Advanced regularization and discretization methods in diffuse optical tomography

Lu, Wenqi (2020). Advanced regularization and discretization methods in diffuse optical tomography. University of Birmingham. Ph.D.

Text - Accepted Version
Available under License All rights reserved.

Download (6MB) | Preview


Diffuse optical tomography (DOT) is an emerging technique that utilizes light in the near infrared spectral region (650−900nm) to measure the optical properties of physiological tissue. Comparing with other imaging modalities, DOT modality is non-invasive and non-ionising. Because of the relatively lower absorption of haemoglobin, water and lipid at the near infrared spectral region, the light is able to propagate several centimeters inside of the tissue without being absolutely absorbed. The transmitted near infrared light is then combined with the image reconstruction algorithm to recover the clinical relevant information inside of the tissue.

Image reconstruction in DOT is a critical problem. The accuracy and precision of diffuse optical imaging rely on the accuracy of image reconstruction. Therefore, it is of great importance to design efficient and effective algorithms for image reconstruction. Image reconstruction has two processes. The process of modelling light propagation in tissues is called the forward problem. A large number of models can be used to predict light propagation within tissues, including stochastic, analytical and numerical models. The process of recovering optical parameters inside of the tissue using the transmitted measurements is called the inverse problem. In this thesis, a number of advanced regularization and discretization methods in diffuse optical tomography are proposed and evaluated on simulated and real experimental data in reconstruction accuracy and efficiency.

In DOT, the number of measurements is significantly fewer than the number of optical parameters to be recovered. Therefore the inverse problem is an ill-posed problem which would suffer from the local minimum trap. Regularization methods are necessary to alleviate the ill-posedness and help to constrain the inverse problem to achieve a plausible solution. In order to alleviate the over-smoothing effect of the popular used Tikhonov regularization, L1-norm regularization based nonlinear DOT reconstruction for spectrally constrained diffuse optical tomography is proposed. This proposed regularization can reduce crosstalk between chromophores and scatter parameters and maintain image contrast by inducing sparsity. This work investigates multiple algorithms to find the most computational efficient one for solving the proposed regularization methods.

In order to recover non-sparse images where multiple activations or complex injuries happen in the brain, a more general total variation regularization is introduced. The proposed total variation is shown to be able to alleviate the over-smoothing effect of Tikhonov regularization and localize the anomaly by inducing sparsity of the gradient of the solution. A new numerical method called graph-based numerical method is introduced to model unstructured geometries of DOT objects. The new numerical method (discretization method) is compared with the widely used finite element-based (FEM) numerical method and it turns out that the graph-based numerical method is more stable and robust to changes in mesh resolution.

With the advantages discovered on the graph-based numerical method, graph-based numerical method is further applied to model the light propagation inside of the tissue. In this work, two measurement systems are considered: continuous wave (CW) and frequency domain (FD). New formulations of the forward model for CW/FD DOT are proposed and the concepts of differential operators are defined under the nonlocal vector calculus. Extensive numerical experiments on simulated and realistic experimental data validated that the proposed forward models are able to accurately model the light propagation in the medium and are quantitatively comparable with both analytical and FEM forward models. In addition, it is more computational efficient and allows identical implementation for geometries in any dimension.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Licence: All rights reserved
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Computer Science
Funders: European Commission
Subjects: Q Science > QA Mathematics
Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QC Physics


Request a Correction Request a Correction
View Item View Item


Downloads per month over past year