fj o B; (%)dy]) dx

t—oo  JRn j=1 R™j

oy do(y,)

. o\Yj
= lim sup f f Py(z,y filz)dz; | dx

e ] 11 ( e S T P Tae(aB, () B, ()

pj i

. " do(y;) - "
< hm sup J sup J P xr,y J dx (J f)

t—00 "]1:[1 Zj ( Bj_l({zj}) ( ])‘det(dB (yj)dB (yJ> )‘ Jll & J

6.2 Sharp Nonlinear Brascamp—Lieb Inequalities

It is natural to ask the question of whether or not there is a version of Theorem [I.2.1]
that does not include a (1 + ¢) error term in the constant on the right-hand side. This
constant would then need to at least track the Brascamp—Lieb constant over the whole
of the domain of integration on the left-hand side. This leads us to the following natural

conjecture:

Conjecture 6.2.1 (Sharp Local Nonlinear Brascamp—Lieb) Suppose that (B, p) is
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a C? nonlinear Brascamp-Lieb datum defined over some neighbourhood U of a point
xg € R". There exists a neighbourhood U < U of xo such that the following inequal-

ity holds for all f; € L*(R™):

m m pj

J H fj o Bj(x)Pidr < sup BL(dB(z), p) 1_[ <J fj) (6.2.2)
Uj:1 zeU j=1 R™

One may also view this as a consequence of a related conjecture about the existence of

localising extremising sequences.

Conjecture 6.2.3 Given submersions B; : M — M; and p; € [0,1], then there ea-

ists a collection of points x; € M; and an extremising sequence of inputs £ such that

supp(f}k)) < Up(z;).

We shall now give a heuristic for why Conjecture would follow from Conjecture|6.2.3]
Conjecture suggests that in order to find the sharp constant for the local nonlinear
Brascamp-Lieb inequality, it suffices to test on functions f; with arbitrarily small support,
i.e., given any non-extremal f; € L'(R™) of unit mass, for § > 0 sufficiently small there

exists an f? of unit mass and a d-ball V;? < U such that supp(f?)  V; and

j=1

J et | TLatenerics | Tl @20

where Us 1= [j_, Bj’l(Vf). By transversality of the maps B;, we may assume that Us is
contained in some ball of radius <g ¢, and since ¢ can be taken to be arbitrarily small
we may apply the local nonlinear Brascamp—Lieb inequality (Theorem |1.2.1)) to find that,

given any € > 0, there exists some choice of J such that, denoting the centre of Us by zy;,

f ﬁ f o Bj(w)”dz < (1 + €)BL(dB(xy;,, p) < (1 + ¢) max BL(dB(z,p).  (6.2.5)
Us TE

J=1
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Combining this with and taking the limit as ¢ — 0 implies Conjecture [6.2.1]
Of course, we may try to run a similar argument in a global setting, where now each
B; : M — M; is a submersion between Riemannian manifolds of dimension n and n;
respectively, and we assume that BL(dB(z),p), |dB(z)|, and |[dB(z)|™" are uniformly
bounded above, whence transversality yields that Us is contained in, not just one, but a
union of balls with radius <g J, centred at the intersection points of the fibres associated
to the centres zys of the balls V7, this being (", Bj_l(:vvjs). Nonetheless, by uniformity
of Theorem [I.2.1| we may apply the local Brascamp-Lieb inequality to each of these balls

simultaneously and take the limit as ¢ — 0 as before, implying the following conjecture:

Conjecture 6.2.6 (Sharp Global Nonlinear Brascamp—Lieb) Suppose that
M, M, ..., M,, are Riemannian manifolds and that B; : M — M; are submersions such
that |dBj(x)| is uniformly bounded above and below for each j € {1,...,m}, then the fol-
lowing inequality holds,
m m pj
anfjoij < sup > BL(dB(z),p) ||| UM fj> (6.2.7)
j=1 ' i

ZJEMJ,]E{].,,m} ‘,1_61\43](‘1):2‘7 ]:1

6.3 Scale-Dependent Nonlinear Brascamp—Lieb In-
equalities

Throughout this thesis, we have adhered to scaling conditions of the form Z;n:l pjn; = n,
since this usually imparts some essential scale-invariance required for the problems we
are considering to be tractable, and as a result much of the existing literature carries
an assumption of this form; there is however reason to believe that at least some of the
inequalities of the type we consider may be feasible outside of this polytope. In the linear

Brascamp-Lieb setting, the scaling condition is necessitated by the presence of certain
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trivial rescaling counterexamples, however they may be avoided if we truncate the domain
of integration on the left-hand side and introduce some control to the level of constancy
of the functions f;, in which case we may then obtain Brascamp-Lieb type inequalities

with a broader range of exponents.

Let r, R > 0, and let L} (R™) denote the cone of non-negative functions f; € L'(R™)
such that f(z) ~ f(y) whenever |x—y| < r, we then define the scale-dependent Brascamp—

Lieb inequality as

JB Hf] o Lj(z)Pida < cg Uﬂw fj> Vf, e LLI(R™). (6.3.1)

R(O) 7j=1

and we define BL,.(L, p; 7, R) as the optimal constant C' € (0, o] such that (6.3.1)) holds.
Maldague recently showed that BLy.(L, p; 7, R) ~ r*R’?, where a, 3 > 0 are the following

exponents [56]:

V<R®

a:= inf (codim Zp]COdll’Il (L; V)) (6.3.2)

V<R®

B := sup (dim ip] dim(L;V) ) (6.3.3)

This generalises the well-known finiteness characterisation for the classical Brascamp—
Lieb inequality, which in this context is that o > 0 and S < 0. It also more generally
implies that BL;,.(L,p) := lim,_o BL;,.(L, p; 7, 1) is finite if and only if a > 0. Given
the local nature of the inequality it would make sense to conjecture the following

generalisation:

Conjecture 6.3.4 Let ¢ > 0, and suppose that (B, p) is a C? nonlinear Brascamp-Lieb

datum defined over some neighbourhood of a point xo € R™. There exists a 6 > 0 such
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that the following inequality holds for all f; € L*(R™):

f H fi o Bj(z)?dz < (1 + )BLiye(dB(20), p) H (J , fj>pj : (6.3.5)
Bs(zo) j=1 j=1 \JRr™

Given that Theorem is a consequence of Theorem [1.2.1], it is plausible that Conjec-
ture might, given some appropriate additional curvature assumptions to compensate
for the lack of scale-invariance, imply similar multilinear convolution and restriction esti-
mates, but for the broader range of exponents and geometries that the condition g < 0

allows.

6.4 Invariant Inequalities in Multilinear Harmonic
Analysis

Currently the tools we have to prove invariant Brascamp—Lieb and Kakeya-type inequal-
ities rely on the use of auxiliary algebraic varieties [27,/77]. The theorems that use such
methods require that the underlying geometry interacts favourably with these varieties,
hence we typically require that they have an algebraic structure of some kind. How-
ever, there is no evidence to suggest that these somewhat rigid hypotheses are necessary,
since the role that the algebraic condition on the fibres plays appears heuristically to be
purely combinatorial in nature, in that it is there simply so that Bézout’s theorem pro-
hibits unboundedly many intersections of fibres. If we are to follow this heuristic, then, it
would suggest that a more general theorem might hold that does not require any algebraic

assumptions on the underlying maps.

Conjecture 6.4.1 Let M, My, ..., M,, be Riemannian manifolds of dimensionsn,ny, ..., Ny,
respectively, and take some exponents p; € [0,1] satisfying Z;"Zl pjn; = n. Fiz some

D > 0, and for each j € {1,...,m}, let B; : M — M; be a C* map. Suppose that for all
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configurations (21, ..., zm) € My X ... X M,

m

#()B;'({z}) < D.

7j=1

Then, the following inequality holds for all nonnegative f; € L'(M;),
f, oBi(x)Pd ——— 7 g
JMH 1B iam e, <2 L

One may devise some similar Kakeya analogue of the form (4.5.2) with a similar combi-

natorial assumption in place of an algebraic one.

Conjecture 6.4.2 Take M, Mj, ..., M,, as in Conjecture|6.4.1, and for each j € {1,...,m},
let B; be a finite collection of almost everywhere C* maps B; : M — M;. Suppose that
there exists a D > 0 such that for any configuration of maps (B, ..., B,,) € By x ..B,,, and

points (21, ..., zm) € My X ... x M,,, we have that
#(B;'({z}) < D.

7j=1

Then, the following inequality holds for all fp; € LY(M;):

[T /s, © By(x) m
JM L m@sw.p) el ) e

(Bl,...,Bm)EIBh X.o. X By

We shall now discuss the issue of formulating invariant Kakeya-Brascamp-Lieb inequali-
ties with general exponents. First, observe that if the exponents p; are rationals written

with numerator r; and common denominator ¢, then, denoting an arbitrary r;-tuple of
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maps in B; by B; := (Bj,)-, € B;’, we may write the left-hand side of (4.5.4) as

JM Z 1_[ 1_][ fBj,kj © Bj,k]- (l’) dx

(ByssB,,)EB] ! x..xBpm j=1k;=1

The upshot of this formulation is that we may then introduce an invariant weight factor

as in (4.5.4). Given k = (k;)7L; € [[[Z {1, ..., 75}, let By := (Bjx,)TLy,

Q=

mo T fBj’kj o B, (z)
JM Z H ' ’ :

Again, this integral satisfies diffeomorphism-invariance properties akin to Proposition
[4.1.10] It is then natural to ask the question of what the appropriate form is for irrational
exponents. One suggestion is that this could be formulated using the calculus of virtual
integration, developed by Tao in [68], in order to make sense of summing over a cartesian
product of non-integer powers of the sets B;, where we would then reinterpret the weight

as a ‘virtual function’, however this avenue is as of yet unexplored.

Another possible route could be via the Fremlin tensor product technique of Zorin-

1L, fioB; ()"

“BLABQ@)p) 52 real-valued

Kranich as in [77], where we consider each term of the form
function on By x ... x B,,, and therefore may be considered as an element of the Fremlin
tensor product space @;n:lLl/ Pi(B;) for each x € M. We may then formulate the following

nonlinear Kakeya—Brascamp—Lieb inequality:

),

While this formulation has the advantage of being able to access irrational exponents and

Dj

dr < ﬁ Z JM B (6.4.3)

1L1/Pj (Bj) 7=1 B]'G]E]'

[T/ f5, 0 Bj(x)
BL(dB(z), p)

m

®j-
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is somewhat more succinct that , unfortunately, unlike , it does not coincide with
in the case when each p; = ﬁ It is therefore unclear, outside of the context of
a given application, exactly which of these generalisations is the most elegant or natural.

Given Theorem [5.1.1] it would be reasonable to conjecture that if Conjecture [6.4.2
holds, then a corresponding oscillatory version might follow. We shall now formulate a
candidate invariant version of the multilinear oscillatory integral estimate ([5.1.3). For
each j € {1,...,m}, let ¢; : R™ x R™ — R be a C? phase function and ¢ : R x R" —
R a smooth cutoff function that is compactly supported in the first variable. Setting
RY := R™ x ... x R"™ Let ¢ : RY x R" — R denote the direct sum of the phases ¢;,
ie. ¢(x,8) = XL, ¢i(x;,€), and ¢ : RN x R® — R the tensor product of the cut-
off functions v;, i.e. ¥(x,§) = H;n:1¢j(xj,§). We shall also define the collection of
maps By, : RN x R" — R™ as By, (z,£) 1= V,,0;(x;,£), and denote their m-tuple as
B, = (B¢j);71=1. Consider the following one-parameter family of multilinear oscillatory

integral operators:

T (1 ey fin) ::J NP2, ) L ® ... ® frn(2) (644

RN BL<d§B¢(‘r7§)7 p)T

Observe that if there exists w : R — R such that BL(d¢By(z,¢), p) = w(€) for all z € RY,
then |72, (f1, ..., fm)| = w(€) TT/L, [S7 f;], where S} is defined as in Theorem|5.1.1} In this

sense, we may view the following conjecture as an invariant version of Theorem [5.1.1}

Conjecture 6.4.5 (Invariant Multilinear L? Oscillatory Integral Estimate)
Suppose that holds uniformly for all collections of maps B; of the form

B, := {Bj(y,:) : y € Y}, where Y < RY is some finite set of points. Then, the following
estimate holds for all f; € L*(R™):

HTq;\,w(fla 7fm)

<€_'rL(WL—l) m
) Se AT 2 H 1f5 ]l 22ma (6.4.6)
j=1
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Finally, we observe that the optimal constant in this inequality is invariant under the

action of diffeomorphism on the underlying phase and amplitude.

Proposition 6.4.7 (Diffeomorphism-Invariance) Let ¢; and ; be phase and cut-off
functions respectively for j € {1,...,m} satisfying the conditions of Conjecture . Let
H:M—> M and, for each j € {1,...,m}, G; : N; — Nj be diffeomorphisms, and define
0 (&) = ¢;(G;(x5), H(E)), ¥j(x;,8) == ¢;(Gj(x;), H(E)), then,
A _ A
”T¢v¢”®;’;1 L3N} LT (M) HT&JH@;L L2(N;)— LT (A1)
Proof. For each j € {1,...,m}, let f; € C{°(N;) be a compactly supported smooth function,
define fj := det(dG;)Y2 fj0G;. For brevity, write N = Ny x...x Ny, F i= f1®...® fom, [ =
fi®...@fm, and let G : N — N denote the diffeomorphism G(z) 1= (Gy(z1), ..., G (Tm))-

We first of all apply the change of variables £ — H () and z; — G,(z;).

2

1T (i s Fen) |2

LT (1) 2
) JM .J:v emmwx’5>F<x)BL(ng¢(CZ; £).p)" 7 h d
=] e eta, )P — (ng(b(d; —= " det(dH(6))de
_ JM fﬁ EACELHE) (G ), H(E))F 0 G (x)det(dﬂg)((;Bgigzgcg e[
- || 0t o F @ <§>L>;é ;¢(tidg<:;>)c§<x>>dx o

By the chain rule, deB; (2;,€) = ¢V, 05(x;,6) = dG;(x;)deVa, 6;(G;(x;), H(E))dH(E),

so (d¢By(z,§),p) and (ngg(x,Q,p) are equivalent Brascamp-Lieb data, moreover by
Lemma 3.3 of [14], BL(d¢Bj(z,€). p) = det(dH ()" ]}, det(de(xj))%BL(ng(ﬁ(:c, £),p) =
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det(dH (z))~" det(dG(x)) 7 BL(deBy(x, ), p), hence,

2

e vy ]

LT (Rn)
B JM

[ ereatimoi) i
N

wr| A€
BL(deBj(z,€),p) =

< m—1
||T¢¢||®m L2N) Lm -2 M)H”fJ L2N)

Note that | fj|r2v,) = |fill12x,), hence, by density of Ci°(N;) in L*(N;), HT2‘~HOP <

HTQ;\WHOP, and so by symmetry the converse inequality also holds, proving the claim. D
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APPENDIX

Chapter

Proof of Lemma We should first clarify that, in this proof, double bars shall always
denote an L* norm. We first prove the case for derivatives of order 1. Let p € M and let
X,Y e T,M, and | X|,|Y| < 1. We consider the following vector field J(¢) : (0,00) — T'M
defined over the curve parametrised by ~(t) := exp(tX):

J(t) := 0 exp,(L(X + 5Y))|s=0.

By definition of the exponential map, J is a Jacobi field with initial data J(0) := 0 and
J'(0) =Y, hence it satisfies the Jacobi equation:

J"+ R(J,¥ )y =0 (A.8)

Here R denotes the Riemannian curvature endomorphism. Now, define the following
quantity F(t) := [J(t)[* + |J'(t)]*>. We shall aim to bound this quantity via bounding its
derivative using (A.8)) and the AM-GM inequality.
F'=2(J, 0+ 2(J"J"

=2((L I + 2 R(JA)Y))

< 2(| [T+ [T RITIXT)

<+ [RDF
Hence F(t) < e!*IED F(0), and so

|dexp,(X)Y| = J(1) < F(1)'? < eMHEDZp(0)12 = UHIED2)y |,

We then bootstrap to the second order case via a similar method. Let Z € T,M, |Z] < 1,
and consider the following family of variations of J:

Je(t) := 05 exp, (t(X + sY +¢e7))|s=0
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Each such J. is a Jacobi field for all € > 0, so we may then differentiate (A.8)) in ¢ to find
that

0. J! + 0yR(J-(t),7")(, 0 J.) = 0,Vt, e > 0.

Where 0; R refers to the partial covariant derivative of the Riemannian curvature tensor
in the first argument. We now consider the quantity G(t) := |0.J(t)[* + |0-J4(t)|?, and
apply a similar argument to last time

G' = 2{0:Jy, 0:Jy) + 2{0-Jy, 0. Ty
= 2(¢0eo, 0oy + 2(Jg, 01 R(Jo, V) (', 0 o))
< 2(10:Jo]|0=T5| + [0-To 0 R| | Jol 0= Jol| X |)
< (L+ |o.R|| )G

Hence G(t) < et(1+HaJRH(3up0<l<t |J0|2(l)))G(O) < et(l""HaJRﬂet(l-FHRH)|Y|)G(O)’ therefore7
2 _ < 1/2 - t(1+]0sR|etAFIED) /2 1/2 _ (1+]osR|e(FIED/2)/2
| exp(X)(Y, Z)| = 0-Jo(1) < G(1) " < e G(0)"" =e |Z]

By symmetry, we also have that |d2 exp(X)(Y, Z)| < e(HI0RIECTED21y)| g0 we are
done. o

Proof of Lemma[f-21] Let w(z) := det(dB(z)dB(z)*)~2. The lemma follows from the
co-area formula and the continuity of the quantity SB,l( ond (x)w(x)do(x) in z € N, since
we then have that

| f@mseB@ar | | @i

~1({z0})

jw) ( ng-l({zn Flaywz)do(z) - LGB-%{ZO}) Fhu(a)do(o)) d:

_ 5d—n

< f f(@)w(z)do(z) — f f(@)w(z)do ()

AnB-1({2)) AnB=({z0}) L (Us (20)
— 0. O
0—0

Proof of Lemma|3.2.11) Let 7 > 0 be small. Since f; is uniformly continuous, given € > 0,
there exists a § > 0 such that for all z, 2’ € M such that d(z, 2’) < §, we have that |f;(z) —
fi(2")] < e. Therefore, provided C77 < §, we may bound |f; o Bj(x) — H, ;. fj o Bj(x)] in
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the following way:

|fjoBj(x) — Hyprjfjo Bix)| = |fj0

B~ | 50l )

<fjo Bj(x) (1 - J Ga,r,j © €§J(x)>
Urv ;(Bj(z))

ﬁ/ (fy © By(@)) = () Garrs (€5 (w)) o]

T'Y,j(o)

+

By the uniform boundedness of the second derivative of the exponential map ep, ;) es-
tablished in Lemma (3.2.4] provided that 7 > 0 is sufficiently small, for all x € M,
jef{l,..,m}, and v € V ;(0) < T, (s M;, we have

(1+ 777" < det(dep, ) [v] <1+ 7" (A.9)

We may then apply Lemma to bound the first term by a power of 7. For the second
term, we apply the triangle inequality and bound the resulting gaussian integral similarly.

|fj 0 Bj(x) — Hyrj fj 0 Bj(x)|

< fjo Bj(x) (1 —(1+ T”)IJ Gm,;)
VT"/,]'(O)

F 150 Be) — (W) Gar o el (0w
Urv,5(Bj())

< (L+ 707 (fj o Bj(z)" +¢)

This of implies the claim of the lemma. O

Chapter

Proof of Lemma The fact that the scaling condition is satisfied is trivial. As for the
second claim, we shall first prove that BL(L,p) < det(LmHLq’;H)%BL(L,fJ). If we let
xs : R"% — R be as in Lemma , with zg = 0, and we take arbitrary f; € L'(R"),
then by Lemma [£.2.1], we have that

f H fioLj(x)Pdx = det(Ly41L), . 1)2 llm (H fioLj(x ) X6 © Lipi1(z)de
j=1
< det(Lps1 L )2 p)]] <f f]>
7j=1 M]
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which establishes that BL(L,p) < det(LmHLmH)%BL(i p). We shall now prove the
converse inequality. For each 1 < j < m+1, let f; € C*(R"™) be a smooth function with
unit mass. The claim quickly follows upon decomposing R™ into V @ V* and applying
the Brascamp-Lieb inequality associated to the datum (L, p) to the integral over V:

| Isenwra-| ( | TTntister+ Lj<y>>pjdx) o © Lun ()
LLD) [ s o L) ] ( | st Lj<y>>dz> dy

j=1

— BL(L, p) det(Ly 1 LY, ) 2. o

Proof of Lemma Fix some x € Q. Let T' := expp, (,) o(dB;(x)dB; (w)*)_l/%expl};(@,
then for 6 > 0 smaller than the minimal injectivity radius among z € B;(€2).

Li(Uspa(x)) = B;(Us(x)) <= TLj(Uspz(x)) = TB;(Us())

Hence we may assume without loss of generality that dB;(z) is a projection, in the
sense that dB;(z)dB;(x)* = I, (M, and thus we may also assume that L;(Usp()) =
Us/2(Bj(x)). It then suffices to show that for § > 0 sufficiently small, 0B;(Us(z)) n
Us2(Bj(x)) = &, in other words that for all z € 0B;(Us(x)), d(z, Bj(x)) > §/2. First of
all, 0B;(Us(x)) = B(0Us(x)), so for a given z € 0B;(Us(x)), there exists a y € dUs(z) such
that expp, (,) °dB;(x)(y) = 2. By Taylor’s theorem, there exists a ¢ > 0 depending on {2
such that, for 6 > 0 sufficiently small,

d(z, Bj(x)) = |dB;(x)(y — x)| + O(ly — «*)
> 5 — 6% > §/2 )

Proof of Corollary By duality, (4.1.9)) is equivalent to the bound
Z] 1 1 m
[ o) (45,58 ) @auto) 5 de @1l [ [l (A10)
=1

For 1 < j < m, define the nonlinear maps B, : G™ — G, Bj(x1, ..., Ty) := zj, and By,41 :
G" — G, Bpy1(r1, .., Tp) = l_[;nzl xj. Deleting the null set of singular points from
their ranges, these maps are quasialgebraic of degree 1 for 1 < j < m, and deg(B,+1) <

deg(m¢), hence by Theorem we know that

d Ao, (Tm "
Jm <Hl’g> Hfg B(ITJszlm(d];( ()f” >) < deg(G) deg(my) 1] vy [ [ 1551 0

j=1
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where z := (x1, ..., Z,,,), which is equivalent to (A.10) provided we have the identity

j—1
_Zgzl

u’.ﬁ\‘ =

BLr,gn (dB(z), p) = Bpn | [w(z;) " Alr)) (A.11)

at all configurations of smooth points x1,...,z, of G, where du(z) = w(z)do(x), and
By, ,, is the best constant for the n-dimensional euclidean multilinear Young’s inequality
associated to the exponents p := (p1,...,pm). Let x1,...,x, € G be smooth points, the
left-hand side of is by definition the best constant C' > 0 in the inequality

J (Z !E1---!L‘j—1vj$j+1-~-$m) H fj(vj)dvj < C”gb”LT'(Txl,,_me) H HfjHL”J’ (Tz; G)
7= Ty & J=1 j=1 j=1
(A.12)

where the Lebesgue measure on the left-hand side is induced by the Lebesgue measure
on the ambient euclidean space, and the Lebesgue measures defining the norms on the
right-hand side are induced by the left-invariant Riemannian metric on G.

First of all, we multiply the measure on the left by the constant [ [, w(z;) for conve-
nience. We then apply the linear transformation from the Lie algebra g to T, G defined by
the mapping v; — x1...0m (21...2;-1) " vj(T;41...2,) 1, this is to turn the left-hand side of
(A.12)) into an integral to which we may directly apply the euclidean Young’s inequality:

J (Z L1...Tj_ 10T 41.. xm> Hff zj)w(x;)dv;
e
= J (1'1 me UJ) Hfa 1) T TV (T 1 ) T AT A (@) T

m
By n| oo HU HA Tjs1..- L) 1Hf]((a:ﬁ1 L)~ 1z1...xmvj(:z:j+1...:cm)’l)HL%(Q)
j=1
m 1_1
—Bp,n|¢HLr/(Tz1,,_Zm H (Tjt1--- HfjHLPj(TEjG)
m -2 1/
l 1
p, |¢HLT (T, .. :cmG)H Hfg”LpJ(Tz G)-

Since this inequality is sharp by definition of Bp,, we have established (A.11]), thus
completing the proof. =
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Chapter

Proof of Lemmal[5.2.3. We proceed by induction on |o|. The claim holds trivially for
la| = 0, so suppose for inductive hypothesis that, for some k € N\{0}, |z[**0°W (2) is a
homogenous polynomial of degree k for all o € N? such that |a| = & — 1. Take such an
« and some i € {1, ...,d}, denote the multi-index whose " entry is 1 and all others are 0
by e;. Consider 0,,0°W (z). By the inductive hypothesis, for a given j € {1,...,d}, there
exist coefficients cg € R such that,

Op. OW(2))s = 0p. | |2|7%F cg2®
( i J i :8
|Bl=k

= —2kzi|z|_2(k+1) Z 0526 + |27 Z ﬁicﬂzﬁ_e"

|Bl=k |Bl=k
Bi>0

= |2|2*+D | 2k, Z cp2’ + |22 Z BicpzP e

|Bl=k |Bl=k
B;>0

We then may observe that |z|>*1)9, 0°W (z) is a homogeneous polynomial of degree
k + 1, closing the induction. The inequality then follows from the fact that,
given a vector-valued homogeneous polynomial p : R — R<, provided that |cg| < 1 for
each component cg of p, we have |p(2)| < [2]%°®) | hence |VFW (2)| < |z| 2D |z|k+1 =
|z|7(k+1). o
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